
Adaptive Password-Strength Meters
from Markov Models

Claude Castelluccia
INRIA

claude.castelluccia@inria.fr

Markus Dürmuth
Ruhr-University Bochum
markus.duermuth@rub.de

Daniele Perito
INRIA

daniele.perito@inria.fr

Abstract

Measuring the strength of passwords is crucial to ensure
the security of password-based authentication. However,
current methods to measure password strength have limited
accuracy, first, because they use rules that are too simple to
capture the complexity of passwords, and second, because
password frequencies widely differ from one application to
another. In this paper, we present the concept of adaptive
password strength meters that estimate password strength
using Markov-models. We propose a secure implementation
that greatly improves on the accuracy of current techniques.

1 Introduction

Passwords are a traditional and widespread method of
authentication, both on the Internet and off-line. Passwords
are portable, easy to understand for laypersons, and easy to
implement for the operator. Thus, password-based authenti-
cation is likely to stay for the foreseeable future. Most sites
let users choose their password, as the usability of automati-
cally generated passwords is low [32]. However, users tend
to choose weak passwords, for instance, many users choose
passwords from a rather small set of passwords, and hence,
these passwords can easily be guessed.1

To ensure an acceptable level of security of user-chosen
passwords, sites often use mechanisms to test the strength
of a password (often called pro-active password checkers)
and then reject weak passwords. Hopefully this ensures
that passwords are reasonably strong on average and makes
guessing passwords infeasible or at least too expensive for
the adversary. Commonly used password checkers rely on
rules such as requiring a number and a special character to
be used. However, as we will show and also has been ob-
served in previous work [28], the accuracy of such password

1From leaked password lists we learn that 20% of passwords are covered
by a list of only 5,000 common passwords [27].

checkers is low, which means that often insecure passwords
are accepted and secure passwords are rejected. This ad-
versely affects both security and usability. The commonly
used rule-sets are too simple to capture the complexity of
passwords, and users confronted with them often choose the
same modifications to fulfil the rules (like the sadly famous
password1). Furthermore, password distributions differ
from site to site (for example due to language differences)
and no password checker is equally suitable for all sites.

We propose to use password strength meters based on
Markov-models, which estimate the true strength of a
password more accurately than rule-based strength meters.
Roughly speaking, the Markov-model estimates the strength
of a password by estimating the probability of the n-grams
that compose said password. Best results can be obtained
when the Markov-models are trained on the actual password
database. We show, in this paper, how to do so without sac-
rificing the security of the password database, even when
the n-gram database is leaked. We call these Adaptive Pass-
word Strength Meters (APSMs), as they can react dynami-
cally to changes in how users choose passwords. Previous
work [6, 19] has already shown that Markov-model based
password crackers outperform existing cracking techniques,
and conjectured that they could be used to create better proac-
tive password strength meters. However, before our work it
was unclear how this could be implemented securely, and
how accurate it would be be.

In this paper, we show how to build secure adaptive pass-
word strength meters, where security should hold even when
the n-gram database leaks. This is similar to traditional pass-
word databases, where one tries to minimize the effects of a
database breach by hashing and salting the stored passwords.
This is not a trivial task. One potential problem is that, partic-
ularly strong passwords, can be leaked entirely by an n-gram
database (without noise added). This is best illustrated with
an example: If the password “!*(%$.&” is used, then from
the 5-grams “!*(%$”, “*(%$.”, and “(%$.&” one can
reconstruct the password with high probability by searching
for the overlapping segments. By adding a carefully chosen
amount of noise we can eliminate this kind of attack, and

in fact we can prove that the noisy n-gram database leaks
very limited information about the actually stored password
database. By varying the amount of noise added we can
balance our system between security and privacy, and we
show parameters that strike a reasonable balance between
the two for large password databases.

The attacker model makes the following two assumptions:
First we make the common assumption that the adversary
does not attack one specific user, but is interested in guessing
any password correctly in the system. This means that the
attacker does not use information about a specific user such
as his date of birth, children’s names, and so on.

Second, we argue that a reasonable analysis of password
strength needs to assume that the adversary knows the distri-
bution of the passwords. This is a necessary assumption, as
a number of password databases have leaked over the past
years and are available to everybody. An attacker might be
able to obtain a very accurate distribution for a given site by
correlating user statistics. Consequently, assuming that the
exact distribution is known to the attacker is the only way to
conservatively estimate his knowledge.

1.1 Contributions

This paper makes the following contributions:

• We propose the first adaptive password strength me-
ter (APSM). Our password meter, based on n-gram
models, is both accurate in gauging password strength
and secure against the strong attacker model described
above.

• The need for adaptive password strength meters is moti-
vated in Section 3 by showing that the way users choose
passwords is greatly influenced by the type of service
(among other factors), which reduces the accuracy of
heuristic password checkers that are widely in use to-
day.

• Since our construction needs to store additional (non
hashed) information about passwords, we formally
prove the security of our scheme, by proving an up-
per bound on the information that leaks per passwords
if a data breach occurs and the actual n-gram database
is leaked. We show a bound of 1.3 (per password) bits
for reasonable parameters. This leakage only occurs if
the password database is breached.

• We evaluate the accuracy of our scheme by performing
extensive experiments. More specifically, we show
that our scheme outperforms existing schemes, such as
NIST, Microsoft, and Google schemes. We also show
that the noise added on n-grams, necessary to provide
security in case of leakage of the n-gram dataset, does
not significantly affect performance. We discover that

traditional password meters are inaccurate, and perform
only slightly better than a scheme that would output
random values. On the contrary, our construction can
distinguish between strong and weak passwords with
high accuracy.

1.2 Related Work

We review relevant previous work on password metrics
as well as work in the closely related field of password
guessing.

Password metrics: Estimating the strength of passwords as
a measure to defend against guessing attacks has a long his-
tory. In [18], password checking was done by attempting to
crack the hashed passwords. The ones successfully cracked
were marked as weak and the users notified.

Later, one started to estimate the strength of a pass-
word before it is accepted by a system by what are called
pro-active password checkers or password strength meters
(PSM), using certain rules-sets that aim at excluding weak
passwords [24, 11, 2, 20]. An influential PSM was proposed
by the NIST [4] (see Section 2.2 for a comparison of rule-
sets that are used in practice). Recently, the NIST rule-set
was shown [28] to be a rather weak measure for the actual
password strength (see also [12] for more results on such a
comparison). We reach a similar conclusion in Section 6,
showing a low correlation of this measure and the actual
password strength.

Schechter et al. [23] classify passwords as weak by count-
ing the number of times a certain password is present in the
password database. This password meter, however, cannot
generalize on common variations of weak passwords, e.g.,
password1. These variations have to become popular be-
fore the system can mark them as weak. Our construction,
instead, can easily meter those password by leveraging on
the capabilities of Markov-models.

Several papers study user behaviour regarding (in-)secure
passwords [22, 9, 26, 30]. Some more work on estimating
password strength or related ways to increase the security of
password-based authentication can be found in [21, 31, 13].

Password cracking: Password cracking is a problem in
many ways similar to estimating a password’s strength. [18,
5, 15]. To protect passwords they are usually stored in hashed
form, and under the common assumption that an attacker
cannot invert this hash function, his optimal strategy is to
test passwords in decreasing likelihood, i.e., most frequent
passwords first. This means the attacker needs a method to
enumerate passwords with decreasing likelihood, in other
words, with increasing strength.

While most previous attacks use large (external) dictionar-
ies and ad-hoc mangling rules to modify these, Narayanan
and Shmatikov [19] proposed Markov-models to overcome

some of the problems of dictionary-based attacks, by train-
ing Markov-models to general rules that passwords follow.
This work also is the first to hint that Markov-models might
yield useful password strength meters; however, they nei-
ther considered accuracy nor security of such a construction.
While [19] uses ad-hoc “templates” on password structures,
i.e., on the proportion and position of numbers and letters,
subsequent work [29] learns these structures from sets of
leaked passwords. An empirical study on the effectiveness
of different attacks including those based on Markov-models
can be found in [6]. A study also taking into account pass-
word re-use is [7].

1.3 Organization

The rest of the paper is organized as follows: We review
password strength meters in Section 2. We motivate and
define adaptive password strength meters in Section 3 and
give the construction of such a scheme in Section 4. Next,
we prove its security in Section 5, demonstrate its accuracy
in Section 6, and discuss some implementation details in
Section 7 . Finally, Section 8 concludes the paper.

2 Password Strength Meters

A password strength meter is a function f : Σ∗ → R, that
takes as input a string (or password) x over an alphabet
Σ and outputs a number s, a score, which is a measure
of the strength of string x as a password. The output is,
in general, a real number indicating the passwords strength.
The strength s provides an estimation of the effort an attacker
is required to invest to guess the password x and can be used
either to advise the users on the strength of the passwords
or to enforce mandatory password strength policies. Both
approaches have their merits and problems.

The strength of a password is the amount of work an
adversary needs to break the password. In the context of
password guessing, the adversary has a way to check if a
(guessed) password is the correct one, usually by a hash-
value representing the hash of the correct password, by an
online-login, or similar means. Consequently, the optimal
strategy for an attacker is to guess passwords in increasing
order of strength and decreasing order of probability, i.e.,
more likely passwords are tried before less likely ones. This
also motivates the definition of guessing entropy, which gives
the average number of passwords an attacker has to guess
before finding the correct one. Let X be a random variable
with finite domain D and P (X = di) = pi, ordered with
decreasing probabilities pi < pj for i < j. The guessing
entropy G(X) is defined as

G(X) =

|D|∑
i=1

i · Pr(X = i). (1)

2.1 An Ideal Password-Strength Meter

Definition 1 Let us fix probabilities P : Σ∗ → [0, 1] on the
space of passwords (i.e., strings over a certain alphabet).
An ideal password checker f(x) is given by the function
f(x) = − log(P (x)).

We denote this password strength meter as “ideal”, as
the order which is given by this function is the same as
the order with which passwords are guessed in an optimal
guessing attack. Consequently, the following two functions
f ′(x) = 1/P (x) and f ′′(x) = RP (x) also constitute ideal
password checkers, where RP (x) is the rank of x according
to the distribution P , i.e., if the probabilities pi = P (xi) are
ordered with pi < pj for i < j, then RP (xi) = i.

Any password checker or password strength meter can be
seen as an approximation to this function, often clustered in
few buckets such as “insecure/secure”, or “insecure/medi-
um/high”. We will survey some commonly used approxima-
tions in the next section.

2.2 Common Approximations

The commonly used (rule-based) password checkers can
be seen as ad-hoc approximations to an ideal strength meter
as described above, where passwords with strength over a
certain threshold should be accepted, and otherwise rejected.
There is a large number of password checkers employed
today. Many web-services implement their own password
checker using a combination of educated guessing and craft.
However, as we will show, these approximations perform
poorly in the task of gauging the strength of a password. As
a consequence, both usability (by scoring strong passwords
as weak) and security (by scoring weak passwords as strong)
are affected.

We compare our work to three different password check-
ers that are widely used today: the NIST, Google and Mi-
crosoft password checkers. They were chosen because of
their popularity and because they are representative for the
techniques employed currently for password strength meters.

The NIST password meter tries to estimate the entropy of
a password mainly based on their length. Special bonuses (in
bits) are given if the password matches particular conditions,
like containing special characters or a combination of upper
case and numbers. The NIST also optionally suggests to give
a bonus for a dictionary check. We did not implement this
feature as it would have been bound to a specific dictionary,
and it affects a small number of passwords only.

The Microsoft password meter [17] (employed, e.g., in
Hotmail, Windows Live) outputs an integer in the range
[0, 4]. The strongest score 4 is given to passwords that match
all the “good” conditions: passing a dictionary test (included
in the JavaScript), minimum length of 14, using at least three

types of characters (upper, lower, number, special). The
tool is implemented as a JavaScript routine that measures
the strength of passwords entered in a text box. For our
tests we downloaded the JavaScript code and ran it inside
SpiderMonkey [25], a Perl interface to the Mozilla JavaScript
Engine. This allowed us to use the tool unchanged for our
experiments.

The Google password meter also outputs an integer be-
tween 0 and 4. We do not know the inner workings of this
meter, that is implemented on the server-side and not in
JavaScript. This design choice is probably affected by se-
curity concerns, as it “hides”, to possible attackers, how
passwords are metered. Based on our observations, however,
this password checker seems to be based on a set of fixed
rules like the others. We used the server as an oracle to
measure the password strength.

3 Adaptive Password Strength Meters

A password strength meter is a fixed function, and cannot
take into account site-specific aspects of the password dis-
tribution. This is why we propose using adaptive password
strength meters, which can additionally base their score on
specifics of the site. To our knowledge this has not been
defined before, even though the motivation is similar to [23].

Definition 2 An adaptive password strength meter (APSM)
f(x, L) is a function f : Σ∗×(Σ∗)k → R, that takes a string
(or password) x over an alphabet Σ and a password file L
containing a number of passwords as input and outputs a
score S.

Intuitively, the password database L contains a number of
passwords sampled from the same distribution, and the task
of the password strength meter is to estimate the strength of
the password x based on his estimation of P . Alternatively,
as in our scheme, a noisy model of L is stored to preserve
the secrecy of the password database. The amount of noise
added to the model of L needs to strike a balance between
accuracy and secrecy.

We note that the adaptive password strength meter f does
not need to have a-priory knowledge of the distribution P ,
whereas a (non-adaptive) password strength meter does.

3.1 The Need for Adaptive Password Meters

The main motivation for adaptive password meters is
the observation that password distributions are different for
different sites. This is illustrated by Figure 1(b), which
shows the ten most frequent passwords from three leaked
password sets (more information about these datasets can
be found in Section 6). At a glance it can be seen that the
passwords in each service have distinctive characteristics.

For example the password rockyou is only popular in
the RockYou service. While this password and possible
variations have a very low guessing entropy on RockYou,
this is not the case on different web services. The MySpace
passwords, at some point, have been influenced by a rule-
based password checker that requires number to be included
in the passwords.

The results of a more comprehensive analysis are shown
in Figure 1(a). These graphs show the fraction of frequent
passwords that are shared by two or more password lists,
considering varying thresholds. While RockYou and PhpBB
share 50% of the most common passwords, other services
share substantially less passwords, with as few as 10% shared
between RockYou and MySpace.2

We believe these differences are caused by different lan-
guages spoken and cultural backgrounds of the users, dif-
ferent perceived importance of the password, different pass-
word checkers in place, and so on. This variety of different
influences makes it very hard for a site to estimate the actual
distribution in advance, without accessing the actual pass-
words. Furthermore, the password checkers influence the
distribution of passwords, as exemplified by the MySpace
passwords. This means that no static set of rules can cap-
ture the dynamic changes in password creation habits by the
users.

3.2 Challenges

Security: While adaptive password meters have the poten-
tial for a better and more robust estimation of password
strength, computing the strength of a given password based
on the actual password database (and outputting this value
to the user) prompts a few security concerns. Our main
contribution is to devise an adaptive password meter that is
secure even when the n-gram database is leaked, while still
providing high accuracy.

Accuracy: A password strength meter needs to correctly
gauge the strength of a password as wrong estimations can
affect both the usability and guessing entropy of the pass-
words: if strong passwords are marked as weak then users
might get frustrated, reducing usability; if weak password
are marked as strong, security is decreased. For example,
users might “circumvent” rule-based password meters by
modifying weak passwords to match the required minimum
strength. For example, password is frequently “strength-
ened” by the addition of upper cases and numbers, leading
to Password1.

2Further details on the datasets are given in Section 6.

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800 900 1000

F
ra
ct
io
n
of
sh
ar
ed

pa
ss
w
or
ds

First k common passwords

RockYou AND PhpBB
RockYou AND Hotmail

RockYou AND MySpace
RockYou AND MySpace AND PhpBB

(a) Fraction of passwords that are used in common by different sites

RockYou Faithwriters MySpace

123456 123456 password1

12345 writer abc123

123456789 jesus1 fuckyou

password christ monkey1

iloveyou blessed iloveyou1

princess john316 myspace1

1234567 jesuschrist fuckyou1

rockyou password number1

12345678 heaven football1

abc123 faithwriters nicole1

1

(b) Ten most frequent passwords for different sites. Passwords underlined
are shared by at least two services. The wide difference likely depend on
background (e.g., Faithwriters) or password rules (e.g., MySpace).

Figure 1. Password Distributions for Different Sites

4 Constructing an Adaptive Password Meter

We use techniques from statistical language processing,
namely Markov-Models [14], to implement an adaptive pass-
word strength meter that both accurately estimates the proba-
bilities from a relatively small sample, and is secure against
leakage of the locally stored data. Basically, for every pass-
word x which is added to the password list, we store the
hashed (and possibly salted) value Hash(x) as commonly
done. In addition, we determine the n-gram counts for the
password (i.e., frequencies of n consecutive characters in the
password), merge this information with previously stored
n-grams, to obtain the frequencies over the entire password
database, and add some noise to this data. These n-gram
frequencies can then be used to compute an estimate on the
probability of a fresh password.

4.1 Markov Models

Over the last years, Markov models have proven very
useful for computer security in general and for password
security in particular. For example, Narayanan et al. [19]
showed the effectiveness of Markov models to password
cracking.

The idea is that adjacent letters in human-generated pass-
words are not independently chosen, but follow certain reg-
ularities (e.g., the 2-gram th is much more likely than tq
and the letter e is very likely to follow th). In an n-gram
Markov model, one models the probability of the next char-
acter in a string based on a prefix of length n. Hence for a

given string c1, . . . , cm we can write

P (c1, . . . , cm) =

m∏
i=1

P (ci|ci−n+1, . . . , ci−1).

Our construction only keeps track of the n-gram counts
count(x1, . . . , xn), and the conditional probabilities can eas-
ily computed from these by the following formula:

P (ci|ci−n+1, . . . , ci−1)

=
count(ci−n+1, . . . , ci−1, ci)∑
x∈Σ count(ci−n+1, . . . , ci−1, x)

Also note that the size of the password’s alphabet (Σ) is
quite important. We initially used an alphabet of size 96 to
estimate the password strength. However, we observed that
most of the characters are rarely used, leading to sparseness
problems. In the final version of our scheme, we choose to
use the following alphabet composed of 38 distinct charac-
ters [a − z][0 − 9][U][S], where U and S are two symbols
representing all upper-case letters and all special characters,
respectively. This leads to reduce sparseness in the dataset
and better probability estimations.

4.2 Our Construction

Our construction uses Markov Models [14] from the
previous section to estimate the strength of passwords. What
makes this construction interesting is that, by adding some
fine-dosed amount of noise, we can actually prove that the
construction is secure against leakage of the n-gram database.
(For notational simplicity, we assume that all passwords have

length m = l + n− 1, thus the total number of n-grams is
ln.)

4.2.1 N-gram Database Construction and Update (DCU
algorithm)

The n-gram database is constructed and updated as follows:

1. The algorithm keeps as state the n-gram counts,
count(x1, . . . , xn), for all x1, . . . , xn ∈ Σ. All these
counts are initialized to 0.

2. Whenever a password c = c1, . . . , cl+n−1 is added,
it is decomposed into n-grams. The database is then
updated by incrementing the counts corresponding to
each of the password’s n-grams by 1, as follows:

count(ci, . . . , ci+n−1) = count(ci, . . . , ci+n−1) + 1,

for each i = 1, . . . , l.

3. Additionally, noise is added to the database by increas-
ing each individual n-gram’s count, by one, with proba-
bility γ each (independently):

∀x1, . . . , xn :

count(x1, . . . , xn) = count(x1, . . . , xn) + 1

with probability γ.

4. Finally, the password is stored hashed with salt as usual,
e.g., choose salt ←R {0, 1}16 and store

hash(x ‖ salt) ‖ salt .

4.2.2 Password Strength Estimation (PSE algorithm)

The strength of a password c = c1, . . . , cm, where each char-
acter ci is chosen from alphabet Σ, is estimated as follows:

1. For i = 1, . . . ,m, the following conditional probabili-
ties are computed:

P (ci|ci−n+1, . . . , ci−1)

=
count(ci−n+1, . . . , ci)

count(ci−n+1, . . . , ci−1)

=
count(ci−n+1, . . . , ci)∑

x∈Σ count(ci−n+1, . . . , ci−1, x)
.

(If the numerator equals zero we use a small out-of-
dictionary probability, to account for unseen n-grams.
However, this will almost never happen, due to the
added noise.)

2. Finally, the strength estimate f(c) for the password c
is:

f(c) = −log2(

m∏
i=0

P (ci|ci−n+1, . . . , ci−1))

Example: The probability of the string password (with
n = 5) is computed as follows

P (password) = P (p)P (a|p)P (s|pa) . . . P (d|swor)

Picking one of the elements as an example: p(o|assw) =
count(asswo)
count(assw) = 98450

101485 = 0.97. This results in the overall
estimation P (password) = 0.0016, where the actual fre-
quency of this password in the RockYou database is 0.0018.
A short list of passwords as scored by our markov model
is included in Table 1. The example shows that the markov
meter is able to correctly recognize weak passwords and, in
fact, closely approximate the actual probability of the pass-
words. Furthermore, more complex and random passwords
are correctly estimated as stronger.

On the other hand, the NIST, Microsoft and Google pass-
word checkers fail to correctly gauge password strength. For
example, the Google meter gives a 0 score to a random
password (dkriouh) only because it does not match the
minimum length of 8 characters. The Microsoft checker
gives a very high score to P4ssw0rd and Password1,
while giving a lower score to the randomly generated pass-
word dkriouh. The NIST checker assigns a higher score
to Password1 than to 2GWapWis. Mistakes of this type
are mostly inevitable in heuristic password checkers and are
reflected in the poor accuracy of these as shown in the next
sections.

5 Security of our Construction

Under normal operation, the n-gram database will be
secret and not accessible to an attacker. However, best prac-
tices mandate that even when an adversary gets access to
the n-gram database (e.g., by breaking into the server), little
information about the plain-text passwords should be leaked.
In this section we will show that our system has this property,
by proving a strong bound on the (Shannon) entropy that
leaks when the n-gram database leaks. Consequently, the
remaining guessing entropy of the passwords in the database
remains high by the results from [16].

5.1 Security Definition

When defining the security of an adaptive password
checker, it is necessary to consider the adversary’s prior
knowledge on the password distribution. An adversary can

Password Ideal Markov NIST MS Google
password 9.09 9.25 21 1 1
password1 11.52 11.83 22.5 2 1
Password1 16.15 17.08 28.5 3 1
P4ssw0rd 22.37 21.67 27 3 1
naeemha 21.96 28.42 19.5 1 0
dkriouh N/A 42.64 19.5 1 0
2GWapWis N/A 63.67 21 3 4
Wp8E&NCc N/A 67.15 27 3 4

Table 1. Scores (in bits) as computed by the
markov model and the ideal password meter
from Section 2.1. For the ideal meter the prob-
ability is the empirical frequency in the Rock-
You dataset. The last three passwords were
generated at random using, respectively, the
following rules [a-z]{7}, [a-zA-Z0-9]{8}
and [a-zA-Z0-9\special]{8}.

have access to statistics from lists such as language dictionar-
ies and leaked password lists, and knowledge about common
mangling rules (i.e., rules to derive more passwords from
such lists by appending numbers and special characters).
However, there are many more sources of information an
adversary has access to: their technical background, the
password policies enforced by the site, theme of the site, etc.

It is hard, if not impossible, to come up with a comprehen-
sive list of sources that the adversary is using. Therefore, in
this paper, we consider an adversary who knows the distribu-
tion of the service’s passwords. This automatically considers
all the above sources of information, and protects us against
any future improvements of password cracking software,
such as John the Ripper.

We explicitly note that in normal operation our password
strength meter hardly leaks information. (An exception is the
unavoidable leakage from the password strength meter itself;
as we cannot prevent the attacker from accessing the pass-
word strength meter f , we cannot prevent him from learning
a limited number of data points of this distribution.) Only
when the n-gram database is leaked, then the distribution, as
well as some bits of additional distribution about the actual
passwords in the database, leak.

One might argue that while the password distribution is
generally known, it is not known for very unlikely passwords,
and the n-gram database might leak these passwords. This is
incorrect since we are adding noise to all n-grams, including
rare ones. In addition, as explained previously, knowing
the n-gram frequencies does not help the adversary to break
unlikely, i.e., strong passwords.

The assumption that the password distribution is known
can be seen as an extension of Kerckhoffs’ principle [10].
We do not assume that the distribution is secret, but only the
password chosen with this distribution are. It also underlies

the definition of guessing entropy (see Equation (1)), which
also considers the optimal guessing strategy.

Finally, we argue that this assumption does not weaken
security since by enforcing a minimum password strength
(similar to [23]) we can still guarantee a minimal guessing
entropy of the passwords. In fact, if we assume that X is a
distribution on passwords with Pr(x) ≤ t for all passwords
x, then the Shannon entropy of X is bounded by

H(X) ≥ − log(t). (2)

By using the results from [16] we can compute a lower
bound on guessing entropy as

G(X) ≥ 1

4
2H(X) ≥ 1

4t
. (3)

Enforcing, e.g., a maximum probability of 2−20 yields a
lower bound on the guessing entropy of 218. In other words,
a strong password will remain strong, even if the password
distribution is known. The adversary will be able to compute
its guessing entropy from the distribution, but not more. On
the other hand, weak passwords might be easier to break
since the adversary will be able to optimize his guessing
strategy. However, such passwords should be prohibited in
most services.

5.2 Information and Entropy

The (noisy) n-gram database, when leaked to an adver-
sary, constitutes a noisy channel that transports information
about the stored passwords in the database. In this section
we introduce the notion of entropy and mutual information,
including some basic properties.

The information content of a random variable is measured
in terms of entropy. For two discrete random variables X,Y
with finite domain D = {d1, . . . , dn}, Conditional Shannon
entropy is defined as

H(Y |X = x)
def
= (4)

−
n∑

i=1

Pr(Y = di|X = x) log(Pr(Y = di|X = x))

and

H(Y |X)
def
=
∑
x∈X

Pr(X = x)H(Y |X = x).

For independent random variablesX,Y , a simple calculation
shows

H(X + Y |X) = H(Y). (5)

A central notion used to define the transport of informa-
tion on a (noisy) channel is the notion of mutual information.
The mutual information between the input X and the output

Y , where both X and Y are discrete random variables with
finite domain, is given by

I(X,Y)
def
= H(Y)−H(Y |X). (6)

When defining channel capacity, one takes the maximum
of the mutual information over input distributions; in our
application the input distribution is fixed by the construc-
tion, so the information flow is given directly by the mutual
information I(X,Y).

Computing a closed formula for the entropy of a given
distribution can be hard. However, for some distributions
such as the binomial distribution the literature gives closed
formulas. Let Bin(m, p) denote the binomial distribution
with m trials that follow a Bernoulli distribution with param-
eter p each, and write q = 1 − p. From [1] we obtain the
following estimates on the entropy of binomial variables:

H(Bin(m, p)) ≥ (7)

1

2
+

1

2
log(2πmpq) +

C
(p)
1

m
+
C

(p)
2

m2
+
C

(p)
3

m3

and

H(Bin(m, p)) ≤ (8)

1

2
+

1

2
log(2πmpq) +

C
(p)
4

m

for C(p)
1 = 13

12 −
3 log(pq)

2 − 5
6pq , C(p)

2 = − 7
3 + 4 log(pq) +

8
3pq −

1
6(pq)2 , C(p)

3 = − 1
360 , and C(p)

4 = 1
12 + log(pq)

2 + 1
6pq .

From [33] we learn that the entropy of the sum of two bi-
nomially distributed random variables with the same number
of trials can be estimated by the the entropy of a binomial
variable with double the number of trials and the average
parameter:

H

(
Bin(m,a) + Bin(m, b)

)
≤ H

(
Bin(2m,

a+ b

2
)

)
. (9)

5.3 Leakage Estimation

To prove the security of the scheme we prove that the
total amount of information leaked (in terms of Shannon
entropy) is limited (A detailed version of this section can be
found in Appendix A).

In this section we use the following variable names: n
denotes the length of the n-grams, N = |Σ|n is the total
number of n-grams, l the number of n-grams per password,
k the number of passwords in the database, m def

= k · l the
total number of N -grams in the database, γ is the probabil-
ity of adding noise used in the construction, and L is the
information leaked from the database.

First, we consider the leakage of an individual n-gram
with index j (where 1 ≤ j ≤ N) with expected frequency tj ,
and we consider n-grams at the i-th position of the passwords
only (thus 1 ≤ i ≤ l). Define the random variables Si,jh :=
χj(P

i
h), where χj(P ih) is the indicator function for the j-

th n-gram on the i-th position in the h-th password. The
random variables Si,jh all have Pr(Si,jh = 1) = tj and
Pr(Shi,j = 0) = 1− tj .

For 1 ≤ i ≤ l and 1 ≤ j ≤ N , we define the empirical
frequency obtained from a password database with k pass-
words as T i,jk = 1

k

∑
h=1,...,k S

i,j
h . T i,jk follows a binomial

distribution Bin(k, tj) with k trials with success probabil-
ity tj each.

Let Ri,j ∼ Bin(k, γ) be random variables describing the
noise added to the i-th n-gram in our construction, where
1 ≤ i ≤ l ranges over the n-grams per password, and 1 ≤
j ≤ N ranges over all n-grams, and let Oi,jk

def
= T i,jk +Ri,j

be the observed noisy value. The information that can leak by
publishing a single noisy n-grams is the mutual information
between T i,jk and Oi,jk , i.e., the quantity I(T i,jk ;Oi,jk):

I(T i,jk ;Oi,jk) (10)

= H(Oi,jk)−H(Oi,jk |T
i,j
k)

= H(Oi,jk)−H(Ri,j),

where the first equality is the definition of mutual informa-
tion (Eq. (6)), and the second equality follows from Equa-
tion (5).

Using first Equation (9) and then Equations (7) and (8)
we can evaluate this further as follows:

H(Oi,j)−H(Ri,j) (11)
= H(Bin(k, γ) + Bin(k, tj))−H(Bin(k, γ))

≤ γ +
tj
2γ

+
C

(γ+tj)/2
4

2k
− Cγ1

k
− Cγ2
k2
− Cγ3
k3

The full n-gram database which is leaked is the concate-
nation of the sums of the individual n-gram counts, i.e., the
actual information leakage is3:

L = I((

l∑
i=1

T i,jk)1≤j≤N ; (

l∑
i=1

Oi,jk)1≤j≤N))

≤ 4kγ +
1

γ

(
6.1 +

1

5kγ

)
(12)

for l = 4. For a reasonable choice of parameters γ =
1

1.000.000 and k = 5.000.000 this means that overall, the
n-gram database can leak at most 6.2 million bits, or on
“average” about 1.3 bits per password. Values for different
parameters are given in Table 2.

3Appendix A presents in details how the results presented in this section
were derived.

k = 1 · 106 k = 5 · 106 k = 1 · 107

γ = 5 · 10−7 13.1 · 106 (13.1) 12.4 · 106 (2.5) 12.4 · 106 (1.24)
γ = 1 · 10−6 6.4 · 106 (6.4) 6.2 · 106 (1.24) 6.2 · 106 (0.62)
γ = 5 · 10−6 1.3 · 106 (1.3) 1.3 · 106 (0.3) 1.3 · 106 (0.13)

Table 2. Total leakage (and average leakage per password) in bits for different parameters of k and γ,
bold numbers indicate parameters that strike a good balance between accuracy and security.

6 Accuracy of our Construction

We now evaluate the accuracy of our scheme and compare
it with other password strength meters.

Datasets: In order to evaluate the accuracy of our scheme,
we use the RockYou password list. This list consists of
over 32.6 million passwords that were released to the public
after a breach occurred in December 2009 to the website
www.rockyou.com.4 The dataset is valuable for different
reasons. First, it was the result of an SQL injection attack
against the password database that was successful because
passwords were stored in clear and not hashed. This means
that all the passwords were collected, not only weak ones.
A number of other, smaller password lists exist, e.g., the
MySpace list which was obtained by a phishing attack and
thus might include weaker passwords as well as fake input
by users that realized the phishing attempt. Also, RockYou
did not enforce any password rules, yielding a “plain” pass-
word set that provides a clear insight of how users choose
passwords.

We also used the MySpace list of 37, 000 passwords
leaked from MySpace by a phishing attack in 2006, 184, 389
leaked by PhpBB in 2009, and a list of 8347 passwords from
the religious forum Faithwriters. Note that these passwords
were not used to train our model for the experiments, but
only to assess the need of adaptive password strength meters
as shown in Figure 1(a).

6.1 Measuring Accuracy Using Rank Correlation

First, we analyse the accuracy of our Markov-based pass-
word meter (with and without adding noise) as well as the
NIST, Google, and Microsoft password meters, by compar-
ing their score to the ideal password strength meter (see
Section 2.1). The ideal password meter is built upon the
knowledge of the most common passwords in the Rock-
You dataset. This comparison only makes sense if there are
enough data-points to keep the approximation error for the
probability low. The estimation is reasonable for the 10000
most frequent passwords; see Appendix B for a derivation
of this bound.

4One can remark the irony in the fact that a failure in password storing
best-practices led to a deeper understanding of user chosen passwords.

For comparing the different password meters we use
Spearman’s rank correlation. It describes how well the rela-
tionship between two vectors can be described using a mono-
tonic function. The coefficient lies between [−1, 1], with
0 indicating no correlation, +1 indicating perfect positive
correlation and −1 indicating perfect negative correlation
(i.e., given two sets of values X and Y , the Spearman cor-
relation coefficient becomes 1 when X and Y are perfectly
monotonically related, i.e., ∀i, j xi > xj implies yi > yj).
All the password meters under examination where measured
by computing the rank correlation of their scores against the
scores of the ideal meters. (The intuition is that if the ideal
score of password p1 is higher than the ideal score of pass-
word p2, then an approximation of the ideal meter should
rate these two passwords in the same order.) To obtain a
more fine-grained comparison, we plotted the correlation at
different intervals, using the first 10, 20, ..., 10000 passwords
in the set. The results are shown in Figure 2(a).

First, we can see that our Markov-based password meter
outperforms the other checkers, even when noise is added.
Second, the noise added to establish the security of the
scheme only slightly decreases the accuracy of the meter.
Third, the NIST, Microsoft and Google checker perform
equally badly and are not much better than random guessing
the password strength, as their correlation with the ideal
meter is close to zero.

Training and Testing using Different Datasets: In order
to quantify the importance of using the correct password
database, in an additional experiment we included data from
the PhpBB password list. We computed the optimal score
for the 1000 most frequent passwords of the PhpBB list from
their empirical frequency, let us call the resulting vector X .
Then we scored the same 1000 passwords using the Markov
5-gram Model trained on the RockYou password dataset,
we call the resulting vector Y . The correlation between the
two vectors X and Y is 0.27 only, much lower than 0.55,
the result we obtained by training and testing on the same
password list.

This test shows that training a Markov Model on a web
service (in this case RockYou) and using it to score pass-
words on a second service (in our case PhpBB) potentially
significantly lowers accuracy, which further strengthens the
previous findings in Section 3.1. This serves as justification
for our APSM to be trained on the same web service where

www.rockyou.com

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
p

e
a

rm
a

n
 c

o
rr

e
la

ti
o

n
 t

o
 i
d

e
a

l
m

e
te

r

First k common passwords

Markov 5-gram
Markov 5-gram with noise

NIST
Microsoft

Google

(a) Spearman correlation coefficient against the ideal password meter.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Markov 5-gram
Markov 5-gram with noise

Markov 5-gram trained on PhpBB
NIST

Random

(b) ROC Curve comparing the performance of our password meter (with
and without noise) to the NIST password checker. γ = 5 · 10−6 was
chosen for the noise.

Figure 2. Accuracy Analysis

it is used to score passwords.

6.2 Measuring Accuracy based on Binary Classi-
fication

Next, we compare the accuracy of the password meters
in terms of binary classification accuracy, i.e., we establish
the accuracy of distinguishing between “strong” and “weak”
passwords. The security of a password is the inverse of its
probability. In this experiment we set a probability threshold
of 2−20 to distinguish between strong and weak passwords.
For guessing attacks, this threshold guarantees that in order
to correctly guess one single password the attacker has to
guess 218 different passwords. This number should be suffi-
ciently high to prevent online guessing attack if the server
uses simple rate limiting on the password guesses. We refer
the interested reader to [8] for an analysis of rate limiting
policies on passwords.

This threshold was chosen because, given our dataset of
32 million password, we can divide the password in “strong”
and “weak” using their frequency and build a ground truth
set. Roughly, all the passwords that appear with frequency
higher than 2−20 are marked as weak, the others are marked
as strong. However, special caution must be taken when
dealing with this probability estimation. In fact, a small
estimation error near the threshold can mean that a password
is incorrectly labelled. Thus we excluded the passwords with
frequency too close to the threshold using Wilson interval
estimation for the binomial probability estimation [3], with
z-value z1−α/2 = 2.58.

Using this estimation we can find the passwords above
and below the threshold probability with 99% confidence.
We divided our testing dataset of 600000 passwords in 4163
surely weak password, called W , and 142205 strong pass-

words, called S. In this experiment too, we built an ideal
ground-truth using the RockYou dataset and sound probabil-
ity estimations.

We test the accuracy of our Markov-based password me-
ter (with and without noise) in distinguishing between these
two sets. We also test the NIST meter alongside as a com-
parison. The Microsoft and Google meter were not tested
in this experiment, as we cannot map the threshold t to the
scoring given by those meters. We computed the score of all
the passwords in the sets W and S using both the Markov
method and NIST. For different thresholds, we measured
true positives ratio (passwords correctly marked as weak)
and false positive ratio (strong password incorrectly marked
as weak). The results can be seen in the ROC curve showed
in Figure 2(b). The diagonal line gives the performance of
a random password meter, which scores the passwords as
weak or strong at random (this is a inherent property of ROC
curves). The closer a curve is to the top-left corner (false
positive rate of zero and true positive rate of one) the better
the classification is. An ideal meter would be a perfect clas-
sifier of strong and weak passwords. Again, we can see that
our password strength meter (with and without noise) clearly
outperforms the NIST meter. Also, the introduction of noise
affects performance only slightly. The Markov based meter
performs close to optimal with a success rate of 93.4%.

7 Implementation Considerations

7.1 Bootstrapping

One remaining question is how to bootstrap our system.
In fact, when only few passwords are stored in the system,
those might be particularly vulnerable to leakage as the ad-
versary can easily learn what passwords are not present, by

checking what n-grams are not present in the database. We
notice, however, that both these problems can be easily ad-
dressed. The solution lies in inserting the noise in batches
of size k rather than every time a password is inserted. In
practice we execute step 3 of the DCU algorithm, (described
in Section 4.2.1) k times in advance. The value k should
be high enough to provide a balance between usability and
security and a reasonable value of k could be 1.000.000
(Section 5.3 details how k should be selected in order to
provide security). Then, for the first k passwords entered in
the system, only step 2 and step 4 of the DCU algorithm are
executed (i.e., no noise is added as it was added in advance).
After the first k passwords, the full DCU algorithm (step 2,
step 3 and step 4) is then executed.

Note that our system cannot be used to estimate the
strength of the first k passwords (the noise would introduce
too much error in the estimations). For these passwords, we
suggest to use our scheme with a n-gram database config-
ured with n-grams extracted from a public source such as
the RockYou database, and then switch back to our database
when the number of passwords exceeds k.

One additional remark is that our password meter is better
suited for large web services, that can leverage on password
databases of several thousand passwords and larger. In our
tests we observed that the accuracy of the Markov model
increases rapidly with small training sets and then achieves
only marginal better performance with larger training sets.
For example, the Markov model trained with only 100.000
passwords achieved an accuracy of 90.3%, when trained
with 50.000 passwords an accuracy of 92.9%, and when
trained with 32 million passwords an accuracy of 93.4%.
This is most likely due to the fact that the most common
n-grams are quickly learned, while there is a very long tail
of uncommon n-grams. Services that do not have access to
tens of thousands of passwords (e.g., smaller web services
or local services) must either rely on training the markov
model on dictionaries [19] or leaked password databases like
RockYou.

7.2 Usability

Our password meter returns real numbers between 0 and 1.
However, these values might not be easy for users to interpret.
We envision three ways in which the output of our password
strength meter can be presented to the users. First, the user
can be given the score computed by the Markov model, but
converted to a discrete value, e.g., too weak, weak, medium,
strong, instead of a real number. The probability could be
translated into a sliding “strength bar” that reflects the score
computed. This approach would look exactly like current
password strength meters, albeit with the higher accuracy
given by our construction.

However, we notice that the fine-grained score given by

our meter enables us to do more. We could translate the
score of the password strength meter into a more concrete
metric such as the effort required by an adversary to break
the password in terms of time. This could be done, for
example, by using the guessing entropy bound derived from
the Shannon entropy. In this context, the user could be given
a message of the type, “your password can be guessed – on
average – in x attempts, that can be tried automatically in
about y hours”.

Third, the score could be used to compute an estimation
of the strength of the password relative to their peers, which
might provide an incentive for users to choose better pass-
words. Users could be prompted with a message that says,
for example, “your password is amongst the 5% weakest
passwords on our web site”, which might encourage them to
choose a better password. Conversely, having a password in
the top 5% might be an incentive for users to choose stronger
passwords.

8 Conclusion

In this work, we proposed a novel way to measure the
strength of user-selected passwords. The construction is
based on Markov-models and achieves much higher accuracy
than commonly used password meters. The fine-grained mea-
surement of the password strength provided by our strength
meter allows for a very precise feedback to users.

We have formally proven that this construction is secure
even when the local data storage is compromised by an at-
tacker, thus, meeting best practices in securing password
storage. We evaluated the accuracy of our scheme by per-
forming extensive experiments and showed that it outper-
forms existing schemes.

References

[1] J. Adell, A. Lekuona, and Y. Yu. Sharp bounds on the entropy
of the poisson law and related quantities. Information Theory,
IEEE Transactions on, 56(5):2299–2306, 2010.

[2] M. Bishop and D. V. Klein. Improving system security
via proactive password checking. Computers & Security,
14(3):233–249, 1995.

[3] L. D. Brown, T. T. Cai, and A. DasGupta. Interval estimation
for a binomial proportion. Statistical Science, 16(2):101–133,
2001.

[4] W. E. Burr, D. F. Dodson, and W. T. Polk. Electronic authen-
tication guideline: NIST special publication 800-63, 2006.

[5] J. A. Cazier and D. B. Medlin. Password security: An empir-
ical investigation into e-commerce passwords and their crack
times. Information Security Journal: A Global Perspective,
15(6):45–55, 2006.

[6] M. Dell’Amico, M. Pietro, and Y. Roudier. Password strength:
An empirical analysis. In INFOCOM ’10: Proceedings of
29th Conference on Computer Communications. IEEE, 2010.

[7] D. Florencio and C. Herley. A large-scale study of web
password habits. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 657–666.
ACM, 2007.

[8] D. Florêncio, C. Herley, and B. Coskun. Do strong web
passwords accomplish anything? In Proceedings of the 2nd
USENIX workshop on Hot topics in security, Berkeley, CA,
USA, 2007. USENIX Association.

[9] C. Herley. So long and no thanks for the externalities: The
rational rejection of security advice by users. In Proceedings
of the 2009 Workshop on New security paradigms, pages
133–144. ACM, 2009.

[10] A. Kerckhoffs. La cryptographie militaire. Journal des
sciences militaires, IX:5–38, January 1883.

[11] D. V. Klein. Foiling the cracker: A survey of, and improve-
ments to, password security. In Proc. USENIX UNIX Security
Workshop, 1990.

[12] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek,
L. Bauer, N. Christin, L. F. Cranor, and S. Egelman. Of
passwords and people: Measuring the effect of password-
composition policies. In CHI 2011: Conference on Human
Factors in Computing Systems, 2011.

[13] C. Kuo, S. Romanosky, and L. F. Cranor. Human selection of
mnemonic phrase-based passwords. In Proc. Symposium on
Usable Privacy and Security (SOUPS), pages 67–78, 2006.

[14] C. D. Manning and H. Schütze. Foundations of statistical
natural language processing. MIT Press, Cambridge, MA,
USA, 1999.

[15] S. Marechal. Advances in password cracking. Journal in
Computer Virology, 4(1):73–81, 2008.

[16] J. Massey. Guessing and entropy. In IEEE International
Symposium on Information Theory, page 204, 1994.

[17] Microsoft password strength meter. Online at
https://www.microsoft.com/security/
pc-security/password-checker.aspx.

[18] R. Morris and K. Thompson. Password security: a case
history. Communications. ACM, 22(11):594 – 597, 1979.

[19] A. Narayanan and V. Shmatikov. Fast dictionary attacks on
passwords using time-space tradeoff. In CCS ’05: Proceed-
ings of the 12th ACM conference on Computer and communi-
cations security, pages 364–372, New York, NY, USA, 2005.
ACM.

[20] The password meter. Online at http://www.
passwordmeter.com/.

[21] B. Pinkas and T. Sander. Securing passwords against dictio-
nary attacks. In Proc. CCS ’02, pages 161–170, 2002.

[22] S. Riley. Password security: What users know and what they
actually do. Usability News, 8(1), 2006.

[23] S. Schechter, C. Herley, and M. Mitzenmacher. Popular-
ity is everything: a new approach to protecting passwords
from statistical-guessing attacks. In Proceedings of the 5th
USENIX conference on Hot topics in security, pages 1–8.
USENIX Association, 2010.

[24] E. H. Spafford. Observing reusable password choices. In
Proceedings of the 3rd Security Symposium, pages 299–312.
USENIX, 1992.

[25] SpiderMonkey. Online at http://search.cpan.org/
˜mschilli/JavaScript-SpiderMonkey.

[26] J. M. Stanton, K. R. Stam, P. Mastrangelo, and J. Jolton.
Analysis of end user security behaviors. Comp. & Security,
24(2):124–133, 2005.

[27] A. Vance. If your password is 123456, just
make it hackme. New York Times, oneline at
http://www.nytimes.com/2010/01/21/
technology/21password.html, retrieved May
2011, January 2010.

[28] M. Weir, S. Aggarwal, M. Collins, and H. Stern. Testing
metrics for password creation policies by attacking large sets
of revealed passwords. In Proceedings of the 17th ACM
conference on Computer and communications security (CCS
2010), pages 162–175. ACM, 2010.

[29] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek. Pass-
word cracking using probabilistic context-free grammars. In
IEEE Symposium on Security and Privacy, pages 391–405.
IEEE Computer Society, 2009.

[30] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password
memorability and security: Empirical results. IEEE Security
and Privacy Magazine, 2(5):25–31, 2004.

[31] J. J. Yan. A note on proactive password checking. In Proc.
NSPW ’01, pages 127–135. ACM, 2001.

[32] J. J. Yan, A. F. Blackwell, and R. J. Anderson. Password
memorability and security: Empirical results. IEEE Security
& Privacy, 2:25–31, 2004.

[33] Y. Yu. On the entropy of compound distributions on non-
negative integers. IEEE Trans. Inf. Theor., 55:3645–3650,
2009.

A Details of the Leakage Estimation

To prove the security of the scheme we prove that the
total amount of information (in terms of Shannon entropy)
is limited. In this section we use the following variable
names: n denotes the length of the n-grams, N = |Σ|n
is the total number of n-grams, l the number of n-grams
per password, k the number of passwords in the database,
m

def
= k · l the total number of N -grams in the database, γ is

the probability of adding noise used in the construction, and
L is the information leaked from the database.

First, we consider the leakage of an individual n-gram
with index j (where 1 ≤ j ≤ N) with expected frequency tj ,
and we consider n-grams at the i-th position of the passwords
only (thus 1 ≤ i ≤ l). Define the random variables Si,jh :=
χj(P

i
h), where χj(P ih) is the indicator function for the j-

th ngram on the i-th position in the h-th password. The
random variables Si,jh all have Pr(Si,jh = 1) = tj and
Pr(Shi,j = 0) = 1− tj .

For 1 ≤ i ≤ l and 1 ≤ j ≤ N , we define the empirical
frequency obtained from a password database with k pass-
words as T i,jk = 1

k

∑
h=1,...,k S

i,j
h . T i,jk follows a binomial

distribution Bin(k, tj) with k trials with success probability
tj each.

Let Ri,j ∼ Bin(k, γ) be random variables describing the
noise added to the i-th n-gram in our construction, where

https://www.microsoft.com/security/pc-security/password-checker.aspx
https://www.microsoft.com/security/pc-security/password-checker.aspx
http://www.passwordmeter.com/
http://www.passwordmeter.com/
http://search.cpan.org/~mschilli/JavaScript-SpiderMonkey
http://search.cpan.org/~mschilli/JavaScript-SpiderMonkey
 http://www.nytimes.com/2010/01/21/ technology/21password.html
 http://www.nytimes.com/2010/01/21/ technology/21password.html

1 ≤ i ≤ l ranges over the n-grams per password, and 1 ≤
j ≤ N ranges over all n-grams, and let Oi,jk

def
= T i,jk +Ri,j

be the observed noisy value. The information that can leak by
publishing a single noisy n-grams is the mutual information
between T i,jk and Oi,jk , i.e., the quantity I(T i,jk ;Oi,jk):

I(T i,jk ;Oi,jk) = H(Oi,jk)−H(Oi,jk |T
i,j
k) (13)

= H(Oi,jk)−H(Ri,j),

where the first equality is the definition of mutual informa-
tion (Eq. (6)), and the second equality follows from Equa-
tion (5).

Using first Equation (9) and then Equations (7) and (8)
we can evaluate this further as follows:

H(Oi,j)−H(Ri,j) (14)
= H(Bin(k, γ) + Bin(k, tj))−H(Bin(k, γ))

≤ H(Bin(2k,
γ + tj

2
))−H(Bin(k, γ))

≤ 1

2
ln
(1

1− γ

)
+

1

2
ln

(
1 +

tj
γ

)
+
C

(γ+t)/2
4

2k
− Cγ1

k
− Cγ2
k2
− Cγ3
k3

≤ γ +
tj
2γ

+
C

(γ+tj)/2
4

2k
− Cγ1

k
− Cγ2
k2
− Cγ3
k3

where the last inequality uses γ ≤ 1
2 In addition to this

estimation, for at most k · l n-grams can this difference
be different from 0: if an n-gram never appeared, then the
observed value Oi,jk is identical to the randomness Ri,j , and
thus the entropy of both is the same. (*)

The full n-gram database which is leaked is the concate-
nation of the sums of the individual n-gram counts, i.e., the
actual information leakage is

L = I((

l∑
i=1

T i,jk)1≤j≤N ; (

l∑
i=1

Oi,jk)1≤j≤N)

= H((

l∑
i=1

Oi,jk)1≤j≤N)−H((

l∑
i=1

Ri,jk)1≤j≤N)

≤
N∑
j=1

l∑
i=1

(
H(Oi,jk)−H(Ri,jk)

)
(15)

Now we estimate the constants from Equation (15) using
that γ, t ≤ 0.01 and get:

l · C(γ+t)/2
4

2k
≤ 1

5.8γ · k
,

l · Cγ1
k
≥ − 5

5.95γ · k
,

l · Cγ2
k2

≥ − 1

5lk2γ2
,

l · Cγ3
k3

= − 1

360k3l2
.

Finally, from these estimations, from remark (*), and
Equations (15) and (15) we get

L ≤
N∑
j=1

l∑
i=1

(
γ +

tj
2γ

+
C

(γ+tj)/2
4

2k
− Cγ1

k
− Cγ2
k2
− Cγ3
k3

)
(∗)
≤ l

2γ
+ lk ·

(
γ +

C
(γ+tj)/2
4

2k
− Cγ1

k
− Cγ2
k2
− Cγ3
k3

)

≤ 4kγ +
1

γ

(
6.1 +

1

5kγ

)
for l = 4. For a reasonable choice of parameters γ =

1
1′000′000 and k = 5′000′000 this means that overall, the
n-gram database can leak at most 6.2 million bits, or on
“average” about 1.3 bits per password.

B Interval Estimation for Password Frequen-
cies

As explained in Section 2.1, given the true probability
of each password, we can easily build an ideal password
meter by applying any monotonically increasing function
to these probabilities. Furthermore, even if we only have
an estimation of these probabilities the we could build an
ideal password checker, as long as the relative ranking of the
passwords remains unchanged.

Unfortunately, we do not in general the true probabil-
ity of a password thus rendering this approach impractical.
However, there exist certain classes of passwords for which
it is possible to give a good probability estimation that can
be used as a ground truth for measuring the accuracy of our
construction in measuring password strength.

One such class is the most common passwords in the
RockYou dataset. Intuitively, with a large dataset of 32.6
million passwords, we should be able to obtain a good prob-
ability estimation of, at least, the most common passwords.
This probability estimation could then be used to be an ideal
password meter for these common passwords. For example,
the most common password in the dataset (123456) has
been chosen 290729 times, while the second most common
(12345) has been chosen 79076.

If we estimate the probability of 123456 using the em-
pirical frequency we might introduce some small error (the
mathematical treatment is explained later), however, we can
be confident that 123456 will remain the most common
password. This is not true for passwords with much lower
counts though. For example, the password zxcvbnmp has
been chosen 3 times in the dataset and it is the 288078th
most common password together with almost 400′000 other
passwords, due to ties. However, if zxcvbnmp had been
chosen only 2 times, it would be the 1136277th most com-
mon password. In this case a small difference in the proba-
bility estimation can make a big difference in the guessing
entropy of a password.

In order to measure the accuracy of a password meters
we would like to find a subset of common passwords for
which we can estimate, with high confidence, the probability
and therefore the ranking. By assuming that each passwords
x binomially distributed, with unknown probability p(x).
With this interpretation, each password x in our dataset is
binomially distributed with N number of trials and unknown
probability p(x). In our case, N is the number of times
a password in our RockYou dataset was chosen, i.e., 32.6
million. Given the counts of each password x in our dataset,
we can estimate its probability as p̂x = count(x)

N . However,
this is only an estimation of the true probability mentioned
above. The error of this estimation depends on p̂x and N
and, for example, larger N lead to better estimations. The
sampling error of p̂x can be estimated using Wilson score
interval:

W (p̂x, N) =
p̂x +

z21−α/2
2n ± z1−α/2

√
p̂x(1−p̂x)

N +
z2
1−α/2
4N2

1 + 1
nz

2
1−α/2

The relative ranking of two passwords x and x′, with
estimated probability p̂x > p̂′x, remains unchanged as long
as W (p̂x, N) > W (p̂′x, N). The confidence level depends
on the z-score z1−α/2, for example if z1−α/2 = 2.58 than
the ordering is correct with 99 % probability.

	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Organization

	2 Password Strength Meters
	2.1 An Ideal Password-Strength Meter
	2.2 Common Approximations

	3 Adaptive Password Strength Meters
	3.1 The Need for Adaptive Password Meters
	3.2 Challenges

	4 Constructing an Adaptive Password Meter
	4.1 Markov Models
	4.2 Our Construction
	4.2.1 N-gram Database Construction and Update (DCU algorithm)
	4.2.2 Password Strength Estimation (PSE algorithm)

	5 Security of our Construction
	5.1 Security Definition
	5.2 Information and Entropy
	5.3 Leakage Estimation

	6 Accuracy of our Construction
	6.1 Measuring Accuracy Using Rank Correlation
	6.2 Measuring Accuracy based on Binary Classification

	7 Implementation Considerations
	7.1 Bootstrapping
	7.2 Usability

	8 Conclusion
	A Details of the Leakage Estimation
	B Interval Estimation for Password Frequencies

