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Abstract—Web tracking continues to pose a vexing policy
problem. Surveys have repeatedly demonstrated substantial
consumer demand for control mechanisms, and policymakers
worldwide have pressed for a Do Not Track system that effec-
tuates user preferences. At present, however, consumers are left
in the lurch: existing control mechanisms and countermeasures
have spotty effectiveness and are difficult to use.

We argue in this position paper that machine learning could
enable tracking countermeasures that are effective and easy
to use. Moreover, by distancing human expert judgments,
machine learning approaches are both easy to maintain and
palatable to browser vendors. We briefly explore some of
the promise and challenges of machine learning for tracking
countermeasures, and we close with preliminary results from
a prototype implementation.

I. MOTIVATION

It is a transformative time for web privacy.
Just a decade ago, web tracking received scant scrutiny

from researchers, policymakers, and consumers. There were
few third-party services following users about the web,
they were concentrated almost exclusively in the behavioral
advertising market, and they relied solely on easy-to-block
identifier cookies.1 In the intervening years, tracking has
boomed: there are hundreds of companies, dozens of busi-
ness models, and myriad tracking technologies in use [1].

Web users are concerned: surveys have consistently
demonstrated that consumers want control over web tracking
[2], [3], [4], [5], [6]. Not coincidentally, governments have
taken steps to intervene. Beginning in 2010, policymakers
in the United States [7], [8], Canada [9], and the European
Union [10], [11], [12] issued vocal calls for new technical
approaches to consumer choice about web tracking. The
policy discourse has thus far largely centered on Do Not
Track [13], an initiative that combines preference-signaling
mechanisms with a substantive compliance policy and out-
of-band regulatory enforcement.

As of early 2013, however, Do Not Track remains a
nascent proposal. Companies and trade groups involved in
web tracking have vigorously opposed the concept, and

1Detailed definitions of “third party” and “tracking” are hotly contested.
For purposes of this position paper, we mean simply unaffiliated websites
and the collection of a user’s browsing history.

progress towards standardization in the World Wide Web
Consortium has essentially stalled [14], [15].

While Do Not Track remains pending, there has been
a renewal of interest in technical countermeasures against
web tracking. Mozilla [16] and Microsoft [17], [18] have
already shipped new anti-tracking features, and Apple has
indicated openness to improving its longstanding counter-
measures [19]. The chairman of the United States Federal
Trade Commission recently departed from the agency’s
longstanding focus on Do Not Track and signaled that it
views technical countermeasures as a promising direction
for consumer control [14].

Moreover, even if Do Not Track is widely adopted,
some websites may ignore or deceptively misinterpret the
signal. Rigorous technical countermeasures would provide a
necessary backstop for Do Not Track.

But there’s a problem: existing technical countermeasures
are grossly inadequate. Web browsers and extensions have
long offered a range of web tracking countermeasures, repre-
senting a variety of approaches to tracking detection, mitiga-
tion, and accommodation. The most effective [1] solutions—
manually-curated block lists of tracking content—are dif-
ficult to maintain and difficult to use. Meanwhile, the
most usable [20] countermeasures—those built into web
browsers—are among the least effective. Though several
browser vendors seek to provide user control over web
tracking, they are loathe to individually identify companies
and invite the business and legal scrutiny of picking and
choosing among marketplace participants. Browser vendors
consequently rely on inaccurate heuristics to identify track-
ers (e.g. comparing domains). Owing to the prevalence of
false positives, browser countermeasures are limited to small
interventions (e.g. blocking cookies).

Machine learning charts a promising new course. It could
provide the accuracy of a curated block list—allowing for
rigorous privacy measures (e.g. HTTP blocking). And it dis-
tances expert human judgments from identification, reducing
costs and potential risks and allowing usable implementa-
tions by browser vendors. We believe a machine learning
approach that identifies tracking websites is now viable, and
in Section II we sketch possible architectures and associated
challenges. Section III closes with preliminary results from



a prototype implementation.

II. MACHINE LEARNING

In this section, we briefly review the necessary design
components for a machine-learning system that identifies
web trackers. We discuss possible architectures for data
collection and what data should be collected. We then turn
to sources of training data and, finally, machine learning
output.

A. Data Collection Architecture

There is a continuum of possible architectures for con-
tinually collecting the web measurements needed to identify
trackers. At one end, a centralized crawler could periodically
visit websites, much like modern approaches to web search.
At the other end, a decentralized reporting system could
collect information from users’ browsers. A crawler has
the advantage of easy implementation and disadvantages
of possibly unrealistic browsing patterns and special-case
behavior by websites. Crowdsourced data provides the ben-
efit of closely modeling user experience, with drawbacks of
privacy risks and potential gaming.

The two poles are hardly exclusive; a tracking detection
system could make use of both crawled and crowdsourced
data in varying degrees. We believe a centralized approach
is most feasible in the near term, with gradual and careful
expansion into decentralized collection.

B. What Data to Collect

At a high level of generality, there are two categories of
data to collect.

First, information that reflects the relationships among
web content. Effective tracking requires observing a user’s
behavior across multiple websites, and many trackers col-
laborate to share data (e.g. advertising exchanges). The
Document Object Model (DOM) hierarchy provides a start-
ing point, reflecting the context that web content is loaded
into. The DOM’s value is limited, however, in that its
purpose is to reflect layout and security properties—-not
provide privacy-relevant attribution about how content came
to be loaded. A machine learning system would have to
account for script embeds, redirects, and other dynamic
mechanisms that introduce content into a webpage.

Second, information that reflects the properties of partic-
ular web content. Type, size, cache expiry, and many more
features vary between trackers and non-trackers. Similarly,
usage of various browser features differs by a website’s line
of business.

To illustrate the need for both categories of data, consider
the case of a popular content distribution network (CDN)
that does not engage in tracking [21]. A naive scheme
that merely considers the prevalence of web content would
identify the CDN as a tracker. A correct classification re-
quires information about the CDN’s behavior—for example,

that it does not set cookies. Conversely, consider the case
of a website that uses outsourced—but carefully siloed—
analytics from a third-party domain. The analytics content
may appear to be highly intrusive, setting unique cookies
and inquiring about browser features. Without knowing that
the analytics service is directly embedded by first parties
and never draws in other third parties (Figure 1), it might
be erroneously classified as tracking.

Some trackers may attempt to evade detection by tuning
their behavior. Efforts at masking tracking are fundamen-
tally limited, however, by the need to provide content on
many websites, collaborate with other trackers, and invoke
particular browser functionality. A technological cat-and-
mouse game between new tracking techniques and detecting
these techniques would also seem to favor detection, due to
much less vested infrastructure. Furthermore, as we discuss
in Section II-D, adjustments in practices to circumvent
countermeasures may both be impractical and subject a
business to media, business, and legal penalties.

Web browser instrumentation would be sufficient to cap-
ture both categories of data. The FourthParty platform [22]
offers a first step, though modifications are necessary to
properly attribute content that is inserted by a script.

C. Labeled Training Sets

Curated block lists are one possible source of training
data. Lists vary in quality; some are very comprehensive
[1].

Industry-provided lists are another potential source and
possibly less objectionable for browser vendors. The online
advertising industry’s trade group, for example, maintains a
list of member company domains.

D. Machine Learning Output

The machine-learning system must be able to provide a
real-time judgment about whether particular web content is
tracking the user. These determinations might be entirely
precomputed and static, or they might be dynamically gen-
erated by a classifier within the browser. In our view, a static
list is preferable in the near term owing to simpler deploy-
ment and compatibility with existing block list mechanisms.

We believe domain-level2 granularity would be sufficient
in these static lists, for the following reasons.

First, tracking often occurs on a dedicated domain. Exclu-
sively third-party businesses usually only have the one do-
main. Firms that operate both first-party and third-party web
services tend to separate those services by domain, reflecting
path dependency from acquisitions, internal organizational
boundaries, and security and privacy design considerations.

Second, the rate of change for tracking domains will be
much slower than the rate of data collection and classifier
training. Swapping domains involves substantial logistical

2In the following discussion, by “domain,” we mean a public suffix + 1
[23].
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Figure 1. Loading relationships between script source domains captured on a crawl of Top 3000 Alexa sites. Each circle represents an individual domain.
Each arrow A → B indicates that the execution of a script from domain A caused a script from domain B to also be loaded into the DOM, on at least
one of the crawled pages.

complexity; a website’s partners and clients would all have
to direct to the new domain. Moreover, shifting domains
could cost a website its historical tracking data since the
same-origin policy would prevent accessing old cookies and
other stateful tracking technologies. Meanwhile, the shift
in tracking domains would be observable by the detection
infrastructure with little technical change or additional cost.

Third, when a tracking service is ostensibly hosted on a
first-party subdomain, it might still be detected by inspecting
DNS CNAME records.3

Finally, if a website intentionally uses domain name
trickery to circumvent the system, it may face business, le-
gal, and press repercussions. When businesses circumvented
the Safari cookie blocking feature, for example, they were
promptly lambasted in the media, sued, and in one instance
steeply fined by the Federal Trade Commission [24].

The output of a machine-learning system could be con-
nected to various technical limitations, ranging from restric-
tions on privacy-related browser APIs (e.g. cookie blocking)
to entirely blocking HTTP traffic. A particularly promising
direction is to scale the degree of technical limitation with
the degree of confidence that a website is engaged in
tracking. Erroneously classifying a CDN as a tracker, for
example, could break a website if connected to HTTP block-
ing, but may only result in a minor performance degradation
if connected to restricted storage access.

3For example, metrics.apple.com CNAMEs to
appleglobal.112.2o7.net. Including 2o7.net in the machine-
learning output would be sufficient for a proper classification.

III. PRELIMINARY RESULTS

We collected the data for our initial experiment by crawl-
ing popular websites with FourthParty [22]. Our crawler
visited the Quantcast United States top 32,000 homepages,
then randomly followed 5 links on each page that shared the
page’s domain. We generated DOM-like hierarchies from
the crawl data, with a tree rooted at each webpage that the
crawler visited. Interior nodes and parent-child relationships
reflected iframes; leaf nodes and parent-child relationships
reflected all other web content. We labeled each node with
its domain.

We calculated aggregate statistics for each domain based
on the set of trees in which it appeared. These statistics
included the minimum, median, and maximum of depth, oc-
currences, degree, siblings, children, unique parents, unique
children, and unique appearances per tree. We then trained a
variant of the Elastic Net algorithm [25] using these statistics
as features. Training and testing labels were sourced from a
popular block list.4 We used an 80%-20% split for training
and testing data and determined all tuning parameters for
the algorithm through 10-fold cross-validation.

Figure 2 depicts the performance of our classifier by
plotting the proportion of trackers correctly identified, i.e.
precision, against the proportion of non-trackers erroneously
labeled as trackers, i.e. false positive rate (FPR). We show
performance over a range of FPRs because browser-based
technical limitations vary in their tolerance for false pos-

4We manually edited the list to remove first-party domains and add
missing third-party domains.
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Figure 2. Percent of trackers correctly identified versus percent of mis-
classified non-trackers. The weighted precision is calculated by weighting
each tracker’s importance according to its prevalence in our crawl data.

itives. We also present a weighted precision curve that
accounts for the prevalence of each tracker, defined as the
number of distinct first-party domains on which a tracker
domain appears. This weighting scheme reflects the intuition
that a tracker appearing on a handful of sites poses a much
lesser invasion of privacy than a tracker that can effectively
determine a user’s entire browsing history.

Results with this simple classifier are compelling: we
achieve a weighted precision of 96.7% at 0.5% FPR and
98% precision at 1% FPR. While unweighted precision is
considerably lower, achieving 43% and 54% precision at
0.5% and 1% FPR, respectively, we note that 63% of the
trackers in our testing set appear 6 times or fewer. Thus,
there are many infrequent trackers that pose significantly
less of a privacy concern than the multitudes of trackers
appearing on hundreds or thousands of sites. Our ability
to achieve such high weighted precision at low FPRs with
very few statistics indicates that tracking detection is well-
suited to machine learning and that more expressive features
may enable a compelling privacy tool. We are currently
investigating rich-feature representations to better detect
infrequent trackers and to raise weighted precision at FPRs
of 0.1% and lower.

IV. CONCLUSION

Given encouraging preliminary results, we believe that
a machine learning approach can enable accurate and us-
able web tracking countermeasures, with the promise of
impartiality and robustness to both natural and adversarial
changes in tracker behavior. We are working to mature the
machine-learning prototype presented here into a tracking
countermeasure suitable for widespread deployment. To this
end, we are improving classification accuracy through more
sophisticated algorithms and richer feature properties taken
from DOM hierarchy topologies and HTTP content headers.

We plan to address the impartiality of our approach by trying
to reduce the usage of labelled data and investigating how
the features selected by our algorithms map to intuitively ob-
jectionable tracking behavior. Finally, we are characterizing
and improving the robustness of our approach, by assessing
the kinds of errors made by the classifiers and how well they
adapt to changes in tracker behavior over time.
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