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Abstract

Next generation malware will by be characterized by the intense use of polymorphic and metamorphic techniques aimed at
circumventing the current malware detectors, based on pattern matching. In order to deal with this new kind of threat, novel
techniques have to be devised for the realization of malware detectors. Recent papers started to address such an issue and this
paper represents a further contribution in such a field. More precisely in this paper we propose a strategy for the detection
of metamorphic malicious code inside a programP based on the comparison of the control flow graphs ofP against the set
of control flow graphs of known malware. We also provide experimental data supporting the validity of our strategy.

1 Introduction

Malware detection is normally performed bypattern matching. Detectors have a database of distinctive patterns (thesigna-
tures) of malicious code and they look for them in possibly infected systems. This approach is fast and, up to now, quite
effective when it is used to find known viruses.

Such defences will probably be circumvented by the next generation malicious code which will intensively make use of
metamorphism. This type of malware is not yet appeared in the wild, but some prototypes have been implemented (see for
example METAPHOR [2], ZMIST [12], EVOL) which have shown the feasibility and the efficacy of mutation techniques [18].
Furthermore, some papers recently appeared in literature [8, 7], have shown that current commercial virus scanners can be
circumvented by the use of simple mutation techniques.

Various levels of code mutation have been individuated in literature, ranging from simple modifications (e.g. useless
instructions insertion, and registers swapping) to the complete mutation of the payload. Probably the most advanced prototype
in such a context is represented by the ZMIST virus, which besides a metamorphic engine, used for changing the static
structure of the virus payload, inserts itself into an executable code and scatters its body among the benign instructions.
Malicious fragments are then connected together using appropriate control flow transition instructions. The malicious code
will be executed when the normal control flow reaches its first instruction: this is known asEntry Point Obfuscation[4].
Threats such as those represented by the ZMIST virus, poses three serious challenges to malware detectors:

• the ability to recognize self-mutating code;

• the ability to recognize malware which is randomly spread in the original code;

• the ability to recognize code which does not modify neither the behavior nor the properties of the infected program.

Note also that in order to be effective a malware detector has to be able to solve the above challenges simultaneously.
The only viable way for dealing with such a kind of threat is the construction of detectors which are able to recognize

malware’s dynamicbehaviorinstead of somestatic properties(e.g. fixed byte sequences or strangeness in the executable
header). Recent papers ([9, 7, 14, 17]) started to address such issues and this paper represents a further contribution in such a
field. More precisely in this paper we propose a strategy for solving the problems above mentioned, and we will also provide
experimental data which indicate that such a strategy may represent a significant step towards the identification of novel
techniques for dealing with the new forms of malware.

Roughly speaking the strategy we propose works as follows. Given an executable programP we perform on it a disas-
sembling phase which produces a programP ′, onP ′ we perform a normalization phase aimed at reducing the effects of most
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mov %ebp,%esp
pop %ebp
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Figure 1: Insertion of the guest payload between two function boundaries

of the well known mutations techniques and at unveiling the flow connection between the benign and the malicious code,
thus obtaining a new version ofP namelyPN . Subsequently givenPN we build its correspondinglabelled inter-procedural
control flow graphCFGPN

which will be compared against the control flow graph of a normalized malwareCFGM in
order to verify whetherCFGPN

contains a subgraph which is isomorphic toCFGM , thus reducing the problem of detecting
a malware inside an executable, to the subgraph isomorphism problem1. Using such a strategy we will be able to defeat
most of the mutations techniques (see also [5] for further details) adopted for the construction of polymorphic malware as
well as code scattering. Obviously, the strategy still need improvements, but the experimental results we obtained are really
encouraging.

The paper is organized as follows. Section 2 describes some of the techniques that can be adopted by a malware to
stealthily accommodate its payload inside a benign program. In Section 3 we describe the approach we followed in order to
treat this kind of malicious code. Section 4 briefly describes the prototype we realized and discusses the experimental results
obtained. Section 5 discussed related works and in the last section we draw our conclusions about the work presented.

2 Techniques for concealing malicious code

In this section we describe some of the techniques which can be adopted for infecting a benign program (theguest) with
a malware (thehost) in a stealthy way. We implemented these techniques in an experimental malware, which we used for
testing our malware detector, which targets GNU/Linux IA-32 Elf executables.

2.1 Unused space between subsequent functions

The first technique we consider exploits a behavior of most compilers which usually add some padding filled with NOPs
between a function epilogue and the next one prologue. It is easy to find this unused space by trivial pattern matching: we
used two different patterns: (i)\x90{7,} (i.e., more than 7 consecutivenop ) and (ii) \xc3\x90{7,} (i.e. ret followed
by more than 7 consecutivenops). The former is used to identify any type holes that do may accommodate a malicious code;
the latter is used to identify holes that start just after the epilogue and that can potentially be reached by an execution flow2.
Any hole of type (ii) can be used as the guest entry point by moving theret instruction at the end of thenops padding
and substitutingnops with payload operations (Figure 1 shows this kind of insertion). Holes of type (i) can also be used to
insert arbitrary code, but this code must be reached by a control flow starting from an entry point created somewhere else,
otherwise it will never be executed. This technique is known ascavity insertion[4].

During our experiments we discovered that insertion points of type (i) are pretty common (several occurrences per binary
program), while insertion points of type (ii) are rather rare, although we found at least a candidate in virtually all the binaries
we examined.

1The subgraph isomorphism problem is a well known NP-complete problem, but in most of the instances we will consider it turns out to be tractable in
an efficient way.

2This pattern does not correspond to a standard epilogue (i.e.,leave; ret ) because in several cases theleave instruction is substituted with some
direct operations on the stack.
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2.2 Manipulation of jump tables

Another technique we implemented for realizing entry point obfuscation is the jump-table manipulation. Ajump-tableis
commonly used by compilers to implementswitch -like constructs. The right block of instructions is addressed by an
indirect jump through the table, which is stored in an appropriate section of ELF executables, namely the.rodata section.

Jump tables can be exploited to inject malicious code in two conceptually analogous ways: (i) by replacing an entry with
an address in which the new payload has been inserted and then link back the payload to the original target address or (ii)
by moving a block of instructions addressed by an entry to a new location, while using the room just freed for the payload,
augmented with a final jump to the original code.

We look for jump tables in executables by pattern matching in the text segment: we looked for\x24\xff\d(addr)
(e.g. jmp *addr(,%reg,4) ) whereaddr , or even simply\d{4} , must be an address belonging to the.rodata
section. Once the absolute address of the jump table has been found, target addresses can be located just by extracting values
starting from the beginning of the jump table and stopping when a value does not represent a validtext segment address.

2.3 Data segment expansion

The last technique we considered is based on the creation of a hole in thedata segment. Such a hole can then be used for
any purpose as the benign code is not aware of its presence and the instructions in this segment can be normally executed on
almost any architecture because there is no physical separation between data and code. In the following a brief description of
such a technique is provided.

Figure 2 depicts the simplified layout of an ELF executable; the left picture shows the layout of the file while the one on
the right shows the layout once the executable is loaded in memory; thetext segment is depicted in white while thedata
segment in gray. Thedata segment of an executable is divided in several sections, the most important ones are.data and
.bss . The former is used to hold initialized data and it is loaded from the executable file while the latter holds uninitialized
data and has no file counterpart.

.text

.rodata

.data

.text

.rodata

.data

.bss

Figure 2: Simplified layout of an executable.

Since the.bss section is neither initialized nor stored on the file, it can be easily shifted in order to increase the space
available for the.data section which always precedes.bss . Such a modification however would require that all the
instructions that point to the.bss section being updated. In order to avoid such an operation, an empty space of the same
size of the original.bss is preserved in the expanded.data , and a new.bss section is mapped into a higher set of
addresses. In such a way the code continues to refer to the old.bss section (see Figure 3). The new.bss and the hole
created in.data can instead be used by the guest code for any kind of purpose.

3 Unveiling malicious code

If the techniques described in the previous Section were used for hiding malware code inside an executable, then malware
detection would become rather problematic with respect to current anti-virus technology ([8, 7] witnessed the problem ex-
perimentally). In fact:

• pattern matchingfails, since fragmentation and mutation make hard to find signature patterns;
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Figure 3: Simplified layout of a manipulated executable with an expanded.data

• emulationwould require a complete tracing of analyzed programs because the entry point of the guest is not known.
Moreover every execution should be traced until the malicious payload is not executed;

• evenheuristicsbased on predictable and observable alterations of executables could become useless when insertion is
performed producing almost no alteration of any of the static properties of the original binary.

The core of the problem is that the malicious code seamlessly becomes part of the host program, thus making very difficult
to distinguish between the two. In order to find out malware code we have to deal with both mutations and scattering.

As far as mutation is concerned, we aim atnormalizingdifferent instances of the same malicious code into a canonical and
minimal version. Our previous experiments [5] showed that, by exploiting well known techniques of code optimization, it is
possible to revert most of the mutations commonly used by malware. However, the lack of an easily guessable entry point
makes things much more complicated. In fact, the detection can not be restricted to a limited set of instructions to check
whether they can be considered equivalent (up to an acceptable threshold of accuracy) to a malware code. The detection
must consider every instruction in order to analyze if some groups of them, logically connected but physically separated by
malicious scattering, match with the canonical version of malware under analysis.

In order to perform such tasks we devised a detection process which is composed by two different components: thecode
normalizerand thecode comparator. The following sections describe them in details.

3.1 Code normalizer

The goal of the code normalizer is tonormalizea program, i.e. transform it into acanonical formwhich is simpler in term
of structure or syntax while preserving the original semantic. Most of the transformations used by malware to dissimulate
their presence led to unoptimized versions of its archetype3, since they contain some irrelevant computations whose presence
has the only goal of hurdling recognition. Normalization aims at removing all the trash code introduced during the mutation
process and thus can be viewed as an optimization of their code. It is performed in the following steps.

3.1.1 Decoding

The executable machine codeP is translated into a new representationP ′ that allows to describe every machine instruction
in term of the operations it performs on the cpu. The goal is to increase, as much as possible, the level of abstraction and to
express the program in a form that is more suitable for deeper analyses.P ′ will be the standard input to all the subsequent
phases.

3The term archetype is used to describe the zero-form of a malware, i.e., the original and un-mutated version of the program from which other instances
are derived.
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3.1.2 Control-flow and Data-flow analysis

Control-flow analysisdetects control flow dependencies among different instructions, such as dominance relations, loops,
and recursive procedure calls.Data-flow analysiscollects information about data relationship among program instructions.
Particularly, all the definitions which can possiblyreacheach program instruction and all the definitions that arelive before
and after each instruction.

3.1.3 Code transformation

Information collected through control-flow and data-flow analysis are used to identify which kind of transformations can be
applied at any program point, in order to reduce it to the normal form. The transformations that can be successfully used to
achieve our goal are those used by compiler for code optimizations [3, 16]. Such transformations have been developed to be
used on source code, but they have been showed to be suited also for machine executable code [11].

More practically, normalization allows to:

• identifying all the instructions that do not contribute to the computation (dead and unreachable code elimination);

• rewriting and simplifying algebraic expressions in order to statically evaluate most of their sub-expressions that can be
often removed;

• propagating values assigned or computed by intermediate instructions, and assigned to intermediate variables into the
instructions that make use of these values in order to get rid of the intermediate variables previously needed only for
their temporary storage (constant and expression propagation);

• analyze and try to evaluate control flow transition conditions to identify tautologies, and rearrange the control flow
removing dead paths;

• analyze indirect control flow transitions to discover the smallest set of valid targets and the paths originating. It is
worth nothing that the connections between the benign and the malicious code are concealed behind these layers of
indirections.

Although the analysis involves every program instructions, we expect that most of the candidate transformation targets are
those that belong to the malicious code since host programs are usually already optimized during compilation.

3.1.4 Limitations of static analysis

As just mentioned, more accurate the code normalizer is, major are the chances of recognizing a given malware. Unfor-
tunately there exist transformations that can be very difficult to revert and situations in which normalization can not be
performed on the entire code.

The use ofopaque predicates[10] during the mutation can complicate the detection because the code produced, once
normalized, may have different topologies. A predicate is defined opaque if its value is known a priori during obfuscation
but it is difficult to deduce statically after obfuscation has been applied. Opaque predicates, which are generally used in code
obfuscation and watermarking, allow to distort the control flow graphs inserting new paths that will not be removed during
normalization unless the predicate can be evaluated, and the evaluation usually is very expensive or unfeasible.

The adoption of anti-analysis techniques by the malware, is a further problem for malware detection. Within this category
fall anti-disassembling techniques [15] which can be employed to prevent a precise decoding of programs. We voluntarily
neglected this problem because we assumed that self-mutating malicious codes need to be able to analyze their own code in
order to generate the new one, thus they must be able to decode themselves and if they can, at least a decoder must exist.

The presence of indirection (where by indirection we mean a control flow transition that references the target through a
variable), in the analyzed code, could lead to an incomplete exploration of the code itself. In such a case if the malicious
code, or at least its entry point, resides in the unexplored region, the corresponding control flow graph will not be complete
and the presence of the malicious code will never be detected. The data-flow analysis performed during normalization plays
a fundamental role in the resolution of indirections but it may miss to solve some of them; some heuristics could be adopted
in order to exhaustively identify code regions and explore them.

Notwithstanding these limitations our experiments (see [5]) showed that normalization can be used effectively in most of
the cases.
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Figure 4: The graphs representing a malicious codeM and a generic normalized programPN . The nodes highlighted in gray
are those ofPN program matching the ones ofM .

3.2 Code comparator

Given a programP and a malicious codeM as input the code comparator answers to the following question:is the program
P hosting the malwareM? or more precisely,is an instance ofM present insideP? The code comparator does not work
directly on the native representation of the two inputs but instead it works on the normalized formP , namelyPN . Obviously
we cannot expect to find, a perfect matching ofM in PN , asM is self-mutating, and even if most of the mutations it suffered
have been removed through the code normalizer, we expect that some of them remain undiscovered. Therefore, the code
comparator must be able to cope with most of these differences, which we observed are normally local to each basic block4.
As a consequence, the basic control flow structure (as results from normalization) is in general preserved by mutations.

Thus, we decided to represent the malicious code and the alleged host program by theirinter-procedural control flow
graphs. A control flow graph (CFG) is an abstract representation of a procedure: each node in the graph represents a basic
block, i.e. a straight-line piece of code without any jumps or jump targets; jump targets start a block and jumps end a block.
Directed edges are used to represent jumps in the control flow. An inter-procedural CFG links together the CFGs of every
function of a program.

Under this assumption, the search for malicious code can be formulated as a subgraph isomorphism decision problem:
given two graphsG1 andG2, is G1 isomorphic to a subgraph ofG2? Fig. 4 shows the two graphs just mentioned: the first
one models the searched malicious code and the second one the program which is going to be analysed in order to verify if it
is hosting the malicious code. We briefly recall that sub-graph isomorphism is an NP-complete problem in the general case,
but in our particular case, characterized by highly sparse graphs, it turned out to be computable in a very efficient way.

As comparison through raw inter-procedural control flow graphs is too coarse, we decided to augment these graphsla-
belling both nodes and edges: nodes are labelled according to the properties of the instructions belonging to them and edges
are labelled according to the type of the flow relations between the nodes they connect. The labelling method we decided to
adopt is very similar to the one proposed in [14]. Instructions, similar from the semantic point of view, are grouped together
into classes and the label assigned to each node is a number that represents the set of classes in which, instructions of the
node, can be grouped. Edges are labelled in the same way: possible flow transitions are grouped into classes according to
the type of each transition. Table 1 shows the classes in which we decided to group instructions and flow transitions. Calls
to shared library functions are also represented with the same notation: the caller node is connected to the function that is
represented with just one node and which is labelled with a hash calculated starting from the function name.

It is important to note that the normalization allows to reduce the number of possible classes because assembly instructions
are converted into the intermediate representation which explicitly describes each instruction in term of the actions it performs
on the CPU. For example, instructions likepush andpop do not require a dedicated class because they are translated in
assignment and integer arithmetic instructions.

The comparison method gracefully handles malicious code fragments scattered anywhere, no matter where they are lo-
cated, on condition that it is possible to find out the connections existing among them. This is possible because, for the way

4A basic blockis a sequence of instructions in which any instructions is always executed before all the subsequent ones.
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Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
Indirect function call
Branch
Jump
Indirect jump
Function return

Flow transition classes
One-way
Two-way
Two-way (fallback or false)
N-way (computed targets of
indirect jumps or calls)

Table 1: Instructions and flow transition classes.

in which the problem has been formulated, no information about the physical location of the fragments and about the prop-
erties of these locations are considered (i.e. there is no difference between two basic blocks that are located at two different
addresses unless they have a different label). For example, a malicious code that, during execution, jumps from thetext to
thedata segment, and vice versa, or that jumps across different functions is treated as exactly one that would jump to an
adjacent memory address. It is a code normalizer duty to unveil the connections existing among the fragments composing
the malware.

4 Prototype implementation and experimental results

A prototype has been built in order to verify experimentally our idea both in terms of correctness but also in terms of effi-
ciency. We build our code normalization on top of BOOMERANG [1], which is an open source decompiler which reconstructs
high-level code starting from binary executables. BOOMERANG allowed us to perform the data-flow and control-flow analy-
sis directly on machine code. We adapted it in order to better handle the set of transformations, previously described, needed
for removing the mutations and bring a malware back to its original form. The set of transformations to apply to a code are
decided on the basis of the results of control and data flow analysis. The analysis framework we considered is also capable
of accommodating the resolution of indirections and to perform jump-table and call-table analysis.

Once the transformations above described are performed on an executable, a labelled control flow of the resulting code is
built and it is fed, along with the control flow of a malware, to a sub-graph isomorphism algorithm in order to perform the
detection phase. For such a task we referred to the VF2 algorithm contained in the VFLIB [13] library.

4.1 Code normalization evaluation

The effectiveness of code normalization was evaluated in [5] by using the METAPHOR [2] virus. A big set of virus samples,
about 115, was normalized in order to compare the original form with the new one. We observed that the effectiveness of
the approach has been confirmed by the fact that all the samples assumed the same shape and that their labelled control flow
graphs can be considered isomorphic.

As all possible kind of transformations have been successfully applied during the samples normalization, we believe that
the same encouraging results can be obtained when the same approach is used in order to discover the set of instructions that
connects the host benign code with the guest malicious; the connection between different malicious code fragments and the
connection between the benign program and the malicious one are obfuscated in the same way.

A measure of the time efficiency of this step of the detection process has been performed. It turned out that the time
required to normalize small fragments of code composed by few functions, and noticed that the time ranges from 0.2 secs. to
4.4 secs. This data indicates that such a phase will probably be very time consuming with big executables.

4.2 Code comparison evaluation

In order to evaluate the correctness of our comparison approach we performed a set of experimental tests on a huge set of
system binary executables. The executables have been picked up from a GNU/Linux distribution. Subsequently they have
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Type #
Executables 572
Functions (with more then 5 nodes) 25145
Unique functions (with more then 5 nodes) 15429

Table 2: Sample set used during our experiments.

Positive results # %
Equivalent code 35 70
Equivalent code
(negligible differences) 9 18
Different code
(small number of nodes) 3 6
Unknown 1 2
Bug 2 4

Negative results # %
Different code 50 100

Table 3: Manual evaluation of a random subset of the results returned by the code comparator.

been processed in order to construct their inter-procedural augmented control flow graphs, from whom the graphs associ-
ated to each program function have been generated; duplicated functions have been thrown away5. During our preliminary
experiments we noticed that small graphs (4 nodes or less) are not suited to describe unambiguously some particular code
fragments. For this reason we decided to throw away from our sample set all graphs with 5 or less nodes. Functions, or
standalone code fragments, with such a small number of nodes cannot represent a computation that, from the detection point
of view, can be considered “typical”. Table 2 summarized the characteristics of our sample.

The unique functions (functions common to more executables were used only once) were used to simulate malicious
codes and we look for their occurrences within the programs of the sample set using our code comparator module. The code
comparator reported 55606 matches. In order to evaluate the correctness of such a data we compared it against the results
returned by comparing the fingerprints of the considered codes. Note that the fingerprinting method produces almost no false
positive, while it can have false negative. It turned out that 96.5% (53635) of the matches found, were confirmed also by
the fingerprint method. The two methods instead disagree on the remaining 3.5% (1971) of the samples, for our comparator
these were instances of the simulated malicious code while this was not true for the fingerprinting method. As in such a
case even the fingerprinting method can be wrong we deepen our analysis, in order to have a better estimate of the false
positive ratio of our code comparator. For this reason we randomly chosen, among the subset of the sample on which the
two method disagreed, a setE of 50 potentially equivalent pairs of code fragments and inspected them manually. The same
was done with a setNE of 50 potentially different pairs of code fragments. The results of our evaluation are reported in
Table 3. With the exception made for a few cases, involving rather small graphs, it turned out that our code comparator was
correct in determining the equivalence of members ofE. Some code fragments required a thorough analysis because of some
differences local to the nodes of the graphs (probably the same code compiled in different moment) that, after all, turned out
to be equivalent. Other few cases highlighted a bug in the routine that performs labelling6 and another case involved two
enormous graphs there were not possible to compare by hand. With respect to the member inNE all the results of the code
comparator were confirmed by the manual inspection.

Even if sub-graph isomorphism is an NP-complete problem in the case of general graphs, the particular instances of graphs
we are dealing with make it well tractable. A generic inter-procedural control flow graph has a huge number of nodes but it
is highly sparse, in fact the average density we measured (measured as|E|/|N |2, whereE is the set of edges andN the set
of nodes) was about0.0088.

In order to verify this assumption we measured the time requested to perform the matching. We decided to distinguish
between: (i) average time required to load a graph measured with respect to the number of nodes in the graph and (ii)
worst cases time required to perform a complete search within the graph representing host programs under verification (no

5Two functions are considered equivalent if the MD5s, computed on the strings built using the first byte of any machine instruction composing their
code, match.

6The prototype was not able to find out the name of two shared library functions, assumed they were unknown and considered them equivalent. The two
codes that, apart from the different functions called were equivalent, were erroneously considered equivalent.
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# nodes Average load time Worst detection time
(secs.) (secs.)

0 - 100 0.00 0.00
100 - 1000 0.09 0.00
1000 - 5000 1.40 0.05
5000 - 10000 5.15 0.14
10000 - 15000 11.50 0.32
15000 - 20000 28.38 0.72
20000 - 25000 40.07 0.95
25000 - 50000 215.10 5.85

Table 4: Summary of the measured average load time and of the worst detection time with regards to the number of nodes.

distinction has been made between positive and negative matches). These measures, collected through a GNU/Linux system
with a IA-32 1GHz processor, are reported in Fig. 4. In particular, the data provided shows that the critical phase of the
entire procedure is not related to the computation time but instead to the initialization of the requested data structures. A
quick glance at the code of the library used to perform the matching highlighted that when a graph is loaded, internal data
structures are filled inO(n2) (n stands for the number of nodes) but we believe that the same goal can be achieved inO(n).

5 Related works

The problem of the detection of mutating malware is not new and the first theoretical studies about the problem [6] have
posed serious worryings demonstrating that there could exist malware which no algorithm can detect. Some papers appeared
recently in the literature started to pragmatically address the problem of the detection of evolved malicious code with mutating
capabilities. Different approaches have been proposed in order to target specific types of malware and specific propagation
methods.

The first work which addressed the problem of the detection of obfuscating malware through static analysis was done by
Christodorescu and Jha [7] which has been refined in [9]. In their first work annotation of program instructions has been used
in order to provide an abstraction from the machine code and to detect common patterns of obfuscation; malicious codes were
then searched directly on the annotated code. In their second work deobfuscation through annotation has been replaced by a
more sophisticated set of complementary techniques that are used in concomitance to corroborate the results. The techniques
adopted provide different levels of resilience to mutation and ranges from the detection of previously known mutated patterns
to the proof of instructions sequences equivalence through the use of theorem provers and random execution. Our work
shares the same goals but adopts a different strategy which consists in the most complete defection of mutations through
normalization.

Polygraph [17] targets polymorphic worms and is capable of automatically determining appropriate signatures. Signa-
tures are generated starting from network streams and consist of multiple disjoint content substrings which are supposed to
be shared among different instances; these invariant substrings consists of protocol framing, return addresses, and poorly
obfuscated code.

In [14] an algorithm for the detection of unknown polymorphic worms is presented. The algorithm compares the similarity
of apparently independent network streams in order to discover if they are carrying the same malicious code. Each network
stream is processed in order to identify potential executable code by trying to disassemble each stream and to generate the
appropriate control flow graph which is then divided in little sub-graphs in order to fingerprints the stream. Our comparison
method share some similarities with the one proposed in the paper: we also represent executables code trough labelled control
flow graphs (we work with them in their entirety) but we adopted different comparison strategies and performed normalization
because we treated a different type of malicious codes that adopt more sophisticated anti-detection techniques. We believe
that the normalization techniques we have proposed can be used to improve the detection power making the system no more
susceptible to malware that could adopt more sophisticated mutations.
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6 Conclusions and future works

Despite theoretical studies demonstrated that there could exist an undetectable malicious code we have given our contribution
in demonstrating that the techniques currently adopted by malicious code writer in order to achieve perfect mutation do not
allow to get so close to the theoretical limit.

We analyzed the type of transformations adopted to implement self-mutating malware in order to avoid detection and we
convinced ourselves that the only viable way for dealing with such a kind of threat is the construction of detectors which are
able to characterize the dynamic behavior of the malware.

We have proposed a pragmatical approach that is able to cope quite well with this treat which is based on (i) the defection
of the mutation process and (ii) the analysis of a program in order to verify the presence of the searched malicious code.
Mutation process is reverted through code normalization and the problem of detecting malware inside an executable is
reduced to the subgraph isomorphism problem: a well known NP-complete problem that nevertheless can be efficiently
computed when sparse graphs are concerned.

We believe that experimental results are encouraging and we are working on refining our prototype in order to validate it
in more real scenarios.
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