
A Forward-Secure Digital Signature Scheme

Mihir Bellare and Sara K. Miner

Dept. of Computer Science, & Engineering
University of California at San Diego, 9500 Gilman Drive

La Jolla, CA 92093, USA
{mihir,sminer}@cs.ucsd.edu

URL: http://www-cse.ucsd.edu/users/{mihir,sminer}

Abstract. We describe a digital signature scheme in which the public
key is fixed but the secret signing key is updated at regular intervals so as
to provide a forward security property: compromise of the current secret
key does not enable an adversary to forge signatures pertaining to the
past. This can be useful to mitigate the damage caused by key exposure
without requiring distribution of keys. Our construction uses ideas from
the Fiat-Shamir and Ong-Schnorr identification and signature schemes,
and is proven to be forward secure based on the hardness of factoring,
in the random oracle model. The construction is also quite efficient.

1 Introduction

This paper presents a digital signature scheme having a novel security property,
namely “forward security.” This is a means to mitigate the damage caused by
key exposure.

1.1 The Key Exposure Problem

In practice the greatest threat against the security of a digital signature scheme
is exposure of the secret (signing) key, due to compromise of the security of
the underlying system or machine storing the key. The danger of successful
cryptanalysis of the signature scheme itself is hardly as great as the danger of
key exposure, as long as we stick to well-known schemes and use large security
parameters.

The most widely considered solution to the problem of key exposure is dis-
tribution of the key across multiple servers via secret sharing [18,5]. There are
numerous instantiations of this idea including threshold signatures [7] and proac-
tive signatures [14]. Distribution however is quite costly. While a large corpo-
ration or a certification authority might be able to distribute their keys, the
average user, with just one machine, does not have this option. Thus while we
expect digital signatures to be very widely used, we do not expect most people
to have the luxury of splitting their keys across several machines. Furthermore
even when possible, distribution may not provide as much security as one might
imagine. For example, distribution is susceptible to “common-mode failures:” a

Michael Wiener (Ed.): CRYPTO’99, LNCS 1666, pp. 431–448, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



432 M. Bellare, S.K. Miner

system “hole” that permits break-in might be present on all the machines since
they are probably running a common operating system, and once found, all the
machines can be compromised.

Other ways of protecting against key exposure include use of protected hard-
ware or smartcards, but these can be costly or impractical.

1.2 Forward Secure Signatures

The goal of forward security is to protect some aspects of signature security
against the risk of exposure of the secret signing key, but in a simple way, in
particular without requiring distribution or protected storage devices, and with-
out increasing key management costs.

How is it possible to preserve any security in the face of key exposure without
distribution or protected devices? Obviously, we cannot hope for total security.
Once a signing key is exposed, the attacker can forge signatures. The idea of
“forward security” is however that a distinction can be made between the security
of documents pertaining to (meaning dated in) the past (the time prior to key
exposure) and those pertaining to the period after key exposure.

The key evolution paradigm. A user begins, as usual, by registering a public
key PK and keeping private the corresponding secret key, which we denote SK 0.
The time during which the public key PK is desired to be valid is divided into
periods, say T of them, numbered 1, . . . , T . While the public key stays fixed, the
user “evolves” the secret key with time. Thus in each period, the user produces
signatures using a different signing key: SK 1 in period 1, SK 2 in period 2, and
so on. The secret key in period i is derived as a function of the one in the
previous period; specifically, when period i begins, the user applies a public one-
way function h to SK i−1 to get SK i. At that point, the user also deletes SK i−1.
Now an attacker breaking in during period i will certainly get key SK i, but not
the previous keys SK 0, . . . , SK i−1, since they have been deleted. (Furthermore
the attacker cannot obtain the old keys from SK i because the latter was a one-
way function of the previous key.) The key evolution paradigm is illustrated in
Figure 1.

A signature always includes the value j of the time period during which it
was produced, so that it is viewed as a pair 〈j, ζ〉. The verification algorithm
takes the (fixed) public key PK , a message and candidate signature, and verifies
that the signature is valid in the sense that it was produced by the legitimate
user in the period indicated in the signature. We stress that although the user’s
secret key evolves with time, the public key stays fixed throughout, so that the
signature verification process is unchanged, as are the public key certification
and management processes.

The number of periods and the length of each period are parameters of choice.
For example, we might want to use the scheme under a certain public key for
one year, with daily updates, in which case T = 365 and each period has length
one day.



A Forward-Secure Digital Signature Scheme 433

Period 1 Period 2 · · · · · · Period T

SK
h−→ SK1

h−→ SK2
h−→· · · · · · h−→ SK T

Fig. 1. Paradigm for a forward secure signature scheme: Secret key in a given period is

a one-way function h of the secret key in the previous period.

Security benefits. The security benefit of this key evolution paradigm is that
loss of the current secret key will not enable the adversary to forge signatures
with a “date” prior to the one at which key exposure occurred. This “date” has
a precise meaning: it is the value of the period during which the signature is
(claimed to be) produced, which as indicated above is always included in the
signature itself. This can be viewed as a means of protecting the authenticity of
past transactions even in the event of key exposure. It is quite a useful property
and can mitigate the damage of key exposure in several ways.

The following example, based on an idea due to Diffie, illustrates. Suppose
Eve’s mortgage payment is due on the first of each month. When it is delivered to
the bank, the bank issues a signed and dated receipt. First suppose we are using
a standard (not forward-secure) signature scheme. Then for example, if Eve paid
$1,000 on January 1st 1999, the text “Eve paid $1,000 on January 1st, 1999”
is signed under the public key of the bank. On February 1st, Eve is broke and
doesn’t pay, and of course the bank issues no receipt. But on February 2nd, Eve
cracks the bank computer. Under this normal signing scheme, she gets the signing
key, and can forge a note saying “Eve paid $1,000 on February 1st, 1999”. But
not under a forward secure scheme. Under a forward secure scheme (assuming
daily key updates) the signature that would have been produced on February
1st would have the form 〈32, ζ〉 where ζ is a tag for the text “Eve paid $1,000,”
and we are assuming for simplicity that the scheme is initialized on January 1st,
so that February 1st, being the 32nd day of the year, has corresponding date
or period the number “32”. Eve gets only the signing key for February 2nd, the
33rd period. She could forge any signature of the form 〈j, ζ〉 for j ≥ 33, for any
text of her choice, but not one of the form 〈32, ζ〉. So she cannot claim to have
paid up on February 1st.

Relation to time-stamping. Time-stamping signed documents via a trusted
time stamping authority (cf. [13]) can also provide a similar kind of security,
but this requires that one make use of such an authority, which is costly in
various ways. Forward security may be viewed as providing a certain kind of
time-stamp, namely one that is secure against forgery by an adversary who
obtains the current secret key. (However it assumes the signer is honest since
the signer could of course “forge” time-stamps if it wanted by simply not deleting
previous keys.)



434 M. Bellare, S.K. Miner

History. The term (perfect) “forward secrecy” was first used in [12] in the
context of session key exchange protocols, and later in [8]. The basic idea, as
described in [8], is that compromise of long-term keys does not compromise past
session keys, meaning that past actions are protected in some way against loss
of the current key, the same basic idea as here in a different context. The above
paradigm and the idea of a digital scheme with forward security were suggested
by Ross Andersen in an invited lecture at the ACM CCS conference [1]. He left
as an open problem to find such a scheme. In this paper we provide the first
solution. We also provide a formal adversarial model and notion of security with
respect to which the security of schemes can be assessed. In particular we suggest
the inclusion of the current date in the signature and the use of the claimed date
as the determinant of whether something is past or present from the forward
security point of view.

1.3 Construction of a Forward Secure Digital Signature Scheme

First ideas. It is trivial to design a forward secure signature scheme if you
allow any of scheme parameters to grow proportionally with the number T of
time periods over which the scheme is supposed to be valid; specifically, if the size
of the public key, secret key, or the signature itself is allowed to be proportional
to T . We briefly describe these methods in Section 2. However, any such method
is impractical.

The first reasonable solution, also described in Section 2, involves the use of
binary tree based certification chains, and results in secret keys and signatures of
size linear in lg(T ). Ideally however we would like a solution in which the size of
the public key, secret key, and signature does not depend on the number of time
periods. But achieving forward security in this setting does not seem so easy.
A natural starting idea is to try to find a suitable key evolution mechanism for
standard RSA or El Gamal type schemes, but we were unable to find a secure
one in either case.

Our scheme. To get a forward-secure digital signature scheme of the desired
kind, we turn to a different paradigm: construction of signature schemes based
on identification schemes. We present a forward secure digital signature scheme
based on ideas underlying the Fiat-Shamir [10] and Ong-Schnorr [16] identifi-
cation and signature schemes. The feature of these schemes that is crucial to
enable secure key evolution is that even the signer does not need to know the
factorization of the modulus on which the scheme is based, but just the square
roots of some public values. We evolve the secret key via squaring, which is a
one-way function in this setting.

Notion of security. To provide assurance that our scheme has the forward
security property, we first provide a formal definition of forward security for
digital signatures, extending the notion of security for standard digital signatures
from [11] to allow for key exposure attacks. Our model allows the adversary to
mount a chosen-message attack, then expose the signing key at some current
period j of its choice. It is successful if it can forge a signature of the form 〈i, ζ〉



A Forward-Secure Digital Signature Scheme 435

for some message M where i < j pertains to a period prior to that of the key
exposure. The scheme is secure if this task is computationally infeasible.

Forward security of our scheme. We then show that our scheme meets this
notion of forward security assuming it is hard to factor Blum-Williams integers.
This proof is in the random oracle model [3], meaning it assumes that a certain
hash function used in the scheme has random behavior.

Our security analysis proceeds in two steps. We first define a notion of a
“forward secure identification (ID) scheme,” design such a scheme, and prove
it secure based on the hardness of factoring Blum-Williams integers. Our sig-
nature scheme is obtained from the ID scheme by the usual transformation of
ID schemes into signature schemes (in which the challenge is specified as a hash
of the message and the commitment). We then show that this transformation
preserves forward security. (The transformation is known to preserve security in
the standard sense [17,15], but here we are considering a new security feature.)

We stress one issue with regard to forward secure ID schemes: they are artifi-
cial constructs, in the sense that the security notion we put forth there, although
mathematically viable, does not correspond to any real attack in a practical set-
ting. (This is because identification is an on-line activity, unlike signature verifi-
cation; one cannot return to the past and try to identify oneself.) But this does
not matter in our setting, because for us, the ID scheme is simply a convenient
abstraction that enables our construction of a forward secure signature scheme,
and the latter is a real and useful object.

Our goal here has been to present the simplest possible scheme that has
the forward security property, is reasonably efficient, and can be proven secure.
Improvements and alternatives seem possible. In particular one could try to
build a scheme only in the Ong-Schnorr style (rather than a combination of that
with Fiat-Shamir as we do). This will reduce key sizes, but increase computation
time, and the analysis (one could try to extend [19]) seems more involved.

A note on synchronization. One might imagine that a scheme using time
periods in the way we do will impose a requirement for clock synchronization,
arising from disagreements near the time period boundaries over what is truly
the current time. However, in our signature scheme, discrepancies over time
periods do not cause problems. This is due to the fact that the time period in
which the message was signed is stamped on the message, and the verifier looks
at this stamp to determine which verification process to use. That is, it doesn’t
matter what the time period of verification is; the signature is verified using the
information from the time period when the signature actually occurred.

2 Some Simple Solutions

We summarize several simple ways to design a forward secure signature scheme.
The first three methods result in impractical schemes: some parameter (the
public key size, the secret key size, or the signature size) grows linearly with the
number T of time periods over which the public key is supposed to be valid. The



436 M. Bellare, S.K. Miner

methods are nonetheless worth a brief look in order to better understand the
problem and to lead into the fourth method. The latter, which we call the tree
scheme, is a reasonable binary certification tree based solution in which key and
signature sizes are logarithmic in T . Nonetheless it would be preferable if even
this dependency is avoided, which is accomplished by our main scheme presented
in Section 3.

In the following we make use of some fixed standard digital signature scheme
whose signing and verifying algorithms are denoted SGN and VF respectively.

Long public and secret keys. The signer generates T pairs (p1, s1), . . . ,
(pT , sT ) of matching public and secret keys for the standard scheme. He sets
the public key of the key evolving scheme to (p1, . . . , pT ) and his starting (base)
secret key for the key evolving scheme to (s0 , s1, . . . , sT ) where s0 is the empty
string. Upon entering period j the signer deletes sj−1, so that he is left with
key (sj , . . . , sT ). The signature of a message m in period j is 〈j, SGNsj(m)〉. A
signature 〈j, ζ〉 on a message m is verified by checking that VFpj (m, ζ) = 1. This
method clearly provides forward security, but the size of the keys (both public
and secret) of the key evolving scheme depends on T , which is not desirable.

Long secret key only. Andersen [1] suggested the following variant which re-
sults in a short public key but still has a secret key of size proportional to T . Gen-
erate T key-pairs as above, and an additional pair (p, s). Let σj = SGNs(j‖pj)
be a signature (with respect to p) of the value j together with the j-th public
key, for j = 1, . . . , T . This done, delete s. The public key of the key evolving
scheme is p, and the signer’s starting (base) secret key for the key evolving
scheme is (s0, σ0, s1, σ1, . . . , sT , σT ) where s0, σ0 are set to the empty string.
Upon entering period j the signer deletes sj−1, σj−1, so that he is left with
secret key (sj , σj, . . . , sT , σT ). The signature of a message m in period j is
〈j, (SGNsj(m), pj , σj)〉. A signature 〈j, (α, q, σ)〉 on a message m is verified by
checking that VFq(m, α) = 1 and VFp(j‖q, σ) = 1. This method, like the above,
clearly provides forward security. (Notice that it is crucial for the forward se-
curity that s be deleted as soon as the signatures of the subkeys have been
generated.) Furthermore the public key has size independent of T . But the size
of the secret key still depends on T .

Long signatures. The size of both the public and the secret key can be kept
small by using certification chains, but this results in large signatures. The signer
begins by generating a key pair (p0, s0) of the standard scheme. He sets the public
key of the key evolving scheme to p0 and the starting (base) secret key of the
key evolving scheme to s0 . At each period a new key is generated and certified
with respect to the previous key, which is then deleted. The certificate chain is
included in the signature. To illustrate, at the start of period 1 the signer creates
a new key pair (p1, s1), sets σ1 = SGNs0(1‖p1), and deletes s0. The signature of a
message m in period 1 is 〈1, (SGNs1(m), p1, σ1)〉. A signature 〈1, (α, q1, τ1)〉 on a
message m is verified by checking that VFq1(m, α) = 1 and VFp0 (1‖q1, τ1) = 1.
This continues iteratively, so that at the start of period j ≥ 2 the signer, in
possession of p1, σ1, . . . , pj−1, σj−1 and the secret key sj−1 of the previous period,



A Forward-Secure Digital Signature Scheme 437

creates a new key pair (pj , sj), sets σj = SGNsj−1 (j‖pj), and deletes sj−1. The
signature of a message m in period j is 〈j, (SGNsj (m), p1, σ1, . . . , pj, σj)〉. A
signature 〈j, (α, q1, τ1, . . . , qj, τj)〉 on a message m is verified by checking that
VFqj (m, α) = 1 and VFqi−1 (i‖qi, τi) = 1 for i = 2, . . . , j and VFp0 (1‖q1, τ1) = 1.
Again, forward security is clearly provided. Furthermore both the public and the
secret key are of size independent of T . But the size of a signature grows linearly
with T . Also note that although the size of the signer’s secret key has shrunk,
the signer does have to store the list of public keys and their tags, which means
it must use storage linear in T , which is not desirable.

Binary certification tree scheme. Andersen’s scheme above can be viewed
as building a certification tree of depth 1 and arity T , while the “long signature”
solution just presented builds a standard certification chain, which is a tree of
depth T and arity 1. Signature size is linear in the depth, and key size is linear
in the arity. It is natural to form a “hybrid” scheme so as to get the best possible
tradeoff between these sizes. Namely we use a binary tree with T leaves. Each
key certifies its two children keys. The leaf keys are the actual message signing
keys, one for each period, and the root public key is the public key of the key
evolving scheme. The tree grows down from the root in a specific manner, with
nodes being created dynamically. A node certifies its two children, and as soon
as the two children nodes are created and certified, the secret key corresponding
to the parent node is deleted. Appropriately done this results in a forward secure
scheme with secret key size and signature size linear in lg(T ), and fixed public
key size. Furthermore the total amount of information (whether secret or not)
stored at any time by the signer, and the computation time for key updates, are
linear in lg(T ).

One has to be a little careful to build the tree in the right way and delete
keys at the right times, so let us give a few more details. For simplicity assume
T = 2τ is a power of two. Imagine a binary tree with T leaves. The root is at
level 0 and the leaves are at level τ . The root is labeled with the empty string
ε, and if a node has label the binary string w then its left child is labeled w0
and its right child is labeled w1. Associate to a node with label w a key pair
(p[w], s[w]). (The entire tree never exists at any time, but is useful to imagine.)
The public key of the key evolving scheme is p[ε]. Let 〈i, n〉 denote the binary
representation of the integer i− 1 as a string of exactly n bits.

In period j ≥ 1 the signer signs data under s[〈j, τ〉], and attaches a certifi-
cation chain based on the path from leaf 〈j, τ〉 to the root of the tree. During
period j, a certain subtree T of the full tree exists. It consists of all nodes on
the path from leaf 〈j, τ〉 to the root, plus the right sibling of any of these nodes
that is a left child of its parent. All childless nodes w in the subtree that are
right children of their parents have their secret key s[w] still attached; for all
other nodes, it has been deleted. Notice that if a node w has s[w] still “alive,” its
descendent leaves have names 〈i, τ〉 with i > j, so correspond to future periods.
When the signer enters period j + 1 (here j < T ) it must update its subtree.
This involves (possibly) creation of new nodes, and deletion of old ones in such
a way that the property of the subtree described above is preserved. The signer



438 M. Bellare, S.K. Miner

moves up from 〈j, τ〉 (deleting this leaf node and its keys) and stops at the first
node whose left (rather than right) child is on the path from 〈j, τ〉 to the root.
Call this node w. We know that the secret key of its right child w1 is alive. If
w1 is a leaf, the update is complete. Else, create its children by picking new key
pairs for each child, and delete the secret key at w. Then move left, and continue
this process until a leaf is reached.

One can show that the scheme has the desired properties.

3 Our Forward-Secure Signature Scheme

Keys and key generation. The signer’s public key contains a modulus N
and l points U1, . . . , Ul in Z∗

N . The corresponding base secret key SK 0 contains
points S1, . . . , Sl in Z∗

N , where Sj is a 2T+1-th root of Uj for j = 1, . . . , T . The
signer generates the keys by running the following key generation process, which
takes as input the security parameter k determining the size of N , the number l
of points in the keys, and the number T of time periods over which the scheme
is to operate.

Algorithm KG(k, l, T )
Pick random, distinct k/2 bit primes p, q, each congruent to 3 mod 4
N ← pq

For i = 1, . . . , l do Si
R← Z∗

N ; Ui ← S2(T+1)

i mod N EndFor
SK 0 ← (N, T, 0, S1,0, . . . , Sl,0) ; PK ← (N, T, U1, . . . , Ul)
Return (PK , SK 0)

As the code indicates, the keys contain some sundry information in addition to
that mentioned above. Specifically the number T of time periods is thrown into
the public key. This enables the verifier to know its value, which might vary
with different signers. It is also thrown into the secret key for convenience, as
is the modulus N . The third component of the base secret key, namely “0”, is
there simply to indicate that this is the base key, in light of the fact that the
key will be evolving later. The modulus is a Blum-Williams integer, meaning the
product of two distinct primes each congruent to 3 mod 4. We refer to Ui as the
i-th component of the public key.

The public key PK is treated like that of any ordinary signature scheme as
far as registration, certification and key generation are concerenced. The base
secret key SK 0 is stored privately. The factors p, q of N are deleted once the key
generation process is complete, so that they are not available to an attacker that
might later break into the system on which the secret key is stored.

Key evolution. During time period j, the signer signs using key SK j. This
key is generated at the start of period j, by applying a key update algorithm
to the key SK j−1. (The latter is the base secret key when j = 1.) The update
algorithm is presented below. It squares the l points of the secret key at the
previous stage to get the secret key at the next stage.



A Forward-Secure Digital Signature Scheme 439

Algorithm Upd(SK j−1, j) where SK j−1 = (N, T, j − 1, S1,j−1, . . . , Sl,j−1)
For i = 1, . . . , l do Si,j ← S2

i,j−1 mod N EndFor
SK j ← (N, T, j, S1,j, . . . , Sl,j)
Return SK j

Once this update is performed, the signer deletes the key SK j−1. Since squaring
modulo N is a one-way function when the factorization of N is unknown, it
is computationally infeasible to recover SK j−1 from SK j. Thus key exposure
during period j will yield to an attacker the current key (and also future keys)
but not past keys. We refer to Si,j as the i-th component of the period j secret
key. Notice that the components of the secret key for period j are related to
those of the base key as follows:

(S1,j, . . . , Sl,j) = (S2j

1,0, . . . , S
2j

l,0) . (1)

We will use this later.
The length of a time period (during which a specific key is in use) is assumed

to be globally known. The choice depends on the application and desired level
of protection against key exposure; it could vary from seconds to days.

Signing. Signature generation during period j is done via the following al-
gorithm, which takes as input the secret key SK j of the current period, the
message M to be signed, and the value j of the period itself, to return a sig-
nature 〈j, (Y, Z)〉, where Y, Z are values in Z∗

N . The signer first generates the
“committment” Y , and then hashes Y and the message M via a public hash
function H : {0, 1}∗ → {0, 1}l to get an l-bit “challenge” c = c1 . . . cl which is
viewed as selecting a subset of the components of the public key. The signer then
computes a 2T+1−j-th root of the product of the public key components in the
selected subset, and multiplies this by a 2T+1−j-th root of Y to get the value Z.
This is detailed in the signing algorithm below.

Algorithm SgnH
SK j

(M, j) where SK j = (N, T, j, S1,j, ...Sl,j)
R

R← Z∗
N ; Y ← R2(T+1−j)

mod N ; c1 . . . cl ← H(j, Y, M)
Z ← R ·

∏l
i=1 Sci

i,j mod N

Output 〈j, (Y, Z)〉

Thus, in the first time period, the signer is computing 2T -th roots; in the second
time period, 2T−1-th roots; and so on, until the last time period, where it is
simply computing square roots. Notice that in the last time period, we simply
have the Fiat-Shamir signature scheme. (The components of the secret key SK T

are square roots of the corresponding components of the public key.) The hash
function H : {0, 1}∗ → {0, 1}l will be assumed in the security analysis to be a
random oracle.

Notice that the index j of the period during which the signature was gener-
ated is part of the signature itself. This provides some sort of “time-stamp”, or
claimed time-stamp, and is a crucial element of the scheme and model, since secu-
rity will pertain to the ability to generate signatures having such “time-stamps”
with value earlier than the current date.



440 M. Bellare, S.K. Miner

Verifying. Verification of a candidate signature 〈j, (Y, Z)〉 for a given message
M with respect to a given public key PK is performed via the following process:

Algorithm Vf H
PK (M, 〈j, (Y, Z)〉 where PK = (N, T, U1 , ..., Ul)

c1 . . . cl ← H(j, Y, M)
If Z2(T+1−j)

= Y ·
∏l

i=1 U ci

i mod N Then return 1 Else return 0

Note the verification process depends on the claimed “time-stamp” or period
indicator j in the signature, meaning that the period j too is authenticated.

The signature scheme is fully specified by the above four algorithms. We let
FSIG[k, l, T ] denote our scheme when the parameters are fixed as indicated.

Cost. The scheme FSIG is quite efficient. Signing in period j takes T +1−j+l/2
multiplicationsmodulo N on the average. (So the worst case cost does not exceed
T + 1 + l multiplications, and in fact the scheme gets faster as time progresses.)
For typical values of the parameters, this can be less than the cost of a single
exponentiation, making signing cheaper than in RSA based schemes. Verification
has the same cost as signing. (We ignore the cost of hashing, which is lower than
that of the modular arithmatic.)

Like the Fiat-Shamir scheme, however, the key sizes are relatively large,
being proportional to l. The size of the public key can be reduced by having
its components U1, . . . , Ul specified implicitly rather than explicitly, as values
of a random-oracle hash funcion on some fixed points. That is, the signer can
choose some random constant U , say 128 bits long, and then specify small values
a1, . . . , al such that H∗(U, ai) is a square modulo N , where H∗ is a hash function
with range Z∗

N . The public key is now (N, T, U, a1, . . . , al). Since N is a Blum-
Williams integer, the signer can then compute a 2T+1-th root of ui = H(U, ai),
and thereby have a secret key relating to the public key in the same way as
before. The average size of the list a1, . . . , al is very small, about O(l lg(l)) bits.
Unfortunately it is not possible to similarly shrink the size of the secret key
in this scheme, but moving to post-Fiat-Shamir identification-derived signature
schemes, one can get shorter keys.

Validity of genuine signatures. Before we discuss security, we should check
that signatures generated by the signing process will always be accepted by the
verification process.

Proposition 1. Let PK = (N, T, U1, . . . , Ul) and SK 0 = (N, T, 0, S1,0, . . . , Sl,0)
be a key pair generated by the above key generation algorithm. Let 〈j, (Y, Z)〉 be
an output of SgnH

PK (M, j). Then Vf PK (M, 〈j, (Y, Z)〉) = 1.

Proof: Let c1 . . . cl ← H(j, Y, M). We check that Z2(T+1−j)
= Y ·

∏l
i=1 U ci

i mod
N using Equation (1) and the fact that the signature was correctly generated:

Z2(T+1−j)
=

(
R ·

∏l
i=1S

ci

i,j

)2(T+1−j)

mod N

= R2(T+1−j) ·
∏l

i=1S
ci·2j+(T+1−j)

i,0 mod N



A Forward-Secure Digital Signature Scheme 441

= Y ·
∏l

i=1S
ci·2(T+1)

i,0 mod N

= Y ·
∏l

i=1U
ci

i mod N ,

as desired.

Security model. We wish to assess the forward security of our scheme. To
do this effectively we must first pin down an appropriate model; what can the
adversary do, and when is it declared successful?

Recall the goal is that even under exposure of the current secret key it should
be computationally infeasible for an adversary to forge a signature “with respect
to” a previous secret key. The possibility of key exposure is modeled by allowing
the adversary a “break-in” move, during which it can obtain the secret key SK j of
the current period j. The adversary is then considered successful if it can create a
valid forgery where the signature has the form 〈i, (Y, M)〉 for some i < j, meaning
is dated for a previous time period. The model is further augmented to allow
the adversary a chosen-message attack prior to its break-in. In that phase, the
adversary gets to obtain genuine signatures of messages of its choice, under the
keys SK 1, SK 2, . . . in order, modeling the creation of genuine signatures under
the key evolution process. The adversary stops the chosen-message attack phase
at a point of its choice and then gets to break-in. Throughout the adversary is
allowed oracle access to the hash function H since the latter is modeled as a
random oracle.

Thus the adversary F is viewed as functioning in three stages: the chosen
message attack phase (cma); the break-in phase (breakin); and the forgery phase
(forge). Its success probability in breaking FSIG[k, l, T ] is evaluated by the fol-
lowing experiment:

Experiment F-Forge(FSIG[k, l, T ], F )
Select H : {0, 1}∗→ {0, 1}l at random
(PK , SK 0)

R← KG(k, l, T )
i← 0
Repeat

j ← j + 1 ; SK j ← Upd(SK j−1, j) ; d← F
H,SgnH

SKj
(·,j)(cma, PK )

Until (d = breakin) or (j = T )
(M, 〈b, ζ〉)← F H(forge, SK j)
If Vf H

PK (M, 〈b, ζ〉)=1 and 1≤b<j andM was not queried of SgnSK b
(·, b)

then return 1 else return 0

It is understood above that in running F we first pick and fix coins for it,
and also that we preserve its state across its various invocations. The chosen-
message attack reflects the way the signature scheme is used. The adversary first
gets access to an oracle for generating signatures under SK 1. It queries this as
often as it wants, and indicates it is done by outputting some value d. As long
as d is not the special value breakin, we move into the next stage, providing
the adversary an oracle for signing under the next key. Note that the process is



442 M. Bellare, S.K. Miner

strictly ordered; once an adversary gives up the oracle for signing under SK j, by
moving into the next phase or breaking-in, it cannot obtain access to that oracle
again. At some point the adversary decides to use its break-in privilege, and is
returned the key SK j of the stage in which it did this. (If it does not break-in
by the last period, we give it the key of that period by default.) It will now try
to forge signatures under SK b for some b < j and is declared successful if the
signature is valid and the message is new.

Following the concrete security paradigm used in [4], we associate to the
scheme an insecurity function whose value is the maximum probability of be-
ing able to break the scheme, the maximum being over all adversary strategies
restricted to resource bounds specified as arguments to the insecurity function.
To make this precise we begin by letting Succfwsig(FSIG[k, l, T ], F ) denote the
probability that the above experiment returns 1. (This is the probability that
the adversary F is successful in breaking FSIG in the forward security sense.)
Then the insecurity function is defined as

InSecfwsig(FSIG[k, l, T ]; t, qsig, qhash) = max
F
{ Succfwsig(FSIG[k, l, T ], F )} .

The maximum here is over all F for which the following are true; the execution
time of the above experiment, plus the size of the code of F , is at most t; F
makes a total of at most qsig queries to the signing oracles across all the stages;
the total number of queries made to H in the execution of the experiment is at
most qhash.

Note the execution time is not just that of F but rather that of the entire ex-
periment F-Forge(FSIG[k, l, T ], F ), so includes in particular the time to compute
answers to oracle queries. The time to pick the hash function H is also included,
measured dynamically by counting the time to reply to each hash oracle query
by picking the response randomly at the time the query is made. Similarly, qhash

is the number of H queries in the experiment, not just the number made explic-
itly by F , so that it includes the H queries made by the signing and verifying
algorithms. In particular, qhash is always at least one due to the hash query made
in the verification of the forgery.

The smaller the value taken by the insecurity function, the more secure the
scheme. Our goal will be to upper bound the values taken by this insecurity
function.

Factoring. We will prove the security of our scheme by upper bounding its
insecurity as a function of the probability of being able to factor the underlying
modulus in time related to the insecurity parameters. To capture this, let Fct(·)
be any algorithm that on input a number N , product of two primes, attempts
to return its prime factors, and consider the experiment:

Experiment Factor(k, Fct)
Pick random, distinct k/2 bit primes p, q, each congruent to 3 mod 4
N ← pq
p′, q′ ← Fct(N)
If p′q′ = N and p′ 6= 1 and q′ 6= 1 then return 1 else return 0



A Forward-Secure Digital Signature Scheme 443

Let Succfac(Fct, k) denote the probability that the above experiment returns 1.
Let InSecfac(k, t) denote the maximum value of Succfac(k, Fct) over all algo-
rithms Fct for which the running time of the above experiment plus the size of
the description of Fct is at most t. This represents the maximum probability of
being able to factor a k-bit Blum-Williams integer in time t. We assume factor-
ing is hard, meaning InSecfac(k, t) is very low as long as t is below the running
time of the best known factoring algorithm, namely about 21.9k1/3 lg(k)2/3

.

Security of our signature scheme. We are able to prove that as long as
the problem of factoring Blum-Williams integers is computationally intractable,
it is computationally infeasible to break the forward security of our signature
scheme. The following theorem provides a precise, quantitative statement, upper
bounding the forward insecurity of our scheme as a function of the insecurity of
factoring.

Theorem 1. Let FSIG[k, l, T ] represent our key evolving signature scheme with
parameters modulus size k, hash function output length l, and number of time
periods T . Then for any t, any qsig, and any qhash ≥ 1

InSecfwsig(FSIG[k, l, T ]; t, qsig, qhash)

≤ qhash · T ·
[
2−l +

√
2lT · InSecfac(k, t′)

]
+

qsig · qhash

2k
,

where t′ = 2t + O(k3 + k2l lg(T )).

The security parameter k must be chosen large enough that the InSecfac(k, t′)
(the probability of being able to factor the modulus in time t′) is very low.
The theorem then tells us that the probability of being able to compromise the
forward security of the signature scheme is also low.

The theorem above proves the security of the scheme in a qualitative sense:
certainly it implies that polynomial time adversaries have negligible advantage,
which is the usual complexity based goal. However it also provides the concrete,
or exact security, via the concrete indicated bound. In this case however, we know
no attacks achieving a success matching our bound, and suspect our bound is not
tight. Perhaps the concrete security can be improved, particularly with regard
to the qhash · T multiplicative factor.

The proof of this theorem is in two steps. Section 4 makes explicit an identi-
fication scheme that underlies the above signature scheme, and Lemma 1 shows
that this identification scheme is forward secure as long as factoring is hard.
Section 5 relates the forward security of our signature scheme to that of the
identification scheme via Lemma 2. Putting these two lemmas together easily
yields Theorem 1. We now turn to the lemmas.

4 Our Forward-Secure Identification Scheme

Forward-secure identification. We consider the standard framework for a
public-key based identification protocol. The prover is in possession of secret key



444 M. Bellare, S.K. Miner

SK 0, while both the prover and the verifier are in possession of the corresponding
public key PK . The prover wants to identify herself interactively to the verifier. A
standard three-pass protocol will be used, consisting of a “commitment” Y from
the prover, followed by a challenge c from the verifier, and finally an “answer”
Z from the prover. The standard security concern is that an adversary (not in
possession of the secret key) be able to identify itself to the prover under the
public key PK of the legitimate prover.

We extend the setting to allow evolution of the secret key, enabling us to
consider forward security. Thus the time over which the public key is valid is di-
vided into T periods, and in period j the prover identifies itself using a secret key
SK j. The public key remains fixed, but the protocol and verification procedure
depend on j, which takes the value of the current period, a value that all parties
are agreed upon. Forward security means that an adversary in possession of SK j

should still find it computationally infeasible to identify itself to the verifier in
a time period i previous to j.

This security measure having been stated should, however, at once create
some puzzlement. Identification is an “on-line” activity. More specifically, verifi-
cation is an on-line, one-time action. Once period i is over, there is no practical
meaning to the idea of identifying oneself in period i; one cannot go back in time.
So forward security is not a real security concern or attribute in identification.
So why consider it? For us, forward-secure identification is only a convenient
mathematical game or abstraction based on which we can analyze the forward
security of our signature scheme. (And forward security of the signature scheme
is certainly a real concern: the difference with identification is that for signatures
verification can take place by anyone at any time after the signature is created.)

In other words, we can certainly define and consider a mathematically (if not
practically) meaningful notion of forward security of an identification scheme,
and analyze a scheme with regard to meeting this property. That is what we do
here, for the purpose of proving Theorem 1.

The scheme. Keys (both public and secret) are identical to those of our signa-
ture scheme, and are generated by the same procedure KG that we described in
Section 3, so that at the start of the game the prover is in possession of the base
secret key SK 0. The public key PK is assumed to be in possession of the verifier.
At the start of period j (1 ≤ j ≤ T ) the prover begins by updating the previ-
ous secret key SK j−1 to the new secret key SK j that she will use in period j.
This process is done by the same update algorithm as for the signature scheme,
specified in Section 3. The update having been performed, the key SK j−1 is
deleted. During period j, the prover and verifier may engage in any number of
identification protocols with each other, as need dictates. In these protocols, it is
assumed both parties are aware of the value j indicating the current period. The
prover uses key SK j to identify herself. We depict in Figure 2 the identification
protocol in period j, showing the steps taken by both the prover and the verifier.

The identification scheme is fully specified by key generation algorithm,
key update algorithm, and the proving and verifying algorithms that underly



A Forward-Secure Digital Signature Scheme 445

Prover Verifier

Has : SK j = (N,T, j, S1,j , . . . , Sl,j) Has : PK = (N, T, U1, . . . , Ul) and j

R
R← Z∗

N ; Y ← R2(T+1−j)
mod N

Y -

c1 . . . cl
R← {0, 1}l

c1 . . . cl�

Z ← R ·∏l

i=1
S

ci
i,j mod N

Z -
If Z2(T+1−j)

= Y ·∏l

i=1
Uci

i mod N

then accept else reject

Fig. 2. Forward secure ID scheme: The protocol executed in period j. The prover

has the secret key SK j for period j and the verifier has the base public key PK and

the value of j.

Figure 2. We let FID[k, l, T ] denote our identification scheme when the parame-
ters are fixed as indicated.

It should of course be the case that when the prover is honest, the verifier
accepts. The proof of this is just like the proof of Proposition 1, the analogous
issue for the signature scheme.

As should be clear from the identification protocol of Figure 2, the sign-
ing procedure under key SK j that we defined in Section 3 is closely related to
the identification protocol in period j: the former is derived from the latter by
the standard process of specifying the challenge c via the value of a hash func-
tion on the message M and the commitment Y . This connection enables us to
break the security analysis of the signature scheme into two parts; a forward-
security analysis of the identification scheme, and an analysis of the preservation
of forward-security of the “challenge hash” paradigm. This section is devoted to
the first issue. We begin with the model.

Security model. The adversary in an identification scheme is called an imper-
sonator and is denoted I. It knows the public key PK of the legitimate prover,
and the current period j. We view I as functioning in two stages: the break-in
phase (breakin) and the impersonation phase (imp). Its success probability in
breaking FID is determined by the following experiment:

Experiment F-Impersonate(FID[k, l, T ], I)
(PK , SK 0)

R← KG(k, l, T )
b← I(breakin, PK )
For j = 1, . . . , b do SK j ← Upd(SK j−1, j) ; j ← j + 1 EndFor

Y, j ← I(imp, SK b) ; c1 . . . cl
R← {0, 1}l ; Z ← I(c1 . . . cl)

If Z2(T+1−j)
= Y ·

∏l
i=1 U ci

i mod N and j < b
then return 1 else return 0



446 M. Bellare, S.K. Miner

In the break-in phase the adversary returns a time period b ∈ {1, . . . , T} as
a break-in time, as a function of the public key. It will be returned the corre-
sponding secret key SK b, and now will try to successfully identify itself relative
to some period j < b of its choice. Here it will try to impersonate the prover, so
first chooses some commitment value Y . Upon being given the random challenge
c1 . . . cl from the verifier, it returns an answer Z. It is considered successful if
the verifier accepts the answer. Above, Ui is the i-th component of the public
key PK . We let Succfwid(FID[k, l, T ], I) denote the probability that the above
experiment returns 1 and then let

InSecfwid(FID[k, l, T ]; t) = max
I
{ Succfwid(FID[k, l, T ], I) } ,

the maximum being over all I that for which the execution time of the above
experiment, plus the size of the code of F , is at most t. As usual, the smaller
the value taken by the insecurity function, the more secure the scheme. Our goal
will be to upper bound the values taken by this insecurity function.

Notice that our model does not allow the adversary to first play the role of a
cheating verifier, as does the standard model of identification. The reason is that
we are only interested in applying this to the signature scheme, and there the
challenge, being the output of the hash function, will be random, corresponding
to an honest verifier. So it suffices to consider an honest verifier here.

Security of our identification scheme. Next, we prove the the security
of our identification scheme by showing that breaking the forward security of
our identification scheme is hard as long as the problem of factoring a Blum-
Williams integer into its two prime factors is hard. The following lemma states
a result which implies this:

Lemma 1. Let FID[k, l, T ] represent our key evolving identification scheme with
modulus size k, challenge length l, and number of time periods T . Then for any
t

InSecfwid(FID[k, l, T ]; t)≤ 2−l +
√

2lT · InSecfac(k, t′) ,

where t′ = 2t + O(k3 + k2l lg(T )).

The first term in the bound represents the probability that the impersonator
guesses the verifier’s challenge, in which case it can of course succeed. The second
term rules out any other attacks that are very different from simply trying to
factor the modulus. The proof of Lemma 1 is omitted due to lack of space, and
can be found in the full version of this paper [2] which is available on the web.

5 From Identification to Signatures

As we have noted, our signature scheme is derived from our identification scheme
in the standard way, namely by having the signer specify the challenge c as a
hash of the message M and commitment Y . In the standard setting we know that



A Forward-Secure Digital Signature Scheme 447

this paradigm works, in the sense that if the identification scheme is secure then
so is the signature scheme [17,15]. However we are not in the standard setting;
we are considering an additional security property, namely forward security.
The previous results do not address this. It turns out however that the hashing
paradigm continues to work in the presence of forward security, in the following
sense: if the identification scheme is forward secure, so is the derived signature
scheme. This is a consequence of the following lemma:

Lemma 2. Let FID[k, l, T ] and FSIG[k, l, T ] represent, respectively our key evolv-
ing identification scheme and our key evolving signature scheme, with parameters
k, l, T . Then for any t, any qsig, and any qhash ≥ 1

InSecfwsig(FSIG[k, l, T ]; t, qsig, qhash)≤qhash ·T ·InSecfwid(FID, t′)+
qsig · qhash

2k
,

where t′ = t + O(k2l lg(T )).

The lemma says that if the forward insecurity of the identification scheme is
small, so is that of the signature scheme. Combining Lemmas 2 and 1 proves
Theorem 1, the main theorem saying our signature scheme is forward secure.
The proof of Lemma 2 is omitted due to lack of space, and can be found in the
full version of this paper [2] which is available on the web.

Acknowledgments

We thank the Crypto 98 program committee and Michel Abdalla for their com-
ments, and Victor Shoup for helpful discussions. Mihir Bellare was supported in
part by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation
Fellowship in Science and Engineering. Sara Miner was supported in part by
a National Physical Sciences Consortium Fellowship and the above-mentioned
grants of Bellare.

References

1. R. Anderson, Invited lecture, Fourth Annual Conference on Computer and Com-
munications Security, ACM, 1997.

2. M. Bellare and S. Miner, “A forward-secure digital signature scheme,” Full
version of this paper, available via http://www-cse.ucsd.edu/users/mihir.

3. M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for
designing efficient protocols,” Proceedings of the First Annual Conference on Com-
puter and Communications Security , ACM, 1993.

4. M. Bellare and P. Rogaway, “The exact security of digital signatures: How to
sign with RSA and Rabin,” Advances in Cryptology – Eurocrypt 96 Proceedings,
Lec. Notes in Comp. Sci. Vol. 1070, U. Maurer ed., Springer-Verlag, 1996.

5. G. R. Blakley, “Safeguarding cryptographic keys.” Proceedings of AFIPS 1979
National Computer Conference, AFIPS, 1979.

6. L. Blum, M. Blum and M. Shub, “A simple unpredictable pseudo-random num-
ber generator,” SIAM Journal on Computing Vol. 15, No. 2, 364-383, May 1986.



448 M. Bellare, S.K. Miner

7. Y. Desmedt and Y. Frankel, “Threshold cryptosystems.” Advances in Cryp-
tology – Crypto 89 Proceedings, Lec. Notes in Comp. Sci. Vol. 435, G. Brassard
ed., Springer-Verlag, 1989.

8. W. Diffie, P. van Oorschot and M. Wiener, “Authentication and authenti-
cated key exchanges,” Designs, Codes and Cryptography, 2, 107–125 (1992).

9. U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,” J. of
Cryptology, 1(1988), 77-94.

10. A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identifica-
tion and signature problems,” Advances in Cryptology – Crypto 86 Proceedings,
Lec. Notes in Comp. Sci. Vol. 263, A. Odlyzko ed., Springer-Verlag, 1986.

11. S. Goldwasser, S. Micali and R. Rivest, “A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM Journal of Computing, Vol. 17,
No. 2, pp. 281–308, April 1988.

12. C. Günther, “An identity-based key-exchange protocol,” Advances in Cryptology
– Eurocrypt 89 Proceedings, Lec. Notes in Comp. Sci. Vol. 434, J-J. Quisquater,
J. Vandewille ed., Springer-Verlag, 1989.

13. S. Haber and W. Stornetta, “How to Time-Stamp a Digital Document,” Ad-
vances in Cryptology – Crypto 90 Proceedings, Lec. Notes in Comp. Sci. Vol. 537,
A. J. Menezes and S. Vanstone ed., Springer-Verlag, 1990.

14. A Herzberg, M. Jakobsson, S .Jarecki, H Krawczyk and M. Yung, “Proac-
tive public key and signature schemes,” Proceedings of the Fourth Annual Con-
ference on Computer and Communications Security, ACM, 1997.

15. K. Ohta and T. Okamoto. “On concrete security treatment of signatures de-
rived from identification,” Advances in Cryptology – Crypto 98 Proceedings, Lec.
Notes in Comp. Sci. Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

16. H. Ong and C. Schnorr, “Fast signature generation with a Fiat-Shamir like
scheme,” Advances in Cryptology – Eurocrypt 90 Proceedings, Lec. Notes in
Comp. Sci. Vol. 473, I. Damg̊ard ed., Springer-Verlag, 1990.

17. D. Pointcheval and J. Stern, “Security proofs for signature schemes,” Ad-
vances in Cryptology – Eurocrypt 96 Proceedings, Lec. Notes in Comp. Sci.
Vol. 1070, U. Maurer ed., Springer-Verlag, 1996.

18. A. Shamir, “How to share a secret,” Communications of the ACM, 22(1979),
612-613.

19. V. Shoup, “On the security of a practical identification scheme,” Advances in
Cryptology – Eurocrypt 96 Proceedings, Lec. Notes in Comp. Sci. Vol. 1070,
U. Maurer ed., Springer-Verlag, 1996.

20. H. Williams, “A Modification of the RSA Public-key Encryption Procedure,”
IEEE Transactions on Information Theory, Vol. IT-26, No. 6, 1980, pp. 726–729.


	Introduction
	The Key Exposure Problem
	Forward Secure Signatures
	Construction of a Forward Secure Digital Signature Scheme

	Some Simple Solutions
	Our Forward-Secure Signature Scheme
	Our Forward-Secure Identification Scheme
	From Identification to Signatures

