
Self-Approaching Graphs

Soroush Alamdari1, Timothy M. Chan1, Elyot Grant2, Anna Lubiw1, and
Vinayak Pathak1

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{s26hosse,tmchan,alubiw,vpathak}@uwaterloo.ca

2 Massachusetts Institute of Technology, Cambridge, USA elyot@mit.edu

Abstract. In this paper we introduce self-approaching graph drawings.
A straight-line drawing of a graph is self-approaching if, for any origin
vertex s and any destination vertex t, there is an st-path in the graph
such that, for any point q on the path, as a point p moves continuously
along the path from the origin to q, the Euclidean distance from p to q

is always decreasing. This is a more stringent condition than a greedy
drawing (where only the distance between vertices on the path and the
destination vertex must decrease), and guarantees that the drawing is a
5.33-spanner.
We study three topics: (1) recognizing self-approaching drawings; (2)
constructing self-approaching drawings of a given graph; (3) constructing
a self-approaching Steiner network connecting a given set of points.
We show that: (1) there are efficient algorithms to test if a polygonal path
is self-approaching in R

2 and R
3, but it is NP-hard to test if a given graph

drawing in R
3 has a self-approaching uv-path; (2) we can characterize

the trees that have self-approaching drawings; (3) for any given set of
terminal points in the plane, we can find a linear sized network that has
a self-approaching path between any ordered pair of terminals.
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1 Introduction

A straight-line graph drawing (or “geometric graph”) in the plane has points for
vertices, and straight line segments for edges, where the weight of an edge is its
Euclidean length. The drawing need not be planar. Rao et al. [27] introduced the
idea of greedy drawings. A greedy drawing of a graph is a straight-line drawing in
which, for each origin vertex s and destination vertex t, there is a neighbor of s
that is closer to t than s is, i.e., there is a greedy st-path P = (s = p1, p2, . . . , pk =
t) such that the Euclidean distancesD(pi, t) decrease as i increases. This idea has
attracted great interest in recent years (e.g. [3, 7, 17, 21, 23, 26]) mainly because
a greedy drawing of a graph permits greedy local routing.

It is a very natural and desirable property that a path should always get
closer to its destination, but there is more than one way to define this. Although
every vertex along a greedy path gets closer to the destination, the same is not
true of intermediate points along edges. See Figure 1.
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Fig. 1: As we move from u towards
u′, distance to v first decreases (until
p), then increases. However,D(u′, v) <
D(u, v).
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Another disadvantage of greedy paths is that the length of a greedy path is
not bounded in terms of the Euclidean distance between the endpoints. This is
another natural and desirable property for a path to have, and is captured by the
dilation (or “stretch factor”) of a graph drawing—the maximum, over vertices
s and t, of the ratio of their distance in the graph to their Euclidean distance.
The dilation factor of greedy graph drawings can be unbounded.

Icking et al. [22] introduced a stronger notion of “getting closer” to a des-
tination, that addresses both shortcomings of greedy paths. A curve from s to
t is self-approaching if for any three points a, b, c appearing in that order along
the curve, we have D(a, c) ≥ D(b, c). Icking et al. proved that a self-approaching
curve has detour at most 5.3332, where the detour or geometric dilation of a
curve is the supremum over points p and q on the curve, of the ratio of their
distance along the curve to their Euclidean distance D(p, q). This is stronger
than dilation in that we consider all pairs of points, not just all pairs of vertices.

In this paper we introduce the notion of a self-approaching graph drawing—a
straight-line drawing that contains, for every pair of vertices s and t, a self-
approaching st-path and a self-approaching ts-path (which need not be the
same). We also explore the related notion of an increasing-chord graph drawing,
which has the stronger property that every pair of vertices is joined by a path
that is self-approaching in both directions. Rote [28] proved that increasing-chord
paths have geometric dilation at most 2.094.

Our first result is a linear time algorithm to recognize a self-approaching
polygonal path in the plane. This extends to R

3, with some slow-down. We do
not know the complexity of recognizing self-approaching graph drawings in the
plane or higher dimensions. One approach would be to find, for every pair of
vertices u and v, a self-approaching path from u to v in the graph drawing. This
problem is open in R

2 but we show that it is NP-hard in R
3.

Next, we consider the question of constructing a self-approaching drawing for
a given graph. We give a linear time algorithm to recognize the trees that have
self-approaching drawings. Finally, we consider the problem of connecting a given
set of terminal points in the plane by a network that has a self-approaching path
between every pair of terminals. We show that this can be done with a linear
sized network.

Due to space constraints, many details are omitted. They can be found in
the long version of the paper.
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2 Background

A spanner is a graph of bounded dilation. Spanners have been very well-studied—
see for example the book by Narasimhan and Smid [25] and the survey by Epp-
stein [15]. A main goal is to efficiently construct a spanner on a given set of
points, with the objective of minimizing dilation while keeping the number or
total length of edges small. For recent results, see, e.g., [4, 16]. If Steiner vertices
are allowed, their number should also be minimized, and different versions of the
problem arise if we include the Steiner points in measuring the dilation, see [14].

The detour of a graph drawing is defined to be the supremum, over all points
p, q of the drawing (whether at vertices, or interior to edges) of the ratio of
their distance in the graph to their Euclidean distance. Note that if two edges
cross in the drawing, then the detour is infinite. By contrast, a self-approaching
drawing may have crossing edges, for example, any complete geometric graph
is self-approaching. Constructing a network to minimize detour has also been
considered [13, 12], though not as extensively as spanners.

Relevant background on greedy drawings is as follows. Answering a conjecture
of Papadimitriou and Ratajczak [26], Leighton and Moitra [23] showed that any
3-connected planar graph has a greedy drawing, and Goodrich and Strash [17]
reduced the number of bits needed for the coordinates in the embedding. Moitra
[24] used combinatorial conditions to classify the trees that have greedy embed-
dings. Connecting the ideas of greedy drawings and spanners, Bose et al. [7]
showed that every triangulation has an embedding in which local routing pro-
duces a path of bounded dilation.

Self-approaching drawings are related to monotone drawings in which, for
every pair of vertices s and t, there is an st-path that is monotone in some
direction. This concept was introduced by Angelini, et al., [1] who gave algo-
rithms to construct monotone planar drawings of trees and planar biconnected
graphs. A follow-up paper [2] considers the case where a planar embedding is
specified. Self-approaching drawings are not necessarily monotone, and mono-
tone drawings are not necessarily self-approaching. The one relationship is that
any increasing-chord drawing is a monotone drawing.

Although a monotone path need not be self-approaching, there is a stronger
condition that does imply self-approaching, namely that the path is monotone in
both the x- and y-directions. Thus, a network with an xy-monotone path between
every pair of terminals is a self-approaching network. A Manhattan network
has horizontal and vertical edges and includes an L1 shortest path between
every pair of terminals. So a Manhattan network is self-approaching. There is
considerable work on finding Manhattan networks of minimum total length (so-
called “minimum Manhattan networks”). There are efficient algorithms with
approximation factor 2, and the problem has been shown to be NP-hard [11].
More relevant to us is the result of Gudmundsson et al. [18] that every point
set admits a Manhattan network of O(n logn) vertices and edges, and there are
point sets for which any Manhattan network has size at least Ω(n log n). This
contrasts with our result that every point set admits a self-approaching network
of linear size.
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For results on computing the dilation or detour of a path or graph, see the
survey by Gudmundsson and Knauer [19] and the paper by Wulff-Nilsen [29].

The Delaunay triangulation has several good properties: it has dilation factor
below 2 [30], and is a greedy drawing [8], although greedy paths in a Delaunay
triangulation do not necessarily have bounded dilation. We show that the De-
launay triangulation is not necessarily self-approaching.

3 Preliminaries

We let D(u, v) denote the Euclidean distance between points u and v in R
d.

Formally, a curve is a continuous function f : [0, 1] → R
d, and an st-curve is a

curve f with f(0) = s and f(1) = t. The reverse curve is f(1− t), t ∈ [0, 1]. For
convenience, we will identify a curve with its image, and ignore the particular
parameterization. When we speak of points a and b in order along the curve,
or with b later than a on the curve, we mean that a = f(t1) and b = f(t2) for
some 0 ≤ t1 ≤ t2 ≤ 1. A curve is self-approaching if for any three points a, b, c
in order along the curve, we have D(a, c) ≥ D(b, c) (see Figure 2(a)). Note that
this definition is sensitive to the direction of the curve—it may happen that a
curve is self-approaching but its reverse is not.

A curve has increasing chords if for any four points a, b, c, d in order along
the curve we have D(a, d) ≥ D(b, c) (see Figure 2(b) for an example). Note that
if a curve has increasing chords then the reverse curve also has increasing chords,
and the curve and its reverse are both self-approaching. The converse also holds:
if a curve and its reverse are both self-approaching then the curve has increasing
chords, as we then have D(a, d) ≥ D(a, c) ≥ D(b, c) for any points a, b, c, d in
order along the curve.

s

a
b

t c

(a)

a
b

d t

s c

(b)

Fig. 2: (a) A self-approaching st-curve and (b) an increasing-chord curve in R
2.

The following characterization of self-approaching curves is straightforward:

Lemma 1. ([22]) A piecewise-smooth curve is self-approaching iff for each point
a on the curve, the line perpendicular to the curve at a does not intersect the
curve at a later point.

Corollary 1. A piecewise-smooth curve has increasing chords iff each line per-
pendicular to the curve intersects the curve at no other point.
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Fig. 3: For distinct points u and v,
let uv be the line passing through u
and v. Let luv denote the line that
passes through v and is perpendic-
ular to uv, noting that luv and lvu
are distinct parallel lines. Let l−uv de-
note the open half-plane containing u
with boundary luv, and let l+uv denote
R

2 \ l−uv, the closed half-plane that is
the complement of l−uv. Let slab(uv)
be the open strip bounded by luv and
lvu—in other words, the intersection
of l−uv and l−vu.

When dealing with straight-line drawings of graphs, we apply Lemma 1 to
piecewise-linear curves. Using the notation defined in Figure 3, we can restate
the lemma as follows:

Corollary 2. Let P = (v1, v2, . . . , vn) be a directed path embedded in R
2 via

straight line segments. Then, P is self-approaching iff for all 1 < i < j ≤ n, the
point vj lies in l+vi−1vi

. Equivalently, P is self-approaching iff for all 1 < i ≤ n,

the convex hull of {vi, vi+1, . . . , vn} lies in l+vi−1vi
.

Analogous characterizations are also possible in higher dimensions, with the
half-planes l+vi−1vi

replaced by half-spaces bounded by hyperplanes orthogonal
to vi−1vi.

4 Testing whether paths are self-approaching

Corollary 2 implicitly suggests an algorithm to determine whether a directed
path embedded in a Euclidean space is self-approaching. In this section, we
provide improved algorithms for this task in two and three dimensions, as well
as a lower bound. We assume a real RAM model in which all simple geometric
operations can be performed in O(1) time, and we assume that a straight-line
drawing of a path P = (v1, v2, . . . , vn) is represented explicitly as a list of n
points (requiring O(n) space).

Theorem 1. Given a straight-line drawing of a path P = (v1, v2, . . . , vn) in the
plane, it is possible to test whether P is self-approaching in linear time.

We prove this theorem by giving an O(n) time algorithm to check that for all
1 < i ≤ n, the convex hull of vi through vn lies in l+vi−1vi

. We can do this by
iteratively processing and storing the convex hull.

In three dimensions, we can obtain a similar result with slightly worse running
time using an existing convex hull data structure that supports point insertion
and half-space range emptiness queries.
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Theorem 2. Given a straight-line drawing of a path P = (v1, v2, . . . , vn) in R
3,

it is possible to test whether P is self-approaching in O(n log2 n/ log logn) time.

Next, we show that Theorem 2 is tight up to a factor of logn/ log logn by
proving a lower bound of Ω(n log n) on the running time of any algorithm for
determining whether a directed path embedded in R

3 is self-approaching. We do
this by reducing from the set intersection problem, for which a solution requires
Ω(n logn) time on an input of size n in the algebraic computation tree model
[5]. We can show the following:

Theorem 3. Given a straight-line drawing of a path P = (v1, v2, . . . , vn) in R
3,

at least Ω(n log n) time is required in the algebraic computation tree model to
test whether P is self-approaching.

To prove this, we build an embedding of a path in R
3 using ‘cannons’ and

‘targets’, where a slab perpendicular to a ‘cannon’ collides with a ‘target’ if and
only if the corresponding elements of the sets A and B are identical.

The same construction also yields the following:

Corollary 3. Given a straight-line drawing of a path P = (v1, v2, . . . , vn) in
R

3, at least Ω(n logn) time is required in the algebraic computation tree model
to test whether P has increasing chords.

5 Finding self-approaching paths in graphs

We do not know how to test in polynomial time if a given graph drawing is
self-approaching. This contrasts with the situation for greedy drawings where
it suffices to find, for every pair of vertices s and t, a “first edge” (s, a) with
D(a, t) < D(s, t). In this section we explore the problem of finding a self-
approaching path between two vertices s and t in a graph drawing. If we could
do this in polynomial time, then we could test if a drawing is self-approaching
in polynomial time. We are unable to settle the complexity in two dimensions,
but, by employing the cannons and targets introduced in Section 4, we can show
that the problem is hard in three or more dimensions:

Theorem 4. Given a straight-line drawing of a graph G in R
3, and a pair of

vertices s and t from G, it is NP-hard to determine if a self-approaching st-path
exists. It is also NP-hard to determine if an increasing-chord st-path exists.

To prove this theorem, we reduce from 3SAT. Our proof uses similar ‘cannons’
and ‘targets’ to those used in the proof of Theorem 3, but this time, the cannons
correspond to variable assignments and the targets correspond to literals in
clauses.

6 Recognizing graphs having self-approaching drawings

In this section we characterize trees that have self-approaching drawings and give
a linear time recognition algorithm. This is similar to Moitra’s characterization
of trees that admit greedy drawings [24].
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Lemma 2. In a self-approaching drawing of a tree T , for each edge (u, v), there
is no edge or vertex of T \ uv that intersects slab(uv).

Proof. Since there is a unique path connecting vertices s and t in any tree T ,
a drawing of T is self-approaching if and only if it has increasing chords. The
result then follows from Corollary 1. ⊓⊔

As it turns out, we can quickly determine whether a tree admits a self-
approaching drawing:

Theorem 5. Given a tree T , we can decide in linear time whether or not T
admits a self-approaching drawing.

Proof. To prove this theorem, we completely characterize trees that admit self-
approaching drawings. We require two definitions of special graphs.

A windmill having sweep length k is a tree constructed by subdividing the
edges of K1,3 k−1 times iteratively and then attaching a leaf to each subdivision
vertex. The term sweep shall denote one of the three new disjoint paths of
length k that replace edges of K1,3 during the subdivision process. A windmill
is depicted in Figure 4(a).

(a)

a22 b22

b21
b2

b

b1

b11
b12

a12

a1a11

a

a21 a2

(b)

Fig. 4: (a) A windmill with sweeps of length 2 and (b) an embedding of the crab.

The crab graph is the tree with vertices {a, b, a1, a2, b1, b2, a11, a12, a21, a22, b11,
b12, b21, b22} and edges {(a, b), (a, a1), (a, a2), (b, b1), (b, b2), (a1, a11), (a1, a12),
(a2, a21), (a2, a22), (b1, b11), (b1, b12), (b2, b21), (b2, b22)} as depicted in Figure 4(b).
A graph G is crab-free if it has no subgraph that is isomorphic to some subdivi-
sion of a crab.

We prove Theorem 5 in two steps. Write ∆T for the maximum degree of a
vertex in T .

1. First we show that a tree T with ∆T ≥ 4 admits a self-approaching drawing
if and only if T is a subdivision of K1,4.

2. Then we show that a tree T with ∆T ≤ 3 admits a self-approaching drawing
if and only if it is a subdivision of a windmill, which happens if and only if
T is crab-free.
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To establish the first result, the following can be proved:

Lemma 3. In an increasing-chord drawing of a path, the sum of the sizes of the
angles in any consecutive chain of k left turns (or right turns) is at least π(k−1)
if k > 1 and at least π/2 if k = 1.

Corollary 4. If T admits a self-approaching drawing, then ∆T ≤ 4. Also, if
∆T = 4, then there is only one vertex of degree 4 in T , and the four angles at
the vertex of degree 4 have all size π/2, and the rest of the angles have size π.

This concludes the first step of the proof. For the second step, we prove the
following three structural lemmas, which establish the equivalence of a tree being
a subdivision of a windmill, being crab-free, and admitting a self-approaching
drawing.

Lemma 4. Let T be a tree with ∆T ≤ 3 that is crab-free. Then T is a subdivision
of a windmill.

Lemma 5. Let T be a tree that is a subdivision of a windmill. Then T admits
a self-approaching drawing.

Lemma 6. Let T be a tree that contains a subdivision of the crab. Then T does
not admit a self-approaching drawing.

Combining these results, we obtain the second step of the proof of the theo-
rem. This completes the characterization of all trees that admit self-approaching
drawings. To complete the proof of Theorem 5, it suffices to observe that it is
possible, in linear time, to check whether a tree T is a subdivision of K1,4 or of
a windmill. ⊓⊔

7 Constructing self-approaching Steiner networks

We now turn our attention to the following problem: Given a set P of points in
the plane, draw a graph N with straight edges and P ⊆ V (N) such that for each
ordered pair of points p, q ∈ P there is a self-approaching path from p to q in the
drawing of N . We call the points in V (N)\P Steiner points and the graph N a
self-approaching Steiner network. An increasing-chord Steiner network is defined
similarly.

We show that small increasing-chord Steiner networks (and hence small self-
approaching Steiner networks) can always be constructed for any given set of
points in the plane.

Theorem 6. Given a set P of n points in the plane, there exists an increasing-
chord Steiner network having O(n) vertices and edges.

Proof. Given points p and q, let θpq denote the angle between the line pq and the
x-axis (we take the smaller of the two angles formed, so that θpq ∈ [0, π/2]). A
path is xy-monotone if every vertical line intersects the path at most once and
every horizontal line intersects the path at most once. Clearly, an xy-monotone
path is self-approaching. We will construct a linear-size Steiner network G with
the following property:
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For every pair of points p, q ∈ P with θpq ∈ [π/8, 3π/8], there is an
xy-monotone path from p to q in G.

To handle the remaining pairs of points, we can rotate the coordinate axes by
π/4 and apply the same construction to obtain another Steiner network G′. We
can then return the union of G and G′.

To construct G, we first build a quadtree [20], defined as follows: The root
stores an initial square enclosing P . At each node, we divide its square into four
congruent subsquares and create a child for each subsquare that is not empty of
points of P . The tree has n leaves.

To ensure that the tree has O(n) internal nodes, we compress each maximal
path of degree-1 nodes by keeping only the first and last node in the path. The
result is a compressed quadtree, denoted T .

For each square B in the compressed quadtree T , we add the four corner
vertices and edges of B to G. (Note that we allow overlapping edges in our
construction; it is not difficult to avoid overlaps by subdividing the edges appro-
priately.) For each leaf square B in T containing a single point p ∈ P , we add
a 2-link xy-monotone path in G from p to each corner of B. For each degree-1
square B in T having a single child square B′, we add a 2-link xy-monotone
path in G from each corner of B′ to the corresponding corner of B. By induc-
tion, it then follows that for every point p ∈ P inside a square B in T , there is
an xy-monotone path in G from p to each corner of B. The number of vertices
and edges in G thus far is O(n).

Given a parameter ε > 0, a well-separated pair decomposition of P is a
collection of pairs of sets {A1, B1}, . . . , {As, Bs}, such that3

1. for every pair of points p, q ∈ P , there is a unique index i with (p, q) ∈ Ai×Bi

or (p, q) ∈ Bi ×Ai;
2. Ai and Bi are well-separated in the sense that both the diameter of Ai and

the diameter of Bi is at most εd(Ai, Bi), where d(Ai, Bi) is the minimum
distance between Ai and Bi.

It is known that a well-separated pair decomposition consisting of s = O(n/ε2)
pairs always exists [9]. Furthermore, such a decomposition can be constructed
by a simple quadtree-based algorithm (for example, see [20] or [10]), where the
sets Ai and Bi are in fact squares appearing in the compressed quadtree T .

To finish the construction of G, we consider each pair {Ai, Bi} in the de-
composition such that Ai and Bi are separated by both a vertical line and a
horizontal line. Without loss of generality, suppose that Ai is to the left of and
below Bi. We add a 2-link xy-monotone path in G from the upper right corner
of Ai to the lower left corner of Bi. The overall number of vertices and edges in
G is O(n/ε2).

To show thatG satisfies the stated property, let p, q ∈ P with θpq ∈ [π/8, 3π/8].
Suppose that (p, q) ∈ Ai × Bi. If Ai and Bi are intersected by a common hor-
izontal line, then θpq must be upper-bounded by O(ε) because Ai and Bi are

3 In the original definition [9], Ai and Bi are subsets of P , but for our purposes, we
will take Ai and Bi to be regions in the plane (namely, squares).
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well-separated; this is a contradiction if we make the constant ε sufficiently small.
Thus, Ai and Bi must be separated by a horizontal line, and similarly by a ver-
tical line via a symmetric argument. Without loss of generality, suppose that Ai

is to the left of and below Bi. By concatenating xy-monotone paths in G, we
can get from p to the upper right corner of Ai, then to the lower left corner of
Bi, and finally to q. ⊓⊔

In the above construction, the edges we add for each well-separated pair
{Ai, Bi}may cross other edges, although it is possible to modify the construction
to ensure that the network G is planar (and similarly G′). However, we do not
know how to avoid crossings in the final network obtained by unioning G and
G′, while keeping the number of edges linear. Our construction can be carried
out in O(n log n) time, since that is the cost for building the compressed quad
tree and the well-separated pair decomposition. The theorem generalizes to any
constant dimension.

We note that our construction bears some similarity to the construction used
independently by Borradaile and Eppstein [6] to create small low-weight plane
Steiner spanners in which the paths stay within a bounded range of angles.

Whether planar self-approaching Steiner networks of linear size can be con-
structed or not is an interesting question. Delaunay triangulations seemed to be
a potential candidate, however, Figure 5 shows a configuration of 6 points in the
plane whose Delaunay triangulation is not a self-approaching drawing.

Fig. 5: The Delaunay triangulation
of these six points does not have a
self-approaching path from s to t.
Forbidden edge-vertex pairs are in-
dicated with dashed lines. From s
we must take edge sa, because t lies
in the forbidden region for edge sb.
Then we cannot go to d since it is in
the forbidden region of sa, nor can
we use edge ac since t is in its forbid-
den region.

8 Conclusions

We have introduced the notion of self-approaching and increasing-chord graph
drawings, with rich connections to greedy drawings, spanners, dilation and de-
tour, and minimum Manhattan networks.

Our results are preliminary. We leave open the following questions:

– Can we test, in polynomial time, if a straight-line graph drawing in the plane
is self-approaching [or increasing-chord]? Or is the problem NP-complete?
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– Given a graph G, can we efficiently produce a self-approaching drawing of
G if one exists?

– What classes of graphs have self-approaching [or increasing-chord] drawings?
Does, for example, every 3-connected planar graph have a self-approaching
drawing? Even more interesting, which graphs have a self-approaching draw-
ing such that local routing finds a self-approaching path? For example, if
3-connected graphs had such drawings, this would have the significant im-
plication that every 3-connected planar graph has an embedding where local
routing gives paths of bounded detour (hence bounded dilation). Bose et
al. [7] recently proved the weaker result that every triangulation has an em-
bedding where local routing gives paths of bounded dilation.
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