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Abstract. The use of derivatives can lead to higher yields and lower funding costs. In
addition, derivatives are indispensable tools for risk management. We analyze the derivative
portfolio hedging problems based on value at risk (VaR) and conditional value at risk (CVaR).
We show that these derivative portfolio optimization problems are often ill-posed and the
resulting optimal portfolios frequently incur large transaction and management costs. In
addition, the optimal portfolio may perform poorly under a slight model error. A CVaR
optimization model including a proportional cost is proposed to produce optimal portfolios
with fewer instruments and smaller transaction cost with similar expected returns and a
small compromise in risk. In addition, we illustrate the importance of sensitivity testing of
the hedging performance with respect to model error; the optimal portfolio under a suitable
cost consideration performs much more robustly with respect to model error. Finally, we
discuss computational issues for large scale CVaR optimization problems and consider a
smoothing technique which solves a CVaR optimization problem more eÆciently than the
standard linear programming methods.
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1 Introduction

Derivative contracts are widely used by institutions and investors to achieve higher returns
and decrease funding costs. In addition, the use of derivatives has fundamentally changed
�nancial risk management by providing new tools to manage risk [10]. When derivatives are
used for investment or risk management, an appropriate risk measure is chosen to evaluate
the performance of a portfolio. The classical Markowitz [13] risk measure based on standard
deviation is no longer appropriate since the return distributions of derivatives are typically
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not normal. A more appropriate risk measure for a portfolio of derivatives is value at risk
(VaR) or conditional value at risk (CVaR).

For a given time horizon �t > 0 and con�dence level �, the value at risk of a portfolio is the
loss in the portfolio's market value over the time horizon �t that is exceeded with probability
1 � �. The Bank of International Settlements has set the con�dence level � to 99% and
the time horizon �t to 10 days while other �nancial institutions may disclose their VaR at
other levels, e.g., 95% or 99% level, and other time horizons. VaR has become a popular
risk measure for risk management, both for the purposes of reporting and measurement of
capital adequacy. Despite its wide acceptance, it has been noted that VaR is not a coherent
risk measure; Artzner et al [4] de�ne a coherent risk measure as one that satis�es the axioms
of translation invariance, subaddivity, positive homogeneity, and monotonicity. VaR lacks
subadditivity and convexity [4, 5] (The VaR of the combination of two portfolios can be
greater than the sum of the VaR of the individual portfolios). Indeed, VaR is a coherent
risk measure only when it is based on the standard deviation of normal distributions. In
addition, the lack of convexity limits its use as a risk measure in selecting an optimal portfolio
for investment and risk management purposes. It has been illustrated in [14] and [15] that
the problem of minimizing VaR of a portfolio of derivative contracts can have multiple local
minimizers.

An alternative risk measure to VaR is conditional value at risk (CVaR), which is also
known as mean shortfall[14], expected shortfall[2], and tail VaR[5]. In the context of a
continuous distribution (which we assume for simplicity in this paper), for a given time
horizon �t and con�dence level �, CVaR is the conditional expectation of the loss above
VaR for the time horizon �t and the con�dence level �. In contrast to VaR, CVaR provides
additional information on the magnitude of the excess loss. It has been shown [16] that CVaR
is a coherent risk measure. In addition, minimizing CVaR typically leads to a portfolio with
a small VaR.

In this paper, we analyze the VaR and CVaR optimization problems for which the instru-
ment universe consists of various derivative contracts. In particular, we focus on the portfolio
hedging problem which uses the available instruments to decrease the risk of an existing port-
folio. We illustrate that, when the decision universe is a collection of derivative contracts,
the optimization problem based on either the VaR or CVaR measure is typically ill-posed.
The resulting optimal portfolio usually incurs a large transaction cost as well as management
cost. Moreover, it tends to magnify the model error due to extreme positions. In [3], we
present similar analysis and computational results for the portfolio selection problem which
minimizes risk while at the same time achieving a speci�ed expected return.

The ill-posedness of the derivative portfolio optimization problem suggests that insuÆ-
cient information is speci�ed to obtain a desirable portfolio. Natural additional criteria to
include in the portfolio decision are transaction and management costs. Management cost is
diÆcult to model but it is reasonable to expect a higher administration cost for a portfolio
with more instruments. By including a cost function which is proportional to the magnitude
of the instrument holdings in a CVaR risk minimization problem, we illustrate that a hedging
portfolio with a smaller transaction cost and fewer instruments can be found with an often
negligible compromise in risk. Moreover, the optimal hedging portfolio obtained under a
suitably large cost parameter is more robust with respect to model error.

A convex (under suitable assumptions) optimization problem has been proposed in [17]
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to compute the optimal CVaR portfolio when the loss of a portfolio has a continuous dis-
tribution. In addition, when this optimization problem is approximated by Monte Carlo
sampling, it has an equivalent linear programming formulation and can be solved using stan-
dard linear programming methods. Unfortunately, a portfolio CVaR optimization problem
involving derivative contracts can quickly become a large-scale optimization problem due to
the wide variety of available derivatives and the many di�erent speci�cations for each type
of derivative. We illustrate that solving a CVaR optimization problem using standard linear
programming software can quickly become computationally ineÆcient or even impossible as
the size of the instrument universe and/or the number of Monte Carlo samples increase.
We consider solving the CVaR optimization problem directly using a smoothing technique,
assuming a continuous loss distribution. We show that, for a large-scale CVaR optimization
problem, the smoothing technique is computationally more eÆcient and is capable of solving
larger problems when compared to a standard linear programming software.

2 Minimizing VaR and CVaR for Derivative Portfolios

Derivatives play important roles in both hedging an existing risk and achieving invest-
ment goals. Consider the following example. Suppose that the current stock price is
S0 = $100. A writer, of a European at-the-money call on this stock which matures in
10 days, wants to hedge the risk at maturity using the underlying stock and a set of more
liquid call options which expire in one, two, three, and six months with strike prices of
$90; $95; $100; $105; and $110. Speci�cally, the writer wants to use the underlying stock
and the twenty liquid call options to hedge the risk of the short maturity at-the-money call
in terms of the expected loss conditional on the loss exceeding, e.g., 95% VaR. To decide how
to hedge this risk, the writer needs to solve the following risk minimization problem: given
the underlying stock and the 20 liquid options, �nd the optimal portfolio positions in the
21 instruments so that the CVaR of the hedging portfolio, consisting of the existing short
maturity call and the hedging instruments, is minimized.

More generally, we assume that the available instruments fV1; � � � ; Vng are derived from
underlying assets fS1; S2; � � � ; Sdg which may be correlated; let the random vector S 2 <d

denote the underlying values. In this paper, we focus on the derivative hedging problem
and assume that the available instruments are derivative contracts. Each derivative contract
typically depends on a small subset of the underlying assets, e.g., a stock option value may
depend only on one risky asset price. There are various types of derivative contracts on each
underlying asset, e.g., vanilla calls and puts, exotic contracts such as binary options and
barrier options with many new derivative contracts continuously emerging. For each type
of option, there can be di�erent contract speci�cations, e.g., strike prices and maturities,
which give rise to many di�erent possible instruments. In general, for a derivative portfolio
optimization problem, the total number of instruments n is far greater than the total number
of underlyings d.

At any time t, the value of a derivative contract Vi typically depends nonlinearly on the
underlying; the exact value depends on the assumed model for the underlying assets and its
associated parameters. For simplicity, let us assume that the ith derivative value at time
t is a function of the underlying price S denoted as Vi(S; t), 1 � i � n, and the values
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of the instruments in the selection universe are denoted by the column vector V (S; t)
def
=

[V1(S; t); � � � ; Vn(S; t)]. We note that not all derivative values can be written simply as
V (St; t) where St represents time t underlying asset values. Asian options for example have a
strong dependency on the history of the stock price. Let x 2 <n represent a portfolio, where
xi denotes the position for the ith instrument Vi and �0(S; t) denotes the loss at time t of
the existing portfolio P init, i.e.

�0(S; t) = P init
0 � P init

t

where P init
0 and P init

t denote the initial and time t values of the existing portfolio. For the
hedging example of the short maturity at-the-money call for a writer, P init

�t = �max(S�K; 0)
and the loss at maturity is �0(S; �t) = P init

0 +max(S�K; 0) where K = S0 is the strike price
of the call.

To measure the risk associated with a hedging portfolio, for a given hedging horizon �t,
let us consider the loss function:

fhedge(x; S) = �0(S; �t)� xT (V (S; �t)� V (S0; 0)) : (1)

Let f(x; S) denote any speci�ed loss function. Without loss of generality, assume that the
random variable S 2 <d of underlying asset values at a hedging horizon �t has a probability
density p(S). For a given portfolio x, the probability of the loss not exceeding a threshold �

is given by the cumulative distribution function

	(x; �)
def
=

Z
f(x;S)��

p(S)dS: (2)

Under the assumption that the probability distribution for the loss has no jumps, 	(x; �) is
everywhere continuous with respect to �.

Let 0 < � < 1 denote a speci�ed con�dence level, e.g., � = 95%. The VaR of a portfolio
x, for a con�dence level �, is given by

��(x)
def
= inff� 2 < : 	(x; �) � �g (3)

and CVaR, the conditional expectation of the loss, given the loss is ��(x) or greater, is given
by

��(x)
def
= (1� �)�1

Z
f(x;S)���(x)

f(x; S)p(S)dS: (4)

When the cumulative distribution function 	(x; �) is everywhere continuous, there exists �
(possibly not unique) such that 	(x; �) = �.

The portfolio CVaR optimization problem can be formulated as

min
x2<n

��(x): (5)

More generally, there may be constraints, typically in the form of linear constraints, on the
optimal portfolio. Let X � <n denote the feasible portfolios, e.g., X = fx : l � x � ug if
the only constraints are the bounds on the instrument positions. Thus a CVaR optimization
problem can be more generally formulated as

min
x2X

��(x): (6)
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2.1 How Well Is the Minimum Risk Derivative Portfolio De�ned?

For derivative portfolio optimization problems, we typically have many derivative contracts
depending on the same underlying assets. However, the value of each derivative contract
typically depends nonlinearly on the underlying values. How well is the risk optimization
problem (5) de�ned?

In order to measure the risk quantitatively, we need to assume that a stochastic model
for the change of the underlying assets of all the instruments in a portfolio is given. In
addition, we assume that there exist methods for computing the derivative values, such
as Black-Scholes formulae, delta-gamma approximations, or Monte Carlo simulations. For
simplicity, our illustrative computational results use the Black-Scholes type analytic formulae
to compute derivative values.

We now analyze the properties of an optimal CVaR/VaR derivative portfolio. To do
this, let us consider delta-gamma approximations for derivative values. For a short time
horizon t > 0, a delta-gamma approximation can be an acceptably accurate approximation
to the derivative value and is often used in risk assessment. In general, the delta-gamma
approximation describes the most signi�cant component in the change of the derivative values
and can thus provide insight into the nature of the solution. Therefore, let us assume, for
instrument i,

Vi(S; t)� V 0
i =

�
@V 0

i

@t

�
Æt+

�
@V 0

i

@S

�T

(ÆS) +
1

2
(ÆS)T �i (ÆS) : (7)

Here the vector (ÆS) 2 <d denotes the change in the underlying assets,
@V 0

i

@t
denotes the

initial theta sensitivity of the ith instrument value to time,
@V 0

i

@S
2 <d denotes the initial

delta sensitivity of the ith instrument with respect to the underlyings, and �i 2 <d�d is the
Hessian matrix denoting the initial gamma sensitivity of the ith instrument with respect to
the underlyings, and Æt is change in time.

Let @V 0

@t
and @V 0

@S
denote the initial sensitivities to change in time and underlying risk

factors (�rst order) respectively for all instruments in the decision universe:

@V 0

@t

def
=

h
@V 0

1

@t
; � � � ; @V 0

n

@t

i
2 <n

@V 0

@S

def
=

h
@V 0

1

@S
; � � � ; @V 0

n

@S

iT
2 <n�d

Let (ÆS)2 2 <d be the vector with each entry of (ÆS) squared. For simplicity of analysis here,
let us assume that each instrument depends on a single risky asset. In this case the only
non-zero entries in the gamma sensitivity matrix �i are the diagonal entries. Let us collect
these nonzero entries in the following matrix below:

�
def
=
h
�diag
1 ; � � � ;�diag

n

iT
2 <n�d;

where �diag
i is the diagonal of �i written as a column vector.

Now let the matrix � denote all these sensitivities:

�
def
=

��
@V 0

@t

�
;

�
@V 0

@S

�
;
1

2
�

�
2 <n�(2d+1): (8)
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Then the loss in portfolio value, for a portfolio hedging problem and hedging horizon �t, is

fhedge(x; S) = �0(S; �t)� xT�

2
4 Æt

ÆS

(ÆS)2

3
5 (9)

where Æt = �t. If n > 2d + 1, there exists z 2 <n; z 6= 0; such that �Tz = 0: Therefore, for
any �,

fhedge(x; S) � fhedge(x + �z; S); for any S

Hence the portfolios x and x+�z have the same VaR/CVaR under the delta-gamma approx-
imation.

The above analysis leads to following conclusion: The CVaR derivative portfolio hedging
problem minx2<n ��(x) based on CVaR with the loss function

fhedge(x; S) = �0(S; �t)� xT (V (S; �t)� V (S0; 0))

is ill-posed in the sense that there are an in�nite number of solutions, when n > 2d+ 1 and
the hedging derivative values are given by delta-gamma approximations. Similarly, the VaR
derivative portfolio hedging optimization problem minx2<n ��(x) is ill-posed.

When the derivative values are computed through more accurate methods, such as an-
alytic formulae or Monte Carlo simulation, the CVaR/VaR hedging optimization problem
typically remains ill-posed in the sense that an arbitrarily small perturbation of the data
can cause an arbitrarily large perturbation in the solution. The concepts of well-posed and
ill-posed problems were �rst raised by Hadamard at the beginning of the 20th century [11].
Since then ill-posed problems have emerged from many areas of science and engineering,
typically in the form of inverse problems.

In [3], a similar analysis is made for a portfolio selection problem. For a portfolio x , we
consider the loss function

fselect(x; S) = �xT (V (S; �t)� V (S0; 0)) ; (10)

for a portfolio selection problem, where �t > 0 is a given time horizon. For this problem, one
wants to choose a portfolio which minimizes the risk, e.g., CVaR, under the requirement that
the portfolio has a speci�ed return. Let (ÆV ) 2 <n denote the change in instrument values at
the given time horizon �t, i.e., (ÆV ) = V (S; �t)� V 0 where V 0; V (S; �t) 2 <n denote the initial
value and value at time �t respectively. Let us assume that we have a particular budget, for
example, an initial $1 budget for simpli�cation; the budget constraint can be expressed as�

V 0
�T

x = 1:

(The VaR and CVaR of a portfolio with a budget � are simply � � ��(x) and � � ��(x)
respectively). Alternatively, x can be interpreted as the ratio of the instrument holdings to
the total initial budget for investment, i.e., xi is the number of units of the ith instrument
holding per dollar investment.

The return constraint can be written as

ÆV
T
x = �r
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where �r � 0 speci�es the mean return of the portfolio and ÆV 2 <n is the expected gain for
the instruments in the time horizon �t, i.e., ÆV = E[(ÆV )].

Let X denote the feasible region speci�ed by these two constraints:

X = fx :
�
V 0
�T

x = 1 and ÆV
T
x = �rg:

The portfolio selection problem based on the CVaR measure can be formulated as

min
x2<n

��(x)

subject to
�
V 0
�T

x = 1 (11)

ÆV
T
x = �r:

From similar analysis, we can deduce that if n > 2(d + 1) + 1, then the optimal CVaR
and VaR portfolio selection problems de�ned by minx2X ��(x) and minx2X ��(x), for any
0 < � < 1, lie in a linear subspace of dimension n � 2(d + 1) � 1, if the derivative values
are given by their delta-gamma approximations. Thus, the CVaR/VaR derivative portfolio
selection optimization problem is typically ill-posed.

2.2 DiÆculties Due to Ill-posedness

What are the consequences of the ill-posedness of the derivative portfolio optimization prob-
lem? Can these diÆculties be easily overcome by imposing simple constraints, e.g., bound
constraints? Here we investigate these questions by considering the hedging problem of the
short maturity at-the-money call option introduced at the beginning of x2.

First, let us discuss how a CVaR optimization problem (6) can be solved. Rockafellar
and Uryasev [17] introduce the auxiliary function:

F�(x; �)
def
= �+ (1� �)�1

Z
S2<d

[f(x; S)� �]+p(S)dS (12)

where

[f(x; S)� �]+
def
=

�
f(x; S)� � if f(x; S)� � > 0
0 otherwise:

It can be shown [17] that the function F�(x; �) is convex and continuously di�erentiable
with respect to � if the cumulative distribution function 	(x; �) is continuous. Moreover,
minimizing CVaR over any x 2 X, where X a subset of <n, is equivalent to minimizing
F�(x; �) over all (x; �) 2 X � <, i.e.,

min
x2X

��(x) � min
(x;�)2X�<

F�(x; �): (13)

The function F�(x; �) is convex with respect to (x; �) and the CVaR function ��(x) is convex
with respect to x if the loss function f(x; S) is convex with respect to x. If, in addition, X
is a convex set, then the minimization problem

min
(x;�)2X�<

F�(x; �) (14)
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is a convex programming problem. The convexity property is appealing since any local
minimizer of a convex programming problem is a global minimizer.

The loss function, fhedge(x; S), of the portfolio hedging problem over the time horizon

�t can be written as �0(S; �t)� (ÆV )T x; fhedge(x; S) is clearly convex with respect to x. We

can formulate (14) explicitly as

min
(x;�)2X�<

�
� + (1� �)�1

Z
S2<d

[�0(S; �t)� (ÆV )T x� �]+p(S)dS

�
(15)

A continuous CVaR optimization problem (15) can be solved approximately using Monte
Carlo simulation. Assume that f(ÆV )igmi=1 are independent samples of the change of the
instrument values (ÆV ) over the given horizon. Let f(�0)igmi=1 denote the corresponding
samples of the loss of the existing portfolio. Then the following piecewise linear optimization
problem is an approximation to the continuous optimization problem (15):

min
(x;�)2X�<

 
�F�(x; �)

def
= �+

1

m(1� �)

mX
i=1

[
�
�0
�
i
� (ÆV )Ti x� �]+

!
(16)

To solve this piecewise linear optimization problem, let us consider the following problem,

min
(x;y;�)

 
� +

1

m(1� �)

mX
i=1

yi

!

subject to yi + (ÆV )Ti x + � � (�0)i; i = 1; 2; � � � ; m (17)

x 2 X; y � 0

Note that, for any solution of (17), it can easily be shown that yi = [(�0)i � (ÆV )Ti x � �]+,
1 � i � m, will always be satis�ed. Thus solving (17) is equivalent to solving (16).

If the feasible region X is speci�ed by a set of linear constraints, problem (17) is a
minimization of a linear function subject to linear constraints. This is a linear programming
problem which can be solved by standard methods. In x4, we discuss, in greater detail, the
computational issues for CVaR minimization by solving an equivalent linear programming
problem. In addition we describe a smoothing method for solving the simulation CVaR
minimization directly. Here we use an interior point software, MOSEK [1], to solve (17).

In order to illustrate the diÆculties that may arise from the ill-posed CVaR optimization
problem, let us consider the hedging problem faced by a writer of a short maturity call, who
wants to reduce the risk he will face at the maturity of the option by trading more liquid
options presently. We assume that the current stock price S0 = $100, the current Black-
Scholes (implied) volatility �0 = 20%, and the risk free interest r = 4%. For simplicity, we
assume that the stock pays no dividend and its expected return is 10% per annum. The
at-the-money call expires in 10 trading days (we assume here that there are 252 trading days
in a year). The hedging horizon �t is the maturity of the call and the loss of the existing
portfolio is �0(S; �t) = P init

0 + max(St � K; 0) where K = S0 is the strike price. Currently
the liquid call options on this stock have maturities of one, two, three and six months and
strike prices of $90; $95; $100; $105; and $110. The hedging instrument universe consists
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of the stock and the twenty liquid call options. We solve the hedging problem (17) with a
lower limit of l = �100 and upper limit of u = 100 on holding positions:

min
(x;y;�)

 
� +

1

m(1� �)

mX
i=1

yi

!

subject to yi + (ÆV )Ti x + � � ��0
�
i
; i = 1; 2; � � � ; m (18)

�100 � x � 100; y � 0:

The independent samples of change f(ÆV )igmi=1 and the loss of the existing portfolio f(�0)igmi=1
are computed from

S�t = S0e
���t+

p
�t��0�


where �0 = 20% and 
 is a standard normal.
Let us �rst consider the risk improvement that can be achieved from solving the hedg-

ing problem (18) in terms of VaR and CVaR. The VaR and CVaR reported in this pa-
per correspond to the VaR and CVaR from Monte Carlo simulations. We compute these
risks as follows: for a simulation with m independent samples, a portfolio x has losses,
(loss)1 � : : : � (loss)m, and each (loss)i has a probability of 1

m
. For a con�dence level �, we

compute the VaR and CVaR as follows: let i� � m be the index such that

i�

m
� � >

i� � 1

m
: (19)

Then VaR is given by ��(x) = (loss)i� and CVaR is given by

��(x) =
1

1� �

mX
i=i�+1

(loss)i
m

: (20)

For a con�dence level of � = 95% and a time horizon �t equal to the maturity of the
at-the-money call, the VaR of this short maturity call equals ��(0) = $5:5291 and CVaR
is ��(0) = $7:4396. Let x� denote the optimal hedging portfolio from (18). The VaR and
CVaR associated with x� are ��(x

�) = �$12:7857 and ��(x
�) = �$12:6816, an improvement

of 331% and 271% respectively over the VaR and CVaR of the at-the-money short maturity
call.

We exclude the ith instrument from the optimal portfolio if jx�i j � 10�3 (and the reported
risk corresponds to that of the portfolio after this exclusion). From Figure 1, we observe that
the optimal hedging portfolio consists of all 21 instruments, with 15 instrument holdings
at either the lower or upper bounds. The number of units traded is kx�0k1 = 1732 (i.e., a
large transaction cost of $17.32 assuming 1% transaction cost per unit traded). Note that
the initial Black-Scholes price for this short maturity call is $1:67. This indicates that the
optimal hedging portfolio is unattractive since it incurs large transaction and management
costs. In addition, it will be illustrated in x3.1 that these extreme positions can lead to the
more serious problem of potentially magnifying model error.

One might have hoped that adding constraints would eliminate or alleviate the ill-
posedness of the problem. We caution that one needs to be careful to ensure that these
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Figure 1: Histogram of Holdings of the Optimal Portfolio x�0 From (18): � = 0:95

constraints are meaningful and consistent in the sense that there exist feasible solutions. In
addition, the hedging example here illustrates that it is diÆcult to remove the ill-posedness
by simply adding constraints. Indeed the optimization problem with the bound constraints
remains ill-conditioned in the sense that there are many di�erent portfolios with similar
CVaR; further evidence illustrating this will be provided in x3.1.

We discuss next how to obtain a more desirable optimal hedging portfolio based on
CVaR. We note that much of the following discussion is applicable to the VaR optimization
problem; however we focus only on the CVaR optimization problem subsequently due to its
computational tractability.

3 Regularizing the Derivative CVaR Optimization

The diÆculty associated with ill-posed problems is that they are practically underdetermined.
Thus it is important to incorporate additional meaningful information about the desired
solution in order to stabilize the problem and produce a useful solution. This is often referred
to as regularization of an ill-posed problem.

For portfolio management, a natural consideration is transaction and management cost;
a portfolio, which, in addition to a small CVaR, incurs a small transaction and management
cost, is certainly more attractive. One can regard the management cost as proportional
to the total number of (non-zero) instrument holdings in a portfolio. Unfortunately, it is
diÆcult to include this explicitly into an optimization formulation since it is computationally
challenging to solve the resulting mixed integer program. Our objective is to seek a portfolio
which consists of a small number of instruments by minimizing a combination of the CVaR
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and a suitable cost function.
Let us assume that the cost of holding an instrument is proportional to the magnitude

of the instrument positions. Then we seek a portfolio which has a small CVaR risk as well
as a proportional cost by solving

min
x2X

 
��(x) +

nX
i=1

cijxij
!

(21)

where the CVaR function ��(x) is as de�ned in (4). Here c � 0 represents the cost as well
as the tradeo� between minimizing CVaR and cost.

The cost parameter ci � 0 can be interpreted as a measure of relative desirability to
exclude the ith instrument from the optimal portfolio. In this sense we can regard c as a
combination of the transaction cost and management cost. For any i0; 1 � i0 � n, assume
that all ci; ; 1 � i � n and i 6= i0; are �xed. Then it can be shown that there exists a
�nite threshold value such that, when ci0 is greater than this threshold, the solution satis�es
x�i0 = 0 (in other words the optimal portfolio x� for (21) excludes the ith instrument).
This is because the proportional cost modeling corresponds to an exact penalty function (a
technique used for solving a constrained optimization problem). We refer interested readers
to [9] for a more detailed discussion on the exact penalty function. Note that if one models
the cost as

Pn

i=1 cix
2
i for example, the resulting optimal portfolio typically has few (if any)

of its instruments with a small position jx�i j (e.g., jx�i j � 10�3). For the quadratic penalty
function, the constraint x�i0 = 0 is satis�ed only as the penalty parameter ci0 tends to +1.

To solve (21), we can similarly consider the augmented function F�(x; �) +
Pn

i=1 cijxij.
It is clear that F�(x; �) +

Pn

i=1 cijxij remains convex and continuously di�erentiable with
respect to � since

Pn

i=1 cijxij is convex and has no dependence on �; thus similar analysis of
[17] can be applied. Moreover, minimizing the sum of the cost and CVaR of the portfolio x
in any subset X of <n is equivalent to minimizing F�(x; �)+

Pn

i=1 cijxij over (x; �) 2 X�<,
i.e.,

min
x2X

 
��(x) +

nX
i=1

cijxij
!
� min

(x;�)2X�<

 
F�(x; �) +

nX
i=1

cijxij
!
:

In addition, the augmented function F�(x; �) +
Pn

i=1 cijxij is convex with respect to (x; �)
and ��(x)+

Pn

i=1 cijxij is convex with respect to x if the loss function f(x; S) is convex with
respect to x. Moreover, if X is a convex set, the minimization problem

min
(x;�)2X�<

 
F�(x; �) +

nX
i=1

cijxij
!

(22)

is a convex programming problem.
Next we compare the optimal portfolios from the cost model (21) for di�erent cost pa-

rameters. Assume that a �nancial institution is faced with a loss �0(S; �t) at the horizon �t;
the loss function of the portfolio hedging problem is

fhedge(x; S) = �0(S; �t)� (ÆV )T x: (23)
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For simplicity let us assume that the feasible set X, for the hedging problem, is de�ned by
bound constraints. The simulation CVaR hedging optimization can be equivalently formu-
lated as the following linear programming problem:

min
(x;y;z;�)

 
� +

1

m(1� �)

mX
i=1

yi +
nX

j=1

cjzj

!

subject to yi + (ÆV )Ti x + � � ��0
�
i
; i = 1; 2; � � � ; m (24)

z + x � 0; z � x � 0

l � x � u; y � 0; z � 0

3.1 Example 1: Hedging a Short Maturity At-The-Money Call

To illustrate the properties of the optimal hedging portfolios with respect to CVaR for dif-
ferent cost parameters, let us consider the same problem of hedging an initial portfolio P init

of a short maturity at-the-money call (from a writer's perspective) with more liquid options
described in x2.2. We denote the VaR and CVaR of the initial portfolio are denoted by
VaRinit and CVaRinit.

We consider the cost parameter ci = ! �jCVaR(0)j, 1 � i � n, where CVaR(0) denotes the
optimal CVaR value from (24) but under no cost consideration, i.e., solving (18). Similarly
VaR(!) and CVaR(!) denote the VaR and CVaR of the optimal portfolio from (24) with
cost parameter !. We use 20000 Monte Carlo samples for this hedging example.

Table 1 compares the hedging portfolios for various cost parameter values. Again we
exclude the ith instrument from the optimal portfolio if jx�i j � 10�3 and the computed
risk corresponds to that of the portfolio after this exclusion. We report total number of
instruments #Ins with holding position jx�i j > 10�3. We observe that the optimal hedging
portfolio has signi�cantly fewer instruments and smaller total trading positions for larger cost
parameters. In addition, signi�cant risk reduction is achieved from all the optimal hedging
portfolios.

Let us compare the optimal hedging portfolio under no cost consideration, x�0, with the
optimal portfolio x�0:5% with the cost parameter ! = 0:5%; here the subscript denotes the
value of the parameter !. The optimal CVaR hedging portfolio x�0:5% consists of only 3
hedging instruments, compared to 21 instruments for x�0. The top panel in Table 2 displays
the VaR and CVaR of the initial portfolio and the optimal portfolios in Table 1. The
VaR and CVaR of the portfolio x�0:5% are ��(x

�
0:5%) = $0:2127 and ��(x

�
0:5%) = $0:2168, an

improvement of 96% and 97% respectively over the VaR and CVaR of the existing short
maturity at-the-money call. The optimal portfolio x�0:5% holds 0:4586 units of the stock,
�0:7905 units of the call with strike price $90 and 1-month expiry, and 1:5832 units of the call
with strike $100 and 1-month expiry (a transaction cost of $0.03 assuming 1% transaction cost
per unit trading). The optimal CVaR hedging portfolio x�0, on the other hand, consists of the
entire 21 hedging instruments; the VaR and CVaR of this portfolio are ��(x

�
0) = �$12:7875

and ��(x
�
0) = �$12:6816, an improvement of 331% and 271% respectively over the VaR and

CVaR of the at-the-money short maturity call. The transaction cost for x�0 is approximately
$17:32.
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!
���VaR(!)�VaR(0)VaR(0)

��� ���CVaR(!)�CVaR(0)CVaR(0)

��� #Ins VaR(!)�VaRinit

VaRinit

CVaR(!)�CVaRinit

CVaRinit kx�k1
0 0 0 21 -3.312 -2.705 1732

0.001 0.05331 0.1077 6 -3.189 -2.521 349.3
0.005 1.017 1.017 3 -0.9615 -0.9709 2.832
0.01 1.024 1.024 2 -0.9453 -0.9592 1.700
0.05 1.035 1.036 2 -0.9189 -0.9394 1.254

Table 1: Optimal Hedging Portfolios for a Short Maturity At-The-Money Call: � = 0:95

Although the hedging portfolio x�0:5% signi�cantly improves the risk of the original port-
folio and the transaction cost is much more acceptable, the risk associated with x�0:5% is
much larger than that of x�0. Which hedging portfolio should one choose? To help answer
this question, we need to keep in mind that any assumed model for the underlying asset is
inevitably only an approximation to the actual market price dynamics. For example, let us
assume that the Black-Scholes formula gives an accurate pricing formula for the call options.
However, the future values of the hedging instruments depend on the future implied volatility
at the hedging horizon, �t = 10 trading days, which is unknown at the initial time t = 0. Let
us assume that the implied volatility at �t is random with a normal distribution of a mean
equal to 20% and a standard deviation of 0:5%, i.e.,

��t = 20% + 0:5% � 
; 
 2 N (0; 1) (25)

where N (0; 1) denotes a standard normal; hence, a fairly small error in the future implied
volatility estimation is assumed. The underlying risk factors S 2 <d now include the stochas-
tic volatility.

The bottom panel in Table 2 provides VaR and CVaR for the optimal portfolios in Table
1 under assumption (25). Both the optimal portfolios x�0 (under no cost consideration) and
x�0:1% (with a small parameter ! = 0:1%) have signi�cantly increased risks compared to that
originally faced by the writer! These optimal portfolios have magni�ed the model error due
to their extreme instrument positions. On the other hand, the optimal hedging portfolios
x�0:5%, x

�
1%, and x�5% (under larger cost parameters) have signi�cantly improved the risk of

the writer.
Table 2 indicates that, for a very small cost parameter, the performance of the optimal

hedging portfolio is extremely sensitive to the implied volatility error while the performance
of the optimal portfolios with larger cost parameters, e.g., x�0:5%, x

�
1%, and x�5%, are more

robust with respect to the model error.
Table 3 displays the expected returns of the hedging portfolios in the hedging horizon �t.

We note that the magnitudes of expected returns of all the hedging portfolios are less than
.5% ; this is reasonable since these portfolios correspond to minimum risk portfolios under
a small cost consideration and large bounds on the holding positions. For this example, the
hedging portfolio x�0:5% seems to be the most attractive one in terms of the expected return,
transaction and management cost, and sensitivity to model error.

Given that the future implied volatility is uncertain in practice, it seems that one should
explicitly include the implied volatility uncertainty in the CVaR optimization problem (24)
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��t = 20%
P init x�0 x�0:1% x�0:5% x�1% x�5%

VaR 5.5291 -12.7857 -12.1041 0.2127 0.3024 0.4483
CVaR 7.4396 -12.6816 -11.3159 0.2168 0.3039 0.4508

��t = 20% + 0:5% � 

P init x�0 x�0:1% x�0:5% x�1% x�5%

VaR 5.5291 25.6887 3.7592 0.2346 0.3187 0.4496
CVaR 7.4396 36.1931 9.1392 0.2586 0.3383 0.4597

Table 2: VaR and CVaR Risks at �t = 10 Days for Portfolios in Table 1

P init x�0 x�0:1% x�0:5% x�1% x�5%
��t = 20% 11.05 0.16 0.16 0.17 0.00 -0.41

��t = 20% + 0:5% � 
 11.05 0.15 0.15 0.17 -0.06 -0.19

Table 3: Expected Return (%) of the Portfolios in Table 1

when determining the optimal hedging strategy. We assume now that the Black-Scholes
formula still gives the option price but the future implied volatility is uncertain. Speci�cally,
let us assume that the implied volatility at the hedging time horizon �t has the distribution
(25):

��t = 20% + 0:5% � 

where 
 is a standard normal. For simplicity, we have assumed here that the future implied
volatility and the underlying prices are independent.

To determine an optimal hedging strategy under the assumption (25) on the implied
volatility at the hedging horizon, the future hedging instrument values and the loss of the
existing portfolio need to be computed under the stochastic volatility assumption (25). Using
Monte Carlo simulation, independent samples of both the underlying f(S�t)igmi=1 and f(��t)gmi=1
are computed and the corresponding change of hedging instrument values f(ÆV )igmi=1 and
losses of the initial portfolio f(�0)igmi=1 are calculated. The CVaR optimization problem
(24), under the stochastic volatility assumption (25), uses these computed change f(ÆV )igmi=1
and loss f(�0)igmi=1.

Table 4 compares the hedging portfolios for various cost parameter values. Note that,
once again, the total number of instruments in the hedging portfolio decreases as the cost
parameter increases. Comparing to Table 1, we see that less risk reduction is achieved when
the volatility uncertainty is included in the optimal hedging decision problem.

To illustrate sensitivity of hedging performance to model error, Table 5 provides the VaR
and CVaR of the optimal portfolios in Table 4 under di�erent assumptions on the implied
volatility at the hedging horizon �t, e.g.,

��t = 20% + 0:75% � ~

where ~
 is a random variable with a uniform distribution between �1 and 1. We similarly
observe that the hedging portfolios under larger cost, e.g, ! � 0:5%, seem to be more robust
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!
���VaR(!)�VaR(0)VaR(0)

��� ���CVaR(!)�CVaR(0)CVaR(0)

��� #Ins VaR(!)�VaRinit

VaRinit

CVaR(!)�CVaRinit

CVaRinit kx�k1
0 0 0 21 -3.091 -2.471 1396

0.001 0.02531 0.1338 8 -3.038 -2.274 472
0.005 1.017 1.018 5 -0.9647 -0.9729 3.332
0.01 1.026 1.028 3 -0.9446 -0.9582 1.855
0.05 1.038 1.041 2 -0.9201 -0.9392 1.267

Table 4: Optimal Hedging Portfolios Assuming ��t = 20% + 0:5% � 
: � = 0:95

in risk with respect to the model error. Moreover, the hedging portfolios computed under
the stochastic volatility assumption are more robust compared to those computed under
the constant implied volatility assumption. Speci�cally, we note (from the second panel in
Table 5) the excellent performance of the hedging portfolios x�0 and x�0:1% computed under
the stochastic volatility assumption when the implied volatility at �t turns out to equal the
initial implied volatility of 20%. Moreover, from Table 5, for portfolios x�0:5%, x

�
1%, and x�5%,

VaR and CVaR change less signi�cantly with the assumptions on ��t, when compared to the
optimal portfolio x�0 and x�0:1%.

The computational results for this hedging example illustrate that the optimal hedging
portfolios under suitable cost consideration yield more practical hedging strategies in that
they signi�cantly improve the existing risk and incur more acceptable transaction and man-
agement costs. In addition, their hedging performance is more robust against inevitable
model error.

3.2 Example 2: Hedging a Portfolio of Binary Options

We now demonstrate that the proposed optimal CVaR hedging with cost consideration can
produce superior hedging portfolios for portfolios of exotic options. Here we illustrate with
an example of hedging a portfolio of binary options using liquid vanilla calls. We consider the
European binary option which has a discontinuous payo�: a contract pays $1 if and only if
the underlying price is greater than the exercise price at expiry. Because of this discontinuity,
a binary option can be diÆcult to hedge since the delta of the binary option may become
large near expiry.

Suppose that a �rm currently has a portfolio P init of four short positions of European at-
the-money binary call options; each binary option is on a single asset and the four underlying
assets are correlated. These options expire in 4, 6, 8, and 10 months on assets 1, 2, 3, and
4 respectively. The �rm wants to hedge the risk, for a hedging horizon of one month, using
the four underlying assets and 20 vanilla European calls on each asset; the hedging universe
now consists of 84 instruments. Again we consider the future loss �0 as the initial value of

the portfolio P init less its time �t value .
The covariance matrix of the returns of the four underlying assets is given in Table 6.

The initial asset prices S0, and the expected rates of return of the four assets are given in
Tables (7)-(8) . The strike prices of the vanilla calls are [0:9; 0:95; 1; 1:05; 1:1]� S0 and the
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��t = 20% + 0:5% � 

P init x�0 x�0:1% x�0:5% x�1% x�5%

VaR 5.5291 -11.5633 -11.2707 0.1950 0.3063 0.4415
CVaR 7.4396 -10.9446 -9.4797 0.2015 0.3111 0.4521

��t = 20%
P init x�0 x�0:1% x�0:5% x�1% x�5%

VaR 5.5291 -11.5770 -11.3858 0.1949 0.3047 0.4389
CVaR 7.4396 -11.1926 -9.8598 0.2004 0.3070 0.4429

��t = 20% + 0:75% � ~

P init x�0 x�0:1% x�0:5% x�1% x�5%

VaR 5.5291 -10.8756 -10.7812 0.1955 0.3041 0.4410
CVaR 7.4396 -9.5103 -8.4035 0.2044 0.3099 0.4509

��t = 20% + 3:5% � ~

P init x�0 x�0:1% x�0:5% x�1% x�5%

VaR 5.5291 -4.4417 -6.2919 0.2034 0.3098 0.4555
CVaR 7.4396 1.5188 -0.5423 0.2271 0.3196 0.4707

Table 5: VaR and CVaR Risks at �t = 10 Days for Portfolios in Table 4

options expire in 2, 3, 4, and 6 months.

0.2890 0.0690 0.0080 0.0690
0.0690 0.1160 0.0200 0.0610
0.0080 0.0200 0.0220 0.0130
0.0690 0.0610 0.0130 0.0790

Table 6: Covariance Matrix of Annual Returns

We assume that the risk free interest rate r = 5%, the initial variance

�20 = [28:9%; 11:6%; 2:2%; 7:9%]

and the con�dence level � = 95%. Given that the initial value of the portfolio P init is small
and the fact that large positions lead to large transaction cost and sensitivity to model error,
we assume, for this example, that the positions in the hedging instruments are restricted by
�1 � x � 1.

As before, we assume that the stock prices are described by a geometric Brownian process
and the derivatives are priced using a Black-Scholes type analytic formula. Using m =
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100 50 30 100

Table 7: Initial Asset Prices

0.1091 0.0619 0.0279 0.0649

Table 8: Expected Annual Returns

25000 independent Monte Carlo simulations, we solve the CVaR optimization problem (24)
computed using the interior point software MOSEK.

In order to analyze the impact of the cost on the risk measures, we consider the relative
di�erences of VaR and CVaR under di�erent costs with respect to that under no cost and
the risk improvement over the existing portfolio. Again we exclude the ith instrument from
the hedging portfolio if jx�i j � 10�3.

Let the cost parameter ci = !�jCVaR(0)j where CVaR(0) denotes the CVaR of the optimal
CVaR hedging portfolio under no cost consideration, i.e., solving (24) with c = 0. Table 9
displays the properties of the optimal hedging portfolios for di�erent cost parameters. We
observe that all these optimal hedging portfolios signi�cantly improve the risk of the initial
portfolio; the worst improvement from the hedging portfolio x�50% with a parameter ! = 0:5 is
approximately 100%. The hedging portfolio contains fewer instruments and incurs a smaller
transaction cost as the cost parameter increases. Not surprisingly, the optimal hedging risk
increases when the cost parameter increases.

Figure 2 graphs the loss distributions of the existing portfolio and the optimal hedging
portfolios x�0; x

�
1%; and x�50% in Table 9. We �rst observe that the loss distributions of all

three optimal hedging portfolios x�0; x�1%; and x�50% have attened right tails as they all
minimize a combination of CVaR and cost. In addition, the loss distribution corresponding
to a larger cost parameter is right shifted from that corresponding to a smaller cost parameter
(a hedging portfolio with a larger cost parameter has a larger risk).

Although signi�cantly improving the risk of the existing portfolio of the binary options,
the optimal hedging portfolios in Table 9 have di�erent risks. In order to evaluate the
hedging performance more realistically, we now assume that the implied volatility at the
hedging horizon �t is uncertain and is slightly di�erent from the initial implied volatility �0.
Table 10 displays the expected returns at the hedging horizon �t and VaR and CVaR of
the optimal hedging portfolios under di�erent assumptions on the future implied volatility.
First we note that the expected returns of all the optimal portfolios are similar, particularly
when ��t = �0 (top panel in Table 10). If the implied volatility at the hedging horizon �t
equals the initial �0, the optimal hedging portfolio x�0 with no cost consideration has the
smallest CVaR. However, if the implied volatility at the hedging horizon has a small error,
e.g., ��t = �0 + 2% �
, then the optimal hedging portfolio x�10% has the least risk. Note that,
the optimal hedging portfolios x�0; x

�
0:1% x�0:5%; x

�
1%, and x�5% actually increase the risk of the
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!
���VaR(!)�VaR(0)VaR(0)

��� ���CVaR(!)�CVaR(0)CVaR(0)

��� #Ins VaR(!)�VaRinit

VaRinit

CVaR(!)�CVaRinit

CVaRinit jjx�jj1
0 0.0000 0.0000 84 -1.8619 -1.6366 73.18

0.001 0.0017 0.0046 64 -1.8604 -1.6336 51.91
0.005 0.0411 0.0483 45 -1.8265 -1.6058 35.98
0.010 0.1072 0.1111 36 -1.7695 -1.5658 27.13
0.050 0.5167 0.5160 22 -1.4165 -1.3081 8.151
0.100 0.9754 0.9767 11 -1.0212 -1.0148 0.284
0.500 0.9955 1.0010 7 -1.0039 -0.9994 0.200

Table 9: Optimal CVaR Hedging Portfolios for �t = 1 Month Assuming ��t = �0
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Figure 2: Loss Distributions of the Optimal Hedging Portfolios in Table 9
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��t = 20%
P init x�0 x�0:1% x�0:5% x�1% x�5% x�10% x�50%

VaR 0.7515 -0.6477 -0.6466 -0.6211 -0.5783 -0.3130 -0.0101 -0.0029
CVaR 0.9061 -0.5768 -0.5741 -0.5489 -0.5127 -0.2791 -0.0074 0.0006

Return(%) 0.9060 0.4159 0.4158 0.4159 0.4160 0.4167 0.4121 0.4130

��t = �0 + 2% � 

P init x�0 x�0:1% x�0:5% x�1% x�5% x�10% x�50%

VaR 0.7568 2.0477 1.7765 1.5225 1.4620 0.7382 0.0262 0.0319
CVaR 0.9136 2.7664 2.4298 2.1096 2.0130 1.0482 0.0451 0.0508

Return(%) 0.9832 0.4148 0.4095 0.4064 0.4053 0.3982 0.3807 0.3842

Table 10: VaR/CVaR Risks at �t = 1 Month for Optimal Portfolios in Table 9

!

���VaR(!)�VaR(0)VaR(0)

��� ���CVaR(!)�CVaR(0)CVaR(0)

��� #Ins VaR(!)�VaRinit

VaRinit

CVaR(!)�CVaRinit

CVaRinit jjx�jj1
0.000 0.0000 0.0000 84 -1.3825 -1.2448 71.515
0.001 0.0016 0.0022 79 -1.3831 -1.2443 65.134
0.005 0.0677 0.0656 59 -1.3566 -1.2288 41.893
0.010 0.1357 0.1354 48 -1.3305 -1.2117 32.036
0.050 0.6791 0.6615 26 -1.1227 -1.0829 4.0961
0.100 0.7671 0.7734 21 -1.0891 -1.0555 2.6552
0.500 1.0338 1.0987 14 -0.9871 -0.9758 0.3643

Table 11: Optimal CVaR Hedging Portfolios for t = 1 Month Assuming ��t = �0 + 2% � 


existing portfolio P init. Similar to the previous hedging example of the short maturity at-
the-money call, hedging performance is very sensitive to model error when the cost parameter
is small. This shows the importance of analyzing sensitivity of the hedging performance to
model error before actually adopting a hedging strategy.

We similarly investigate the performance of the optimal hedging portfolios when the
implied volatility uncertainty is explicitly taken into account in the risk minimization formu-
lation. Table 11 presents the properties of the optimal hedging portfolios computed under
the assumption that the implied volatility at the hedging horizon ��t = �0 + 2% � 
 where 

is now a 4-dimensional standard normal.

Comparing x�0 in Table 11 with x�0 in Table 9, we note that the risk reduction is smaller
when the future implied volatility is uncertain. In addition, the optimal hedging portfolio
x�0, assuming the future implied volatility is uncertain, has a smaller total trading positions
which leads to a smaller transaction cost.

Table 12 presents, for the optimal portfolios in Table 11, the in-the-sample risk (the
implied volatility is the same as that assumed initially) and out-of-the-sample risk when the
implied volatility at the hedging horizon has a di�erent distribution. Here ~
 denotes a 4-
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��t = �0 + 2% � 

P init x�0 x�0:1% x�0:5% x�1% x�5% x�10% x�50%

VaR 0.7568 -0.2895 -0.2899 -0.2699 -0.2502 -0.0929 -0.0674 0.0098
CVaR 0.9136 -0.2237 -0.2232 -0.2090 -0.1934 -0.0757 -0.0507 0.0221

Return(%) 0.9832 0.4038 0.4022 0.4002 0.3999 0.4074 0.4071 0.3805

��t = �0
P init x�0 x�0:1% x�0:5% x�1% x�5% x�10% x�50%

VaR 0.7515 -0.3239 -0.3259 -0.3022 -0.2776 -0.1027 -0.0772 -0.0150
CVaR 0.9061 -0.2957 -0.2975 -0.2746 -0.2529 -0.0926 -0.0662 -0.0085

Return(%) 0.9060 0.4143 0.4143 0.4142 0.4145 0.4187 0.4189 0.4152

��t = �0 + 1:5% � ~

P init x�0 x�0:1% x�0:5% x�1% x�5% x�10% x�50%

VaR 0.7497 -0.3163 -0.3177 -0.2928 -0.2679 -0.0847 -0.0575 0.0009
CVaR 0.9070 -0.2812 -0.2823 -0.2588 -0.2369 -0.0702 -0.0423 0.0078

Return(%) 0.9175 0.4478 0.4490 0.4261 0.3887 0.1292 0.0961 0.0230

Table 12: VaR/CVaR Risks at �t = 1 Month for Portfolios in Table 11

dimensional random variable with a uniform distribution in the interval [�1; 1]. We observe
again that the optimal hedging portfolios obtained assuming the implied volatility at the
hedging horizon �t is stochastic are more robust against model error.

4 Minimizing CVaR EÆciently

The CVaR optimization problem (16) is a piecewise linear minimization problem subject to
linear constraints. As discussed previously, this minimization problem arising from Monte
Carlo simulation can be equivalently formulated as a linear program (LP): minimizing a linear
objective function subject to linear equality and inequality constraints. Speci�cally, for the
portfolio hedging problem under bound constraints, we need to solve the linear programming
problem (18)

min
(x;y;z;�)

 
� +

1

m(1� �)

mX
i=1

yi +
nX

j=1

cjzj

!

subject to yi �
�
�0
�
i
� (ÆV )Ti x� �; for i = 1; : : : ; m

z � x � 0; z + x � 0

l � x � u; y � 0; z � 0

Linear programming is the simplest constrained optimization problem and it is a problem
for which the optimization methods have been most successful. Since its formulation in the
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1930s and the development of the simplex algorithm by Dantzig [8] in the 1940s, the linear
programming problem has been successfully applied to many practical application areas
including economics, �nance, and engineering. In 1984, Karmarkar [12] proposed a projective
aÆne scaling method for linear programming problems, which has an appealing theoretical
property of polynomial complexity. This has renewed greater interest in the theoretical
analysis and computational investigation of a new type of method, the interior point method,
which has proven to be successful in solving large-scale linear programming problems. Indeed,
eÆcient and reliable software exist for solving large-scale linear programming problems; it is
thus not surprising that the linear programming method has been the proposed method to
solve a CVaR minimization problem [17, 18].

Is a linear programming method an eÆcient way to solve a CVaR optimization problem?
For a derivative portfolio problem, a CVaR minimization problem can have a large number of
instruments and a large number of simulations are typically required to obtain a suÆciently
accurate solution. Is a linear programming approach capable of solving such large-scale
problems?

4.1 EÆciency for CVaR Minimization Using an LP Approach

In order to understand whether the linear programming method is computationally eÆcient
for solving a CVaR minimization problem, we need to briey examine the di�erent linear
programming methodologies.

Consider a linear programming problem written in its standard form

min
z2<N

cT z

subject to Az = b

z � 0

where A is an M �N full row-rank matrix. Note that any linear program can be converted
into this standard form by introducing additional slack variables and arti�cial variables.

A simplex method computes a solution in a �nite number of iterations by following
a path from vertex to vertex along the edges of the polyhedron representing the feasible
region (de�ned by linear equality and inequality constraints). For a linear program with N

variables, each iteration of a simplex method performs O(N2) computations; typically the
method requires a large number of iterations (roughly between 2M to 3M). An interior
point method, on the other hand, produces an in�nite sequence of approximations which
converge to a solution in the limit. Interior point methods are shown to have polynomial
complexity. They require O(N3) computation per iteration and the number of iterations
can be bounded by O(

p
NL) where L is the input length for integer data. For the CVaR

portfolio optimization problem, a potential advantage of the simplex method is its ability to
use a warm start when a good starting point is available. Generating a starting point, on the
other hand, is an important part of an interior point method. It is not clear how a standard
interior point method would utilize a warm start, if at all possible. We consider in this paper
CPLEX, a simplex method software and MOSEK, an interior point method software.

The linear programming problem (24), corresponding to an n-instrument, m-scenario,
CVaR simulation problem, has (m + 2n + 1) variables and more than m + n linear con-
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MOSEK (cpu sec) CPLEX (cpu sec)
# of instruments being considered

# scenarios 8 48 200 8 48 200
10000 11.07 61.96 1843.90 53.68 427.97 2120.84
25000 30.02 162.13 14744.64 351.44 2345.43 9907.99
50000 43.62 642.24 - 1673.82 9296.98 -

Table 13: CPU time for standard LP methods: � = 0:99

straints. With the number of scenarios typically more than 10000, this is a large scale linear
programming problem. However, it is a large-scale sparse problem since the constraint matrix
is a sparse matrix (i.e., it has many zero entries) with an m-by-n dense block (corresponding

to the scenarios
n
(ÆV )Ti

om
i=1

). We refer interested readers to [6] for further discussions on

eÆciently solving large sparse optimization problems. For a CVaR minimization problem
with a small number of instruments (and scenarios), a linear programming method approach
may be e�ective. Nonetheless, the computational cost and memory requirement for solving
a CVaR problem by a linear programming approach can quickly become prohibitive as the
number of scenarios and/or instruments becomes large.

Table 13 illustrates how the cpu time grows with the number of scenarios and the number
of instruments for portfolio CVaR optimization problems. With 200 instruments and more
than 25; 000 scenarios, a signi�cant amount of the elapsed time is spent in swapping relevant
data in and out of the cache memory. With 200 instruments and 50; 000 scenarios, the
elapsed time is signi�cantly longer than that of the 48 instrument example, with the memory
swapping dominating the elapsed time; the entry is marked by " - " in the table. The
comparison is made between CPLEX version 1.3, which implements a simplex method and the
MOSEK Optimization Toolbox for MATLAB version 6 (for Solaris Sparc) which implements
an interior point method. The problems are implemented in MATLAB version 6.1 and run
on a Sun Sparc Ultra-2 machine.

Table 13 clearly illustrates that, using the standard linear programming software, the
computational cost as well as the memory requirements quickly become prohibitive as the
number of scenarios and the number of instruments increase.

4.2 A Smoothing Technique for CVaR Minimization

We now investigate the computational eÆciency issues for the CVaR portfolio optimization
problem assuming that the loss is computed using methods such as analytic formulae and
Monte Carlo simulation. As an alternative to linear programming approach, we investigate
an computationally eÆcient method which exploits properties of the CVaR optimization
problem. The proposed method is applicable under the assumption that the loss distribution
is continuous.

We now describe the key observation which leads to our proposed method. Suppose that
we are interested in solving a CVaR optimization problem with a continuous distribution
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through simulation. Intuitively, the piecewise linear objective function

�F�(x; �) = � +
1

m(1� �)

mX
i=1

[
�
�0
�
i
� (ÆV )Ti x� �]+

in the simulation problem increasingly approaches the continuously di�erentiable function
F�(x; �). When a large number of scenarios are used, the objective function resembles
a smooth function. In order to develop an eÆcient computational method for the CVaR
optimization problem, we explicitly exploit this observation.

Let us approximate the piecewise linear function max(0; z) by a piecewise quadratic ap-
proximation ��(z): given a resolution parameter � > 0,

��(z)
def
=

8<
:

z if z � �
z2

4�
+ 1

2
z + 1

4
� if � � � z � �

0 otherwise:
(26)

Instead of the piecewise linear approximation �F�(x; �), we consider the continuously
di�erentiable piecewise quadratic approximation ~F�(x; �) approximation to F�(x; �):

~F�(x; �)
def
= �+

1

m(1� �)

mX
i=1

��

��
�0
�
i
� (ÆV )Ti x� �

�
(27)

To graphically illustrate, let us consider the function g(�) = E([S � �]+) assuming that
S is a standard normal. Figure 3 graphically illustrates the accuracy and smoothness of the
approximations

1

m

mX
i=1

[Si � �]+

and 1
m

Pm

i=1 ��(Si � �) as compared to g(�); the top subplot is for m = 3 and the bottom
subplot is for m = 10; 000. It can be observed that, as the number of scenarios m increases,
the function 1

m

Pm

i=1[Si��]+ appears smoother and the di�erence between 1
m

Pm

i=1[Si��]+

and 1
m

Pm

i=1 ��(Si � �) becomes smaller.
Using the smooth approximation, we solve the following continuously di�erentiable piece-

wise quadratic convex programming problem

min
(x;�)

 
~F�(x; �) +

nX
j=1

cjjxjj
!

subject to l � x � u (28)

where the approximation ~F�(x; �) (to the piecewise linear function �F�(x; �)) is a continuously
di�erentiable function. Note that, for (24), each scenario introduces an additional variable
(and constraint) in its equivalent linear program formulation. Here the minimization problem
has (n+1) independent variables and its equivalent nonlinear program formulation only has
O(n) independent variables and constraints.

An optimization method for a convex nonlinear programming problem (28) typically
generates an in�nite sequence of approximations converging to a solution. At each iteration,
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Figure 3: Approximations to g(�) = E([S � �]+)

MOSEK (cpu sec) Smoothing (cpu sec)
# of instruments being considered

# scenarios 8 48 200 8 48 200
10000 6.47 42.04 4244.30 2.45 16.78 419.52
25000 33.50 98.91 10784.10 5.37 35.48 838.15
50000 36.01 318.72 - 9.90 62.08 2080.16

Table 14: CPU times for MOSEK vs. Smoothing: � = 0:99

however, this approach typically requires a function and a gradient evaluation and O(n3)
linear algebraic operations. The function/gradient evaluation costs O(mn). If the exact
second order derivative of the objective function is computed, then the Hessian calculation in
the worst case isO(nk2) where k is the total number of scenarios satisfying j�(ÆV )Ti x��j � �.
Given that CVaR optimization minimizes the tail loss with a typical con�dence level of
� � 0:9, k is usually very small relative to m.

Table 14 makes a comparison between the cpu times of the smoothing technique and the
interior point method software MOSEK. The portfolios are the same as those used in Table
13. The smoothing algorithm is based on an algorithm discussed in [7] and is implemented
in MATLAB v6.1. The comparison is made on a Sun Sparc Ultra-5 10 machine. We observe
that the smoothing technique is much more eÆcient than the interior point method with up
to a 1186% eÆciency speedup. In addition, the 200 instruments and 50000 scenario example
can now be solved in less than 35 cpu minutes with the smoothing technique due to less
memory requirement and better computational eÆciency.

In addition to being more computationally eÆcient, the smoothing technique also yields
fairly accurate solutions. We refer interested readers to [3] for more detailed discussions on
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the comparison of the accuracy and the roles of the resolution parameter � on the accuracy
and eÆciency of the smoothing technique.

5 Concluding Remarks

In this paper we analyze the ill-posedness of the derivative portfolio risk minimization prob-
lem with CVaR and VaR as the choice of risk measures. We illustrate that these minimization
problems are typically ill-posed for derivative portfolios. In particular, we have shown that
there typically exist an in�nite number of portfolios with the same VaR and CVaR when the
derivative values are computed through delta-gamma approximations. When the derivative
values are computed using more accurate methods such as Black-Scholes formulae and Monte
Carlo techniques, the derivative optimal CVaR or VaR problem typically remains ill-posed.

We illustrate that one may not be able to remove the ill-conditioned nature of the
CVaR/VaR optimization problem by simply adding constraints. When simple bound con-
straints are imposed on the instrument holdings, the optimal CVaR derivative hedging port-
folio typically has a large number of non-zero instrument holdings (mostly at their bounds).
This type of optimal portfolio may not be desirable and can be problematic since it may
entail large management and transaction costs. More importantly, the optimal derivative
hedging portfolio tends to magnify the modeling error due to extreme holding positions.

We propose to include a proportional cost in the CVaR optimization problem to regularize
this ill-posed problem. We illustrate that minimizing CVaR hedging risk together with this
cost model can produce more desirable derivative hedging portfolios. Speci�cally, in addition
to reducing the existing risk, the optimal derivative hedging portfolio under suitable cost
consideration incurs a smaller transaction cost. It also consists of a signi�cantly smaller
number of instruments. In addition, the optimal hedging portfolio under a larger cost is
more robust with respect to model error. We demonstrate the importance of analyzing
sensitivity of the hedging performance to model error and signi�cance of explicitly including
volatility unceratainty in CVaR risk minimization.

We describe a computationally eÆcient method for solving a simulation based CVaR
optimization problem by exploiting the fact that the objective function in the simulation
CVaR optimization problem approaches a continuously di�erentiable function as the number
of scenarios increases to in�nity. The eÆciency and accuracy of this method for solving
a CVaR optimization problem are illustrated computationally in greater detail in [3]. In
addition, more evidence is provided in [3] for the superior performance of optimal derivative
portfolios under cost consideration in the context of portfolio selection problems.

Finally, we remark that the proposed CVaR optimization with cost consideration is ap-
plicable to a wide range of derivative portfolio optimization problems including American
options and exotic options.
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