
Computational Complexity and Information Asymmetry in

Financial Products

(Working paper)

Sanjeev Arora∗ Boaz Barak∗ Markus Brunnermeier† Rong Ge∗

February 5, 2012

Abstract

Traditional economics argues that financial derivatives, like CDOs and CDSs, ameliorate the
negative costs imposed by asymmetric information. This is because securitization via derivatives
allows the informed party to find buyers for less information-sensitive part of the cash flow
stream of an asset (e.g., a mortgage) and retain the remainder. In this paper we show that this
viewpoint may need to be revised once computational complexity is brought into the picture.
Using methods from theoretical computer science this paper shows that derivatives can actually
amplify the costs of asymmetric information instead of reducing them. Note that computational
complexity is only a small departure from full rationality since even highly sophisticated investors
are boundedly rational due to a lack of requisite computational resources.

∗Department of Computer Science and Center for Computational Intractability, Princeton University, {arora,
boaz, rongge}@cs.princeton.edu
†Department of Economics and Bendheim Center for Finance, Princeton University, markus@princeton.edu

1

1 Introduction

Most accounts of the 2007-09 financial crisis (see e.g. [CJS09, Bru09]) agree that mispricing of
financial derivatives —specifically, structured finance products such as CDOs and CDSs— by mar-
ket players played a central role. Critics therefore conclude that such derivatives should go through
an approval process similar to drugs, which have to be approved by the FDA. Others counter that
this would harm the markets.

From the viewpoint of economic theory, derivatives can be beneficial by “completing the market”
and by helping ameliorate the effect of asymmetric information. The latter refers to the fact
that securitization via derivatives allows the informed party to find buyers for the information-
insensitive part of the cash flow stream of an asset (e.g., a mortgage) and retain the remainder.
DeMarzo [DeM05] suggests this beneficial effect is large. He shows that even though one would
expect that informed sellers would be able to cheat their buyers by suitable “cherry picking” based
upon their hidden information, in fact derivatives like CDOs protect the buyers.

The practical downside of derivatives is that they are complex assets that are difficult to price.
Coval et al. [CJS09] show that pricing (or rating) a structured finance product like a CDO is ex-
tremely fragile to modest imprecision in evaluating underlying risks, including systematic risks.
Earlier empirical studies suggest that valuations for a given financial product by different sophisti-
cated investment banks can be easily 17% apart [BC97] and that even a single bank’s evaluations
of different tranches of the same derivative may be mutually inconsistent [Duf07].

Thus structured finance products like CDOs present a theoretical dilemma. Under the usual
setup of economic theory, including standard ways of modeling asymmetric information, they are
provably beneficial, whereas practical difficulties seem to erode some of this benefit.

This paper shows that some of this dilemma can be theoretically captured using the notion of
computational complexity from computer science. We show that in relatively simple settings akin
to those in DeMarzo (2005), real-world buyers will not have enough computational resources for
accurate pricing, whereas buyers with unbounded computational resources would be able to price
accurately. This can be viewed as an extension of the familiar bounded rationality idea [GSe02], with
the important difference that this form of bounded rationality applies even to the most sophisticated
investment banks since they do not have unbounded computational power.

Our model has several notable features:

1. The largeness of the market—specifically, the fact that sellers are constructing thousands
of financial products rather than a single product as was the case in the model of De-
Marzo (2005)— allows sellers to cherrypick in such a way that cannot be detected by com-
putationally bounded buyers —i.e., all real-world buyers—whereas it can be detected by
computationally unbounded buyers.

This seems to capture an aspect of financial markets that was often suspected but was difficult
to capture in a fully-rational (i.e., computationally unbounded) setting.

The basic idea is illustrated in a simple setting in Section 2, and exhibited more formally in
a DeMarzo-like setting in Section 6.

2. The possibility of cherry picking by sellers creates an Akerloff-like wedge between buyer’s
and seller’s valuations of the financial product. We call this the lemon cost due to compu-
tational complexity and can quantify this wedge for several classes of derivatives popular in
securitization. This allows a partial ranking of these classes, which can be seen as a quantifi-
cation of more familiar heuristic notions of “complexity.” This answers the open question of
Brunnermeier and Oehmke (2008).

1

The basic results are stated in Section 2.4, and proved in subsequent sections.

3. The above effects can be obtained in fairly simple models of asset yields, and these models
are subcases of more complex models (such as Gaussian copula) used in practice. Note that
exhibiting the difficulty of pricing in the subcase is sufficient to exhibit it in more general
models. See Section A.

4. It can be difficult for regulatory bodies to control the above-mentioned cherry picking because
the cherry picking can be difficult to detect ex ante. In some models the cherry picking seems
undetectable ex post. Both these remain true even in a fully transparenty market where all
transactions occur on a public exchange. See Section E.5.

Though the ex-post undetectability is somewhat model-dependent, it does illustrate an interest-
ing possibility. It also implies that verifying the existence of the lemon cost due to computational
complexity in historical data (in other words, an empirical test of our paper) may prove difficult.
This is even more true since the market has not been fully transparent, and there is no public
record of a firm’s derivative trades.

Before proceeding with further details we briefly introduce computational complexity and asym-
metric information.

Computational complexity and informational asymmetry 1 Computational complexity
studies intractable problems, those that require more computational resources than can be pro-
vided by the fastest computers. A simple example of such a problem is that of factoring integers.
It’s easy to take two random numbers —say 7019 and 5683— and multiply them —in this case, to
obtain 39888977. However, given 39888977, it’s not that easy to factor it to get the two numbers
7019 and 5683. Algorithm that search over potential factors take a very long time. This difficulty
becomes more pronounced as the numbers have more and more digits. Computer scientists believe
that factoring an n-digit number requires roughly exp(n1/3) time to solve,2 a quantity that becomes
astronomical even for moderate n like 1000. The intractability of this problem leads to a concrete
realization of informational asymmetry. Anybody who knows how to multiply can randomly gener-
ate (using a few coin flips and a pen and paper) a large integer by multiplying two smaller factors.
This integer could have say 1000 digits, and hence can fit in a paragraph of text. The person who
generated this integer knows its factors, but no computational device in the universe can find a
nontrivial factor in any plausible amount of time.3 This informational asymmetry underlies mod-
ern cryptosystems, which allow (for example) two parties to exchange information over an open
channel in a way that any eavesdropper can extract no information from it —not even distinguish
it from a randomly generated sequence of symbols. More generally, in computational complexity
we consider a computational task infeasible if the resources needed to solve it grow exponentially
in the length of the input, and consider it feasible if these resources only grow polynomially in the
input length.

1Computational complexity has been applied to economics before. Postlewaite et al refer to the possibility of
learning via computation as fact-free learning. The field of algorithmic game theory studies how game theoretic
results are affected when agents have bounded computational power.

2The precise function is more complicated, but in particular the security of most electronic commerce depends on
the infeasibility of factoring integers with roughly 800 digits.

3Experts in computational complexity should note that we use factoring merely as an simple illustrative example.
For this reason we ignore the issue of quantum computers, whose possible existence is relevant to the factoring problem,
but does not seem to have any bearing on the computational problems used in this paper.

2

Computational complexity immediately implies the existence of hard-to-price derivatives. Con-
sider for example a derivative whose contract contains a 1000 digit integer n and has a nonzero
payoff iff the unemployment rate next January, when rounded to the nearest integer, is the last
digit of a factor of n. A relatively unsophisticated seller can generate such a derivative together
with a fairly accurate estimate of its yield (to the extent that unemployment rate is predictable),
yet even Goldman Sachs would have no idea what to pay for it. This example shows both the
difficulty of pricing arbitrary derivatives and the possible increase in asymmetry of information via
derivatives.

While this “factoring derivative” is obviously far removed from anything used in current markets,
in this work we show that similar effects can be obtained in simpler and more popular classes of
derivatives that are essentially the ones used in real life in securitization of mortgages and other
forms of debt.

We will measure the cost of complexity by resorting to an Akerloff-like notion of wedge between
the value of the asset to the buyer and the seller. The lemon cost of complexity is estimated by
comparing the lemon cost in the case that the buyers are computationally unbounded, and the
case that they can only do polynomial-time computation. We will show that there is a significant
difference between the two scenarios.

2 The basic model

DeMarzo (2005) (and earlier, DeMarzo and Duffie (1999)) considers a simple model of asymmetric
information and shows how CDOs can help lower the “Akerloff wedge” due to asymmetric infor-
mation. We adopt a similar model of asymmetric information, but the market has a couple of
important differences.

DeMarzo assumes that a seller has N assets, and the yield Yi of the ith asset is Xi + Zi where
both Xi, Zi are random variables whose distributions are known to seller as well as buyer. At the
start, seller has seen the value of each Xi and buyer hasn’t —this is the asymmetric information.
Seller prefers cash to assets, since his discount rate is higher than that of the buyers. If the seller
were to sell the assets directly, he can only charge a low price since potential buyers are wary that
the seller will offer primarily lemons (assets with low Xi) to the buyer. DeMarzo (2005) shows that
it is optimal for the seller to first bundle the assets and then tranche them in a single CDO. The
seller offers the buyer the senior tranche and the retains the riskier junior tranch. Since the seller
determines the threshold of the senior tranche, he determines the faction of the cash flow stream
he can sell off. Selling off a smaller fraction is costly for the seller, but it signals to the buyer that
his private information

∑
iXi is high. Overall, tranching leads to a price at which seller is able to

sell his assets at a better price because the difference between buyer’s and seller’s valuations (the
“lemon wedge”, which has to be overcome by buyer’s preference for cash) goes to 0 on average as
N →∞.

Our model can be phrased in DeMarzo’s language, but differs in two salient ways. First, we
assume that instead of N assets, there are N asset classes where seller holds C iid assets in each
class. (It is customary in securitization to think of assets as being bunched into classes of similar
assets, eg, loans made in NJ to borrowers whose credit score lies in a certain range.) Some classes
are “lemons”, and these are drawn from a distribution known both to seller and buyer. These have
significantly lower expected yield. Seller knows the identity of lemons, but buyers only knows the
prior distribution.

The second major difference in our model is that we assume that instead of selling a single
CDO, the seller is offering M CDOs. Now buyer (or buyers) must search for a “signal” about

3

seller’s private valuation by examining the M offered CDOs. DeMarzo’s analysis has no obvious
extension to this case because this signal is far more complex than in the case of a single CDO,
where all assets have to be bundled into a single pool and the only parameter under seller’s control
is the threshold defining the senior tranche.

We will show that if buyers are fully rational and capable of exponential time computations,
then DeMarzo’s essential insight (and conventional wisdom) about CDOs can be verified: lemon
costs do get ameliorated by CDOs. However, if buyers are computationally bounded, then under
reasonable assumptions about their computational power we can show that lemon costs do not get
ameliorated by CDOs for interesting model parameter choices.

2.1 An illustrative example

Now we illustrate our main points with a simple example. As already mentioned, our more general
results basically embed this example in a more complicated setting.

Consider a seller with N asset classes, each of which contains C assets. Some asset classes are
“lemons”: assets in these classes will always default and have payoff 0. All other asset classes are
good: assets in these classes pay 1/C with probability 1/2 and default (i.e., have payoff 0) with
probability 1/2. The assets between different asset classes are independent.

The buyer’s prior is that the number of lemon classes is uniformly distributed in [0, 2n], and the
set of lemon classes is uniformly picked from among all classes. However, the seller has additional
information: he knows the number of lemon classes as well which classes are lemons. This is the
asymmetric information.

Since the expected number of lemon classes is n, each with payoff 0, and the remaining N − n
good classes have payoff 1/2, a risk-neutral buyer purchasing the entire portfolio would be willing
to pay the expected yield, which is (N − n)/2. Thus a wedge a la Akerloff occurs for sellers who
discover that the number of lemons is lower than the expectation. They might exit the market, or
buy anyway if they prefer cash by an amount that overcomes the wedge.

Conventional wisdom (first exhibited in a formal model by DeMarzo) holds that structured
finance potentially allows the seller to turn (most of his) assets into cash while incurring a smaller
wedge. For instance, he could securitize the assets into a single Collateralized Debt Obligation
(CDO), and sell the senior tranche. The yield of the senior tranche is less dependent on the
number of lemons, and thus less information-sensitive.

In this paper we are primarily interested in the case where the number of assets held by the
seller is large, and so they cannot be packaged into a single CDO. Instead he must partition them
into multiple CDOs. Clearly, he can use his private information in constructing these CDOs.

In principle derivatives still allow the lemon wedge due to asymmetric information to be ame-
liorated. Consider the following: seller creates M new financial products, each of them depending
on a pool of D of the underlying assets. We assume MD = NC and that every asset occurs in
exactly one pool. If the assets are randomly partitioned into the pools, then the lemon assets are
quite likely to be well-spread among the pools: in the expectation only half of the D assets in the
pool will default, and the standard deviation is

√
D/2, which is much smaller. Thus the financial

product based upon that pool has a payoff of N/3M if the number of lemons exceeds D/2 by at
most t standard deviations, and otherwise has payoff 0. If t is moderately large, then by the strong
law of large numbers, Pr[a pool has at most D/2 + t

√
D lemons] is quite close to 1, and thus the

value of the entire portfolio, denoted V is close to N/3M ×M = N/3.
Henceforth we call such a product a “Binary CDO”; it can be viewed as the senior tranche of

4

a simple CDO4.
If the seller indeed picks the pools randomly —i.e., the entire portfolio of assets is randomly

partitioned into the M pools— then one can check (see Section 3) that the portfolio’s expected
yield is only mildly affected by the presence of lemons. If V is the expected yield when the number
of lemon classes is 0, then the yield is still V − o(n) when the number of lemon classes is 2n, the
maximum possible. (Here o(n) means some function of n that grows slower than n; the exact
function appears in Section 3.) In other words, the lemon wedge is o(n) instead of n, and thus
derivatives have helped significantly reduce the lemon wedge. Thus the seller is in principle able to
sell off the least information-sensitive portion of the risk.

However, the above description assumed that seller creates the pools disinterestedly using pure
randomness. But this may be against his self-interest given his secret information! Assuming the
buyer pays the same price as long as the seller does not tamper too much with the pool structure,
some calculations show that his optimum strategy is to pick some subset of m of the financial
products, and ensure that the lemon assets are overrepresented in their pools—to an extent about√
D, the standard deviation, just enough to significantly skew the probability of default. We call

this subset of CDOs the “boobytrap.” Thus the CDOs in the boobytrap have a significantly higher
probablity of default than buyers expect, whereas the remaining CDOs have a slightly lower number
of lemons (and hence default probability) than buyers expect. Nevertheless, a simple calculation
shows (see Section 3) that the net effect is that the expected yield of the entire portfolio is lower
by a noticeable extent, which benefits the seller if the buyer does not notice this booby trap and
still pays V − o(n).

Can sellers profit from such cherrypicking (possibly blaming random chance when buyers expe-
rience losses at the end)? We now show that fully informed and computationally unbounded buyers
will not be fooled. We will assume that all transactions –and hence the composition of CDOs— is
public and visible to all buyers, so seller cannot fool an individual buyer by showing each only a
part of the portfolio5.
Fully rational (i.e., computationally unbounded) buyer: He will not be fooled. Even though
he doesn’t know the set of lemon classes, he knows that even in a randomly chosen portfolio the
possibility of setting up such a boobytrap is vanishingly remote. Therefore it suffices for him to rule
out the existence of any boobytrap as follows: he enumerates over all possible 2n-sized subsets of
[N] and verifies that none of them are over-represented in any subset of m (or even m/10) products.
If so, he can conclude that no booby trap exists in the presented portfolio of CDOs even though
he does not know the identity of the lemon classes.

Thus fully rational buyers will only be willing to buy from sellers whose portfolio of binary
CDO does not have a boobytrap, in other words, have value at least V − o(n). Thus the lemon
wedge is greatly ameliorated if buyers are fully rational6

Real-life buyer who is computationally bounded: For him the above computation for detect-
ing booby traps is infeasible even for moderate parameter values. In fact, the problem of detecting
a boobytrap is equivalent to the so-called hidden dense subgraph problem, which computer scien-

4This is a so-called synthetic binary option. The more popular collateralized debt obligation (CDO) derivative
behaves in a similar way, except that if there are defaults above the threshold (in this case D/2+t

√
D) then the payoff

is not 0 but the defaults are just deducted from the total payoff. We call this a “Tranched CDO”. More discussion
of binary CDOs appears in Appendix A.

5This transparency does not currently hold in the derivatives market, but may be a reasonable approximation if
buyers are well-informed. In any case, the point of our paper is to exhibit difficulties of derivative pricing even under
idealized conditions.

6Note that this result also precludes sellers who cherrypick and later claim that the bad returns happened “by
chance”, since the probability of a boobytrap appearing this way is extremely close to 0.

5

tists believe to be intractable (see discussion below in Section 2.4). Moreover, under reasonable
computer science assumptions, there is a way for the seller to “plant” a boobytrap in a way that
the resulting pooling will be computationally indistinguishable from a random pooling. Even quite
large boobytraps may be undetectable: the expected yield of the entire portfolio could be much less
than say V −4n and yet the buyer may not be able to distinguish it from a truly random (i.e., hon-
estly constructed) portfolio, whose yield is V − o(n). If buyers are computationally bounded, then
introducing derivatives into the picture not only fails to reduce the lemon wedge, but paradoxically,
amplifies it beyonds its a fortiori maximum of 2n!

Ex ante and Ex post Detection In most parts of the paper we discuss ex ante detection,
where the buyers try to detect the hidden dense subgraph before the outcomes have been revealed.
We shall show that for computationally limited buyers it is hard to distinguish between a booby-
trapped derivative and a truly randomly generated derivative (see Section E). To avoid the hardness
of ex ante detection, the buyers can try to find the dense subgraph after the outcomes of assets are
revealed (which we call ex post detection). Ex post detection is clearly easier than ex ante detection
as the buyers realize that the financial products had a much lower yield than expected and have
more information. However in certain models even ex post the buyers would be unable to prove
that the seller has tampered the derivatives by finding a dense subgraph, see Section E.5 in the
appendix.

Can the cost of complexity be mitigated? In Akerloff’s classic analysis, the no-trade outcome
dictated by lemon costs can be mitigated by appropriate signalling mechanism —e.g., car dealers
offering warranties to increase confidence that the car being sold is not a lemon. In the above setting
however, there seems to be no direct way for seller to prove that the portfolio of financial products
is untampered i.e., free of booby traps. (Computer scientists believe that there is no simple way to
prove the absence of a dense subgraph; this is related to the NP 6= coNP conjecture). Nevertheless,
we do show in Section 7 that one could use Computer Science ideas in designing derivatives that
are tamperproof in our simple setting.

Relationship to the known “sensitivity” problems of CDOs. It is known that CDOs are
extremely sensitive to small changes in the distribution of yields of the underlying assets. Coval
et al. [CJS09] suggest that such “modeling problems” may underlie the mispricing of CDOs that
led to the 2008 crash. The key difference here is that the buyers do know the distribution of the
yields; modeling error cannot be blamed. Nevertheless the seller is able to exploit the sensitivity
properties of CDOs while keeping such manipulation hidden from computationally limited buyers.

2.2 Lemon Cost

Now we formally define lemon cost, a way to quantify the sensitivity of the expected value of a
financial product to the presence of lemon assets. The identity of these lemons is known to the
seller but not to the buyer. As in the illustrative example, we assume that the seller has to use all
his assets in the portfolio of products he sells, so the only way for seller to benefit from his secret
information (i.e., to cherrypick) is to place the lemon assets in the financial product in a way that
maximizes his expected return.

As in the illustrative example, we assume that assets are drawn from N asset classes, where
each class has C assets with iid yields. Some classes are lemons, and we assume for simplicity that
the number of lemon classes is uniformly distributed in [0, 2n]. Intuitively, the lemon cost of a

6

financial product (or portfolio of products) referencing these assets is the difference between the
yield when the number of lemons is 0 and the yield when this number is 2n, assuming optimum
cherry-picking by seller. (Recall that the seller’s profit equals the difference between the payoff of
the underlying assets and the payoff of the financial products. Since the expected payoff of assets
is a fixed value known to the seller, maximizing the expected profit is equivalent to minimizing the
expected payoff of the products he sells to the buyers.)

The input to the financial product is a matrix A ∈ {0, 1}N×C , where Ai,j indicates whether the
j-th asset in i-th asset class defaulted. The financial product is a function F mapping A to a yield
F (A). The input A should be chosen from certain distributions. Let Dl to be a set of distributions
of A, where the number of lemons is l. If distribution D ∈ Dl, then D samples each row of A
independently, exactly l rows will be the all 1’s vector (these are the lemon classes), and for the
other N − l rows, each Ai,j is chosen uniformly random from {0, 1}. Thus any distribution D ∈ Dl
corresponds to a situation that some fixed l asset classes are lemons (all assets in those classes will
default), and all other asset classes are good classes (each asset defaults with probability 1/2).

When there are no lemons, the matrix A is uniformly sampled from {0, 1}N×C . In this case
there’s only one distribution in the class D0, and we call it D0. The expected yield of the financial
product is EA∼D0 [F (A)].

When there are 2n lemon classes, the seller who knows their identity will try to rearrange the
asset classes, so that the expected yield of the derivative is minimized. That is, the expected yield
will be

min
D∈D2n

E
A∼D

[F (A)].

Here taking the minimum assumes that seller optimally places the lemon assets (indeed, each
distribution in Dl corresponds to a way to place the lemon assets). According to Akerlof [Ake70],
the sellers with the best quality assets (no lemons) will exit the market unless they wish to bear a
wedge that is equal to the difference in the expected yields, and we define this wedge as the lemon
cost ∆F,n.

∆F,n = E
A∼D0

[F (A)]− min
D∈D2n

E
A∼D

[F (A)]. (1)

2.3 The Cost of Complexity

The cost of complexity arises from the possibility that computationally limited buyers will be unable
to distinguish between two different financial products even though they have very different expected
yield and lemon cost. When offered one of these two products, it would be logical for a buyer to
assume that it is the one whose yield is lower (which usually means higher lemon cost). Thus the
buyer’s computational limitation introduces another Akerloff-like wedge, which is captured by the
cost of complexity.

Formally, it does not make sense to talk about the computational complexity of computing
the yield of a single financial product. Instead one talks about the complexity of computing one
function drawn from an ensemble (or distribution) of financial products. The above illustrative
example implicitly refered to two distributions of financial products: the randomly-constructed
CDO portfolio in which assets are randomly distributed among the M CDOs, and the boobytrapped
variation of this portfolio, where the boobytrap consists of a randomly selected subset of CDOs.
As is customary in study of computational complexity, we rely on asymptotic analysis and assume
M is large.

7

In the rest of the paper, a computationally limited buyer is synonymous with the computer sci-
ence notion of “polynomial-time computer” as explained in the Introduction. For two distributions
of financial products R and P, we say they are ε-computationally indistinguishable (R ≈ε P) if the
following is true: whenever a computationally limited buyer tries to compute the expected yield of
a product drawn from R or P, his answer differs by less than ε in the expectation. Consequently,
his calculation of the lemon cost ∆ will also differ by less than 2ε.

Throughout the paper we will always assume R is the “canonical” random construction of the
financial products. This reflects the traditional belief that financial products such as CDOs are
constructed by randomly throwing together diverse assets, so that law of large numbers applies. In
our illustrative example above, R corresponds to partitioning the portfolio of assets randomly (i.e.,
disinterestedly) into pools. The distribution P corresponds to a CDO portfolio in which the seller
has planted a “booby trap” in a random subset of CDOs.

For any class F of derivatives (e.g. CDO, CDO-squared, etc.), the cost of complexity CoCε is
the maximum difference between the true lemon cost of two distributions R and P over F that are
ε-indistinguishable:

CoCε(F , n) = max
P≈εR

E
F∼P

[∆F,n]− E
F∼R

[∆F,n].

Examining the definition of lemon costs in (1) we see that the distribution D0 is common to the
two terms and gets canceled out. Thus CoCε(F , n) is nothing but the difference between expected
yields of products drawn from R and F when the number of lemons is 2n. We chose to define
cost of complexity using lemon costs because lemon cost is the more intuitive measure of effects
of asymetric information, and we are trying to quantify the effect of computational complexity on
this measure.

2.4 Our Results

Theorem 1. Assume that the parameters N,M,D, n,m, d are such that the distributions R and P
are computationally indistinguishable, the sellers can construct derivatives so that the lemon costs
of different types of the derivatives are as listed in Tabel 1.

Our results are summarized in Table 1, which lists the lemon cost for different types of financial
products. To highlight the effect of the assumption about buyers having bounded computational
power (“feasibly rational”), we list two values for each type of financial product. The readers should
keep in mind that fully rational buyers can distinguish whether the derivatives have a booby trap
or not, and therefore make sure to have a lemon cost as in the “no booby trap” case, but “feasibly
rational” buyers cannot distinguish between the “no booby trap” and “booby trap” case, and cannot
avoid to suffer a lemon cost as in the “booby trap” case. Unsurprisingly, without derivatives the
buyer incurs a lemon cost of n. In the “Binary CDO” setting described in the illustrative example,
things become interesting. It turns out that using exponential time computation the buyer can
verify that the CDO was properly constructed, in which case the cost to the buyer will be actually
much smaller than n, consistent with the received wisdom that derivatives can insulate against
asymmetric information. But, under the computational complexity assumptions consistent with
the current state of art, if the buyer is restricted to feasible (i.e., polynomial time) computation,
then in fact he cannot verify that the CDO was properly constructed. As a consequence the cost of
the n junk assets in this case can in fact be much larger than n. In a CDO2 (a CDO comprised of
CDO’s, see Section 5) this gap can be much larger with essentially zero lemon cost in the exponential
case and maximal cost in the polynomial case.

8

Model Lemon cost Reference

Derivative-free n

binary CDO, no booby trap ∼ n(N/M
√
D)� n Theorem 3

binary CDO, booby trap ∼ n
√
N/M � n Theorem 3

tranched CDO, no booby trap ∼ n(N/MD) Theorem 4

tranched CDO, booby trap ∼ n(
√
N/MD) Theorem 4

binary CDO2, no booby trap 0 Theorem 5

binary CDO2, booby trap N/4 Theorem 5

tranched CDO2, no booby trap 0 Theorem 6

tranched CDO2, booby trap ∼ n(
√
N/MD) Theorem 6

Table 1: Cost of n junk assets (asset classes) in different scenarios, for N assets, and CDO of M
pools of size D each. ∼ denotes equivalence up to low order terms. 0 means the term tends to 0
when N goes to infinity. See the corresponding theorems for the exact setting of parameters. Fully
rational buyers will be able to distinguish “booby trap” and “no booby trap”, but computationally
limited buyers cannot distinguish the two cases.

2.5 Parameters and Notations

In this paper we use asymptotic analysis as in most computer science research. Here we define
some of the notions:

Definition 1. For functions f(n) and g(n), we say f(n) = O(g(n)) if there exists some constant
C > 0 such that f(n) ≤ Cg(n). Similarly, f(n) = Ω(g(n)) if there exists some constant C > 0 such
that f(n) ≥ Cg(n). The notation f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)),
that is, there are constants 0 < C1 < C2 such that C1g(n) ≤ f(n) ≤ C2g(n).

The big-O,Θ,Ω notations are commonly used in computer science literatures. When f(n) =
Θ(g(n)), the functions f(n) and g(n) are roughly equivalent. Although theoretically the constants
in the definitions are arbitrary and might be unrealistically large or small, in this paper all the con-
stants are within reasonable range and most asymptotic effects are already significant at magnitude
of thousands.

We also use the small-o and ω notations:

Definition 2. For functions f(n) and g(n), we say f(n) = o(g(n)) if for any constant C > 0, there
exists a constant n(C) such that when n > n(C), f(n) < Cg(n). Similarly, f(n) = ω(g(n)) if for
any constant C > 0, there exists a constant n(C) such that when n > n(C), f(n) > Cg(n).

If f(n) = o(g(n)), we think of f(n) as negligible when comparing to g(n).
Finally we introduce some non-standard notations, including Õ (ignore log factors) and �

(much greater than):

Definition 3. f(n) = Õ(g(n)) iff f(n) = O(g(n) log g(n)). f(n) = Ω̃(g(n)) iff f(n) = Ω(g(n)/ log g(n)).
f(n) = Θ̃(g(n)) iff f(n) = Õ(g(n)) and f(n) = Ω̃(g(n)).

In this paper, when we say f(n)� g(n) we mean f(n) = Ω(g(n)N ε) for some positive constant
ε. Here N always denote the number of asset classes throughout the paper.

Throughout the paper, we’ll use the following parameters. We say that an (M,N,D) graph is
a bipartite graph with M vertices on one side (which we call the “top” side) and N on the other

9

Figure 1: Using a bipartite Graph to represent asset classes and derivatives. There are M vertices
on top corresponding to the derivatives and N vertices at the bottom corresponding to asset classes.
Each derivative references D assets in different classes.

(“bottom”) side, and top degree D. It is convenient to view the relationship of derivatives and
asset classes as a bipartite graph, see Figure 1. Derivatives and asset classes are vertices, with an
edge between a derivative and an asset classes if the derivative depends on an asset in the class.
We say that such a graph G contains an (m,n, d) graph H, if one can identify m top vertices and
n bottom vertices of G with the vertices of H in a way that all of the edges of H will be present
in G. We will consider the variant of the densest subgraph problem, where one needs to find out
whether a given graph H contains some (m,n, d) graph.

Densest subgraph problem. Fix M,N,D,m, n, d be some parameters. The (average case,
decision) densest subgraph problem with these parameters is to distinguish between the following
two distributions R and P on (M,N,D) graphs:

• R is obtained by choosing for every top vertex D random neighbors on the bottom.

• P is obtained by first choosing at random S ⊂ [N] and T ⊆ [M] with |S| = 2n, |T | = m,
and then choosing D random neighbors for every vertex outside of T 7, and D − d random
neighbors for every vertex in T . We then choose d random additional neighbors in S for every
vertex in T .

Hardness of this variant of the problem was recently suggested by Applebaum et al [ABW10]
as a source for public key cryptography8. The state of art algorithms for both the worst-case and
average-case problems are from a recent paper of Bhaskara et al [BCC+09]. Given their work, the
following assumption is consistent with current knowledge:

Densest subgraph assumption. Let (N,M,D, n,m, d) be such that for some positive δ, N =
o(MD), (md2/n)2 = o(MD2/N), n = Ω(N0.5+δ), m = Ω(M0.5+δ), d = Õ(D0.5) then there is no
ε > 0 and poly-time algorithm that distinguishes between R and P with advantage ε.

Since we are not proposing a cryptosystem in this paper, we chose to present the assumption
in the (almost) strongest possible form consistent with current knowledge, and see its implications.
Needless to say, quantitative improvements in algorithms for this problem will result in correspond-
ing quantitative degradations to our lower bounds on the lemon cost. In this paper we’ll always set
d = Õ(

√
D) and set m to be as large as possible while satisfying (md2/n)2 = o(MD2/N), hence

we’ll have m = Õ(n
√
M/N).

7Actually, for vertices outside of T , we on average choose (nMD−Nmd)/N(M −m) neighbors in S to make the
degree distributions similar for vertices in S and outside S. But since normally nMD � Nmd, in some calculations
we safely assume that all the D neighbors are uniformly random

8Applebaum et al used somewhat a different setting of parameters than ours, with smaller planted graphs. We
also note that their cryptosystem relies on a second assumption in addition to the hardness of the planted densest
subgraph.

10

3 Lemon Cost Bounds for Binary Derivatives

In this section we formalize the illustrative example from the introduction. We will calculate the
lemon cost in “honest” (random) binary derivatives, and the effect on the lemon cost of planting
dense subgraphs in such derivatives.

Recall the model we used in the illustrative example: there are N asset classes (e.g., the
subprime mortgages in California) and each class has C = MD/N assets. Each asset class has
a parameter p, which indicates the general performance of the asset class. Conditioned on the
performance value p, each asset in this asset class will default (give 0 return) with probability 1−p,
and give return 1/C with probability p (therefore the asset class has expected return p). In the
illustrative example, the p values for good asset classes are 1/2, and the values for lemon classes are
0. In this section we continue to use this simple assumption, but notice that the same asymptotic
result holds for a much broader choice of parameters. In fact, as long as the expected p value for
good classes is significantly larger (i.e. larger by at least a constant) than the expected p-value for
lemons, the theorems in this section will still hold.

In our setting the seller generates M binary derivatives, where the value of each derivative is
based on the D of the assets from D different asset classes. There is some agreed threshold value b,
such that each derivative pays 0 if more than D+b

2 of the assets contained in it default, and otherwise

pays some fixed amount V = D−b
2D

N
M (this amount is equivalent to the yield of the D−b

2 assets that
have not defaulted so the seller can always use the yields of assets to pay for the derivatives).

Since each derivative depends on D independent assets, each of which has probability 1/2
of defaulting, the number of defaulted assets for each derivative is distributed very closely to a
Gaussian distribution as D gets larger. In particular, if there are no lemons, every derivative
has exactly the same probability of paying off, and this probability (which as b grows becomes
very close to 1) is closely approximated by Φ(b

2σ) where Φ is the cumulative distribution function

of Gaussian (i.e., Φ(a) =
∫ a
−∞

1√
2π
e−x

2/2dx), b is our threshold parameter and σ ∼
√
D is the

standard deviation. Using linearity of expectation one can compute the expected value of all M
derivatives together, which will be about M D−b

2D
N
M ∼ N/2. Note that this calculation is the same

regardless of which assets are chosen for the derivative as long as they come from different asset
classes.

We now compute the effect of 2n lemon classes on the value of all the derivatives. In this
case the shape of the pooling will make a difference. As we explained, the shape of the pooling is
represented using a bipartite graph. The top M vertices correspond to the derivatives, the bottom
N vertices correspond to the asset classes, each top vertex will have D edges connecting to the
asset classes. Remember that this is what we called an (M,N,D) graph.

To increase his expected profit seller can carefully design this graph, using his secret information.
The key observation is that though each derivative depends upon D assets, in order to substantially
shift its payoff probability it suffices to fix about σ ∼

√
D of the underlying assets. More precisely,

if t of the assets contained in a derivative are lemons, then the expected number of defaulted assets
in it is D+t

2 , while the standard deviation is
√
D − t/2 ≈

√
D/2. Hence the probability that this

derivative gives 0 return is Φ(t−b2σ) which starts getting larger as t increases. This means that the

difference in value between such a pool and a pool without lemons is about V · Φ(t−b2σ).
Suppose the seller allocates ti of the junk assets to the ith derivative. Since each of the 2n junk

asset classes contains C = MD/N junk assets, we have
∑M

i=1 ti = 2nMD
N . We call this derivative

11

F , then in this case the lemon cost (EA∼D0F (A)− EA∼D2nF (A)) will be

V ·
M∑
i=1

Φ(
ti − b

2σ
)

Since the function Φ(ti−b2σ) is concave when t < b, and convex after that the optimum solution

will involve all ti-s to be either 0 or k
√
D for some small constant k. (There is no closed form for

k but it is easily calculated numerically; see Section B.1.)
Therefore the lemon cost is maximized by choosing some m derivatives and letting each of

them have at least d = k
√
D assets from the set of junk asset classes. In the bipartite graph

representation, this corresponds to a dense subgraph, which is a set of derivatives (the manipulated
derivatives) and a set of asset classes (the junk classes) that have more edges between them than
expected. This precisely corresponds to the pooling graph containing an (m, 2n, d) subgraph - that
is a dense subgraph (we sometimes call such a subgraph a “booby trap”). When the parameters
m, n, d are chosen carefully, there will be no such dense subgraphs in random graphs with high
probability, and so the buyer will be able to verify that this is the case. On the other hand, assuming
the intractability of this problem, the seller will be able to embed a significant dense subgraph in
the pooling, thus significantly raising the lemon cost.

Note that even random graphs have dense subgraphs. For example, when md = n, any
(M,N,D) graph has an (m,n, d) subgraph— just take any m top vertices and their n = md
neighbors. But these are more or less the densest subgraphs in random graphs, as the following
theorem, proven in Section B.2, shows:

Theorem 2. When n � md, dN
Dn > (N + M)ε for some constant ε, there is no dense subgraph

(m,n, d) in a random (M,N,D) graph with high probability.

The above discussion allows us to quantify precisely the effect of an (m, 2n, d)-subgraph on the
lemon cost. Let p ∼ Φ(−b/2σ) be the probability of default. The mere addition of n lemons (regard-
less of dense subgraphs) will reduce the value by about Φ′(−b/2σ)2nD

2N
1
σ ·N/2 = O(e−(b/2σ)2/2n

√
D)

which can be made o(n) by setting b to be Θ(
√
D logD). The effect of an (m, 2n, d) subgraph on

the lemon cost is captured by the following theorem (whose proof is deferred to Appendix B.2):

Theorem 3. When b > 3
√
D, d−b > 3

√
D, n/N � d/D, a planted (m,n, d) subgraph will generate

an extra lemon cost of at least Ω(mV). The Cost of Complexity for portfolios of binary derivatives
is at least Ω(n

√
N/M) under the densest subgraph assumption.

Assume M � N �M
√
D and set m = Θ̃(n

√
M/N) so that a graph with a planted (m, 2n, d)

subgraph remains indistinguishable from a random graph under the densest subgraph assumption.

Setting b = 2σ
√

log MD
N the theorem implies that a fully rational buyer can verify that nonexistence

of dense subgraphs and make sure the portfolio has a lemon cost of n N
2M
√
D

= o(n), while a

polynomial time buyer will have to bear with a lemon cost of n
√
N/M = ω(n).

4 Non-Binary Derivatives and Tranching

We showed in Section 3 that the lemon cost of binary derivatives can be large when computational
complexity is considered. However, binary derivatives are less common than securities that use
tranching, such as CDOs (Collateralized debt obligations). In a normal securitization setting, the

12

seller of assets (usually a bank) will offload the assets to a shadow company called the special
purpose vehicle or SPV. The SPV recombines these assets into notes that are divided into several
tranches ordered from the most senior to the most junior (often known as the “equity” or “toxic
waste” tranche). If some assets default, the junior-most tranche takes the first loss and absorbs all
losses until it’s “wiped out” in which case losses start propagating up to the more senior tranches.
Thus the senior-most tranche is considered very safe, and may even receive a AAA rating.

For simplicity here we consider the case where there are only two tranches, senior and junior.
If the percentile of the loss is below a certain threshold, then the junior tranche suffers the entire
loss; if the loss is above the threshold, then the junior tranche lose all its value and senior tranche is
responsible for the rest of the loss. Clearly, the senior tranche has lower risk than the whole asset.
We will assume that seller the retains the junior tranche, which is normally believed to signal
his belief in the quality of the asset. Intuitively, such tranched CDOs should be less vulnerable
to manipulation by seller compared to binary CDOs, and we’ll quantify that this is indeed true.
Nevertheless, we show that our basic result in Section 3 —that the lemon cost is much larger when
we take computational complexity into account—is unchanged.

We adapt the parameters and settings in Section 3, the only difference is that we replace our
binary derivative with the senior tranche derivative. In the event of T > D+b

2 defaults, instead of
payoff of 0 that the binary CDO had, this one has a payoff of D − T assets. (In the other case
it has a payoff of V = D−b

2 assets as in the binary case). Without lemons, the expected value of

this derivative is approximately the same as the binary one, as the probability of T > D+b
2 is very

small.
The first observation regarding tranching is that in this case the lemon cost can never be larger

than n, since the default of a single asset can cause a combined loss of at most one unit to all the
tranches. In fact we will show that in this case for derivatives constructed with either the random
graph (R) or the graph with planted dense subgraph (P), that the lemon costs are less than n.
But there will still be a difference between the two cases — a cost of δn in the exponential-time
case and

√
δn in the polynomial-time case, where δ ∼ N

MD . This is shown by the following theorem
(whose proof is deferred to Appendix C):

Theorem 4. When b ≥ 3
√
D, d−b ≥ 3

√
D, d <

√
D logD, n/N � d/D, the lemon cost for a graph

in distribution P (a graph with (m, 2n, d) subgraph) is εn+ Θ̃(σDmV), where ε = O(be−(b/2σ)2/2/σ).

The Cost of Complexity of CDOs is at least Ω(n
√
N/MD) under the densest subgraph assumption.

Therefore in CDOs, setting b sufficiently large the lemon cost for graphs with planted dense
subgraph is Θ(n

√
N/MD), and computationally limited buyers will have to bear it because they

cannot distinguish it from a random generated graph. The lemon cost for exponential time buyers
is Θ(n · N/MD). Since MD > N , the lemon cost for polynomial time buyer is always larger.
Nevertheless, the gap in lemon cost for tranched CDO’s is smaller than the gap for the binary
CDO.

5 Lemon Cost for CDO2

In this section we consider the cost of complexity for a more complex derivative called CDO2.
Simply speaking, a CDO2 is a CDO of CDOs: it treats the tranches of CDOs as assets (sometimes
called “inner” CDOs), and on top of them builds a new CDO structure (which is called “master”
or “outer” CDO). By similar methods we can treat CDO3, which are CDOs of CDO2, and more
generally CDOn.

13

In Sections 3 and 4, we have analyzed bundles of CDOs. In this section we shall collect all
the CDOs from these bundles (the inner CDOs) and construct a single CDO2 portfolio (the outer
CDO). When the thresholds are chosen correctly we shall see that these CDO2 portfolios are much
more vulnerable to the seller’s tampering than the original bundles of CDOs, and the effect is more
pronounced if the CDO2 involves binary CDO’s (which were described in Section 3). We defer the
proofs of the theorems below to Appendix D .

We will continue to assume the intractability of the Densest subgraph problem with the basic
parameters N,n,M,D,m. To simplify exposition we set M = N0.8, D = N0.3, n = N0.8, m = N0.7,
d = 6

√
D; this set of parameters seems difficult for current algorithms.

First we consider binary CDO2s, which are easier to analyze. The binary CDO2 takes a set of
binary CDOs as described in Section 3, and combines them to make a single derivative. The first
level of binary CDOs (inner CDOs) have a payoff threshold set at D+b

2 defaults where b = 3
√
D;

above this the payoff is 0. We say an inner CDO defaults if it gives 0 payoff. The outer part of
CDO2 combines M of these inner CDOs. The whole CDO2 portfolio pays V = N/4 when the
number of defaulted inner CDOs is less than a threshold T . When at least T inner CDOs default,
the CDO2 pays nothing. This threshold T will be set so that the CDO2 is securitized and can be
paid for out of the seller’s profits from the N assets. Notice that the inner CDOs and the outer
CDO are all “binary”: they will generate a fixed amount of payoff whenever the number of defaults
is below a certain threshold and pay nothing if the threshold is exceeded.

From Section 3 we know when the bundle of inner CDOs have no “booby traps” (fully random
case, distributionR), the expected number of defaulted inner CDOs is small. On the contrary, when
the seller plants a “booby trap” in the bundle of inner CDOs (booby-trapped case, distribution P)
the expected number of defaulted inner CDOs is much larger. We denote the former as E[random]
and the latter as E[planted]. The following theorem shows when the threshold of the outer CDO
is set appropriately between these two numbers, the cost of complexity for binary CDO2’s can be
really high.

Theorem 5. In the binary CDO2 setting, when m2 � M2D2

N , T = 1
2(E[random] + E[planted]), the

lemon cost for derivatives in P is (1− o(1))N/4, while the lemon cost for derivatives in R is only
N/4e−m

2N/M2D2
= O(e−N

ε
) where ε is a positive constant. That is, the Cost of Complexity for

binary CDO2s is at least Ω(N).

Again, commonly used CDO2s are usually not binary and involves tranche structrues as in
Section 4. We shall take the CDO bundle we constructed in Section 4 and make a CDO2 out of
the senior tranches.

Recall that the inner CDOs are divided into two tranches as in Section 4, the senior tranches
are less risky because they will always pay V = D−b

2 when there are less than D+b
2 defaults and

their values only decrease linearly even if more than D+b
2 defaults occur. To add another layer of

protection, the sellers collect all the M senior tranches of the CDOs to construct a CDO2 portfolio.
The maximum payoff of this portfolio is VCDO2 = N D−b

2D since there are M senior tranches and

each tranche has maximum payoff D−b
2D

N
M .

The seller shall choose a threshold T for the outer CDO to separate it into two tranches. The
junior tranche is responsible for the first T of the loss and the senior tranche is responsible for the
rest VCDO2 − T .

Suppose the senior tranches of inner CDOs pays S. When this payoff value S is more than
VCDO2 − T , the senior tranche of the outer CDO pays its full value VCDO2 − T and all the loss are
in the junior tranche of the outer CDO; when the payoff value S < VCDO2 − T , the senior tranche
of the outer CDO begins to suffer loss, and its payoff is equal to S. The seller shall claim that the

14

senior tranche of the outer CDO is really riskless because it only starts suffering loss when many
senior tranches of inner CDOs default, which are themselves low probability events. The buyers
will buy the senior tranche of the outer CDO and the seller retains all the junior tranches of the
inner CDOs and the outer CDO.

As we proved in Section 4, when the bundle of inner CDOs is constructed according to distri-
bution R (fully random), the expected loss for the senior tranches of inner CDOs is very small.
On the other hand, when the bundle of inner CDOs is constructed according to distribution P
(booby-trapped), the expected loss for the senior tranches of inner CDOs is significantly larger.
Use E[random] to denote the expected loss in the senior tranches of inner CDOs when the graph is
chosen from R, E[planted] to denote the expected loss in the senior tranches of inner CDOs when
the graph is chosen from P, we have the following theorem.

Theorem 6. In the CDO2 with tranching case, when m2d2 � M2D2/N , T = 1
2(E[random] +

E[planted]), the lemon cost for derivatives in distribution P is Θ(mdN/(MD)) , while the lemon
cost for derivatives in distribution R is at most mdN/MDe−m

2d2N/M2D2
= O(e−N

ε
) where ε is a

positive constant. That is, the Cost of Complexity for CDO2’s is at least Ω(n
√
M/N) under the

densest subgraph assumption.

In conclusion, for both binary CDO2s and CDO2s with tranching, the lemon cost for graphs with
planted dense subgraph can be exponential times larger than the lemon cost for random graphs.
In particular, for polynomial time buyers who cannot detect the booby trap, the lemon cost and
cost of complexity of binary CDO2s can be as large as N/4— a large fraction of the total value of
the asset.

6 Buyer’s Reaction and Liquidity Costs

DeMarzo [DeM05] explains the role of CDOs in ameliorating lemon costs or liquidity costs incurred
by a seller who tries to sell a security about which he/she has private information. His model takes
into account strategic behavior by buyer and seller (e.g., given that seller offers to sell the buyer a
fraction of a CDO, how should buyer interpret this as a “signal” of the seller’s private information?).
Now we show that the lemon cost due to computational complexity also exists in a formal model
similar to DeMarzo’s. If the buyer is computationally unbounded, the seller can signal his hidden
information quite well, whereas this proves difficult if the buyer is computationally bounded.

6.1 DeMarzo’s Model and the Liquidity Problem

First we sketch DeMarzo’s ideas, but adapted to our setting. As in Section 2, we assume that the
seller has N asset classes where seller holds C iid assets in each class. The number of lemon classes
l is chosen at random from [0, 2n]. Assets in lemon classes will always default and assets in good
classes will default with probability 1/2 independently. After normalization we also assume that
each good asset class has expected payoff 1 dollar. As before the asymmetric information here is
that only the seller knows which assets are lemons (and the number of lemons).

The seller wishes to sell assets for cash (e.g., because he has other investment opportunities).
He has a discount factor δ < 1: an asset that is worth 1 dollar contributes only δ to his utility,
whereas 1 dollar in cash will contribute 1. Buyer’s prior is that the number of lemon classes is
uniform in [0, 2n]. Informally speaking, if the seller offers to sell all the assets, the buyers should
interpret this as a “signal” that shows the seller’s secret knowledge that the number of lemons is
high, and will pay the minimum amount consistent with his prior (in our setting this is equal to

15

the value of N − 2n good asset classes). Clearly in this situation the seller cannot achieve a utility
as high as when there’s no asymmetric information. Thus the difference between seller’s utility
with and without asymmetric information is another way of measuring lemon cost. In [DeM05] and
[DD99], DeMarzo and Duffie showed that this cost is minimized when the seller issues a CDO-like
security and chooses the appropriate threshold to “signal” to the buyer about the quality of the
asset portfolio.

To be more formal, let x be the expected total value of the assets (using seller’s information),
when the number of lemon classes is l. Thus x = N − l, which lies in the range [N − 2n,N].

6.2 When seller sells a single security

This is the case studied in DeMarzo, which we summarize. In particular we will need his theorem
below summarizing the liquidity cost in terms of the security design and the buyer’s optimum
response.

Suppose the seller offers to sell a fraction q of the security, and the buyer’s evaluation for the
entire pool of CDOs for this offer is P (q). Then the seller’s expected utility is

δ(x− qf(x)) + P (q)q = δx+ q(P (q)− δf(x)).

Given any function P (q), the seller’s optimum choice of q is given by function QP (x) =
arg maxq q(P (q)− δf(x)) (here we ignored the first term δx because it is a constant given x).

The buyer’s optimum response to the one-dimensional signal q must satisfy:

P (QP (x)) = E[f(x)|QP (x)].

Theorem 7 (DeMarzo [DeM05], Page 11, Lemma 4). If the structure of the security is fixed,
and the range of f is between f0 and f1, then there is a unique separating equilibrium given by
Q(x) = (f(x)/f0)−1/(1−δ), P (q) = f0q

δ−1. The effect of asymmetric information (measured in
seller’s utility) is (1− δ)x− π(f(x)/f0)f0, where π(f(x)/f0) = (1− δ)(f(x)/f0)−δ/(1−δ).

DeMarzo also proves that the optimum security is a single tranched CDO, but this result will
not be of interest here. (Recall that we are interested in situations where the buyers has too many
assets to realistically put them all in a single security.)

An example: We explain the above theorem with a calculation of the liquidity loss with some
concrete numbers. Suppose δ = 0.9, and and the ratio n/N is 0.1. Consider the utility loss of the
buyer when x = N − n.
Case 1) The seller doesn’t use derivatives. Then using f(x) = x in DeMarzo’s Theorem the utility
loss is (1− δ)x− π(x/x0)x0 = (1− 0.9) · 0.9N − π(0.9/0.8) · 0.8N ≈ 6.23%N .
Case 2) The seller uses the optimum security, a tranched CDO. Suppose the seller creates a
tranched CDO with the threshold of the CDO is set at 0.8N . Then a simple calculation for this f
shows that the utility loss is (1− δ)x− π(f(x)/f0)f0 = (1− 0.9) · 0.9N − π(0.8/0.8) · 0.8N ≈ 1%N ,
which is much smaller than the cost in Case 1. Thus the derivative does indeed reduce liquidity
cost (which we called lemon cost).

6.3 When Seller sells multiple securities

Of course, the current paper is interested in the situation that the seller is not free to bundle
all the assets into a single security and therefore needs to construct many securities. We assume
(exogeneously) that the seller needs to construct M securities, each based upon D assets from

16

different asset classes. The seller’s ways to signal to the buyers is therefore limited to the structure
of the CDO’s and the fraction that the seller retains to show confidence. We further make the
following assumption:

Symmetry Assumption: The M CDOs have the same structure, and the seller offers to
retain the same fraction for each of the CDO’s he offers. That is, he does not split his offerings
into different categories on this basis.

The assumption is plausible from a practical standpoint as the buyers cannot distinguish these
CDO’s. We conjecture that this strategy is optimal for rational sellers though a proof seems difficult.
We will provide some evidence for the truth of this conjecture below in Section 6.3.2.

For a subset of asset classes S ⊆ [N] let F (S) denotes the expected payoff of the portfolio of
CDO’s when exactly the asset classes in S are lemons. Define f(x) be the worst case expected
payoff of all the CDO’s given the value of x, namely,

f(x) = min
|S|=N−x

F (S). (2)

Clearly, a rational seller who knows the identity of the lemons would ensure such a payoff. Thus
the following is a simple corollary of DeMarzo’s analysis.

Theorem 8. Theorem 7 holds for our setting with the f as defined in (2).

6.3.1 Effect of computational complexity

Our Theorem 8 makes no reference thus far to computational complexity. Surprisingly, the main
effect of computational complexity in this framework is to create doubt about the value of f0, f1

perceived by the buyer.
As in previous sections (specifically, Section 3, though similar results hold for other CDO’s),

here we assume (exogeneously) that the seller has created M binary CDO’s using these N asset
classes. Each CDO has D assets from different asset classes, and the threshold for a nonzero payoff
is set to (D−Θ(

√
D logM))/2. What he controls is the choice of which assets to put in each CDO.

Case 1: The buyers are fully rational, and computationally unbounded. Then the asymmetric
information is not a big problem. As indicated, the fully random CDO portfolio (constructed by
randomly partitioning the mortgage bundle) can be examined by such a buyer (presumably using
enormous computational power) to be free of booby traps. Essentially, the fully rational buyer will
interpret the lack of booby traps of the CDOs constructed by the seller as a signal that shows the
quality of the CDO bundle.

Thus, having verified the absence of a booby trap, the buyer will be able to correctly compute
upper and lowerbounds (namely, f1, f0) on the function f . By results in Section 3 we know f0 ≈ N−
2n. (The true value of f0 depends on D, the number of assets per CDO. When D grows f0/(N−2n)
approaches 1 asymptotically and this value is close to 1 even for moderate D.) Furthermore, with
extremely high probability f1−f0 = O(nN/

√
DM)� n. When M

√
D/N � 1, the utility loss will

be small. Concretely let’s assume f0 = 0.75N and f1− f0 = 0.01N , then the utitlity loss is roughly
2.34%N , although it is not optimal it is significantly lower than the loss than achieved without a
derivative.

Case 2: Buyers are computationally limited. However, if the seller has no way to send a signal
to the computationally limited buyer to prove there’s no booby trap, then those buyers cannot
properly interpret the above (high dimensional) signal as the fully rational buyers can.

The rational seller who has lots of lemon assets will always plant a booby trap because this
will increase his utility and the sellers cannot notice. To avoid being cheated by the seller, the

17

buyer will always assume there is a booby trap, and will conclude f1 − f0 = Θ(n
√
N/M). Hence

the utility loss for sellers who have just n lemon assets will be much larger. Concretely assume
f0 = 0.6N and f1 = 0.8N , the utility loss is roughly 8.54%N , which is even worse than what we
had without a derivative. Also, notice the worst case of utility loss is (1− δ)x = 0.1 · 0.9N = 9%N
because this is the utility loss if the seller does not sell anything.

6.3.2 Evidence for Symmetry Assumption

A priori it is unclear why the Symmetry Assumption is true: can a rational seller not try to signal
his good intentions (and number of lemons) to the buyer by assigning different thresholds and
fractions to each of the CDO? We argue that this is not likely to give the seller any profit by
considering the following two examples:

Example 1 The seller breaks the assets into two portfolios in a bid to convey the following
information to the buyers: “ All lemons are in portfolio 1 and I’m giving it to you for free. Let’s
discuss what you will pay for portfolio 2, for which I offer to retain fraction q.”

However, using the fact that the seller tries to optimize his utility, and the buyer tries to interpret
the signals correctly, we can compute the signaling equilibrium in this situation using techniques
similar to [DeM05] (Page 8, Lemma 2. An easy way to see this is by observing in Theorem 7, the
values are only related to f0, the lowerbound of f . Giving out some bad assets for free only changes
the upperbound f1 but not f0.). The result shows that the seller’s best strategy is to put no assets
in portfolio 1. That is, this kind of signaling does not help the seller.

Example 2 The seller again breaks the assets into two portfolios, but this time the two portfolios
has the same size. The seller try to retain different fractions for the two portfolios.

The idea of this example is maybe the seller can get profit by keeping different fraction of the
CDOs to indicate which CDOs are better. However calculation shows that the best strategy for
the seller is to keep the same fraction for the two portfolios.

Of course these two simple examples are suggestive but do not prove that the seller’s optimal
signaling mechanism is to offer to keep the same fraction for all the CDOs.

7 Design of Derivatives Resistant to Dense Subgraphs

The results of this paper show how the usual methods of CDO design are susceptible to manipulation
by sellers who have hidden information. This raises the question whether some other way of CDO
design is less susceptible to this manipulation. This section contains a positive result, showing
more exotic derivatives that are not susceptible to the same kind of manipulation. Note that this
positive result is in the simplified setup used in the rest of the paper and it remains to be seen how
to adapt these ideas to more realistic scenarios with more complicated input correlations, timing
assumptions, etc.

The reason current constructions (e.g., the one in our illustrative example) allow tampering is
that the financial product is defined using the sum of D inputs. If these inputs are iid variables then
the sum is approximately gaussian with standard deviation

√
D, and thus to shift the distribution it

suffices to fix only about
√
D variables. This is too small for buyers (specifically, the best algorithms

known) to detect.
The more exotic derivatives proposed here will use different functions, which cannot be shifted

without fixing a lot of variables. This means that denser graphs will be needed to influence them,

18

and such graphs could be dense enough for the best algorithms to find them. We shall describe the
construction in a future paper.

8 Conclusions

Most analysis of the current financial crisis blames the use of “faulty models” in pricing deriva-
tives, and this analysis is probably correct. Coval et al. [CJS09] give a readable account of this
“modelling error”, and point out that buyer practices (and in particular the algorithms used by
rating agencies [WA05]) do not involve bounding the lemon cost or doing any kind of sensitivity
analysis of the derivative other than running Monte-Carlo simulations on a few industry-standard
distributions such as the Gaussian copula. (See also [Bru09].)

However, this raises the question whether a more precise model would insulate the market from
future problems. Our results can be seen as some cause of concern, even though they are clearly
only a first step (simple model, asymptotic analysis, etc.). The lemon problem clearly exists in
real life (e.g., “no documentation mortgages”), and there will always be a discrepancy between
the buyer’s “model” of the assets and the true valuation. Since we exhibit the computational
intractability of pricing even when the input model is known (N −n independent assets and n junk
assets), one fears that such pricing problems will not go away even with better models. If anything,
the pricing problem should only get harder for more complicated models. (Our few positive results
in Section 7 raise the hope that it may be possible to circumvent at least the tampering problem
with better design.) In any case, we feel that from now on computational complexity should be
explicitly accounted for in the design and trade of derivatives.

Several questions suggest themselves.

1. Is it possible to prove even stronger negative results, either in terms of the underlying hard
problem, or the quantitative estimate of the lemon cost? In our model, solving some version
of densest subgraph is necessary and sufficient for detecting tampering. But possibly by
considering more lifelike features such as timing conditions on mortgage payments, or more
complex input distributions, one can embed an even more well-known hard problem. Similarly,
it is possible that the lemon costs for say tranched CDOs are higher than we have estimated.

2. Is it possible to give classes of derivatives (say, by identifying suitable parameter choices) where
the cost of complexity goes away, including in more lifelike scenarios? This would probably
involve a full characterization of all possible tamperings of the derivative, and showing that
they can be detected.

3. If the previous quest proves difficult, try to prove that it is impossible. This would involve
an axiomatic characterization of the goals of securitization, and showing that no derivative
meets those goals in a way that is tamper-proof.

Acknowledgements. We thank Moses Charikar for sharing with us the results from the
manuscript [BCC+09].

References

[ABW10] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different
assumptions. In STOC, pages 171–180, 2010.

19

[Ake70] G. Akerlof. The market for “lemons”: quality uncertainty and the market mechanism.
The quarterly journal of economics, pages 488–500, 1970.

[BC97] A. Bernardo and B. Cornell. The valuation of complex derivatives by major investment
firms: Empirical evidence. Journal of Finance, pages 785–798, 1997.

[BCC+09] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detect-
ing high log-density: An o(n1/4)-approximation for densest k-subgraph. Manuscript in
preparation, 2009.

[Bru09] M. Brunnermeier. Deciphering the liquidity and credit crunch 2007-08. Journal of
Economic Perspectives, 23(1):77–100, 2009.

[CJS09] J. Coval, J. Jurek, and E. Stafford. The economics of structured finance. Journal of
Economic Perspectives, 23(1):3–25, 2009.

[DD99] P. DeMarzo and D. Duffie. A liquidity-based model of security design. Econometrica,
67(1):65–100, 1999.

[DeM05] P. DeMarzo. The pooling and tranching of securities: A model of informed intermedia-
tion. Review of Financial Studies, 18(1):1–35, 2005.

[Duf07] D. Duffie. Innovations in credit risk transfer: implications for financial stability. BIS
Working Papers, 2007.

[FPRS07] P. Flener, J. Pearson, L. G. Reyna, and O. Sivertsson. Design of financial cdo squared
transactions using constraint programming. Constraints, 12(2):179–205, 2007.

[GSe02] G. Gigerenzer, R. Selten, and eds. Bounded rationality : the adaptive toolbox. MIT
Press, 2002.

[WA05] M. Whelton and M. Adelson. CDOs-squared demystified. Nomura Securities, February
2005.

A Our Construction versus Real-life Derivatives

In this section we discuss the relation of our constructions to commonly used types of derivatives
on a more technical level.

Role of random graph Real-life constructions do not use a random graph. Rather, seller tries
to put together a diversified portfolio of assets which one can hope are “sufficiently independent.”
We are modeling this as a random graph. Many experts have worried about the “adverse selection”
or “moral hazard” problem inherent because the seller could cherry-pick assets unbeknownst to
buyer. It is generally hoped that this problem would not be too severe since the seller typically
holds on to the junior tranche, which takes the first losses. Unfortunately, this intuition is shown
to be false in our model.

20

Binary vs tranched. Though we did have results for lemon costs of tranched CDOs, the results
for binary CDOs were stronger. This suggests firstly that binary CDOs may be a lot riskier than
tranched CDOs, which was perhaps not quantified before in the same way. Second, the results
for binary CDOs should still be important since they can be viewed as an abstraction for a debt
insurance (i.e., CDS). If one buys a CDS (tranched) for a portfolio, then even though the tranching
suggests a continuous cost incurred when the portfolio makes losses, in practice the cost is quite
discontinuous as soon as the portfolio makes any loss, since this can cause rating downgrade (and
subsequent huge drop in price), litigation, and other costs similar to that of a bankruptcy. Thus
even a tranched CDS is a lot more binary in character in this setting.

One significant aspect we ignored in this work is that in standard derivatives the timing of
defaults makes a big difference, though this seems to make a negative results such as ours only
stronger. It is conceivable that such real-life issues could allow one to prove an even better hardness
result.

Asymptotic analysis. In this paper we used asymptotic analysis, which seems to work best to
bring out the essence of computational issues, but is at odds with economic practice and literature,
that use fixed constants. This makes it hard to compare our parameters with currently used ones
(which vary widely in practice). We do note that algorithms that we consider asymptotically
“efficient” such as semi definite programming, may actually be considered inefficient in current
banking environment. Some of results hold also for a threshold of a constant number (e.g. 3) of
standard deviations, as opposed to

√
logD (see Section E.5), which is perhaps more in line with

economic practice in which even the senior most tranche has around 1% probability of incurring a
loss (though of course for current parameters

√
logD ≤ 3).

The asset classes The distribution we used in our results, where every pair of assets is either
independent (when they are in different asset classes) or perfectly correlated (when they are in the
same asset class) is of course highly idealized. Also, the assumption that each asset is binary is only
true in a highly simplified model. In practice the yields of assets might be assumed to come from
some more realistic distribution, such as a gaussian copula. The Gaussian copula is constructed by
projecting a multivariate normal distribution on Rd by means of the probability integral transform
to the unit cube [0, 1]d. The Gaussian copula is capable of modeling various correlations between
different assets. In particular, we can construct a gaussian copula G as follows.

Pick MD Gaussians that are partitioned into groups of size MD/N . The Gaussians within the
same group are postively correlated and the Gaussians between different groups are independent.
Let Σ be the correlation matrix for this multivariate Gaussian, the parameter Σ defines a gaussian
copula

cΣ(x) =
1

(det Σ)1/2
exp

{
−1

2
uT (Σ−1 − I)u

}
.

Here cΣ(x) is the probability density that the yields of assets is equal to the vector x. The
values of u will be determined as follows:

Now pick n groups as the junk asset classes, let Dgood and Djunk be the distributions for
yields of good and bad assets. Let Fgood and Fjunk be the corresponding cummulative distribution
functions, then ui = Φ−1(Fgood(xi)) if the i-th asset is good and ui = Φ−1(Fjunk(xi)) otherwise.
Assume E[Dgood] − E[Djunk] > c1 E[Dgood], higher moments of Dgood and Djunk are bounded so
concentration bounds hold. We have the following theorem:

21

Theorem 9. There is a way for sellers to design derivatives such that the results summarized in
Table 1 hold even when the yields of assets are chosen according to the Gaussian copula G.

The proof is essentially the same as before. Our proof does not depend crucially on the perfect
correlation or the distribution of yield for each asset. We have mostly used concentration bounds.
The proofs are correct even when the distribution of yields of individual assets is replaced by some
more realistic distribution such as a Gaussian copula.

Another conern is that typically even for two dissimilar assets (from different asset classes),
the default probability is slightly correlated. However, this is often modeled via a systemwide
component, which is easy to hedge against (e.g. using an industry price index), thus extracting
from each asset a random variable that is independent for assets in different industries or markets.
In any case, our results can be modified to hold in alternative models such as the Gaussian copula
even when the model has a systemwide correlation.

B Omitted proofs from Section 3

B.1 Maximizing Profit in Binary Derivative Setting

We provide a more complete analysis than the one in Section 3 of the full optimization problem for
the seller. Recall that his profit is given by

V ′ ·
M∑
i=1

Φ(
ti − b

2δ
),

yet at the same time he is not allowed to put too many edges into the cluster (otherwise
this dense subgraph can be detected). We abstract this as an optimization problem (let b

2δ = a,
xi = ti/2δ):

max
M∑
i=1

Φ(xi − a)

subject to
M∑
i=1

xi = T

xi ≥ 0.

Here T is a parameter that is chosen to make sure computationally limited buyers cannot detect
the dense subgraph. As argued in Section 3, each xi should either be 0 or greater than a, so it’s
safe to subtract MΦ(−a) from the objective function. Now the sum of xi’s are fixed, and we want
to maximize the sum of Φ(xi − a) − Φ(−a), clearly the best thing to do is to maximize the ratio
between Φ(xi − a) − Φ(−a) and xi. Let y = Φ(x − a) − Φ(−a), the x that maximize y/x is the
point that satisfies y = x · y′(x), that is

Φ(x− a)− Φ(−a) = x
e−

(x−a)2
2

√
2π

,

when x ≥ a + 3 +
√

4 log a, LHS ≈ 1, RHS < 1 (when a is large this is bounded by
√

4 log a
term, when a is small this is bounded by 3, the constants are not carefully chosen but they are

22

large enough), so the solution cannot be in this range. When a is a constant, the solution x lies
between a and a+ 3 +

√
4 log a. Therefore, when a us a constant, the best thing to do is to set all

non-zero xi’s to a value not much larger than a, in the bipartite graph representation this is just
planting a dense subgraph where each derivatives have O(

√
D) edges.

B.2 Omitted Proofs

Theorem 2 (Restated). When n � md, dN
Dn > (N + M)ε for some constant ε, there is no dense

subgraph (m,n, d) in a random (M,N,D) graph with high probability.

Proof. Let Xi,j be the random variable that indicates whether there’s an edge between i-th asset
class and j-th derivative. For simplicity we assume Xi,j are independent random variables which
has value 1 with probability D/N (actually the random variables Xi,j are negatively correlated,
but negative correlations will only make the results we are proving more likely to be true). Pick
any set A of asset classes of size n, B of derivatives of size m. The probability that there are more
than md edges between A and B is the probability of X =

∑
i∈A,j∈BXi,j ≥ md. Since Xi,j are

independent random variables, and the sum X has expectation µ = mnD/N , by Chernoff Bound,

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
Here µ = mnD/N , 1 + δ = md/µ = dN

Dn , the probability is at most

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ (N +M)−εmd

The number of such sets is
(
N
n

)(
M
m

)
≤ (N +M)n+m, by union bound, the probability that there

exists a pair of sets that has more than md edges between them is at most (N +M)n+m−md, which
is much smaller than 1 by the assumption that n � md. Therefore, with high probability there
will be no dense subgraphs within a random graph.

Theorem 3 (Restated). When b > 3
√
D, d− b > 3

√
D, n/N � d/D, a planted (m,n, d) subgraph

will generate an extra lemon cost of at least Ω(mV). The Cost of Complexity for portfolios of binary
derivatives is at least Ω(n

√
N/M) under the densest subgraph assumption.

Proof. It will be clear from the proof that b = 3
√
D, d = 6

√
D is the hardest case. For concreteness

we will assume b = d− b = 3
√
D and other cases follow from the same arguments.

For each manipulated derivatives, let Y be the number of defaulted assets, since there are d
assets that come from junk asset classes, these d assets will always default, and the expectation
of Y is E[Y] = D+d

2 . Since D is large enough so that the Gaussian approximation holds, Pr[Y ≥
D+b

2] = Φ(3) = 1− p (here p = Φ(−3) ≈ 0.2% is a very small constant).
For non-manipulated derivatives, assume the expected number of defaulted assets is x, then x

satisfy the equation:

m · D + d

2
+ (M −m) · x =

N + 2n

2
· MD

N
,

because the LHS and RHS are all expected number of defaulted assets. x ≥ D
2 + 2nD

2N −
md

2M−2m . The probability that the number of defaulted assets is more than D+b
2 is approximately

Φ(−3 + 2n
√
D

2N − md
2(M−m)

√
D

) ≥ p−Φ′(−3) md
2(M−m)D ≈ p− ε1

m
M + ε2n

√
D/N . Here ε1 and ε2 are all

23

small constants. In conclusion, the expected number of derivatives that gives no return is roughly
pM+(1−p−ε1)mε2n

√
D/N . When there are no lemons, this expectation is equal to pM . Therefore

the lemon cost is ε2n
√
D/2 + Ω(mV). When the derivatives come from distribution R, by Thm. 2

and Section B.1, the best strategy for the seller is to use a booby trap whose m = O(n/d), and the
lemon cost is small.

For Cost of Complexity, we consider distribution R and P in the densest subgraph assump-
tion. The distribution P can have a dense subgraph with m = n

√
M/N . Since P and R are

indistinguishable by the densest subgraph assumption, the cost of complexity is at least

CoCε(binary CDO, n) ≥ Ω(n
√
M/NV − nV/

√
D) = Ω(n

√
N/M)

C Omitted proofs from Section 4

Theorem 4 (Restated). When b ≥ 3
√
D, d − b ≥ 3

√
D, d <

√
D logD, n/N � d/D, the

lemon cost for a graph in distribution P (a graph with (m, 2n, d) subgraph) is εn+ Θ̃(σDmV), where

ε = O(be−(b/2σ)2/2/σ). The Cost of Complexity of CDOs is at least Ω(n
√
N/MD) under the densest

subgraph assumption.

Proof. Let Yi be the number of defaulted assets related to i-th product.
If there are no junk assets, each asset may default with probability 1/2. For each product, Yi

is close to a Gaussian with standard deviation σ =
√
D/2 and mean D/2. The expected loss can

be written as:

σ

D
· V ·

∫ −3

−∞

−3− x√
2π

e−
x2

2 dx

The value of the integral is a small constant ε = e−4.5
√

2π
− 3Φ(−3) < 10−3.

Valuation when there are n junk assets. When there are n junk assets, the expected value
of each Yi is decreased by nD/2N . Again, because nD/2N is much smaller than 1, the amount
of change in the expected payoff is proportional to nD/2Nσ and the derivative of the function

Γ(x) =
∫ x
−∞

x−y√
2π
e−

y2

2 dy at the point x = −b/2σ. Since

Γ′(x) = −2x
e−x

2/2

√
2π
− Φ(x),

Γ′(−b/2σ) = O(b/2σe−(b/2σ)2/2). The lemon cost would be

M
σ

D
· V · Γ′(−b/2σ) · nD

2Nσ
= O(n · be−(b/2σ)2/2/σ).

Seller’s profit from planting a dense subgraph. Suppose seller plants a dense subgraph
(m,n, d). If the i-th product is in the dense subgraph, then Yi is close to a Gaussian with mean
D+d

2 and with high probability (the same probability 1− p = 99.8%) the senior tranche will suffer

loss. Conditioned on the event that Yi >
D+b

2 , the expected amount of loss is

V

D
· (E[Yi|Yi >

D + b

2
]− D + b

2
) ≥ V

D
· (E[Yi]−

D + b

2
) =

3σ

D
V,

24

therefore the expected loss without conditioning is at least 3(1−p)σ
D V . For the products outside

the dense subgraph, because the expected value of Yi is roughly md/2M smaller (which is md/2Mσ
times standard deviation), the expected loss is also smaller. The amount of change is the propor-
tional to md/2Mσ and the derivative of the function Γ(x) at the point x = −3. The total influence
for all M −m product is roughly md

2σ
σ
DV Γ′(−3) = ε′ σDmV , where ε′ is also a small constant, so this

influence is very small.
For Cost of Complexity, again we use the distributions R and P. The derivatives in R will have

m = n/
√
D with high probability, while the derivatives in P always have m = n

√
M/N . Thus the

cost of complexity is at least

CoCε(CDO, n) = Ω(n
√
M/NV/

√
D − nV/D) = Ω(n

√
N/MD).

D Omitted proofs from Section 5

Theorem 5 (Restated). In the binary CDO2 setting, when m2 � M2D2

N , T = 1
2(E[random] +

E[planted]), the lemon cost for derivatives in P is (1−o(1))N/4, while the lemon cost for derivatives
in R is only N/4e−m

2N/M2D2
= O(e−N

ε
) where ε is a positive constant. That is, the Cost of

Complexity for binary CDO2s is at least Ω(N).

Proof. From the results in Section 3 we knowH = E[poly]−E[exp] = Θ(m). Therefore E[poly]−T =
Θ(m) and T − E[exp] = Θ(m).

Let Y be the random variable that’s equal to the number of CDOs that gives no return, let Xi be
the indicator variable that is 1 when i-th CDO gives no return and 0 otherwise. Then Y =

∑M
i=1Xi.

We analyse the concentration of Y about its expectation. Let x1, x2, ..., xN be the p value for asset
classes, function f((x)) = E[Y |x]. Since after conditioning on x, all assets are independent, and
H = ω(

√
M), Pr[|Y − E[Y]| > H/4|x] = e−Θ(m2/M). Since each asset appears in MD/N = N0.1

CDOs, |f(x)− f(x′)| ≤MD/N if x and x′ differ by only 1 position. By McDiarmid’s bound:

Pr[|f(x)− E[f(x)]| > t] ≤ e
− t2∑

c2
i

where ci is the maximal difference in f when the i-th component of x is changed. (here ci = MD/N
for all i, so

∑
c2
i = M2D2/N , for derivatives in distribution P

Pr[Y ≥ T] ≥ 1− Pr[f((x) ≤ T +H/4]− Pr[|Y − E[Y]| > H/4|x] ≥≥ 1− e−Θ(m2N/M2D2),

similarly, for derivatives in distribution R

Pr[Y ≥ T] ≤ Pr[|Y − E[exp]| > H/4] + Pr[|Y − E[Y]| > H/4|x] ≤ e−Θ(m2N/M2D2).

The lemon cost for this CDO2 is just the probability of loss multiplied by the payoff of CDO2.
Therefore, exponential time buyer can distinguish P and R, and make sure the lemon cost is
e−Θ(m2N/M2D2)N/4, which is e−Θ(N0.2) in the parameters we choose. This is exponentially small,
while polynomial buyers cannot distinguish R and P and may get lemon cost as large as (1 −
o(1))N/4.

The cost of complexity is at least Ω(N) by using the distributions R and P in the definition.

25

Theorem 6 (Restated). In the CDO2 with tranching case, when m2d2 �M2D2/N , T = 1
2(E[random]+

E[planted]), the lemon cost for derivatives in distribution P is Θ(mdN/(MD)) , while the lemon
cost for derivatives in distribution R is at most mdN/MDe−m

2d2N/M2D2
= O(e−N

ε
) where ε is a

positive constant. That is, the Cost of Complexity for CDO2’s is at least Ω(n
√
M/N) under the

densest subgraph assumption.

Proof. From Section 4 we know H = E[poly] − E[exp] = Θ(mdN/MD). Since T = 1/2(E[poly] +
E[exp]), E[poly]−T = T −E[exp] = Θ(mdN/MD). Let Xi be amount of loss in the senior tranche
of the i-th CDO, Y =

∑M
i=1Xi, then the senior tranche of CDO2 losses money if and only if Y > T .

Again, define f(x) = E[Y |x], where xi’s are p-values for asset classes. Still, after conditioning
on x, the assets are all independent so Pr[|Y − f((x))| > H/4|x] = o(1). For the function f(x),
the ci’s for McDiarmid’s bound are all 1, because the 1 unit of loss caused by the default of one
asset can only be transferred and will not be amplified in CDOs with tranching. Therefore, for
derivatives in distribution P,

Pr[Y > T] ≥ 1− Pr[|Y − E[poly]| > H/4]− Pr[|Y − f((x))| > H/4|x] ≥ 1− e−Θ(m2d2N/M2D2),

while for derivatives in distribution R

Pr[Y > T] ≤ Pr[|Y − E[exp]| > H/4] + Pr[|Y − f((x))| > H/4|x] ≤ e−Θ(m2d2N/M2D2).

That is, polynomial time buyers may buy derivatives from distribution P and almost always
loss money, their lemon cost is (E[poly]−T) = Θ(mdN/MD), while the lemon cost for exponential
time buyer is exponentially small because the probability of losing even $1 is exponentially small
(by the parameters we chose the probability is e−Θ(N0.5)). Again we use the distributions P and R
in the definition of cost of complexity, and conclude that CoCε(CDO2, n) = Ω(n

√
N/MD).

E Survey of Algorithms for Dense Subgraph

Since designers of financial derivatives can use booby traps in their products to benefit from hidden
information, it would be useful for buyers and rating agencies to actually search for such anomalies
in financial products. Currently rating agencies seem to use simple agorithms based upon monte
carlo simulation [WA05]. There is some literature on how to design derivatives, specifically, using
ideas such as combinatorial designs [FPRS07]. However, these design criteria seem too weak.

Now we survey some other algorithms for detecting dense subgraphs, which are more or less
straightforward using known algorithm design techniques. We shall see that there is a wide range of
parameters (see Section E.6) where dense subgraphs are not detectable by any known algorithms.
Further, detecting dense subgraphs under these parameters are assumed to be hard for every efficient
algorithm.The dense subgraph parameters used in our constructions all fall in this range.

Note that the efficient algorithms given in this section require full access to the entire set of
financial products sold by the seller, and thus assumes a level of transparency that currently does
not exist (or would be exist only in a law enforcement setting). Absent such transparency the
detection of dense subgraphs is much harder and the seller’s profit from planting dense subgraphs
would increase. Also, several algorithms (especially the Semi-definite Programming in Section E.3)
we described requires more than linear or quadratic time. Although they still runs in polynomial
time in practice they are hard to implement for large-scale data.

In this section we’ll first describe several algorithms that can be used to detect dense subgraphs;
then we introduce the notion of Ex-Post detection; finally we discuss the constraints the booby trap
needs to satisfy.

26

E.1 Co-Degree Distribution

We can expect that some statistical features may have a large difference that allow us to detect this
dense subgraph. The simplest statistical features are degree and co-degree of vertices. The degree
of a vertex d(v) is the number of edges that are adjacent to that vertex. However, in our example,
we make sure that each asset is related to the same number of derivatives and each derivative is
related to the same number of assets. Therefore in both the random graph and random graph with
planted dense subgraph, the degrees of vertices appear the same. The co-degree of two vertices u
and v, cod(u, v) is the number of common neighbors of u and v. When D2

N � 1, by the law of large
numbers, the co-degree of any two derivatives is approximately a Gaussian distribution with mean
D2/N and standard deviation

√
D2/N . In the dense subgraph, two derivatives are expected to

have d2/n more common neighbors than a pair of vertices outside the dense subgraph. When

d2

n
>

√
D2 logN

N
,

by property of Gaussian distribution we know that with high probability, the pairs with highest
co-degree will all be the pairs of vertices from the dense subgraph. Therefore by computing the
co-degree of every pair of derivatives and take the largest ones we can find the dense subgraph.

E.2 Cycle Counting

Besides degree and co-degree, one of the features we can use is the number of appearance of certain
“structure” in the graph. For example, the number of length 2k cycles, where k is a constant,
can be used in distinguishing graph with dense subgraph. In particular, counting the number of
length 4 cycles can distinguish between graphs with dense subgraph or truly random graphs in
some parameters.

For simplicity we assume the following distributions for random graphs. The distribution R̂
is a random bipartite graph with M top vertices and N bottom vertices and each edge is chosen
independently with probability D/N . The distribution D̂ is a random bipartite graph with M
top vertices and N bottom vertices, there is a random subset S of bottom vertices and a random
subset T of top vertices, |S| = n and |T | = m. Edges incident with vertices outside T are chosen
independently with probability D/N . Edges between S and T are chosen with probability d/n.
Edges incident to T but not S are chosen with probability D − d/(N − n).

Let α be a length 4 cycle, then Xα is the indicator variable for this cycle (that is, Xα = 1
if the cycle exists and 0 otherwise). Throughout the computation we will use the approximation
M − c ∼ M where c is a small constant. Let R be the number of length 4 cycles in R̂, then
R =

∑
αXα.

E[R] =
∑
α

E[Xα] =
M2

2

N2

2

(
D

N

)4

=
M2D4

4N2

The variance of R is

Var[R] = E[R2]− E[R]2 =
∑
α,β

(E[XαXβ]− (D/N)8)

Since each E[XαXβ] is at least (D/N)8, this is lower bounded by
∑

(α,β)∈H(E[XαXβ]−(D/N)8)
for any set H. It’s easy to check that the dominating term comes from the set H where α and β
shares a single edge. |H| = M3N3/4, and for each (α, β) ∈ H, E[XαXβ] = (D/N)7. Therefore

27

Var[R] = Ω(M3D7/N4). By considering cycles that share more edges we can see that the terms
they introduce to Var[R] are all smaller, so Var[R] = Θ(M3D7/N4).

For D̂, when the two top vertices of α are all outside T E[Xα] = (D/N)4; when one of the
vertices is inside T the average value for E[Xα] is still (D/N)4 (this can be checked by enumerating
the two bottom vertices); when two top vertices are all in T the average value for E[Xα] is roughly
d4/n2N2. Let Y be the number of 4-cycles in D̂, then

E[Y]− E[R] ≈ m2

2

N2

2

d4

n2N2
=
m2d4

4n2

That is, when m4d8/n4 � Var[R] = Θ(M3D7/N4), by counting length 4 cycles the two distri-
butions R̂ and D̂ can be distinguished.

E.3 Semi-definite Programming

Semi-definite programming (SDP) is a powerful tool to approximate quantities we do not know
how to compute. Consider the densest bipartite subgraph problem: given a bipartite graph with N
vertices on the left side and M vertices on the right side, find a set of n vertices from left side and
m vertices on the right side, such that the number of edges between them is maximized. Clearly if
we can solve this problem we would be able to see whether there’s a dense subgraph in the graph.
Because the dense subgraph is much denser than average, we can distinguish a random graph with
one with dense subgraph even if we can approximate the densest subgraph problem to some ratio.

Using SDP, we can compute a value vSDP that is no smaller than the number of edges in the
densest subgraph. Using a simple extension of the SDP from [BCC+09], for random graph, vSDP is
of order Θ(

√
Dmn). If the number of edges in the dense subgraph (md) is larger than this (which

means m � n), then since the SDP value of the graph with dense subgraph is at least md, the
SDP algorithm can be used to distinguish the two situations.

E.4 Log Density

In [BCC+09] Charikar et al. purposed a new algorithm to detect dense subgraphs. A central
concept in their algorithm is log-density. The log-density of a graph is the ratio between logarithm
of average degree and the logarithm of number of vertices. When the planted dense subgraph
has higher log-density than the whole graph, their algorithm can detect the dense subgraph in
polynomial time. Although their algorithm does not directly extend to the bipartite case, for
safety we assume that log d/ logm < logD/ logM and log d/ log n < logD/ logN .

E.5 Ex-Ante and Ex-Post Detection

So far in this paper we were concerned with detecting the presence of dense subgraphs (i.e., booby
traps) at the time of sale of the derivative, before it is known which assets pay off and which ones
default. But one could try to enforce honest construction of the derivative by including a clause
in the contract that says for example that that the derivative designer pays a huge fine if a dense
subgraph (denser than should exist in a random construction) is found in the derivatives vs. asset
classes bipartite graphs, and this can happen after all assets results are known— we call this ex
post detection of dense subgraphs, contrasted with the normal, sell-time ex ante detection that is
our focus in most of this paper.9

9We remark that this is not the only, nor necessarily the best, way to mitigate these problems. Another could
be for the designer to use random coins that were generated by some public trusted authority. The problem in both

28

Ex-Post detection is easier than Ex-Ante detection, because we have more information after
the result has been revealed. We shall change our model slightly. For each asset class we have
a probability pclass, which is the probability of default in this class. At first this pclass is drawn
according to some distribution, then conditioned on this probability, all assets in this class will
default with probability pclass. The distribution of pclass in good asset classes and junk asset
classes are different.

In some situations, the distribution of pclass will reveal a lot of information for Ex-Post detection.
The easiest choice pclass = 1/2 for good classes and pclass = 1 for junk classes leads to Ex-Post
detectability, because the assets in junk classes all defaulted, but for a good class, only with
exponentially low probability all assets will default, after we learned whether the assets has defaulted
or not, we would be able to tell which classes are lemons and verify the existence of the dense
subgraph. Also, when b = c

√
D logD for some large enough c, the expected number of derivatives

with no return in random graphs is extremely small (e.g. o(m)), then almost all derivatives with
no return are in the dense subgraph, and hence one can find it easily. One observation here is:
when the expected number of junk asset classes or derivatives with no return is small in a random
graph, almost all vertices with unusual behavior (such as a derivative that defaults or an asset
class with much more defaults than average) will be in the planted dense subgraph, which makes
detecting dense subgraph easy. But when the number of derivatives with no return is large (e.g.
Ω(M)), and the distributions of pclass is carefully chosen, then it still seems hard to find the dense
subgraph even ex-post. To rule out trivial methods for ex-post detection, the distributions of pclass
in good and junk classes should not differ by too much. For example, pclass is uniformly chosen
from [0.2, 0.8] for good classes, while for junk classes pclass is uniformly chosen from [0.5, 0.8]. On
average, an asset from junk classes still have significantly higher probability of default than an asset
from good classes (0.65 vs. 0.5), which enables dense subgraph to manipulate the result. At the
same time, half of the good classes will have pclass from [0.5, 0.8] and look indistinguishable with
junk classes, so junk classes still hide among the good classes even after results are revealed. We do
not have a proof based on Densest Subgraph Assumption that shows it is impossible to find dense
subgraph in this Ex-Post setting, but can show a relation between finding the planted subgraph in
the ex-post and ex-ante setting in a slightly different model of random graphs.

Fixing parameters N,M,D, n,m, d as usual we define the added dense subgraph search problem
to be the following problem: one is given a bipartite graph G on M+N vertices that is constructed
by (a) having each vertex vi of the M top vertices of G choose a number Di using a geometric
random variable with expectation D, and then choose Di random neighbors, and (b) adding to G
the edges of a random bipartite graph H on m+ n vertices and degree d, where we place H on m
random top vertices and n random bottom vertices. The goal is to recover the vertices of H or any
other induced subgraph of G on m+ n vertices that has ω(n) edges.

Since we’ll be interested in d = Ω(
√
D) and m = Ω(

√
M), it will be in fact easy to use the

degree distribution of such a graph G to distinguish it from a random graph in which step (b) is
not applied. But the point is that it might still be hard to actually find the dense subgraph. If this
is hard, then we show it’s still hard even in the ex-post setting.

Theorem 10. Suppose that the added dense subgraph search problem is hard for parameters

these approaches is that sometimes the graph is constructed by the seller subject to a variety of constraints, and
hence the seller himself may not know for sure if a dense subgraph exist. Now if a dense subgraph exists without
the sellers knowledge, this opens the possibility that the buyer will find it, either by luck or by investing significant
computational effort, and hence use a clause such as above to extract the fine from the seller. Note that making the
fine equal to the derivative’s value is not a solution as well, since that allows the party that knows the existence of
the dense subgraph to decide based on its knowledge of the past to decide if it wants to “roll back the deal”.

29

N,M,D, n,m, d then the search problem is still hard for parameters 2N,M, 2D,n,m, d given a
random assignment x ∈ {0, 1}N conditioned on xi = 0 for all i in the planted graph.

Proof sketch. Given an instance G of the dense subgraph we’ll convert it into an instance (G′, x) of
the ex-pose problem, where G′ is a graph on M + 2N vertices and degree parameter roughly 2D,
and x is an assignment to the 2N bottom vertices of G′ on which all vertices in the planted graph
are zero.

The graph G will contain the M+N vertices of G but we add to it N/2 new bottom nodes, and
let x be an assignment that gives 0 to all old nodes and 1 to all new ones. (We’ll later permute the
nodes randomly; also in this proof sketch we assume that the assignment is balanced, but in fact
we’ll need to choose the number of nodes to add in a way that the number of 0’s of the resulting
assignment is distributed according to the binomial distribution.)

Given such a balanced assignment x to the bottom vertices, adding edges to a top vertex v in
this model to a graph can be thought of as the following process: one tosses a 3-way coin that
with probability 1/D outputs “halt”, with probability (1− 1/D)/2 outputs 0 and with probability
(1 − 1/D)/2 outputs 1. If the coin outputs 0 we add to v a random neighbor with 0 assignment,
if it outputs 1 we add a random neighbor with a 1 assignment, and continue until the coin says
“halt”.

We now imitate this process but starting with the edges already in G: for each top vertex v in
G′, we conceptually toss such a three way coin, but add an edge only if it outputs 1: for the 0 or
“halt” possibilities we defer to the coin tosses made in the generation of G. More concretely, we
set ε ∼ 1/(2D) to satisfy the equation 1/2− ε = (1/2 + ε)(1− 1/D). We now toss a 1/2− ε biased
coin and if it comes out “heads” we add to v a random 1 neighbor (e.g. one of the new N vertices
we added), if it comes out “tails” we do nothing. We continue to do so until the coin comes out
“tails” Di + 1 times, where Di is the degree of v in G.

Combining the observation about pclass and Theorem 10, we have:

Theorem 11. Suppose the asset classes satisfy the model in this Section, where pclass is distributed
according to Dgood for good asset classes and Djunk for junk classes. Let dgood and djunk be the
density function of Dgood and Djunk. If dgood(x) ≥ 1/2djunk(x) for all x ∈ [0, 1], the expectation of
Dgood and Djunk differ by at least a constant, and the graph is generated according to Theorem 10
with appropriate parameters M,N,D,m, n, d such that the added dense subgraph search problem is
hard, then there is a way to design derivatives so that the lemon cost is larger (as in first column
of Table 2) for booby-trapped graphs and the buyers cannot find the dense subgraph even ex post.

Because this model does not fit with our standard model of planted graphs (and indeed cannot,
since we need a model where not only the search but also the detection problem can be hard), we
do not claim that the buyers cannot distinguish the two distributions. However the buyers won’t
be able to find out where the booby trap is.One particular problem about the search problem is
we can no longer set b =

√
D logD. Instead we should take b = O(

√
D) so that the problem

remains hard. Many of our results hold even when the threshold is set to a constant number of
standard deviations. In this case it seems plausible to conjecture that the ex-post search problem
still remains hard as well. Table 2 contains our result when the threshold b is constrained to be
O(
√
D), in which case it’s plausible that ex-post undetectability holds, as well (for comparison’s

sake) the corresponding results for our usual setting of b =
√
D logD, which is generally ex-post

detectable by the algorithm of just looking at the derivatives of 0 value.

30

Model Lemon cost for b = 3
√
D Lemon cost for b = O(

√
D logD)

Derivative-free n n

binary CDO, exp time εn
√
D + n(N/M

√
D) ∼ n(N/M

√
D)� n

binary CDO, poly time εn
√
D + n

√
N/M ∼ n

√
N/M � n

tranched CDO, exp time εn+ n(N/MD) n(N/MD)

tranched CDO, poly time εn+ n(
√
N/MD) n(

√
N/MD)

binary CDO2, exp time 0 0

binary CDO2, poly time N/4 N/4

tranched CDO2, exp time 0 0

tranched CDO2, poly time n(
√
N/MD) n(

√
N/MD)

Table 2: Lemon cost results based on value of threshold b. While in our parameters derivatives
with b ∼

√
D logD are easily ex-post detectable, it is not clear whether this holds for b = O(

√
D).

E.6 Constraints for Parameters

In order to avoid detection and satisfy the requirement of making profit, the parameters for dense
subgraph need to be carefully chosen. Here we give a list of constraints that need to be satisfied by
the parameters. All the parameters we mentioned in previous Sections satisfy these constraints.

1. MD ≥ N .

This is a trivial constraint saying that each asset should be related to at least one derivative.

2. d− b > 3
√
D.

This constraint makes sure that the derivatives in the dense subgraph behaves differently
from the derivatives outside. When d− b >

√
D, by Gaussian approximation, the probability

that the number of defaulted assets is more than D+b
2 is at least Φ(3) = 99.8%. When d− b is

smaller, say d− b =
√
D, the probability of the same event will be much smaller. Especially

when d− b = o(
√
D) such event will have a subconstant probability.

3. d/D � n/N .

This constraint says that the dense subgraph is much denser than average. If it is not satisfied,
then any derivative is expected to contain D ·n/N > d assets in the junk asset set, even simple
monte-carlo simulation will be able to see that the expected payoff value of the derivatives
has changed because of the junk assets.

4. n� md.

This constraint is essential in the proof that a random graph will not have dense subgraphs.
See Theorem 2. If it is not satisfied then a random graph is expected to have a graph as
dense as the dense subgraph.

5. MD2

N � (md
2

n)2.

When this condition is satisfied, the dense subgraph is hard to detect for both cycle counting
(Section E.2) and SDP (Section E.3).

6. d < 2
√
D logM

31

This is only needed for Ex-Post detection. If this is not satisfied, d ≥ 2
√
D logM , then for

each derivative, the number of defaulted assets exceeds D+d
2 with probability at most 1/M ,

while the derivatives in the dense subgraph has probability 1/2 of exceeding the threshold.
In an ex post setting, the buyer will see almost all derivatives that exceeds the limit will
be derivatives in the dense subgraph, and half of the derivatives in the dense subgraph will
exceed the limit. This makes the dense subgraph ex post detectable.

7. M
√
D � N

When this constraint is satisfied, and b ≥ 2δ
√

log MD
N , the lemon cost for exponential time

buyers of binary derivatives will be smaller than n, while the lemon cost for polynomial time
buyers is always larger than n. See Section 3

8. m2 �M2D2/N or m2d2 �M2D2/N

When the former is satisfied, then binary CDO2s can have exponential difference between
the lemon cost for exponential time buyer and polynomial time buyer. When the latter is
satisfied, then CDO2s with tranching can have exponential difference between the lemon cost
for exponential time buyer and polynomial time buyer. See Theorem 5 and Theorem 6

9. log d/ logm < logD/ logM and log d/ log n < logD/ logN

When these conditions are satisfied, no algorithm based on log-density (such as the algorithm
in [BCC+09]) can detect the dense subgraph.

32

	Introduction
	The basic model
	An illustrative example
	Lemon Cost
	The Cost of Complexity
	Our Results
	Parameters and Notations

	Lemon Cost Bounds for Binary Derivatives
	Non-Binary Derivatives and Tranching
	Lemon Cost for CDO2
	Buyer's Reaction and Liquidity Costs
	DeMarzo's Model and the Liquidity Problem
	When seller sells a single security
	When Seller sells multiple securities
	Effect of computational complexity
	Evidence for Symmetry Assumption

	Design of Derivatives Resistant to Dense Subgraphs
	Conclusions
	Our Construction versus Real-life Derivatives
	Omitted proofs from Section 3
	Maximizing Profit in Binary Derivative Setting
	Omitted Proofs

	Omitted proofs from Section 4
	Omitted proofs from Section 5
	Survey of Algorithms for Dense Subgraph
	Co-Degree Distribution
	Cycle Counting
	Semi-definite Programming
	Log Density
	Ex-Ante and Ex-Post Detection
	Constraints for Parameters

