
The All-or-Nothing Nature of

Two-Party Secure Computation

Amos Beimel1, Tal Malkin2,3, and Silvio Micali2

1 Division of Engineering and Applied Sciences
Harvard University, 40 Oxford st., Cambridge, MA 02138

beimel@deas.harvard.edu

Supported by grants ONR-N00014-96-1-0550 and ARO-DAAL03-92-G0115.
2 Laboratory for Computer Science, Massachusetts Institute of Technology

545 Technology sq., Cambridge, MA 02139
3 tal@theory.lcs.mit.edu

Supported by DARPA grant DABT63-96-C-0018.

Abstract. A function f is computationally securely computable if two
computationally-bounded parties Alice, having a secret input x, and Bob,
having a secret input y, can talk back and forth so that (even if one of
them is malicious) (1) Bob learns essentially only f(x, y) while (2) Alice
learns essentially nothing.
We prove that, if any non-trivial function can be so computed, then so
can every function. Consequently, the complexity assumptions sufficient
and/or required for computationally securely computing f are the same
for every non-trivial function f .

1 Introduction

Secure Computation. Let f be a two-argument finite function, that is, f :
S1×S2 → S3 (where S1, S2, and S3 are finite sets), and let Alice and Bob be two
possibly malicious parties, the first having a secret input x ∈ S1 and the second
having a secret input y ∈ S2 . Intuitively, securely computing f means that Alice
and Bob keep turns exchanging message strings so that (1) Bob learns the value
z = f(x, y), but nothing about x (which is not already implied by z and y), no
matter how he cheats, while (2) Alice learns nothing about y (and thus nothing
about z not already implied by x), no matter how she cheats.

In a sense, therefore, a secure computation of f has two constraints: a cor-
rectness constraint, requiring that Bob learns the correct value of f(x, y), and a
privacy constraint, requiring that neither party learns more than he/she should
about the other’s input.

Throughout this paper, any function to be securely computed is a finite,
two-argument function.

The One-Sidedness of Secure Computation. The notion of secure com-
putation informally recalled above is the traditional one used in the two-party,
malicious model (cf., [GMW87, Section 4.2], and [Kil88,Kil90]). This notion is

Michael Wiener (Ed.): CRYPTO’99, LNCS 1666, pp. 80–97, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



The All-or-Nothing Nature of Two-Party Secure Computation 81

“one-sided” in that only Bob learns the result of computing f , while Alice learns
nothing. Such one-sidedness is unavoidable in our malicious model. In principle,
one could conceive of a more general notion of secure computation in which
“both Alice and Bob learn f(x, y)1 .” However, such a more general notion is not
achievable in a two-party, malicious model: the first party who gets the desired
result, if malicious, may stop executing the prescribed protocol, thus preventing
the other from learning f(x, y).2 Moreover, such a malicious party can terminate
prematurely the execution of the prescribed protocol exactly when he/she “does
not like” the result.

Trivial and Non-Trivial Functions. A function f is called trivial if it
can be securely computed even if a cheating party has unlimited computational
power, and non-trivial otherwise.

An example of a trivial function is the “projection of the first input”; namely
the function P1 : {0, 1}× {0, 1} → {0, 1} so defined: P1(b0, b1) = b0. Another
example is the “exclusive-or function”; namely, the function XOR : {0, 1} ×
{0, 1} → {0, 1} so defined: XOR(b0, b1) = b0 + b1 mod 2. Indeed, a secure way
of computing either function consists of having Alice send her secret bit to Bob.
This elementary protocol clearly is a correct and private way of computing P1. It
also is a correct and private way of computing XOR. Indeed, Alice’s revealing her
own secret bit b0 enables Bob to compute locally and correctly the desired XOR
of b0 and b1. Moreover, Alice’s revealing b0 also satisfies the privacy constraint:
Bob could deduce Alice’s bit anyway from the output of the XOR function he is
required to learn.

An example of a non-trivial function is the function AND : {0, 1}× {0, 1} →
{0, 1} so defined: AND(b0, b1) = b0∧b1. Another non-trivial function is the (cho-
sen 1-out-of-2) oblivious transfer; namely, the function OT : {0, 1}2 × {0, 1} →
{0, 1} so defined: OT((b0, b1), i) = bi, that is, Bob only learns the bit of Alice he
chooses. (The non-triviality of these functions follows from [CK89].)

Secure Computability of Non-Trivial Functions. By definition, securely
computing non-trivial functions is conceivable only when (at least one of) Alice
and Bob are computationally bounded, but by no means guaranteed. Nonethe-
less, a series of results have established that secure computation of non-trivial
functions is possible under complexity assumptions of various strengths. In par-
ticular,

– The OT function is securely computable under the assumption that integer
factorization is computationally hard [Rab81,FMR84,EGL85,Cré88].3

1 Or even a more general scenario where Bob learns f(x, y) while Alice learns g(x, y).
2 Or g(x, y) in the more general scenario.
3 Rabin [Rab81] introduced a variant of the oblivious transfer, the random oblivi-

ous transfer, and provided an implementation of it which is provably secure in the
honest-but-curious model. Fischer, Micali, and Rackoff [FMR84] improved his pro-
tocol so as to be provably secure against malicious parties. Even, Goldreich, and



82 A. Beimel, T. Malkin, S. Micali

– All functions are securely computable if factoring is hard [Yao86]; and, ac-
tually,

– All functions are securely computable if any trapdoor permutation exists
[GMW87].4

Such results raise fundamental questions about the strength of the compu-
tational assumptions required for secure computation. In particular,

Q1: What assumption is required for securely computing at least one non-trivial
function?

Q2: What assumption is required for securely computing a given non-trivial func-
tion f?

Q3: Are there assumptions sufficient for securely computing some non-trivial
function f but not sufficient for securely computing some other non-trivial
function g?

Completeness for Secure Computation. Another important result is that
the OT function is complete for secure computation [Kil88]5. By this we mean
that, if OT is securely computable, then so are all functions. A bit more specif-
ically, given any function f and any protocol securely computing OT, one can
efficiently and uniformly construct a protocol securely computing f .

The completeness of the OT function raises additional fundamental ques-
tions. In particular,

Q4: Are there other (natural) functions that are complete for secure computation?
Q5: Is there a (natural) characterization of the functions complete for secure

computation?

1.1 Main Results

A Characterization of Complete Functions. In this paper we prove the
following

Main Theorem: Any non-trivial function is complete for secure computa-
tion.

Lempel [EGL85] introduced the notion of the chosen 1-out-of-2 oblivious transfer,
together with an implementation of it which is provably secure in the honest-but-
curious model. Finally, Crépeau [Cré88] showed how to transform any secure proto-
col for the random oblivious transfer to a secure protocol for the chosen 1-out-of-2
oblivious transfer.

4 The hardness of factoring implies the existence of trapdoor permutations, but the
vice-versa might not hold.

5 Kilian [Kil91] also proves a more general result, but in a different model, which we
discuss in Subsection 1.2.



The All-or-Nothing Nature of Two-Party Secure Computation 83

Clearly, our result provides an explicit and positive answer to questions Q4
and Q5, and an explicit and negative answer to Q3. Our result also provides
an implicit answer to questions Q1 and Q2. Namely, letting f be any given
non-trivial function, and Af be the assumption that f is securely computable:

For any non-trivial function g, assumption Af is both necessary and suffi-
cient for securely computing g.

An Interpretation of Our Main Theorem. Our main theorem also sug-
gests that just assuming the existence of one-way functions may be insufficient
to guarantee secure computation. Let us explain. Impagliazzo and Rudich [IR89]
show that, without also proving that P 6= NP, no protocol having oracle-access
to a random function can be proved to compute the OT function securely. This
result has been interpreted as providing strong evidence that “one-way functions
are not sufficient for constructing a protocol securely computing the OT func-
tion.” It is then according to the same interpretation that our main theorem
suggests that, for any non-trivial function f , Af should be stronger than the
existence of one-way functions.

A Characterization of Trivial Functions. Is there a combinatorial prop-
erty that makes a two-argument function securely computable by two, possibly
malicious, parties with unbounded computing power? In our paper we also pro-
vide such a characterization (actually crucial to the proof of our main theorem6)
in terms of insecure minors.

We say that f contains an insecure minor if there exist inputs x0, y0, x1, y1

such that f(x0, y0) = f(x1 , y0) and f(x0, y1) 6= f(x1, y1), and prove:

Main Lemma: A two-argument function f is trivial if and only if f does
not contain an insecure minor.

1.2 Comparison to Previous Work

The Honest-but-Curious Model. Both completeness and characterization
of non-trivial functions have been extensively investigated with respect to a
weaker notion of two-party secure computation introduced in [GMW87]: the
honest-but-curious model7. In this model, the parties are guaranteed to properly
execute a prescribed protocol, but, at the end of it, each of them can use his/her
own view of the execution to infer all he/she can about the other’s input. In this
model, because no protocol can be prematurely terminated, it is meaningful to
consider “two-sided” secure computation of a function f ; that is, one in which
each party learns f(x, y), but nothing else about the other’s input that is not
6 Note that our main theorem provides a characterization of both trivial and non-

trivial functions, though not a combinatorial-looking one!
7 Originally called “the semi-honest model” in [GMW87].



84 A. Beimel, T. Malkin, S. Micali

already implicit in f(x, y) and his/her own input. Indeed this is the traditional
notion of secure function computation in the honest-but-curious model.

Similar to the malicious model, a function is said to be trivial in the honest-
but-curious model if it can be securely computed even if the two (honest-but-
curious) parties have unbounded computing power, and non-trivial otherwise.
The above mentioned results of [Yao86,GMW87] immediately imply that every
two-argument function is securely computable in the honest-but-curious model,
under the corresponding complexity assumptions (hardness of factoring and ex-
istence of trapdoor permutations).

A combinatorial characterization of the trivial functions in the honest-but-
curious model was first given by Chor and Kushilevitz [CK89] for Boolean func-
tions (i.e., predicates), and then by Kushilevitz [Kus89] for all functions.

While in the malicious model we prove that all non-trivial functions are
complete, in the honest-but-curious one the “corresponding” theorem does not
hold; there exists a (non-Boolean) function that is neither trivial nor complete
[Kus89,Kil91,KKMO98].8 On the other hand, Kilian, Kushilevitz, Micali, and
Ostrovsky [KKMO98] prove that any non-trivial Boolean function is complete
in the honest-but-curious model.

Kilian’s Model. In [Kil91] Kilian characterizes the functions f that are com-
plete in an hybrid model of secure computation. Namely, the functions f for
which, given access to a two-sided black-box for f (i.e., one giving the result
f(x, y) to both Alice and Bob), one can construct, for any function, a one-
sided protocol that is information-theoretically secure against unbounded ma-
licious parties. He proves that these functions f are exactly those containing
an embedded-or, a special case of our insecure minor (i.e., one satisfying the
additional constraint f(x0, y0) = f(x0, y1)).

In sum, Kilian’s result “reduces” standard (one-sided) protocols to two-sided
black boxes. Notice that this is different (and not applicable) to our case, where
we reduce standard protocols to standard protocols. (Indeed, our characteri-
zation of the complete function is different, and there are functions that are
complete in our setting but not in his.)

Also notice that two-sided black boxes might be implementable via “tamper-
proof hardware” or in some other physical model, but, as explained above, no
protocol can securely implement a two-sided black box for a function f against
malicious parties.9

8 [KKMO98] prove this by combining the following two results. [Kus89] shows an
example of a function which is non-trivial yet does not contain an embedded or,
and [Kil91] shows that a function that does not contain an embedded or cannot be
complete in this model. We note that this example is a function which contains an
insecure minor, and thus is complete in the malicious (one-sided) model, as we prove
in this paper.

9 Two-sided boxes may instead be implemented by protocols (under certain complex-
ity assumptions) in the honest-but-curious model.



The All-or-Nothing Nature of Two-Party Secure Computation 85

Reduction Models. Black-box reductions (as those of [CK88,Kil91,KKMO98])
are an elegant way to build new secure protocols. While two-sided boxes are not
implementable by secure protocols against malicious parties, one-sided black
boxes can be (under certain complexity assumptions). Thus, one may consider
completeness under one-sided black box reductions. However, as we shall point
out in Section 4.2, such reductions are not strong enough to solve the questions
we are interested in. We thus use an alternative definition of a reduction that is
natural for protocols secure against bounded malicious parties. Informally, for
us a reduction is a transformation of a given secure protocol for f (rather than
a one-sided black box for f) into a protocol for g secure against computationally
bounded malicious parties.

Organization. In Section 2 we define protocols, and secure computation in the
unbounded honest-but-curious model. In Section 3 we provide a definition of
secure computation in the unbounded malicious model, and proceed to charac-
terize the trivial functions. Finally, in Section 4 we characterize the complete
functions, and prove that any non-trivial function is complete.

2 Preliminaries

2.1 Protocols

Following [GMR85], we consider a two-party protocol as a pair, (A, B), of In-
teractive Turing Machines (ITMs for short). Briefly, on input (x, y), where x is
a private input for A and y a private input for B, and random input (rA, rB),
where rA is a private random tape for A and rB a private random tape for B,
protocol (A, B) computes in a sequence of rounds, alternating between A-rounds
and B-rounds. In an A-round (B-round) only A (only B) is active and sends a
message (i.e., a string) that will become an available input to B (to A) in the
next B-round (A-round). A computation of (A, B) ends in a B-round in which
B sends the empty message and computes a private output.10

Transcripts, Views, and Outputs. Letting E be an execution of protocol
(A, B) on input (x, y) and random input (rA, rB), we define:

– The transcript of E consists of the sequence of messages exchanged by A
and B, and denoted by TRANSA,B(x, rA, y, rB)

– The view of A consists of the triplet (x, rA, t), where t is E’s transcript, and
denoted by VIEWA,B

A (x, rA, y, rB);
– The view of B consists of the triplet (y, rB, t), where t is E’s transcript, and

denoted by VIEWA,B
B (x, rA, y, rB);

– The output of E consists of the string z output by B in the last round of E,
and denoted by OUTB(y, rB , t), where t is E’s transcript.

10 Due to the one-sidedness of secure computation, only machine B produces an output.



86 A. Beimel, T. Malkin, S. Micali

In all the above the superscript (A, B) will sometimes be omitted when clear
from the context.

We consider the random variables TRANS(x, ·, y, rB), TRANS(x, rA, y, ·)
and TRANS(x, ·, y, ·), respectively obtained by randomly selecting rA, rB, or
both, and then outputting TRANS(x, rA, y, rB). We also consider the similarly
defined random variables VIEWA(x, ·, y, rB), VIEWA(x, rA, y, ·),
VIEWA(x, ·, y, ·), VIEWB(x, ·, y, rB), VIEWB(x, rA, y, ·), and VIEWB(x, ·, y, ·),

2.2 Secure Computation in the Unbounded Honest-but-Curious
Model

Among all notions of secure computation, the one for two unbounded honest-
but-curious parties is the simplest one to formalize. In this model the parties
Alice and Bob are guaranteed to follow the prescribed protocol (A, B) (namely
they use the right ITMs A and B), but may try to obtain as much information
as they can from their own views. Intuitively, a protocol is secure in this model if
the following conditions hold: (1) Bob learns the value z = f(x, y), but nothing
about x (not already implied by z and y), while (2) Alice learns nothing about y
(and thus nothing about z not already implied by x). A formal definition follows.

Definition 1. Let f : S1 × S2 → S3 be a finite function. A protocol (A, B) se-
curely computes f against unbounded honest-but-curious parties, if the following
conditions hold:

1. Correctness: ∀x ∈ S1, ∀y ∈ S2, ∀rA, ∀rB, letting v = VIEWA,B
B (x, rA, y, rB),

OUTB(v) = f(x, y).
2. Privacy:

Alice’s Privacy: ∀x0, x1 ∈ S1, ∀y ∈ S2, ∀rB, if f(x0 , y) = f(x1 , y) then

VIEWA,B
B (x0, ·, y, rB) = VIEWA,B

B (x1, ·, y, rB).11

Bob’s Privacy: ∀x ∈ S1, ∀y0, y1 ∈ S2, ∀rA,
VIEWA,B

A (x, rA, y0, ·) = VIEWA,B
A (x, rA, y1, ·).

3 A Combinatorial Characterization of Trivial Functions

So far, we have intuitively defined a trivial function to be one that is computable
by a protocol that is secure against unbounded malicious parties.12 Combinatori-
ally characterizing trivial functions, however, requires first a quite formal notion
of secure computation in our setting, a task not previously tackled. This is what
we do below.
11 Equivalently, the corresponding transcripts are identically distributed (and similarly

below).
12 By this we do not mean that the parties participating in a protocol computing a

trivial function are computationally-unbounded, but that the “privacy and correct-
ness” of their computation holds even when one of them is allowed to be malicious
and computationally-unbounded.



The All-or-Nothing Nature of Two-Party Secure Computation 87

3.1 Secure Computation in the Unbounded Malicious Model

In this model Alice or Bob may be malicious, namely cheat in an arbitrary way,
not using the intended ITM A (or B), but rather an arbitrary (computationally
unbounded) strategy A′ (or B′) of their choice. The definition of secure compu-
tation in the malicious model requires some care. For example, it is not clear
how to define what the input of a malicious party is.

We handle the definition of secure computation in the spirit of [MR92] (a
definition primarily aimed at secure computation in a multi-party scenario, such
as [BGW88,CCD88]). Intuitively, we require that when Alice and Bob are honest
then Bob computes the function f correctly relative to his own input and Alice’s
input. We also require that when Bob is honest and for any possible malicious
behavior of Alice, Bob computes the function f correctly relative to his own
input and Alice’s input as defined by evaluating a predetermined input function
on Alice’s view of the joint computation. Because the computation is one-sided
and a malicious Bob might not output any value, the correctness requirement
is limited to the above two cases. Finally, we require privacy for an honest
Alice against a possibly malicious Bob, and privacy for an honest Bob against a
possibly malicious Alice.

Definition 2. Let f : S1 × S2 → S3 be a finite function. A protocol (A, B)
securely computes f against unbounded malicious parties, if the following con-
ditions hold:

1. Correctness: ∀x ∈ S1, ∀y ∈ S2, ∀rA, ∀rB,
Correctness when both Alice and Bob are honest:

Letting v = VIEWA,B
B (x, rA, y, rB), then OUTB(v) = f(x, y).

Correctness when only Bob is honest: For every strategy A′ there is
IA′ : {0, 1}∗ → S1 such that, letting

v′A′ = VIEWA′,B
A′ (x, rA, y, rB) and v′B = VIEWA′,B

B (x, rA, y, rB),

OUTB(v′B) = f(IA′ (v′A′), y).13

2. Privacy:
Alice’s Privacy: For every strategy B′, ∀x0, x1 ∈ S1 , ∀y ∈ S2, ∀rB, if

f(x0, y) = f(x1 , y)
13 By the previous condition, the mapping IA (i.e., for honest Alice) gives a “correct”

input, which is either x itself or “equivalent” to x, in the sense that it yields the same
output f(x, y). Notice that for secure computation of a function f we may restrict the
protocol so that Bob always ouputs a value that is compatable with his input. That
is, on input y Bob outputs a value z such that there is some x for which f(x, y) = z
(indeed, Bob before outputing z can always check for compatibility and output
f(0, y) otherwise). When restricted to these secure computation the correctness for
honest Bob and Alice implies the correctness when only Bob is honest, that is, the
function IA′ is guaranteed to exist.



88 A. Beimel, T. Malkin, S. Micali

then
VIEWA,B′

B′ (x0, ·, y, rB) = VIEWA,B′
B′ (x1, ·, y, rB).

Bob’s Privacy: For every strategy A′, ∀x ∈ S1, ∀y0, y1 ∈ S2, ∀rA,

VIEWA′,B
A′ (x, rA, y0, ·) = VIEWA′,B

A′ (x, rA, y1, ·).

Note that security against malicious parties implies security against honest-
but-curious parties. That is,

Fact 1 If a protocol securely computes the function f in the unbounded malicious
model, it securely computes f in the unbounded honest-but-curious model.

Definition 3 (Trivial and non-trivial functions). A finite function f is
called trivial if there exists a protocol securely computing it in the unbounded
malicious model; otherwise, f is called non-trivial.

3.2 The Combinatorial Characterization

We prove that the trivial functions are exactly those that do not contain an
insecure minor (a simple generalization of an embedded or [CK89]14).

Definition 4 (Insecure minor). A function f : S1 × S2 → S3 contains an
insecure minor if there exist x0, x1 ∈ S1, y0, y1 ∈ S2, and a, b, c ∈ S3 such
that b 6= c, and f(x0, y0) = f(x1, y0) = a, f(x0 , y1) = b, and f(x1 , y1) = c.
Graphically,15

f : x0 x1

y0 a a
y1 b c

Examples. As immediately apparent from their tables, each of the AND and
OT functions contain an insecure minor (and actually an embedded or):

AND : 0 1 OT : (0, 0) (0, 1)
0 0 0 0 0 0
1 0 1 1 0 1

Theorem 1. A function f(·, ·) is trivial if and only if f does not contain an
insecure minor.
14 An embedded or is an insecure minor in which a = b. As shown in [CK89], having an

embedded or implies non-triviality in the two-sided honest-but-curious model, and
characterizes the Boolean non-trivial functions in this model.

15 This graphical convention will be used in the rest of the paper, namely a table where
columns correspond to possible inputs for Alice, rows correspond to possible inputs
for Bob, and the entries are the corresponding output values.



The All-or-Nothing Nature of Two-Party Secure Computation 89

Proof. We break the proof into two parts; Theorem 1 follows from the following
Claim 1 and Claim 2.

First, we assume that f does not contain an insecure minor and prove that
f is trivial by constructing a protocol (A, B) that securely computes f against
malicious unbounded parties. Fix any x0 ∈ S1 and y0 ∈ S2. The protocol (A, B),
described in Fig. 1, has a single round of communication (one message sent from
A to B), and is deterministic (namely A and B ignore their random inputs).

Claim 1. If f does not contain an insecure minor then it is trivial.

Proof. We prove our claim by showing that f is securely computed against
unbounded malicious parties by the following protocol (A, B) described in Fig. 1.

Protocol (A, B)

A, on input x ∈ S1:

send to Bob the message a
def
= f(x, y0).

B, on input y ∈ S2, upon receipt of the message a from Alice:
Find the lexicographically first x1 such that f(x1, y0) = a
Set the output OUTB(y, rB, a) to f(x1, y).
If no such x1 exists, set the output OUTB(y, rB , a) to f(x0, y).

Fig. 1. A secure protocol (against unbounded malicious parties) for a function
f not containing an insecure minor.

We first prove the correctness of the protocol. Recall that x and y are the
inputs held by honest Alice and honest Bob respectively. Correctness when both
parties are honest follows since for any message a = f(x, y0) sent by honest Alice,
an honest Bob finds x1 such that f(x, y0) = f(x1 , y0). Since f does not contain
an insecure minor then it must hold that f(x, y) = f(x1, y) (otherwise x, x1, y0, y
constitute an insecure minor). Thus, Bob’s output – f(x1, y) – is correct.

To prove correctness when only Bob is honest, we first define the following
input function IA′ : {0, 1}∗ → S3 where if there is no x1 such that a = f(x1, y0)
then IA′(x, rA, a) = x0 and otherwise IA′(x, rA, a) is the lexicographically first
x1 such that a = f(x1 , y0). Notice that the input function IA′ is the same for ev-
ery adversary A′. By the definition of IA′ it always holds that OUTB(y, rB , a) =
f(IA′(x, rA, a), y) and correctness follows.

Alice’s privacy follows by observing that all information sent to Bob, namely
f(x, y0), can be computed by Bob alone from the output of the function f(x, y).
This is because Bob can find some x′ such that f(x′, y) = f(x, y), and conclude
that f(x, y0) = f(x′, y0) (since f does not contain an insecure minor). Bob’s
privacy follows immediately from the fact that this is a one-round protocol,
where Bob sends no information to Alice, and thus her view is clearly identical
for any input he may have. ut

Let us now prove the second part of Theorem 1.

Claim 2. If a function f is trivial then it does not contain an insecure minor.



90 A. Beimel, T. Malkin, S. Micali

Proof. If f is trivial, then there is a protocol (A, B) securely computing f
against unbounded parties. In particular, by Fact 1, Protocol (A, B) securely
computes f against honest-but-curious unbounded parties. We assume, for sake
of contradiction, that f contains an insecure minor.

Let x0, x1, y0, y1 constitute an insecure minor of f , that is there are a, b, c ∈ S3

such that b 6= c and
f : x0 x1

y0 a a

y1 b c

By Bob’s privacy from Definition 1,

VIEWA(x0, rA, y1, ·) = VIEWA(x0, rA, y0, ·)
for every rA. By ranging over all possible rA we get

TRANS(x0, ·, y1, ·) = TRANS(x0, ·, y0, ·).
On the other hand, by Alice’s privacy, since f(x0, y0) = f(x1, y0) = a,

VIEWB(x0, ·, y0, rB) = VIEWB(x1, ·, y0, rB)

for every rB. Again, by ranging over all possible rB we get

TRANS(x0, ·, y0, ·) = TRANS(x1, ·, y0, ·).
Finally, again by Bob’s privacy

TRANS(x1, ·, y0, ·) = TRANS(x1, ·, y1, ·).
Thus, by transitivity,

TRANS(x0, ·, y1, ·) = TRANS(x1, ·, y1, ·). (1)

We next use the following proposition, proved by [CK89] to hold for every
protocol, to argue that this transcript is equally distributed even if we fix the
random input of Bob.

Proposition 1. Let u0, u1, v0, v1, rA,0, rA,1, rB,0, rB,1 be inputs and random in-
puts such that

TRANS(u0, rA,0, v0, rB,0) = TRANS(u1, rA,1, v1, rB,1) = t.

Then, TRANS(u0, rA,0, v1, rB,1) = TRANS(u1, rA,1, v0, rB,0) = t.

In other words, if changing the inputs for both Alice and Bob yields the same
transcript, then changing the input for Alice only (or Bob only) will also yield
the same transcript.

Fix arbitrary random inputs qA and qB, and let t = TRANS(x0, qA, y1, qB).
By Equation (1), there exist q′A, q′B such that TRANS(x1, q

′
A, y1, q

′
B) = t, which

by Proposition 1 implies that t = TRANS(x1, q
′
A, y1, qB).



The All-or-Nothing Nature of Two-Party Secure Computation 91

Now, by Proposition 1, it holds that

Pr
rA,rB

[TRANS(x0, ·, y1, ·) = t ]

= Pr
rA

[TRANS(x0, ·, y1, qB) = t ] ·Pr
rB

[TRANS(x0, qA, y1, ·) = t ] , (2)

and similarly

Pr
rA,rB

[TRANS(x1, ·, y1, ·) = t ]

= Pr
rA

[TRANS(x1, ·, y1, qB) = t ] ·Pr
rB

[TRANS(x1, q
′
A, y1, ·) = t ] . (3)

By Proposition 1, for every rB

TRANS(x0, qA, y1, rB) = t if and only if TRANS(x1, q
′
A, y1, rB) = t

Hence,
Pr
rB

[TRANS(x0, qA, y1, ·) = t ] = Pr
rB

[TRANS(x1, q
′
A, y1, ·) = t ] . (4)

Since by (1) PrrA,rB [TRANS(x0, ·, y1, ·) = t ] = PrrA,rB

[
TRANS(x1, ·, y1, ·)

= t
]
, and from (2),(3),(4), we get that, for every qB and t,

Pr
rA

[TRANS(x0, ·, y1, qB) = t] = Pr
rA

[TRANS(x1, ·, y1, qB) = t] .

That is,
TRANS(x0, ·, y1, qB) = TRANS(x1, ·, y1, qB). (5)

for every qB.
Recall that the view of Bob is defined as his input, his random input, and

the transcript of the communication. By Equation (5), for every qB the com-
munication transcript between Alice and Bob is identically distributed when the
inputs of Alice and Bob are x0, y1 and when their inputs are x1, y1. In both cases
Bob has the same input y1 and random input qB, so Bob’s view is identically
distributed in both cases, namely for every qB it holds that

VIEWB(x0, ·, y1, qB) = VIEWB(x1, ·, y1, qB). (6)

Equation (6) contradicts the correctness requirement from Definition 1, because
f(x0, y1) = b 6= c = f(x1, y1), whereas the identical distributions of Bob’s view
imply that Bob has the same output distribution in both cases. Thus, we have
reached a contradiction, which concludes the proof of the claim. ut

Claim 1 and Claim 2 complete the proof of Theorem 1.

3.3 The Round Complexity of Secure Computation against
Unbounded Malicious Parties

Typically, multiple rounds and probabilism are crucial ingredients of secure com-
putation. As stated in the following corollary, however, two-party secure com-
putation in the unbounded malicious model is an exception.



92 A. Beimel, T. Malkin, S. Micali

Corollary 1. If a function f is securely computable in the unbounded malicious
model, then it is so computable by a deterministic single-round (actually, single-
message) protocol.

Proof. The corollary follows immediately from our proof of Theorem 1 (rather
than from its statement). That proof, shows that, if a function f is computable
in the unbounded two-party malicious model, then it is so computed by the
protocol of Fig. 1, in which only a single message is exchanged (from A to B).

Together with the above corollary, our proof of Theorem 1 (actually, of
Claim 2 alone) also immediately implies the following relationship between secure
computation in the unbounded honest-but-curious model and in the unbounded
malicious one.

Corollary 2. For every two-argument function f, one of the following holds:
Either

1. f is securely computable deterministically and in one round in the unbounded
malicious model; Or

2. f is not securely computable in the unbounded honest-but-curious model, even
by probabilistic and multi-round protocols.

4 Characterization of Complete Functions

In this section we prove that every function that contains an insecure minor is
complete for secure computation. That is, every non-trivial function is complete.

We shall consider secure computation in the (computationally) bounded ma-
licious model. That is, the computation is secure provided that the (malicious)
parties run in polynomial time. Thus, for the privacy conditions to hold, the
appropriate probability distributions are only required to be indistinguishable
by polynomial time Turing Machines (rather than identical as in the unbounded
case of Definition 2). In our proof we also consider the bounded honest-but-
curious model. For lack of space we do not give precise definitions of secure
computation in the bounded models, definitions which are much more involved
and complex than the definitions in the unbounded models. Such definitions
can be found, e.g., in [Gol98]. We note that our results hold for all reasonable
definitions of secure computation in these model.

4.1 Reductions and Completeness

As usual, the definition of completeness relies on that of a reduction.

Definition 5 (Reductions). Let f(·, ·) and g(·, ·) be finite functions. We say
that the function g reduces to f in the bounded malicious model (respectively,
in the bounded honest-but-curious model) if there exists a transformation16 from
16 All reductions presented in this paper consist of efficient and uniform transforma-

tions.



The All-or-Nothing Nature of Two-Party Secure Computation 93

any protocol securely computing f in the bounded malicious model (respectively,
in the bounded honest-but-curious model) to a protocol securely computing g in
the same model.

Definition 6 (Completeness). The function f(·, ·) is complete for bounded
malicious secure computations (respectively, bounded honest-but-curious secure
computations) if every finite function g(·, ·) reduces to f in the bounded malicious
model (respectively, in the bounded honest-but-curious model).

Informally, a function g reduces to a function f if a secure protocol for f
can be converted to a secure protocol for g without any additional assumptions.
(Even more informally, f is “harder” to compute securely than g.)

4.2 Our Reduction vs. Black-Box Reductions

As mentioned in the introduction, our reductions are not black-box ones, but
are natural and very suitable for investigating which assumptions are sufficient
for secure computation. In contrast, black-box reductions are not strong enough
to establish our main theorem, the all-or-nothing nature of two-party secure
computation. For instance, the (non-trivial) OR function is not complete under
black-box reductions [Kil99]17. Hence, black-box reductions do not give any in-
dication regarding which is the minimal assumption necessary for implementing
OR securely. On the other hand, using our notions of reductions and complete-
ness, our main theorem implies that the complexity assumptions necessary for
implementing OR securely are exactly the same as for all other non-trivial func-
tions.

Let us now emphasize that our reductions and completeness satisfy basic
expected properties of such notions.

Lemma 1. Let f and g be finite functions such that g reduces to f in the
bounded malicious model of secure computation. Then any assumption sufficient
for computing f securely in the bounded malicious model is also sufficient for
securely computing g in the same model.

Proof. Consider a protocol (Af , Bf) that securely computes f under some as-
sumption ASSUMf . Since g reduces to f , we can apply the transformation from
(Af , Bf ) to obtain a protocol (Ag , Bg) such that if (Af , Bf) securely computes
f then (Ag, Bg) securely computes g. Thus, if ASSUMf holds then (Ag , Bg)
securely computes g.

Furthermore, by definition, these reductions are transitive:
17 Indeed, it is not hard to see that in any protocol that uses a black-box for OR, the

party receiving the output can input 0 to the black-box, thus obtaining the other
party’s input, without any way of being detected. Since this cannot be prevented, any
protocol which is unconditionally secure using an OR black-box can be transformed
into an unconditionally secure protocol, implying that only trivial functions can be
black-box reduced to OR.



94 A. Beimel, T. Malkin, S. Micali

Lemma 2. Let f, g, and h be finite functions. If h reduces to g and g reduces
to f then h reduces to f.

Lemma 3. Let f and g be any finite functions. If g can be computed securely
in the bounded malicious model without any assumptions then g reduces to f in
the bounded malicious model.

Proof. Consider a protocol (Ag, Bg) that computes g securely. The transforma-
tion from any protocol (Af , Bf) securely computing f to a protocol securely
computing g ignores (Af , Bf) and outputs (Ag , Bg).

Remark 1. We stress that our notion of completeness highlights the all-or-nothing
nature of secure computation. Furthermore, by [Yao86,GMW87], if factoring is
hard or if trapdoor permutations exist, then all finite functions (even the trivial
ones!) are complete.

4.3 Main Theorem

Theorem 2. If f(·, ·) is a non-trivial function, then f is complete in the bounded
malicious model.

Proof Outline. Although we aim towards the bounded malicious model, our
proof of Theorem 2 wanders through the bounded honest-but-curious model
(more direct proofs seem problematic18). We first prove that every non-trivial
function is complete in the honest-but-curious model. We then use standard
techniques of [GMW87] to transform any secure protocol in the bounded honest-
but-curious model into a secure protocol in the bounded malicious model. In
general this transformation requires some complexity assumptions, however in
our case the protocol in the honest-but-curious model implies these assumptions.
Thus, combining the above steps, every non-trivial function is complete in the
malicious model.

Proof. We start by proving the analogue of Theorem 2 for the honest-but-curious
model.

Claim 3. If a function f(·, ·) contains an insecure minor, then f is complete in
the bounded honest-but-curious model.

Proof. It is proven in [GV87] that OT is complete in the bounded honest-but-
curious model. Therefore, to establish our claim it suffices to prove that whenever
f contains an insecure minor then OT reduces to f .

Let (Af , Bf ) be a secure protocol computing the function f in the bounded
honest-but-curious model. Because the function f contains an insecure minor,
there are values x0, x1, y0, y1, a, b and c such that b 6= c, f(x0, y0) = f(x1, y0) = a,
f(x0, y1) = b, and f(x1, y1) = c.



The All-or-Nothing Nature of Two-Party Secure Computation 95

Protocol (AOT, BOT)

AOT’s input: β0, β1 ∈ {0, 1}
BOT’s input: ı ∈ {0, 1}
AOT’s and BOT’s code: Execute protocol (Af , Bf ) on input xβ0 , yı.

Denote by z0 the output of Bf .
Execute protocol (Af , Bf ) on input xβ1 , yı.
Denote by z1 the output of Bf .

BOT’s output: If zı = b then output 0, else output 1.

Fig. 2. A secure protocol in the bounded honest-but-curious model for com-
puting OT from a function f containing an insecure minor with values
x0, x1, y0, y1, a, b, c.

In Fig. 2 we describe a protocol (AOT, BOT) which securely computes OT
using this insecure minor and the protocol (Af , Bf ).

In Protocol (AOT, BOT) it holds that zı = f(xβı , y1), and, thus, zı = b if
βı = 0 (and zı = c 6= b otherwise), implying that the output of BOT is correct.
We next argue that the privacy constrains are satisfied for bounded honest-but-
curious parties AOT and BOT. First note that the only messages exchanged in
(AOT, BOT) are during the executions of (Af , Bf ). Since (Af , Bf ) computes f
securely, Af (and thus AOT) does not learn any information about ı. Recall that
Bf is not allowed to learn any information that is not implied by his input and
the output of the function. In the case of OT, this means BOT should not learn
any information about βı. However, the only information that AOT sends that
depends on βı are during the execution of (Af , Bf) on input (xβı

, y0) and, thus,
zı = a for both values of βı. By the fact that (Af , Bf ) computes f securely, Bf

does not learn any information on βı. ut
Note that the above protocol is secure only if BOT is honest. Also note that

in protocol (AOT, BOT) it is important that only Bf gets the outputs z0 and z1

of (Af , Bf ). That is, if AOT gets z0 or z1 then she can learn BOT’s input for at
least one of the possible values of her input (since either b 6= a or c 6= a or both).

Let us now prove an “hybrid result” bridging the completeness in the two
bounded models of secure computation.

Claim 4. Let f(·, ·) be any finite function. If f is complete in the bounded honest-
but-curious model then it is complete in the bounded malicious model.

Proof Sketch. Let g be any finite function. We need to prove that g reduces
to f in the bounded malicious model. We are promised that g reduces to f in
the bounded honest-but-curious model. That is, there is a transformation from
any protocol securely computing f to one securely computing g in the bounded
honest-but-curious model.

To obtain a protocol securely computing g in the malicious model, we pro-
ceed as follows. First, there exists a transformation mapping any protocol that
18 For example, we cannot use Kilian’s reduction [Kil91] from OT to a two-sided

computation of OR in the bounded malicious model.



96 A. Beimel, T. Malkin, S. Micali

securely computes OT in the bounded honest-but-curious model into a one-way
function [IL89]. Second, since f is complete in the bounded honest-but-curious
model, this implies that there exists a transformation mapping any protocol that
securely computes f in the bounded honest-but-curious model into a one-way
function. Third, one-way functions imply pseudo-random generators [HILL91],
which in turn imply bit commitment [Nao89]. Finally, bit commitment implies
that it is possible to transform any protocol securely computing an arbitrary
function g in the bounded honest-but-curious model into a protocol securely
computing g in the bounded malicious model [GMW87]. Putting the above to-
gether, we obtain a transformation from a protocol securely computing f in
the bounded honest-but-curious model to one computing the function g in the
bounded malicious model. ut

We are ready to complete the proof of Theorem 2. By Theorem 1 any non-
trivial function f contains an insecure minor. Thus, by Claim 3 and Claim 4, f
is complete in the bounded malicious model.

Acknowledgments

We thank Joe Kilian and Eyal Kushilevitz for insightful comments. We also
thank Lior Pachter for risking his life to save a preliminary version of this work.

References

Blu82. M. Blum. Coin flipping by phone. IEEE Spring COMPCOM, pages 133–
137, 1982.

BGW88. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
noncryptographic fault-tolerant distributed computations. In Proc. of the
20th Symp. on Theory of Computing, pages 1–10, 1988.

CCD88. D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure
protocols. In Proc. of the 20th Symp. on Theory of Comp., pages 11–19,
1988.

CK88. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened
security assumptions. In Proc. of the 29th IEEE Symp. on Foundations of
Computer Science, pages 42–52, 1988.

CK89. B. Chor and E. Kushilevitz. A zero-one law for Boolean privacy. SIAM J.
on Discrete Math., 4(1):36–47, 1991. Prelim. version in STOC ’89, 1989.

Cré88. C. Crépeau. Equivalence between two flavors of oblivious transfers. In
Advances in Cryptology – CRYPTO ’87, volume 293 of Lecture Notes in
Computer Science, pages 350–354. Springer, 1988.

EGL85. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. CACM, 28(6):637–647, 1985.

FMR84. M. J. Fischer, S. Micali, and C. Rackoff. A secure protocol for the oblivious
transfer. Presented in EUROCRYPT ’84, 1984. Printed version in J. of
Cryptology, 9(3):191–195, 1996.

GMR85. S. Goldwasser, M. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. on Computing, 18:186–208, 1989. Pre-
liminary version in STOC ’85, 1985.

GMW86. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity, or all languages in NP have zero-knowledge proof systems.
In J. ACM, 38(1):691–729, 1991. Preliminary version in FOCS ’86, 1986.



The All-or-Nothing Nature of Two-Party Secure Computation 97

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In Proc. of the 19th Symp. on the Theory of Comp., pages 218–229, 1987.

Gol98. O. Goldreich. Secure multi-party computation (working draft). Available
from http://www.wisdom.weizmann.ac.il/∼oded/foc.html, 1998.

GV87. O. Goldreich and R. Vainish. How to solve any protocol problem—an
efficiency improvement. In Advances in Cryptology – CRYPTO ’87, volume
293 of Lecture Notes in Computer Science, pages 73–86. Springer, 1988.

HILL91. J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of a
pseudo-random generator from any one-way function. Technical Report
TR-91-068, International Computer Science Institute. 1991.

IL89. R. Impagliazzo and M. Luby. One-way functions are essential for complexity
based cryptography. In Proc. of the 30th IEEE Symp. on Foundations of
Computer Science, pages 230–235, 1989.

IR89. R. Impagliazzo and S. Rudich. Limits on the provable consequences of
one-way permutations. In Proc. of the 21st ACM Symp. on the Theory of
Computing, pages 44–61, 1989.

Kil88. J. Kilian. Basing cryptography on oblivious transfer. In Proc. of the 20th
ACM Symp. on the Theory of Computing, pages 20–31, 1988.

Kil90. J. Kilian. Uses of Randomness in Algorithms and Protocols. MIT Press,
1990.

Kil91. J. Kilian. A general completeness theorem for two-party games. In Proc.
of the 23th ACM Symp. on the Theory of Computing, pages 553–560, 1991.

Kil99. J. Kilian. Personal communication. 1999.
KKMO98. J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and

completeness in private computations. 1998. To appear in SIAM J. on
Computing. This is the journal version of [Kil91,KMO94].

KMO94. E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness
in multi-party private computations. In Proc. of the 35th IEEE Symp. on
Foundations of Computer Science, pages 478–491, 1994.

Kus89. E. Kushilevitz. Privacy and communication complexity. SIAM J. on Dis-
crete Mathematics, 5(2):273–284, 1992. Preliminary version in FOCS ’89,
1989.

MR92. S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology
– CRYPTO ’91, vol. 576 of Lecture Notes in Computer Science, pages 392–
404. Springer-Verlag, 1992. An updated version presented at: Workshop on
Multi-Party Secure Computation, Weizmann Inst., Israel, June 1998.

Nao89. M. Naor. Bit commitment using pseudorandom generators. J. of Cryp-
tology, 4:151–158, 1991. Preliminary version in Advances in Cryptology –
CRYPTO ’89, 1989.

Rab81. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical
Report TR-81, Harvard Aiken Computation Laboratory, 1981.

Yao82. A. C. Yao. Protocols for secure computations. In Proc. of the 23th IEEE
Symp. on Foundations of Computer Science, pages 160–164, 1982.

Yao86. A. C. Yao. How to generate and exchange secrets. In Proc. of the 27th
IEEE Symp. on Foundations of Computer Science, pages 162–167, 1986.


	Introduction
	Main Results
	Comparison to Previous Work

	Preliminaries
	Protocols
	Secure Computation in the Unbounded Honest-but-Curious Model

	A Combinatorial Characterization of Trivial Functions
	Secure Computation in the Unbounded Malicious Model
	The Combinatorial Characterization
	The Round Complexity of Secure Computation against Unbounded Malicious Parties

	Characterization of Complete Functions
	Reductions and Completeness
	Our Reduction vs. Black-Box Reductions
	Main Theorem


