
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Optimal Point Set Partitioning using Rigid Motion Star Placement ∗

Prosenjit Bose† Jason Morrison‡

Abstract

We consider the problem of determining the placement
of a star R on a set P of n points in the plane such that a
given objective function is maximized. A star R is a set
of m rays {r1, . . . , rm} in R2, emanating from a point p
such that the angle between two consecutive rays is 2π

m .
A cone defined by two consecutive rays is c-occupied if
it contains at least c points of P. Our main result is
an O(n3m2) expected time (and O(n3m2 log nm) deter-
ministic time) algorithm to find the rigid motion place-
ment of R that maximizes the number of c-occupied
cones. We then show how this technique can be ex-
tended to solve several other optimization problems.

1 Introduction

Given a set of n points in the plane, how do you par-
tition the plane into m equal sized regions such that
the number of points in each region (or some other cri-
terion) is optimized? In this paper, we show how to
find a point in the plane such that equal angle sub-
divisions around it induce a partitioning of the points
that maximizes the minimum number of points in any
given subdivision. Our algorithm runs in O(n3m2) ex-
pected time (and O(n3m2 log mn) deterministic time).
Furthermore the solution technique applies to a variety
of other optimization criteria specified in Section 2.

The inspiration for describing and solving this family
of problems comes from other problems that partition
pointsets in the plane using equal sized buckets. Two
such problems include the uniform projection problem
involves partitioning a point set with m equal width
parallel strips and its extension to optimally partition
using a rectangular grid of two overlapping, orthogonal
sets of strips. Results culminated in subquadratic time
algorithms by Agarwal et al. [1] with algorithms for
specific values of m and output sensitivity.

The problems solved here generalize to m partitions
work done by Bose et al. [4], which partitions with
m = 3 using a structure referred to as “claws”. The
running time of their algorithm was later improved from
O(n log n) to linear by Steiger and Streinu [10]. The idea

∗Research supported in part by NSERC
†School of Computer Science, Carleton University, Ottawa,

Canada, jit@scs.carleton.ca
‡Biosystems Engineering, University of Manitoba, Winnipeg,

Canada, jason morrison@umanitoba.ca

r1

r2

r3r4

r5

Figure 1: A star with 5 rays

of claws was also used by Bespamyatnikh et al.[3] who
studied a generalization of ham-sandwich type prob-
lems. Our solutions to the general problem lack some
of the simplicity that exists in solutions for small val-
ues of m, but this may be a reflection of the underlying
complexity of the problem for general m.

2 Problem Specification

Rigid motion placements of a geometric object are de-
fined by Chazelle [6] to be the placements of a geomet-
ric object using any translation or rotation. The prob-
lems we analyze here involve the partitioning of a point
set P by a rigid motion placement of a star R, here-
after referred to simply as placements. The star R is a
collection of m rays {r1, r2, . . . , rm} sharing a common
endpoint, called its origin, and ordered in a clockwise
direction around the origin (see Fig. 1). For simplicity
we assume that the rays are spaced at equal angles, but
with minor modifications all results can be applied to
the general case. Given a placement of a star R we de-
fine a set of m cones {C1, C2, . . . , Cm} such that Ci is
the region bounded by (ri, ri+1) and includes ri (note
that rm+1 = r1). The occupancy of R is the number
of cones in R that contain at least one point, and the
c-occupancy of R is the number of cones containing at
least c points. Assuming the previous definitions this
paper solves the following problems:

Problem 1 Find a placement of R that maximizes the
occupancy of R.

Problem 2 Given a fixed integer c, find a placement of
R that minimizes or maximizes the c-occupancy of R.

Problem 3 Given a fixed integer c find a placement of
R (if one exists) such that no cone of R is c-occupied.

19th Canadian Conference on Computational Geometry, 2007

Problem 4 Find the smallest integer c such that there
exists a placement of R where no cone is c-occupied.

Problem 5 Given a fixed integer k, find the largest in-
teger c such that there exists a placement of R with c-
occupancy at least k.

The solutions presented here extend the translation
only placement of Bose and Morrison [5], which uses
entirely different techniques. As this paper is an ex-
tended abstract any ommitted details are available in
[8].

3 Stable Placements

Observe that two or more placements of R on P may
result in the same partitioning of P. For example,
many placements of R can be translated by an arbi-
trarily small distance ε > 0, such that no point will
cross any ray ri. We define two placements as being
combinatorially equivalent if and only if they result in
combinatorially equivalent partitionings of P and com-
binatorially distinct otherwise. Thus when considering
possible placements, any objective function that mea-
sures only the resulting partitions need only examine
one representative placement for each set of combinato-
rially equivalent placements.

Chazelle [6] defines stable placements of generic geo-
metric structures to be placements of the structure such
that any three points (p′

0, p
′
1, p

′
2) of P coincide with any

three boundaries (r′0, r
′
1, r

′
2) of the structure. We use

stable placements to examine only a finite number of
star placements. The proof that there exist a finite
number of stable placements and that examining these
placements is sufficient for solving our problems lies in
Lemmata 1 & 2, proven by Chazelle in [6] 1. Lemma 1
allows us to bound the number of stable placements and
the time to compute them. While Lemma 2 establishes
that examining the stable placements is sufficient to ex-
amine all combinatorially distinct placements.

Lemma 1 (Chazelle 1) Given any points (p′
0, p

′
1, p

′
2)

and any rays (r′0, r
′
1, r

′
2) there are at most two stable

placements with p′
0 on r′0, p′

1 on r′1 and p′
2 on r′2. More-

over, these placements can be computed in O(1) time.

Lemma 2 (Chazelle 2) If a given subset Pi can be
contained within a cone of R then there exists a stable
placement for which Pi and only Pi is contained within
the same cone of R.

4 Brute-Force Solution & Complexity

The first algorithm we develop is a brute force solution
to Problems 1 to 5. Essentially, we record necessary

1Chazelle’s lemmata are stated here in a manner specific to
problems addressed in this paper

occupancy information for the combinatorially distinct
placements of R and find an optimal placement for the
specific problem being solved. We begin by asking: How
many combinatorially distinct placements are there?

Chazelle proved that Lemma 1 holds for a Real RAM
model of computation with unit time calculable trigono-
metric functions. This lemma provides us with a way of
calculating an upper bound on the number of combina-
torially distinct placements. Since at most each triple
of points (p′

0, p
′
1, p

′
2) can be matched to O(m3) triples of

rays (r′0, r
′
1, r

′
2) each possibly producing a constant num-

ber of stable placements, there are at most O(n3m3) dif-
ferent stable placements. This is an overestimate since
by symmetry we can shave a factor of m which yields an
O(n3m2) bound on the number of different placements.
For each placement all partition sizes are computed in
O(n) time and the cone with maximal occupancy in a
further O(m) time and space. Thus the algorithm runs
in O(n3m2(n + m)) time and O(n + m) space.

5 Star Rotation Diagrams Properties

Note that the stable placements are not examined in any
specific order by the brute force algorithm necessitating
the constant reassessment of the size of all partitions.
We address this observation by adapting Dickerson and
Scharstein’s rotation diagrams [7]. The key components
to the solution of our problems is the development of
a rotation diagram for stars with Property 1. Using
rotation diagrams, we examine the stable placements
in an order that minimizes the differences between the
partitionings induced by successive stable placements.

Property 1 A rotation diagram for a star R, a point
set P and a fixed point p0 is an arrangement of curves
and line segments in which each vertex represents a sta-
ble placement of R on P with p0 on a ray of R.

Since the rotation diagram is an embedded graph, we
can examine the vertices representing stable placements
in a depth-first ordering. We assume that the arrange-
ment is represented as a vertical decomposition and that
additional vertices and segments are only examined to
connect otherwise separated components. Theorem 3
quantifies the amount of possible change between two
directly connected vertices. Proofs of the following the-
orems can be found in the full version of the paper.

Theorem 3 Given two directly connected vertices u
and v in a rotation diagram, the total number of points
that can be in different sub-sets of the induced partition-
ing is at most O(deg(u) + deg(v)).

Our technique constructs a rotation diagram such
that each curve and line segment is associated with a
point pi and the two partitions of P that it changes

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Θ

p0

r1

L

βj

Dj

pj

p0

Figure 2: Characterization of star placement

between. Thus, given any curve or line segment of the
rotation diagram we can determine in O(1) time the
partition changes associated with that segment. The
rotation diagram’s vertices are examined in depth first
search order while the information on how the points are
partitioned is updated using lists of points to represent
the up to m partitions of P . Since each point only ap-
pears once in all of the lists, we can represent all points
in O(n) space and each list can be represented with
additional O(1) space per possible partition thereby en-
abling maintenance of the size of each partition. This
implies that as each vertex of the rotation diagram is ex-
amined the partitioning is changed appropriately. Since
the outlined structure requires at most O(1) time per
partition change we only need to determine the number
of changes to the partitioning to determine the time
used to examine each stable placement.

Theorem 4 For points in general position the time
spent updating partition information while examining all
of the vertices of the rotation diagram is O(k) where k
is the number of vertices in the rotation diagram.

6 Diagram Construction & Problem Solutions

This section describes a rotation diagram for stars that
conforms to Property 1 and its algorithmic use to solve
Problems 1 - 5. Similar to Dickerson and Scharstein [7]
we construct n rotation diagrams. Each of our diagrams
corresponds to a point p0 being on ray r1. To construct a
single rotation diagram we compute all placements that
keep pj on ri while p0 is on r1, defining Dj = ||p0pj ||,
and βj to be the cw angle between vertical and the
vector from pj to p0 (see Fig. 2).

We characterize all rigid motions that force p0 ∈ r1

using the two variables (Θ, L) where Θ is the cw angle
of r1 from the vertical and L is the distance from p0 to
the origin (see Fig. 2). A rotation diagram for the star
R consists of plotting the values of L and Θ that place
each point pj ∈ ri (e.g. Fig. 3) .

Figure 3) is based on two points being unit distance
apart with the point pj directly above p0 (i.e., Dj = 1
and βj = π). Intuitively, if pj is at the center of the star
and p0 is on r1 then Θ = βj , L = Dj and pj is on all rays
of the star. In all rotation diagrams, m arc segments

Figure 3: Star rotation diag. (Dj = 1, βj = π, m = 9)

L

Dj

Θ = βj

pj

p0

r1

Dj

Θ = βj + π

pj

p0

βj

r1

L

L ≥ 0

Θ = βj

pj

p0

r1

ri

0 ≤ L ≤ Dj

L

Dj

a) b) c)

Figure 4: a) & b) Ψi = 0 c) Ψi = π

emanate from such a point. Each arc segment represents
the simultaneous translation and rotation necessary to
move pj from the center of the star as far as possible
along a specific ray ri while keeping p0 on r1. The limit
of this motion is typically when p0 reaches the center of
the star (Dj = 0). The analysis of placing p0 on r1 and
pj on ri breaks into four simple cases all depending on
the angle Ψi, which is the cw angle between r1 and ri.

Case 1: Ψi = 0 There exist two values of Θ where pj ∈
{ri = r1}. Given L ≥ 0, then either Θ = βj or
Θ = βj + π (see Figs. 4a-b). When Θ = βj , the
point pj ∈ ri when Dj ≤ L. Similarly if Θ = π+βj

then pj ∈ ri for all L ≥ 0.

Case 2: Ψi = π Note that pj is on ri iff Θ = βj and
0 ≤ L ≤ Dj . Proof is by inspection since L ≥ 0
(see Fig. 4c).

Case 3: 0 < Ψi < π Two restrictions must be true:
α ≥ 0 and γ ≥ 0. These restrictions decide the
range of values of θ and positive L for which pj ∈ ri

(see Fig. 5a). Computing α and γ and use these
values yields the following bounds:

βj ≤ Θ ≤ π −Ψi + βj (1)

For values of Θ in the range described by Eq. 1 we
analyze L using the Sine Law and Fig. 5a.

19th Canadian Conference on Computational Geometry, 2007

Θ

pj

p0 r1

ri

Dj

Ψi

L

βj

Θ

pj

p0

r1

ri

Dj

Ψi

L
βj

a) b)

Figure 5: a) 0 < Ψi < π b) π < Ψi < 2π

L = Dj
sin γ

sinΨi
= Dj

sin(Θ + Ψi − βj)
sinΨi

(2)

Case 4: π < Ψi < 2π Using Fig. 5b and proceeding as
in Case 3 yields Eq. 2 over the range of Θ not cov-
ered in previous cases.

Given the case analysis above, it is possible to con-
struct a diagram where p′

0 is on r1 with Θ as the x-axis
and L as the y-axis. For each point pj and ray ri a curve
is plotted and the total arrangement of these curves can
be computed. Since there are O(nm) monotonic curve
segments it is possible to compute this arrangement in
O(nm log(nm)+k) expected time using Mulmuley’s al-
gorithm [9] or O((nm + k) log nm) deterministic time
using Bentley and Ottmann’s algorithm [2] where k is
the complexity of the arrangement.

For a given diagram any intersection of two curves
represents a stable placement of the star on the point
set. This is proven by noting that each curve represents
a point being on a ray and the diagram forces some
point p′

0 to be on r1 which implies an upper bound of
k = O(n2m2).

The algorithm proceeds as follows: choosing a point,
calculate the rotation diagram; calculate the partition-
ing of points into cones for one stable point; perform a
depth first search traversal of the arrangement of the di-
agram, updating the partitioning at each vertex; record
the best partitioning seen and repeat the process for
all possible points. There are at most O(m) sub-sets in
any partitioning and each curve segment in the arrange-
ment can contain a pointer to the point changing and
which partitions are involved. Thus each partitioning
can be created and the optimization information kept in
O(1) time per stable placement. Thus the algorithm’s
runtime is bounded by the construction of the rotation
diagram. Given that n diagrams must be calculated,
Problems 1 to 5 can be solved in in O(n3m2 log nm) de-
terministic time or O(n3m2) expected time. Thus we
have achieved a O(n3m2) time complexity, which is op-
timal for algorithms that examine all stable placements.

7 Conclusions and Future Work

We have presented a new technique for partitioning pla-
nar point sets. The algorithm runs in O(n3m2) ex-
pected time or O(n3m2 log nm) deterministic time using
O(n2m2) space (the maximum size of any rotation di-
agram). This expected time is optimal for algorithms
which consider all stable placements of a Star R on a
point set P with sizes m and n respectively. This paper
leaves open the question of lower bounds on this prob-
lem and if/when the number of placements examined
can be lowered while still guaranteeing optimality.

References

[1] Agarwal, P., Bhattacharya, B., and Sen,
S. Improved algorithms for uniform partitions of
points. Algorithmica 32, 4 (2002), 521–539.

[2] Bentley, J., and Ottmann, T. Algorithms
for reporting and counting geometric intersections.
IEEE Transactions on Computing (1979), 643–647.

[3] Bespamyatnikh, S., Kirkpatrick, D., and
Snoeyink, J. Generalizing ham sandwich cuts
to equitable subdivisions. Discrete and Computa-
tional Geometry 24, 4 (2000), 605–622.

[4] Bose, P., Guibas, L., Lubiw, A., Overmars,
M., Souvaine, D., and Urrutia, J. The flood-
light problem. The International Journal of Com-
putational Geometry 7, 1,2 (1997), 153–163.

[5] Bose, P., and Morrison, J. Optimally placing a
star on a point set. In Proceedings of the Canadian
Conference on Computational Geometry (2005).

[6] Chazelle, B. The polygon placement problem.
In Advances in Computing Research, F. Preparata,
Ed., vol. 1. JAI Press, 1983, pp. 1–34.

[7] Dickerson, M., and Scharstein, D. Optimal
placement of convex polygons to maximize point
containment. Computational Geometry: Theory
and Applications 11, 1 (Aug. 1998), 1–16.

[8] Morrison, J. Geometric placement problems.
PhD thesis, School of Computer Science, Carleton
University, 2002.

[9] Mulmuley, K. A fast planar partition algo-
rithm. International Journal on Symbolic Compu-
tation 10, 3–4 (1990), 253–280.

[10] Steiger, W. L., and Streinu, I. Illumination
by floodlights. Computational Geometry: Theory
and Applications 10, 1 (Apr. 1998), 57–70.

