
Analysis of COTS for Seurity Vulnerability RemediationGogul Balakrishnan Mihai Christodoresu Vinod GanapathyJonathon T. Gif�n Shai Rubin Hao WangSomesh Jha∗ Barton P. Miller† Thomas Reps‡Computer Sienes Department, University of Wisonsin1210 West Dayton Street, Madison, Wisonsin 53706AbstratThe inreased use of untrusted, externally-developed program ode is reshaping our notions of privay and or-ganizational boundaries. The use of suh publi domain and ommerial off-the-shelf (COTS) omponents offers anorganization several advantages, suh as dereased development time and inreased �exibility during implementation.However, their rash deployment poses two ritial risks. First, COTS omponents may ontain or enable vulnera-bilities that an be suessfully exploited by maliious attakers. Seond, COTS omponents may aidentally ordeliberately leak sensitive information. Vulnerability analysis and information-�ow analysis address these two risksrespetively. In the WiSA projet at the University of Wisonsin�Madison, we are developing analysis tehniques toaddress these risks.1 IntrodutionThe inreased use of untrusted, externally-developed program ode is reshaping our notion of privay and organi-zational boundaries. The use of suh publi domain and ommerial off-the-shelf (COTS) omponents has obviousadvantages, suh as redued development time. However, COTS omponents expose an organization to risks. A om-ponent should be given enough aess to do its job, but no more (this is known as the priniple of least privilege).Moreover, organizations that deal with sensitive information should protet this information: organizations shouldreate an information enlave that enfores privay poliies. In a losed software proess, it is possible to enfore thepriniple of least privilege and the poliies of an information enlave through strit ode inspetion and oding pra-ties. However, COTS omponents are by de�nition developed by other groups, and therefore the organization thatuses these omponents has no ontrol over the oding praties of the developers. Therefore, there is a need for anal-ysis tools to srutinize COTS omponents to ensure that they do not ontain harmful vulnerabilities or leak sensitiveinformation. There are two lasses of analysis tehniques: vulnerability analysis and information-�ow analysis.The Wisonsin Safety Analysis (WiSA) projet lead by S. Jha, B. Miller, and T. Reps is developing analysis teh-niques espeially suited for COTS omponents.1 First, we identify requirements for the task of analyzing COTSomponents. These requirements drive our tehnial approahes. Our tehniques are designed to be multi-lingual (a-pable of handling multiple languages), handle a wide range of seurity and privay poliies, and balane auray andsalability. We ahieve these goals by ombining tehniques from stati analysis (suh as program sliing, shape anal-ysis, and alias analysis), model heking, spei�ations for expressing seurity poliies (suh as seurity automata),and formalisms for expressing information �ow (suh as seure �ow typing and deentralized labels). Combinations ofthese tehniques are required to address the hallenges posed by vulnerability and information �ow analysis of COTSomponents. These analysis tehniques provide a omprehensive analysis of COTS omponents and thus redue therisk due to COTS deployment.
∗jha�s.wis.edu
†bart�s.wis.edu
‡reps�s.wis.edu1Detailed information about WiSA an be found at http://www.s.wis.edu/wisa.1



The basi goals of the WiSA projet are:
• Multi-lingual analysisCOTS omponents, by de�nition, are developed by remote organizations. Therefore, analysis tehniques annotassume that all COTS omponents will be written in one programming language. Hene, tehniques for analyz-ing COTS omponents should be multi-lingual, i.e., apable of working with several different languages. Weahieve this goal by analyzing binary ode diretly or by ompiling untrusted soure ode into an intermediateform whih is then analyzed.
• Balane auray and salabilityThe analysis tehniques should be able to handle COTS omponents of realisti size. We have designed teh-niques that balane auray with salability. Auray is ahieved by ombining several sophistiated programanalysis tehniques, suh as shape analysis, aliasing analysis, and type inferening. Salability is addressed byusing tehniques for handling omposition of omponents and targeting the analysis to any properties of interest.
• Support a wide range of safety and privay poliiesSeurity requirements of COTS omponents depend on the ontext of their use. As part of this projet we planto develop spei�ation languages that an express safety and privay related poliies. Spei�ations related tosafety express disretionary aess ontrol poliies. Mandatory aess ontrol poliies ontrol �ows of sensitiveinformation and an also be expressed in our spei�ation language. Hene, an analyst an express a variety ofproperties in our spei�ation language.
• Potential for analyzing omposition of omponentsMost real systems are omposed of several omponents. We plan to develop a framework so that omponentsan be analyzed separately and then the analysis results an be integrated. For this purpose, we will base ourmethodology on rely-guarantee reasoning. Rely-guarantee reasoning has been used in software engineering andveri�ation of onurrent systems exatly for this purpose. This will also address the salability issue.We have made partial progress towards some of these goals. We have developed a stati-analysis and rewritinginfrastruture for x86 binaries. This infrastruture an be used for a variety of tasks, suh as model-based intrusiondetetion, testing malware detetors, and semantis-aware malware detetion. A short desription of this infrastrutureappears in the following setion.2 Binary Analysis InfrastrutureA onsiderable amount of reent researh ativity [2�4, 7, 8, 11, 12, 17℄ has developed analysis tools to �nd bugs andseurity vulnerabilities in soure ode. When attempting to apply suh analysis tehniques to exeutables, investi-gators already enounter a hallenging program-analysis problem. The model-heking ommunity would onsiderthe problem to be that of model extration: the tools need to extrat a suitable model from the exeutable. Fromthe perspetive of the ompiler ommunity, the problem is one of IR reovery: tools need to reover IntermediateRepresentations (IR) from the exeutable that are similar to those that would be available from soure ode analysis.Suessful analysis of binary ode requires new solutions to this problem. The ommerial disassembler IDAProis a start: IDAPro provides an initial estimate of the IR. However, the IR that IDAPro onstruts is inomplete inritial ways that limits its ability to serve as a foundation for further analysis.
• Binary programs frequently transfer ontrol via indiret jumps whose targets are not omputed until programrun time. IDAPro uses heuristis to resolve indiret jumps. Consequently, it may not resolve all indiret jumpsorretly, i.e., it may not �nd all possible targets of an indiret jump and it even oasionally identi�es inorrettargets. Therefore, the ontrol-�ow graph onstruted by IDAPro is frequently inomplete or outright inorret.Similar problems our with IDAPro's resolution of indiret alls; therefore, the all graph is also often inom-plete or inorret. Call graphs and ontrol-�ow graphs form the basis of further program analysis. Inorretnessin these graphs will propagate through the analysis and produe bad results.
• IDAPro does not provide a safe estimate of what memory loations are used or modi�ed by eah instrution inthe exeutable. Suh information is important for tools that aid in program understanding or bug �nding; itsomission limits the suess of these tools. 2



Rewrite

Generate 
Code

Value−Set
Analysis

Malicious Code
Detect 

Build Program
Model

Binary Patching

Code
Obfuscation

CodeSurfer

Parse
Binary

Build Control
Flow Graphs

Binary
Connector

IDA Pro

BREW

Applications

Figure 1: Arhiteture.Hene, IDAPro annot produe a suitable IR for automated program analysis.We have been developing a stati analysis algorithm alled value-set analysis (VSA) that augments and orretsthe information provided by IDAPro in a safe way [1℄. Spei�ally, VSA provides the following information:
• Complete, orret ontrol-�ow graphs with indiret jumps resolved safely.
• A all graph with indiret alls resolved safely.
• A set of variable-like entities alled a-los.
• Values for pointer variables.
• Used, killed, and possibly-killed variables for nodes in ontrol-�ow graphs.This information is emitted in a format that is suitable for subsequent program analysis appliations suh as theommerial tool CodeSurfer.VSA is a �ow-sensitive, ontext-sensitive, abstrat-interpretation algorithm parameterized by all-string length[15℄ that determines a safe over-approximationof the set of numeri values and addresses that memory loations hold ateah program point. A key feature of VSA is that it traks integer-valued and address-valued quantities simultaneously.This is ruial for analyzing exeutables beause numeri values and addresses are indistinguishable in an exeutable.VSA has similarities with the pointer-analysis problem that has been studied in great detail for programs written inhigh-level languages. For eah variable v, pointer analysis determines an over-approximation of the set of variableswhose addresses v an hold. Similarly, VSA determines an over-approximation of the set of addresses that eah a-loan hold at eah program point. On the other hand, VSA also has some of the �avor of numeri stati analyses, likeonstant propagation and interval analysis, where the goal is to over-approximate the integer values that eah variablean hold. In addition to information about addresses, VSA determines an over-approximation of the set of integervalues that eah a-lo an hold at eah program point. The result is a safe and orret IR that enables further statiprogram analyses to produe meaningful results for binary programs.Figure 1 shows how VSA and IDAPro ooperate to produe a base that stati analysis appliation an use toanalyze binary programs. IDAPro �rst proesses a binary exeutable, produing the initial IR that may be inompleteor inorret. VSA then exeutes as part of a tool alled the onnetor, as it onnets IDAPro with stati analysis toolsin a safe way. The omplete, orret IR produed by VSA an then be used by appliations performing stati programanalysis, suh as the ommerial tool CodeSurfer or researh tehniques deteting maliious ode in exeutables orbuilding models of expeted exeution for programs. We will onsider these last two appliations momentarily.Alternatively, the IR an be used for binary rewriting, a proess that hanges the binary ode of a program toprodue a new exeutable with altered behavior. Our tool, alled BREW, alters the IR in the onnetor and regeneratesbinary ode for the modi�ed program. Binary rewriting applies to tools suh as ode obfusators that hange programode to inrease the dif�ulty of reverse engineering, and to binary pathing tools that repair program bugs withoutrequiring reompilation of soure ode. 3



2.1 AppliationsMalware detetors, suh as virus sanners, identify maliious ode hiddenwithin off-the-shelf ode and in ode sharedover ommuniations networks. Despite the importane of malware detetors, there is a dearth of testing tehniques toevaluate them. We introdued a tehnique based on program obfusation to generate tests for malware detetors [5℄.Our tehnique is geared towards evaluating the resiliene of malware detetors to various obfusation transformationsommonly used by hakers to disguise malware. We also demonstrated that a haker an leverage a malware detetor'sweakness in handling obfusation transformations and an extrat the signature used by a detetor for a spei�malware. We evaluated three widely-used ommerial virus sanners using our tehniques and disovered that theresiliene of these sanners to various obfusations is very poor.The fundamental de�ieny of these ommerial virus sanners is their use of pattern-mathing approahes to mal-ware detetion: these approahes are purely syntati and ignore the semantis of binary instrutions. We developed amalware-detetion algorithm that addressed this de�ieny by using instrution semantis to detet maliious programtraits [6℄. Experimental evaluation demonstrated that, with a relatively low run-time overhead, our malware-detetionalgorithm an detet variants of malware embedded within COTS ode. Moreover, our semantis-aware malwaredetetion algorithm is resilient to ommon obfusations used by hakers.Just as a misuse detetor identi�es attaks ontained in program ode, a network intrusion detetion system (NIDS)detets attaks ontained in network traf�. Using network-level obfusation transformations, we used blak-boxtesting to evaluate the ability of COTS misuse-NIDS produts to detet attaks and seure an organization's networks.A misuse-NIDS de�nes penetration via a table of maliious signatures: if the network traf� mathes a signature in thetable, an alarm is raised. Both researhers and industry professionals aept that the effetiveness of urrent off-the-shelf NIDS is questionable. Current NIDS generate many false alarms, and worse (although not always publiized),they miss many real attaks. Our researh strives to bring us loser to an effetive NIDS: an intrusion detetion systemthat detets the attaks we speify and only those attaks. In our researh, we developed formal models and tools thatan inrease our on�dene in NIDS. In the last two years, we have addressed two fundamental problems of NIDSeffetiveness: NIDS testing and signature onstrution.We formulated a omputational model that desribes how attakers an generate attak instanes that evade aNIDS. Based on this model, we implemented a testing tool that automatially generated new attak instanes fromknown ones [13℄. We used this tool to �nd attak instanes that evaded two well-known COTS NIDS: Snort, whih isa popular NIDS publily available from SoureFire, and UnityOne, whih is a ommerial NIDS from TippingPointused by highly seured sites suh as the Los Alamos National Lab. In both ases, we exposed vulnerabilities thatwould have enabled attakers to evade these systems for any TCP-based attak. In response to our �ndings, bothSoure�re and TippingPoint issued pathes to �x their systems.The signatures that a NIDS uses determine its ability to reognize attaks. We developed a method to systematiallyonstrut and evaluate signatures [14℄. First, we formally de�ned the ability of attakers to obfusate attaks. Then,we ombined this formal model with language-based tehniques to �nd loopholes in signatures. To the best of ourknowledge, this was the �rst method that enabled NIDS developers to systematially �debug� the signatures theydeveloped. We showed that, under ertain assumptions, the signatures produed are loophole free.As a omplement to network-based intrusion detetion, host-based intrusion detetion systems identify attempts toexploit program vulnerabilities, frequently bymonitoring the program's exeution. Amodel-based or behavioral-basedanomaly detetor restrits exeution to a preomputed model of expeted behavior. An exeution monitor veri�es astream of system alls generated by the exeuting program and rejets any all sequenes deviating from the model.Construting a model via stati binary program analysis that balanes the ompeting needs of detetion ability andef�ieny is a hallenging task. Non-deterministi �nite automaton (NFA) models are ef�ient to operate, but failto detet attaks beause they do not model the all-return semantis of the program. Pushdown automaton (PDA)models detet more attaks by additionally modeling the program's all stak, but they are inef�ient to operate. Newmodels of orret program exeution are needed.We developed a new formalmodel alled theDyk model that preserves the orretness of PDAmodels but operateswith ef�ieny lose to that of NFA models [10, 16℄. Our model determinizes previously ostly PDA operationsmodeling the program's all stak [9℄. Tehniques for determinizing the PDAmodels essentially inorporate additionalprogram state, suh as the program ounter and stak ativity, into the model. Our results showed that the Dyk modelenabled onstrution of preise program models with performane suitable for online seurity monitoring. Theseresults vindiated ontext sensitive models, showing that reasonable ef�ieny needs not be sari�ed for modelpreision. 4



3 ConlusionsWe have made good progress towards some of our goals. However, there are some important tasks that should beaddressed in the future. We want to improve the robustness and enhane the apabilities of our stati-analysis andrewriting infrastruture. Information-�ow analysis also remains an important goal whih we have not addressed.Compositional analysis of COTS also remains an important goal.Referenes[1℄ G. Balakrishnan and T. Reps. Analyzing memory aesses in x86 exeutables. In 13th International Confereneon Compiler Constrution (CC), Barelona, Spain, Apr. 2004.[2℄ T. Ball and S. K. Rajamani. The slam toolkit. In International Conferene on Computer Aided Veri�ation (CAV),2001.[3℄ W. Bush, J. Pinus, and D. Sielaff. A stati analyzer for �nding dynami programming errors. Software�Pratie& Experiene, 30:775�802, 2000.[4℄ H. Chen and D. Wagner. MOPS: An infrastruture for examining seurity properties of software. In ACMConferene on Computer and Communiations Seurity, Nov. 2002.[5℄ M. Christodoresu and S. Jha. Testing malware detetors. In International Symposium on Software Testing andAnalysis (ISSTA), Boston, MA, July 2004.[6℄ M. Christodoresu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantis-aware malware detetion. In 2005IEEE Symposium on Seurity and Privay, Oakland, CA, May 2005.[7℄ M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program veri�ation in polynomial time. In ProgrammingLanguage Design and Implementation (PLDI), New York, NY, 2002.[8℄ D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Cheking system rules using system-spei�, programmer-written ompiler extensions. In Operating System Design and Implementation (OSDI), 2000.[9℄ H. H. Feng, J. T. Gif�n, Y. Huang, S. Jha, W. Lee, and B. P. Miller. Formalizing sensitivity in stati analysis forintrusion detetion. In IEEE Symposium on Seurity and Privay, Oakland, CA, May 2004.[10℄ J. T. Gif�n, S. Jha, and B. P. Miller. Ef�ient ontext-sensitive intrusion detetion. In 11th Network and Dis-tributed System Seurity Symposium (NDSS), San Diego, CA, Feb. 2004.[11℄ K. Havelund and T. Pressburger. Model heking Java programs using Java PathFinder. Software Tools forTehnology Transfer, 2(4), 2000.[12℄ T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstration. In Priniples of Programming Lan-guages (POPL), 2002.[13℄ S. Rubin, S. Jha, and B. P. Miller. Automati generation and analysis of NIDS attaks. In 20th Annual ComputerSeurity Appliations Conferene (ACSAC), Tuson, AZ, De. 2004.[14℄ S. Rubin, S. Jha, and B. P. Miller. Language-based generation and evaluation of NIDS signatures. In IEEESymposium on Seurity and Privay, Oakland, CA, May 2005.[15℄ M. Sharir and A. Pnueli. Two approahes to interproedural data �ow analysis. In S. S. Muhnik and N. D.Jones, editors, Program Flow Analysis: Theory and Appliations, hapter 7, pages 189�233. Prentie-Hall, 1981.[16℄ W. von Dyk. Gruppentheoretishe studien. Mathematishe Annalen, 20:1�44, 1882.[17℄ D. Wagner, J. Foster, E. Brewer, and A. Aiken. A �rst step towards automated detetion of buffer overrunvulnerabilities. In Network and Distributed System Seurity Symposium, Feb. 2000.5


