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SSA is Functional Programming 
Andrew W. Appel 

Static Single-Assignment (SSA) form is an intermedi- 
ate language designed to make optimization clean and 
efficient for imperative-language (Fortran, C) compil- 
ers. Lambda-calculus is an intermediate language that 
makes optimization clean and efficient for functional- 
language (Scheme, ML, Haskell) compilers. The SSA 
community draws pictures of graphs with basic blocks 
and flow edges, and the functional-language community 
writes lexically nested functions, but (as Richard Kelsey 
recently pointed out [9]) they're both doing exactly the 
same thing in different notation. 

SSA form. Many dataflow analyses need to find the 
use-sites of each defined variable or the definition-sites 
of each variable used in an expression. The def-use chain 
is a data structure that makes this efficient: for each state- 
ment in the flow graph, the compiler can keep a list of 
pointers to all the use sites of variables defined there, and 
a list of pointers to all definition sites of the variables used 
there. But when a variable has N definitions and M uses, 
we might need N • M pointers to connect them. 

The designers of SSA form were trying to make an im- 
proved form of def-use chains that didn't suffer from this 
problem. Also, they were concerned with "getting the 
right number of names:" the programmer might use some 
variable i for several unrelated purposes in the same pro- 
cedure-  for example, as the loop counter for two different 
loops - and we can do more optimization if we split i into 
different variables il and i2. 

In SSA, each variable in the program has only one defi- 
nition - it is assigned to only once. The assignment might 
be in a loop, which is executed many times; so single- 
assignment is a static property of the program text, not a 
dynamic property of program execution. 

a 4- x + y  al 4- x T y  
b 4- a - 1  bl 4- a ~ - i  
a ~ y + b a2 4- y + b~ 

b 4- x . 4  b2 4- x . 4  
a 4- a + b  a3 4- a 2 + b 2  

To achieve single-assignment, we make up a new vari- 

able name for each assignment to the variable. For ex- 
ample, we convert the program at left into the single- 
assignment program at right. At left, a use of a at any 
point refers to the most recent definition, so we know 
where to use al,  a2, or a3, in the program at right. 

For a program with no jumps this is easy. But where 
two control-flow edges join together, carrying different 
values of some variable i, we must somehow merge the 
two values. In SSA form this is done by a notational 
trick, the C-function. In some node with two in-edges, 
the expression ¢(a l ,  a2) has the value al if we reached 
this node on the first in-edge, and a2 if we came in on the 
second in-edge. 

Let's use the following program to illustrate: 

i 4 - 1  
j 4 - 1  
k 4 - 0  
while k < 100 

i f j  < 20 
j + - - i  
k 4 - k + l  

else 
j 4 - k  
k + - k + 2  

return j 

First we tum this into a control-flow graph (CFG): 

/ / ~ [ i f k  < 100 l 
~ - . ~  

/ [ i f j<20" ]  3 [return j j4 

I -":re  6 
[ [ j < - - i  I [ j<- -k  
/Ik~---k+l ] [ k e - k + 2  
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Programming 
Now, the question is, where to put the C-functions and 

how to rename the variables. A really crude approach is 
to split every variable at every basic-block boundary, and 
put C-functions for every variable in every block: 

2 ~ O ( b ,  !1) 2 
l 0 07, 

k2 ~ ¢ (k7, 
if k2 < 100 

i3 ¢--¢(i2) 13 i4 ~.._¢t(i2) 4 
J3 <'-'¢(J2) [ j4/"'¢i(J2) 
k3 ~¢~(kz) h ~¢(kz) 
if j3 < 20 return j4 

' :  5 i5 ~---¢(i3) I~ I i6 +--0(i 3) 16 
J5 ~"-0(j3) I I J6/~"-¢(J3) I 
k: I  O(k3)l 
J8 ~ 15 [ ] J9 e--- k 6 
k8 ~- ks+l I Ik9 ~ k6+2 

i7 ~._ O (i5, i6 ) 7 
J7 e-- ~ (J8, J9) 

x ~ _ ~ / ¢ ~  (ks'k9) 

Yuck! This isn't "the right number of names!" There 
are too many variables and useless copies. More about 
this later. 

Meanwhile, we can view this program as a set of mu- 
tually recursive functions, where each function takes ar- 
guments/, j ,  k: 

functionfl 0 = 
let il  = 1, j l  = 1, kl = 1 in f2( i l , j l , k l )  

function f2 (i2, j2, k2) = 
if k2 < 100 then f3(i2,j2, k2) else f4(i2,j2, k2) 

function f3 (i3, j3, k3) = 
if j3 < 20 then f~(i3,j3, k3) else f6(i3,j3, k3) 

function f4 (i4, j4, k4) = j4 
function :5 (i5, j5, k5) = 

let js = i5, ks = ks + 1 in fz( is , js ,ks)  
function f6(i6, j6, k6) = 

let j9 = k6, k9 = k6 + 1 in fT(i6,j9, k9) 
function f~(ir, jr, kT) = f2 (i7, j r ,  kT) 

This gives us some insight into what, exactly, is a "C- 
function." Compare the expression j2 ~ ¢(j7, j l  ) (in the 
really crude SSA program) with the function-declaration 

f~( . . . ,  j~ , . . . )  . . . .  

and function-calls 

f2(.. • ,j7,-..) f2(.-.,jl,.-.) 

in the functional program. We see that the left-hand side 
of the ¢ assignment is the formal parameter of the corre- 
sponding function; and each right-hand side argument of 
the ¢ assignment is the actual parameter of some call to 
the corresponding function. That's what I mean when I 
say that SSA form is a kind of functional programming. 
The "C-functions" are not really functions, but they do 
correspond (in an inside-out way) to the real functions. 

We can express this functional program in a nicer way 
using the idea of nested scope. Then the inner-nested 
functions won't all need so many parameters; they can 
use non-local variables from the functions in which they 
are nested. This idea will be familiar to Pascal program- 
mers (and Scheme, ML, Haskell programmers), and (if 
there are any of you left) Algol-60 programmers as well. 

let il = 1, j l  ..7- 1, kl = 0 
in let function f2 (j2, k2) = 

if kz < 100 
then let function fT(j4, k4) = 

:2 (j4, k4) 
in ifj2 < 20 

then let j3 = i l ,  k3 = k2 + 1 
in f7 (j3, k3) 

else let j5 = k2, ks = k2 + 1 
in fz (js, ks) 

else return j2 
in f2 (jl ,  kl) 

But what's the algorithm for finding the best way of 
nesting the functions to eliminate unnecessary argument- 
passing? The algorithm is the one for converting pro- 
grams to SSA form! 

J2 ~'-- : (J4, Jkl~) 2 
2 ~-~(k4, 

' [ if k2 < I 0 0  

[ifj2<2013 [retumj2 14 

] ~  +... il 5 <__.. k2 6 
e-k2+1 [:~ ~- k2+2 

J4 ~ ¢ (J3, J5) 7 
(k3,ks) 
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Functional 
This is the Static Single-Assignment form of the pro- 

gram with optimal placement of C-functions. It's much 
nicer than the crude version that had too many variables 
and too many C-functions. This program has "the right 
number of names?' And notice how it corresponds ex- 
actly to the nested functional program - function fi  cor- 
responds to block i, parameter ji corresponds to variable 
ji ,  and so on. Wherever there is a formal parameter of a 
function (in the functional form), there is a ¢ (in the SSA 
form). Wherever the functional form refers to a non-local 
variable, the SSA form has avoided the need for a ¢. 

Algorithm for optimal placement of ¢'s. The only 
place we really need a C-function in SSA form is where 
two different definitions reach (along control-flow edges) 
the same point. For example, in the original CFG (the first 
diagram above), only one definition of i reaches block 2, 
so we don' t  need a C-function for i in that block. This is 
true even though there are two edges leading into block 
2 - it's because the definition of i (in block 1) dominates 
block 2. Any path to block 2 must go through block 1. 

We use the notion of dominance and dominance fron- 
tiers to calculate the minimum set of C-functions. In gen- 
eral, node a in a flowgraph dominates node b when any 
path from the start node to b must go through a. Now, 
consider the region of the graph dominated by a; imagine 
that this region has a "border" or "frontier" separating it 
from the rest of the graph. We call this the dominance 
frontier of a. In particular, whenever there is an edge 
b --+ c from a node b dominated by a to a node c not 
strictly dominated by a, we say that c is in the dominance 
frontier of a. 

dominance frontier of 5 is reachable from two different 
definitions of z; one in node 5 and one in the start node. 
(We assume that every variable has an initializing defi- 
nition in the start node.) Therefore, the rule for placing 
¢ functions is: Whenever node n contains a definition of  
some variable z, then any node in the dominance frontier 
o f  n needs a C-function for  x. 

Efficient algorithms for computing the dominator tree 
and dominance frontiers can be found in any good com- 
piler textbook [3, 4, 5, 10, 15] 

Once we have the SSA form, we can make appropriate 
linked data structures connecting the uses of each variable 
to the definition, and the definition to all the uses. Then 
we can run efficient optimization algorithms: instead of 
using costly bit-vector dataflow analysis, we can follow 
links to quickly find the uses for each definition, and vice 
versa, as needed. 

Functional programming in Fortran? So now we 
know what the SSA conversion algorithm is really do- 
ing with its dominance frontiers: it is automatically con- 
verting a Fortran or C procedure into a well-structured 
functional program with nested scope. Actually, I 've only 
shown what to do with the scalar variables. Arrays are 
handled in high-powered (parallelizing) compilers using 
sophisticated dependence analysis techniques [ 15], which 
is another way of extracting the functional program hid- 
ing inside the imperative one. 

What SSA users can learn from functional program- 
ming. An important property of  SSA form is that the 
definition of a variable dominates every use (or, in the 
case of a uses within a C-function, dominates the a prede- 
cessor of the use node). This property is often unstated in 
explanations of SSA, but it is necessary for many of the 
analyses and optimizations on SSA - it is part of SSA's 
semantics. In a functional program with nested scope, 
this restriction is explicitly and statically encoded into 
the structure of function nesting. The notion of scopes 
of  variables helps us to structure the intermediate form. 

For example, in this graph node 5's dominated region 
is shown in grey, and the border of that region is crossed 
by e d g e s 6 ~ 4 ,  8 ~ 5 ,  8 ~  13, a n d 7 ~  12. So we 
say that nodes 4, 5, 12, 13 form the dominance frontier of 

node 5. 

The importance of dominance frontiers is this: If node 
5 contains a definition of variable x, then any node in the 

What functional programmers can learn from SSA. 
People who use SSA tend to draw flowcharts with boxes, 
assignments, conditionals, and control-flow edges. This 
notation, while subject to abuse, is often better for ex- 
plaining ideas and for intuitive visualization of algorithms 
and transformations. Functional programmers often get 
lost in the notation of functional programming, which is 
a shame. 
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Programming 
History and literature. SSA form was developed by 
Wegman, Zadeck, Alpern, and Rosen [1, 11] for efficient 
computation of dataflow problems such as global value 
numbering, congruence of variables, aggressive dead- 
code removal, and constant propagation with conditional 
branches [14]. Cytron et al. [7] describe the efficient 
computation of SSA form using dominance frontiers. 

Wolfe [15] describes several optimization algorithms 
on SSA (which he calls factored use-defchains). 

Church [6] invented A-calculus, a language of func- 
tions with nested scope. Strachey [13] showed how 
to encode control flow as function calls to continua- 
tion functions. Steele [12] showed how to use continu- 
ations as the intermediate representation of a compiler. 
Kelsey [9] showed the correspondence between SSA and 
continuation-passing style (CPS), and gave algorithms for 
converting each to the other. 

Appel [2] improved upon CPS by binding every non- 
trivial value explicitly to a variable. Flanagan et al. [8] 
showed Administrative-Normal Form (A-Normal Form 
or ANF), which binds every nontrivial value to a variable 
without being full CPS. The functional notation I have 
used in this paper is a variant of  ANF or CPS. 

Advertisement. Chapter 19 of my new Modern Com- 
piler Implementation textbooks [3, 4, 5] has readable and 
detailed coverage of many relevant topics: 

• SSA form and its rationale; 

• Dominance frontiers and calculation of SSA form; 

• The Lengauer-Tarjan algorithm for efficient calcula- 
tion of dominators; 

• Optimization algorithms using SSA: dead-code 
elimination, conditional constant propagation; con- 
trol dependence; construction of register interfer- 
ence graphs; 

• Structural properties of SSA form; 

• Functional intermediate representations (CPS, ANF) 
and their relation to SSA. 

For more information about the book, visit 
http://www.cs.princeton.edu/- appel/modern. 

Acknowedgment. Kenneth Zadeck improved my un- 
derstanding of SSA form through many conversations, 
and told me all along that SSA is a functional program. 
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