
Laziness by Need

Stephen Chang

Northeastern University
stchang@ccs.neu.edu

Abstract. Lazy functional programming has many benefits that strict
functional languages can simulate via lazy data constructors. In recogni-
tion, ML, Scheme, and other strict functional languages have supported
lazy stream programming with delay and force for several decades. Un-
fortunately, the manual insertion of delay and force can be tedious and
error-prone.

We present a semantics-based refactoring that helps strict program-
mers manage manual lazy programming. The refactoring uses a static
analysis to identify where additional delays and forces might be needed
to achieve the desired simplification and performance benefits, once the
programmer has added the initial lazy data constructors. The paper
presents a correctness argument for the underlying transformations and
some preliminary experiences with a prototype tool implementation.

1 Laziness in a Strict World

A lazy functional language naturally supports the construction of reusable com-
ponents and their composition into reasonably efficient programs [12]. For ex-
ample, the solution to a puzzle may consist of a generator that produces an
easily-constructed stream of all possible solutions and a filter that extracts the
desired valid solutions. Due to laziness, only a portion of the possible solutions
are explored. Put differently, lazy composition appears to naturally recover the
desired degree of efficiency without imposing a contorted programming style.

Unfortunately, programming in a lazy language comes at a cost. Not only
are data constructors lazy, but all functions are as well. This pervasiveness of
laziness makes it difficult to predict the behavior and time/space performance of
lazy programs. As several researchers noticed [2,6,15,16,23], however, most pro-
grams need only a small amount of laziness. In response, people have repeatedly
proposed lazy programming in strict functional languages [1,8,20,25,27]. In fact,
Scheme [22] and ML [3] have supported manual stream programming with delay

and force for decades. Using delay and macros, a programmer can easily turn
an eager, Lisp-style list constructor into a lazy one [11], while force retrieves
the value from a delayed computation.

However, merely switching from eager constructors to lazy ones is often not
enough to achieve the performance benefits of laziness. The insertion of one
delay tends to require additional delays elsewhere in the program to achieve
the desired lazy behavior. Since these additional delay insertions depend on

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 81–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

82 S. Chang

the value flow of the program, it can be difficult to determine where to insert
them, especially in the presence of higher-order functions. In short, manual lazy
programming is challenging and error-prone.

In response, we introduce a static analysis-based refactoring that assists pro-
grammers with the task of inserting delays and accompanying forces. We imag-
ine a programmer who wishes to create a lazy generator and starts using lazy
constructs in the obvious places. Our transformation then inserts additional
delays and forces to achieve the desired lazy performance benefit.

The paper is organized as follows. The second section introduces some moti-
vating examples. Section 3 presents the analysis-based program transformation,
and section 4 argues its correctness. Section 5 sketches a prototype implemen-
tation, and section 6 describes real-world applications. Section 7 compares our
approach with other attempts at taming laziness. Finally, section 8 lists some
ideas for future work.

2 Motivating Examples

Nearly every modern strict programming language supports laziness, either via
delay and force, or in the form of a streams or other lazy data structure
library. None of these languages offer much help, however, in figuring out the
right way to use these forms. To illustrate the problems, this section presents
three examples in three distinct languages, typed and untyped. The first one,
in Racket [10], shows how conventional program reorganizations can eliminate
the performance benefits of laziness without warning. The second, in Scala [19],
demonstrates how laziness propagates across function calls. The third example
illustrates the difficulties of developing an idiomatic lazy n-queens algorithm in
a strict language like OCaml [14]. That is, the problems of programming lazily
in a strict language are universal across many languages.

2.1 Reorganizations Interfere with Laziness

Using delay and force occasionally confuses even the most experienced pro-
grammers. This subsection retells a recent story involving a senior Racket de-
veloper. A game tree is a data structure representing all possible sequences of
moves in a game. It is frequently employed in AI algorithms to calculate an op-
timal next move, and it is also useful for game developers wishing to experiment
with the rules of a game. For anything but the simplest games, however, the
multitude of available moves at each game state results in an unwieldy or even
infinite game tree. Thus, laziness is frequently utilized to manage such trees.

The Racket code to generate a game tree might roughly look like this:

;; A GameTree (short: GT) is one of:

;; -- (GT-Leaf GameState)

;; -- (GT-Node GameState Player [ListOf Move])

;; A Move is a (Move Name Position GameTree)

Laziness by Need 83

;; gen-GT : GameState Player -> GameTree

(define (gen-GT game-state player)

(if (final-state? game-state)

(GT-Leaf game-state)

(GT-Node game-state player (calc-next-moves game-state player))))

;; calc-next-moves : GameState Player -> [ListOf Move]

(define (calc-next-moves game-state player)

〈〈for each possible attacker and target in game-state:〉〉
(define new-state ...)

(define new-player ...)

(Move attacker target (gen-GT new-state new-player)))

A game tree is created with the gen-GT function, which takes a game state and
the current active player. If the given state is a final state, then a GT-Leaf node is
created. Otherwise, a GT-Node is created with the current game state, the current
player, and a list of moves from the given game state. The calc-next-moves

function creates a list of Move structures, where each move contains a new game
tree starting from the game state resulting from the move.

An upcoming, Racket-based programming book utilizes such a game tree.
Initially, only a small game is implemented, so Move is defined as a strict con-
structor. As the book progresses, however, the game tree becomes unwieldy as
more features are added to the game. In response, the third argument of the Move
structure is changed to be lazy, meaning the call to the Move constructor implic-
itly wraps the third argument with a delay.1 With the lazy Move constructor,
the code above generates only the first node of a game tree.

To prepare the book for typesetting, an author reorganized the definition of
calc-next-moves in a seemingly innocuous fashion to fit it within the margins
of a page:

;; calc-next-moves : GameState Player -> [ListOf Move]

(define (calc-next-moves game-state player)

〈〈for each possible attacker and target in game-state:〉〉
(define new-state ...)

(define new-player ...)

(define new-gt (gen-GT new-state new-player))

(Move attacker target new-gt))

The underlined code above pulls the generation of the game tree into a separate
definition. As the astute reader will recognize, the new game tree is no longer
created lazily. Even though the Move constructor is lazy in the third position,
the benefits of laziness are lost. Even worse, such a performance bug is easily
unnoticed because the program still passes all unit tests.

In contrast, our laziness transformation recognizes that the new-gt variable
flows into the lazy position of the Move constructor, and in turn, proposes a
delay around the construction of the new game tree.

1 Specifically, Move becomes a macro that expands to a private constructor call where
the third argument is delayed. This is a common idiom in Lisp-like languages [11].

84 S. Chang

2.2 Laziness Must Propagate

A 2009 blog post2 illustrates a related tricky situation in the following Scala [19]
example. Scala delays method arguments whose type is marked with =>, as in:3

def foo[A,B](a: A, b: => B): B = ...

When foo is called, its second argument is not evaluated until its value is needed
inside the function body. However, if another function, bar, calls foo:

def bar[C,A,B](c: C, a: A, b: B): B = { ... foo(a, b) }

the b argument is evaluated when bar is called, thus negating the benefit of
laziness in foo. To recover it, we must delay the third argument to bar:

def bar[C,A,B](c: C, a: A, b: => B): B = ...

If yet another function calls bar then that function must delay its argument as
well. For programs with complex call graphs, the required delay points may be
scattered throughout the program, making programmer errors more likely. Our
transformation is designed to help with just such situations.

2.3 Idiomatic Lazy Programming in a Strict Language

The n-queens problem makes an illustrative playground for advertising lazy pro-
gramming. An idiomatic lazy solution to such a puzzle may consist of just two
parts: a part that places n queens at arbitrary positions on an n by n chess
board, and a part for deciding whether a particular placement is a solution to
the puzzle. Given these two components, a one-line function calculates a solution:

let nqueens n = hd (filter isValid all_placements)

The all placements variable stands for a stream of all possible placements of
n queens; filter isValid eliminates placements with conflicting queens; and
hd picks the first valid one. Lazy evaluation guarantees that filter isValid

traverses all placements for just enough placements to find the first solution.
The approach cleanly separates two distinct concerns. While all placements

may ignore the rules of the puzzle, it is the task of isValid to enforce them. If the
components were large, two different programmers could tackle them in parallel.
All they would have to agree on is the representation of queen placements, for
which we choose a list of board coordinates (r, c). The rest of the section explains
how an OCaml [14] programmer may develop such a lazy algorithm. Here is
all placements: :

let process_row r qss_so_far =

foldr (fun qs new_qss -> (map (fun c -> (r,c)::qs) (rng n)) @ new_qss)

[] qss_so_far

let all_placements = foldl process_row [[]] (rng n)

2 http://pchiusano.blogspot.com/2009/05/

optional-laziness-doesnt-quite-cut-it.html
3 The => syntax specifies “by-name” parameter passing for this position but the dis-
tinction between “by-name” and “lazy” is inconsequential here.

http://pchiusano.blogspot.com/2009/05/optional-laziness-doesnt-quite-cut-it.html
http://pchiusano.blogspot.com/2009/05/optional-laziness-doesnt-quite-cut-it.html

Laziness by Need 85

Brackets denote lists, rng n is [1. . . n], :: is infix cons, and @ is infix append.
All possible placements are generated by adding one coordinate at a time. The
process row function, given a row r and a list of placements qss so far, dupli-
cates each placement in qss so far n times, adding to each copy a new coordinate
of r with a different column c, and then appends all these new placements to
the final list of all placements. The process row function is called n times, once
per row. The result of evaluating all placements looks like this:

[[(n,1);(n-1,1); ... ;(1,1)];

...;

[(n,n);(n-1,n); ... ;(1,n)]]

where each line represents one possible placement.
Since OCaml is strict, however, using all placementswith the nqueens func-

tion from earlier generates all possible placements before testing each one of
them for validity. This computation is obviously time consuming and performs
far more work than necessary. For instance, here is the timing for n = 8 queens:4

real 0m52.122s user 0m51.399s sys 0m0.468s

If the programmer switches to lazy lists to represent all placements, then only
a portion of the possible placements should be explored. Specifically, all instances
of cons (::) are replaced with its lazy variant, represented with ::lz below. In
this setting, lazy cons is defined using OCaml’s Lazy module and is cons with
a delayed rest list. It is also necessary to add forces where appropriate.5 For
example, here is append (@) and map with lazy cons ([] also represents the
empty lazy list):6

let rec (@) lst1 lst2 =

match force lst1 with

| [] -> lst2

| x::lzxs -> x::lzdelay (xs @ lst2)

let rec map f lst =

match force lst with

| [] -> []

| x::lzxs -> f x::lzdelay (map f xs)

Running this program, however, surprises our lazy-strict programmer:

real 1m3.720s user 1m3.072s sys 0m0.352s

With lazy cons and force, the program runs even slower than the strict version.
Using lazy cons näıvely does not seem to generate the expected performance
gains. Additional delays and forces are required, though it is not immedi-
ately obvious where to insert them. This step is precisely where our analysis-
based refactoring transformation helps a programmer. In this particular case,
our transformation would insert a delay in the foldr function:

4 Run on an Intel i7-2600k, 16GB memory machine using the Linux time command.
5 “Appropriate” here means we avoid Wadler et al.’s [27] “odd” errors.
6 OCaml’s delaying construct is lazy but for clarity and consistency with the rest of
the paper we continue to use delay. Also, in ML languages, the delay is explicit.

86 S. Chang

let rec foldr f base lst =

match force lst with

| [] -> base

| x::lzxs -> f x (delay (foldr f base xs))

This perhaps unobvious delay is needed because f’s second argument eventually
flows to a lazy cons in append (@). Without this delay, the list of all queen
placements is evaluated prematurely. With this refactoring, and an appropriate
insertion of forces, the lazy-strict programmer sees a dramatic improvement:

real 0m3.103s user 0m3.068s sys 0m0.024s

Lazy programmers are already familiar with such benefits, but our refactoring
transformation enables strict programmers to reap the same benefits as well.

3 Refactoring For Laziness

The heart of our refactoring is a whole-program analysis that calculates where
values may flow. Our transformation uses the results of the analysis to insert
delays and forces. Section 3.1 describes the core of our strict language. We then
present our analysis in three steps: section 3.2 explains the analysis rules for our
language; section 3.3 extends the language and analysis with lazy forms: delay,
force, and lazy cons (lcons); and section 3.4 extends the analysis again to
calculate the potential insertion points for delay and force. Finally, section 3.5
defines the refactoring transformation function.

3.1 Language Syntax

Our starting point is an untyped7 functional core language. The language is
strict and uses a standard expression notation:

e ∈ Exp = n | b | x | λ(x . . .).e | e e . . . | o e e | zero? e | not e | if e e e

| let x = e in e | null | cons e e | first e | rest e | null? e
n ∈ Z, b ∈ Bool = true | false, x ∈ Var, o ∈ Op = + | − | ∗ | / |<|>|=| or | and

There are integers, booleans, variables, λs, applications, boolean and arithmetic
primitives, conditionals, (non-recursive) lets, and eager lists and list operations.
Here are the values, where both components of a non-empty list must be values:

v ∈ Val = n | b | λ(x . . .).e | null | cons v v

A program p consists of two pieces: a series of mutually referential function
definitions and an expression that may call the functions:

p ∈ Prog = d . . . e d ∈ Def = define f(x . . .) = e

7 Standard type systems cannot adequately express the flow of laziness and thus cannot
solve the delay-insertion problems from section 2. A type error can signal a missing
force, but a type system will not suggest where to add performance-related delays.
Thus we omit types for this first step in our research.

Laziness by Need 87

3.2 Analysis Step 1: 0-CFA

Our initial analysis is based on 0-CFA [13,24,26]. The analysis assumes that
each subexpression has a unique label �, also drawn from Var, but that the set
of labels and the set of variables in a program are disjoint. The analysis computes
an abstract environment ρ̂ that maps elements of Var to sets of abstract values:

ρ̂ ∈ Env = Var → P(v̂) � ∈ Var v̂ ∈ ̂Val = val | λ(x . . .).� | cons � �

A set ρ̂(x) or ρ̂(�) represents an approximation of all possible values that can be
bound to x or observed at �, respectively, during evaluation of the program.

The analysis uses abstract representations of values, v̂, where val stands for
all literals in the language. In addition, λ(x . . .).� are abstract function values
where the body is represented with a label, and (cons � �) are abstract list values
where the �’s are the labels of the respective pieces. We overload the ·̂ notation
to denote a function that converts a concrete value to its abstract counterpart:

n̂ = val ̂b = val n̂ull = val ·̂ : Val → ̂Val

̂λ(x . . .).e� = λ(x . . .).� ̂
cons v�11 v�22 = cons �1 �2

We present our analysis with a standard [18], constraints-based specification,
where notation ρ̂ |= p means ρ̂ is an acceptable approximation of program p.
Figures 1 and 2 show the analysis for programs and expressions, respectively.

The [prog] rule specifies that environment ρ̂ satisfies program p = d . . . e if
it satisfies all definitions d . . . as well as the expression e in the program. The
[def] rule says that ρ̂ satisfies a definition if the corresponding abstract λ-value
is included for variable f in ρ̂, and if ρ̂ satisfies the function body as well.

In figure 2, the [num], [bool], and [null] rules show that val represents these
literals in the analysis. The [var] rule connects variables x and their labels �,
specifying that all values bound to x should also be observable at �. The [lam]
rule for an �-labeled λ says that its abstract version must be in ρ̂(�) and that
ρ̂ must satisfy its body. The [app] rule says that ρ̂ must satisfy the function
and arguments in an application. In addition, for each possible λ in the function
position, the arguments must be bound to the corresponding parameters of that λ
and the result of evaluating the λ’s body must also be a result for the application
itself. The [let] rule has similar constraints. The [op], [zero?], [not], and [null?]
rules require that ρ̂ satisfy a primitive’s operands and uses val as the result.
The [if] rule requires that ρ̂ satisfy the test expression and the two branches,
and that any resulting values in the branches also be a result for the entire

ρ̂ |= d . . . e iff [prog]

ρ̂ |=d d ∧ . . . ∧ ρ̂ |=e e

ρ̂ |=d define f(x . . .) = e� iff [def]

λ(x . . .).� ∈ ρ̂(f) ∧ ρ̂ |=e e�

Fig. 1. 0-CFA analysis on programs

88 S. Chang

ρ̂ |=e n� iff val ∈ ρ̂(�) [num]

ρ̂ |=e b� iff val ∈ ρ̂(�) [bool]

ρ̂ |=e x� iff ρ̂(x) ⊆ ρ̂(�) [var]

ρ̂ |=e (λ(x . . .).e�00)� iff [lam]

λ(x . . .).�0 ∈ ρ̂(�) ∧ ρ̂ |=e e�00

ρ̂ |=e (e
�f
f e�11 . . .)� iff [app]

ρ̂ |=e e
�f
f ∧ ρ̂ |=e e�11 ∧ . . . ∧

(∀λ(x1 . . .).�0 ∈ ρ̂(�f) :

ρ̂(�1) ⊆ ρ̂(x1) ∧ . . . ∧
ρ̂(�0) ⊆ ρ̂(�))

ρ̂ |=e (let x = e�11 in e�00)� iff [let]

ρ̂ |=e e�11 ∧ ρ̂(�1) ⊆ ρ̂(x) ∧
ρ̂ |=e e�00 ∧ ρ̂(�0) ⊆ ρ̂(�)

ρ̂ |=e (o e�11 e�22)� iff [op]

ρ̂ |=e e�11 ∧ ρ̂ |=e e�22 ∧ val ∈ ρ̂(�)

ρ̂ |=e (zero? e�11)� iff [zero?]

ρ̂ |=e e�11 ∧ val ∈ ρ̂(�)

ρ̂ |=e (not e�11)� iff [not]

ρ̂ |=e e�11 ∧ val ∈ ρ̂(�)

ρ̂ |=e (if e�11 e�22 e�33)� iff [if]

ρ̂ |=e e�11 ∧ ρ̂ |=e e�22 ∧ ρ̂(�2) ⊆ ρ̂(�)

∧ ρ̂ |=e e�33 ∧ ρ̂(�3) ⊆ ρ̂(�)

ρ̂ |=e null
� iff val ∈ ρ̂(�) [null]

ρ̂ |=e (null? e�11)� iff [null?]

ρ̂ |=e e�11 ∧ val ∈ ρ̂(�)

ρ̂ |=e (cons e�11 e�22)� iff [cons]

ρ̂ |=e e�11 ∧ ρ̂ |=e e�22 ∧ (cons �1 �2) ∈ ρ̂(�)

ρ̂ |=e (first e�11)� iff ρ̂ |=e e�11 ∧ [first]

(∀(cons �2) ∈ ρ̂(�1) : ρ̂(�2) ⊆ ρ̂(�))

ρ̂ |=e (rest e�11)� iff ρ̂ |=e e�11 ∧ [rest]

(∀(cons �2) ∈ ρ̂(�1) : ρ̂(�2) ⊆ ρ̂(�))

Fig. 2. Step 1: 0-CFA analysis on expressions

expression. The [cons] rule for an �-labeled, eager cons requires that ρ̂ satisfy
both arguments and that a corresponding abstract cons value be in ρ̂(�). Finally,
the [first] and [rest] rules require satisfiability of their arguments and that the
appropriate piece of any cons arguments be a result of the entire expression.

3.3 Analysis Step 2: Adding delay and force

Next we extend our language and analysis with lazy forms:

e ∈ Exp = . . . | delay e | force e | lcons e e

where lcons e1 e2
df≡ cons e1 (delay e2)

The language is still strict but delay introduces promises. A force term re-
cursively forces all nested delays. Lazy cons (lcons) is only lazy in its rest
argument and first and rest work with both lcons and cons values so that
rest (lcons v e) results in (delay e).

We add promises and lazy lists to the sets of values and abstract values, and ·̂
is similarly extended. The abstract representation of a delay replaces the labeled
delayed expression with just the label and the abstract lcons is similar.

Laziness by Need 89

v ∈ Val = . . . | delay e | lcons v e

v̂ ∈ ̂Val = . . . | delay � | lcons � �

. . . ̂delay e� = delay � ̂lcons v�11 e�22 = lcons �1 �2 ·̂ : Val → ̂Val

Figure 3 presents the new and extended analysis rules. The [delay] rule speci-
fies that for an �-labeled delay, the corresponding abstract delay must be in
ρ̂(�) and ρ̂ must satisfy the delayed subexpression. In addition, the values of the
delayed subexpression must also be in ρ̂(�). This means that the analysis approx-
imates evaluation of a promise with both a promise and the result of forcing that
promise. We discuss the rationale for this constraint below. The [force] rule says
that ρ̂ must satisfy the argument and that non-delay arguments are propagated
to the outer � label. Since the [delay] rule already approximates evaluation of
the delayed expression, the [force] rule does not have any such constraints.

We also add a rule for lcons and extend the [first] and [rest] rules to handle
lcons values. The [lcons] rule requires that ρ̂ satisfy the arguments and requires a
corresponding abstract lcons at the expressions’s � label. The [first] rule handles
lcons values just like cons values. For the [rest] rule, a delay with the lcons’s
second component is a possible result of the expression. Just like the [delay] rule,
the [rest] rule assumes that the lazy component of the lcons is both forced and
unforced, and thus there is another constraint that propagates the values of the
(undelayed) second component to the outer label.

Implicit Forcing. In our analysis, delays are both evaluated and unevaluated.
We assume that during evaluation, a programmer does not want an unforced
delay to appear in a strict position. For example, if the analysis discovers an un-
forced delay as the function in an application, we assume that the programmer
forgot a force and analyze that function call anyway. This makes our analysis
quite conservative but minimizes the effect of any laziness-related errors in the
computed control flow. On the technical side, implicit forcing also facilitates the
proof of a safety theorem for the transformation (see subsection 4.3).

ρ̂ |=e (delay e�11)� iff [delay]

(delay �1) ∈ ρ̂(�) ∧ ρ̂ |=e e�11 ∧ ρ̂(�1) ⊆ ρ̂(�)

ρ̂ |=e (force e�11)� iff [force]

ρ̂ |=e e�11 ∧ (∀v̂ ∈ ρ̂(�1), v̂ /∈ delay : v̂ ∈ ρ̂(�))

ρ̂ |=e (lcons e�11 e�22)� iff [lcons]

ρ̂ |=e e�11 ∧ ρ̂ |=e e�22 ∧ (lcons �1 �2) ∈ ρ̂(�)

ρ̂ |=e (first e�11)� iff . . . ∧ [first]

(∀(lcons �2) ∈ ρ̂(�1) :

ρ̂(�2) ⊆ ρ̂(�))

ρ̂ |=e (rest e�11)� iff . . . ∧ [rest]

(∀(lcons �2) ∈ ρ̂(�1) :

(delay �2) ∈ ρ̂(�) ∧
ρ̂(�2) ⊆ ρ̂(�))

Fig. 3. Step 2: Analysis with lazy forms

90 S. Chang

(ρ̂, ̂D) |=e (e
�f
f e�11 . . .)� iff [app]

(ρ̂, ̂D) |=e e
�f
f ∧ (ρ̂, ̂D) |=e e�11 ∧ . . . ∧

(∀λ(x1 . . .).�0 ∈ ρ̂(�f) :

ρ̂(�1) ⊆ ρ̂(x1) ∧ . . . ∧
(arg �1) ∈ ρ̂(x1) ∧ . . .

1
∧

(∀v̂ ∈ ρ̂(�0), v̂ /∈ arg : v̂ ∈ ρ̂(�))
2
)

(ρ̂, ̂D) |=e (let x = e�11 in e�00)� iff [let]

(ρ̂, ̂D) |=e e�11 ∧ ρ̂(�1) ⊆ ρ̂(x) ∧
(arg �1) ∈ ρ̂(x)

1
∧ (ρ̂, ̂D) |=e e�00 ∧

(∀v̂ ∈ ρ̂(�0), v̂ /∈ arg : v̂ ∈ ρ̂(�))
2

(ρ̂, ̂D) |=e (delay e�11)� iff [delay]

(delay �1) ∈ ρ̂(�) ∧
(ρ̂, ̂D) |=e e�11 ∧ ρ̂(�1) ⊆ ρ̂(�) ∧
(∀x ∈ fv(e1) : (∀(arg �2) ∈ ρ̂(x) :

�2 ∈ ̂D
3
∧ (darg �2) ∈ ρ̂(x)

4
))

(ρ̂, ̂D) |=e (lcons e�11 e�22)� iff [lcons]

(ρ̂, ̂D) |=e e�11 ∧ (ρ̂, ̂D) |=e e�22 ∧
(lcons �1 �2) ∈ ρ̂(�) ∧
(∀x ∈ fv(e2) : (∀(arg �3) ∈ ρ̂(x) :

�3 ∈ ̂D
3
∧ (darg �3) ∈ ρ̂(x)

4
))

Fig. 4. Step 3a: Calculating flow to lazy positions

3.4 Analysis Step 3: Laziness Analysis

Our final refinement revises the analysis to calculate three additional sets, which
are used to insert additional delays and forces in the program:

̂D ∈ DPos = P(V ar), ̂S ∈ SPos = P(V ar), ̂F ∈ FPos = P(V ar ∪ (V ar × V ar))

Intuitively, ̂D is a set of labels representing function arguments that flow to
lazy positions and ̂S is a set of labels representing arguments that flow to strict
positions. Our transformation then delays arguments that reach a lazy position
but not a strict position. Additionally, ̂F collects the labels where a delayed
value may appear—both those manually inserted by the programmer and those
suggested by the analysis—and is used by the transformation to insert forces.

We first describe how the analysis computes ̂D. The key is to track the flow of
arguments from an application into a function body and for this, we introduce
a special abstract value (arg �), where � labels an argument in a function call.

v̂ ∈ ̂Val = . . . | arg �

Figure 4 presents revised analysis rules related to ̂D. To reduce clutter, we express
the analysis result as (ρ̂, ̂D), temporarily omitting ̂S and ̂F . In the new [app] and
[let] rules, additional constraints (box 1) specify that for each labeled argument,
an arg abstract value with a matching label must be in ρ̂ for the corresponding
parameter. We are only interested in the flow of arguments within a function’s
body, so the result-propagating constraint filters out arg values (box 2).

Recall that ̂D is to contain labels of arguments that reach lazy positions.
Specifically, if an (arg �) value flows to a delay or the second position of an

Laziness by Need 91

(ρ̂, ̂D, ̂S, ̂F) |=e (force e�11)� iff [force]

(ρ̂, ̂D, ̂S, ̂F) |=e e�11 ∧
(∀v̂ ∈ ρ̂(�1), v̂ /∈ delay : v̂ ∈ ρ̂(�)) ∧
(∀(arg �2) ∈ ρ̂(�1) : �2 ∈ ̂S)

5

(ρ̂, ̂D, ̂S, ̂F) |=e S[e�] iff . . . ∧ [strict]

(∀(arg �1) ∈ ρ̂(�) : �1 ∈ ̂S)
5
∧

(∃delay ∈ ρ̂(�) ⇒ � ∈ ̂F)
6
∧

(∀(darg �2) ∈ ρ̂(�) : (�, �2) ∈ ̂F)
7

where S ∈ SCtx = [] e . . . | o [] e | o v [] | if [] e1 e2

| zero? [] | not [] | null? [] | first [] | rest []

Fig. 5. Step 3b: Calculating flow to strict positions

lcons, then � must be in ̂D (box 3) (fv(e) calculates free variables in e). If an
�-labeled argument reaches a lazy position, the transformation may decide to
delay that argument, so the analysis must additionally track it for the purposes
of inserting forces. To this end, we introduce another abstract value (darg �),

v̂ ∈ ̂Val = . . . | darg �

and insert it when needed (box 4). While (arg �) can represent any argument,

(darg �) only represents arguments that reach a lazy position (i.e., � ∈ ̂D).

Figure 5 presents revised analysis rules involving ̂S and ̂F . These rules use the
full analysis result (ρ̂, ̂D, ̂S, ̂F). Here, ̂S represents arguments that reach a strict
position so the new [force] rule dictates that if an (arg �) is the argument of a

force, then � must be in ̂S (box 5). However, a force is not the only expression
that requires the value of a promise. There are several other contexts where a
delay should not appear and the [strict] rule deals with these strict contexts
S: the operator in an application, the operands in the primitive operations, and
the test in an if expression. Expressions involving these strict positions have
three additional constraints. The first specifies that if an (arg �1) appears in any

of these positions, then �1 should also be in ̂S (box 5). The second and third

additional constraints show how ̂F is computed. Recall that ̂F determines where
to insert forces in the program. The second [strict] constraint says that if any

delay flows to a strict position �, then � is added to ̂F (box 6). This indicates
that a programmer-inserted delay has reached a strict position and should be
forced. Finally, the third constraint dictates that if a (darg �2) value flows to a

strict label �, then a pair (�, �2) is required to be in ̂F (box 7), indicating that
the analysis may insert a delay at �2, thus requiring a force at �.

3.5 The Refactoring Transformation

Figure 6 specifies our refactoring as a function ϕ that transforms a program
p using analysis result (ρ̂, ̂D, ̂S, ̂F). The ϕe function wraps expression e� with

92 S. Chang

ϕ : Prog× Env×DPos× SPos× FPos → Prog

ϕ[[(define f(x . . .) = e1) . . . e]]ρ̂ ̂D ̂S ̂F = (define f(x . . .) = ϕe[[e1]]ρ̂ ̂D ̂S ̂F) . . . ϕe[[e]]ρ̂ ̂D ̂S ̂F

ϕe : Exp× Env×DPos× SPos× FPos → Exp

ϕe[[e
�]]ρ̂ ̂D ̂S ̂F = (delay∗ (ϕe[[e]]ρ̂ ̂D ̂S ̂F)�)�1 , if � ∈ ̂D, � /∈ ̂S, �1 /∈ dom(ρ̂) (†)

ϕe[[e
�]]ρ̂ ̂D ̂S ̂F = (force (ϕe[[e]]ρ̂ ̂D ̂S ̂F)�)�1 , if � ∈ ̂F , �1 /∈ dom(ρ̂), (‡)

or ∃�2.(�, �2) ∈ ̂F , �2 ∈ ̂D, �2 /∈ ̂S, �1 /∈ dom(ρ̂)
. . .

Fig. 6. Transformation function ϕ

delay∗ if � is in ̂D and not in ̂S. In other words, e is delayed if it flows to a
lazy position but not a strict position. With the following correctness section in
mind, we extend the set of expressions with delay∗, which is exactly like delay
and merely distinguishes programmer-inserted delays from those inserted by the
our transformation. The new delay∗ expression is given a fresh label �1. In two
cases, ϕe inserts a force around an expression e� . First, if � is in ̂F , it means �
is a strict position and a programmer-inserted delay reaches this strict position
and must be forced. Second, an expression e� is also wrapped with force if there

is some �2 such that (�, �2) is in ̂F and the analysis says to delay the expression

at �2, i.e., �2 ∈ ̂D and �2 /∈ ̂S. This ensures that transformation-inserted delay∗s
are also properly forced. All remaining clauses in the definition of ϕe, represented
with ellipses, traverse the structure of e in a homomorphic manner.

4 Correctness

Our refactoring for laziness is not semantics-preserving. For example, non-termi-
nating programs may be transformed into terminating ones or exceptions may
be delayed indefinitely. Nevertheless, we can prove our analysis sound and the ϕ
transformation safe, meaning that unforced promises cannot cause exceptions.

4.1 Language Semantics

To establish soundness, we use Flanagan and Felleisen’s [9] technique, which
relies on a reduction semantics. The semantics is based on evaluation contexts,
which are expressions with a hole in place of one subexpression:

E ∈ Ctx = [] | v . . . E e . . . | o E e | o v E | let x = E in e | if E e e | zero? E

| not E | null? E | force E | cons E e | cons v E | lcons E e | first E | rest E

A reduction step �−→ is defined as follows, where → is specified in figure 7:

E[e] �−→ E[e′] iff e → e′

Laziness by Need 93

A conventional δ function evaluates primitives and is elided. We again assume
that subexpressions are uniquely labeled but since labels do not affect evaluation,
they are implicit in the reduction rules, though we do mention them explicitly
in the theorems. Since our analysis does not distinguish memoizing promises
from non-memoizing ones, neither does our semantics. To evaluate complete
programs, we parameterize �−→ over definitions d . . ., and add a look-up rule:

E[f] �−→d... E[λ(x . . .).e], if (define f(x . . .) = e) ∈ d . . .

Thus, the result of evaluating a program p = d . . . e is the result of reducing e
with �−→d.... We often drop the d . . . subscript to reduce clutter.

Exceptions

Our → reduction thus far is partial, as is the (elided) δ function. If certain
expressions show up in the hole of the evaluation context, e.g., first null or
division by 0, we consider the evaluation stuck. To handle stuck expressions,
we add an exception exn to our semantics. We assume that δ returns exn for
invalid operands of primitives and we extend → with the exception-producing
reductions in figure 8.

The (apx) rule says that application of non-λs results in an exception. The
(fstx) and (rstx) rules state that reducing first or rest with anything but a
non-empty list is an exception as well. The (strictx) and (strictx∗) reductions
partially override some reductions from figure 7 and specify that an exception
occurs when an unforced promise appears in a context where the value of that
promise is required. These contexts are exactly the strict contexts S from figure 5.
We introduce dexn and dexn∗ to indicate when a delay or delay∗ causes an
exception; otherwise these tokens behave just like exn. We also extend �−→:

E[exn] �−→ exn

A conventional well-definedness theorem summarizes the language’s semantics.

(λ(x . . .).e) v . . . → e{x := v, . . .} (ap)

o v1 v2 → δ o v1 v2 (op)

let x = v in e → e{x := v} (let)

if false e1 e2 → e2 (iff)

if v e1 e2 → e1, v = false (if)

zero? 0 → true (z0)

zero? v → false, v = 0 (z)

not false → true (notf)

not v → false, v = false (not)

null? null → true (nuln)

null? v → false, v = null (nul)

first (cons v1 v2) → v1 (fstc)

first (lcons v e) → v (fstlc)

rest (cons v1 v2) → v2 (rstc)

rest (lcons v e) → delay e (rstlc)

force (delay e) → force e (ford)

force v → v, v = delay e (forv)

Fig. 7. Call-by-value reduction semantics

94 S. Chang

v v1 . . . → exn, if v = λ(x . . .).e (apx)

first v → exn, if v /∈ cons or lcons (fstx)

rest v → exn, if v /∈ cons or lcons (rstx)

S[delay e] → dexn (strictx)

S[delay∗ e] → dexn
∗ (strictx∗)

Fig. 8. Exception producing reductions

Theorem 1 (Well-Definedness). A program p either reduces to a value v;
starts an infinitely long chain of reductions; or reduces to exn.

4.2 Soundness of the Analysis

Before stating the soundness theorem, we first extend our analysis for exceptions:

(ρ̂, ̂D, ̂S, ̂F) |=e exn
� [exn]

Lemma 1 states that �−→ preserves |=e. We use notation ρ̂ |=e e when we are not

interested in ̂D, ̂S, and ̂F , which are only used for transformation. This means
ρ̂ satisfies only the constraints from sections 3.2 and 3.3.

Lemma 1 (Preservation). If ρ̂ |=e e and e �−→ e′, then ρ̂ |=e e
′.

We now state our soundness theorem, where �−→→ is the reflexive-transitive closure
of �−→. The theorem says that if an expression in a program reduces to an �-
labeled value, then any acceptable analysis result ρ̂ correctly predicts that value.

Theorem 2 (Soundness).For all ρ̂ |= p, p = d . . . e, if e �−→→ d...E[v�], v̂ ∈ ρ̂(�).

4.3 Safety of Refactoring

We show that refactoring for laziness cannot raise an exception due to a delay
or delay∗ reaching a strict position. To start, we define a function ξ that derives
a satisfactory abstract environment for a ϕ-transformed program:

ξ[[ρ̂]]p = ρ̂′, where ξ : Env× Prog → Env

∀�, x ∈ dom(ρ̂) : ρ̂′(�) = ρ̂(�) ∪ {(delay∗ �1) | (darg �1) ∈ ρ̂(�), (delay∗ e�11) ∈ p} (1)

ρ̂′(x) = ρ̂(x) ∪ {(delay∗ �1) | (darg �1) ∈ ρ̂(x), (delay∗ e�11) ∈ p}
∀(delay∗ e�11)� ∈ p, � /∈ dom(ρ̂) : (2)

ρ̂′(�) = ρ̂(�1) ∪ {(delay∗ �1)} ∪ {(delay∗ �2) | (darg �2) ∈ ρ̂(�1), (delay
∗ e�22) ∈ p}

∀(force e�11)� ∈ p, � /∈ dom(ρ̂) : ρ̂′(�) = {v̂ | v̂ ∈ ρ̂(�1), v̂ /∈ delay} (3)

The ξ function takes environment ρ̂ and a program p and returns a new envi-
ronment ρ̂′. Part 1 of the definition copies ρ̂ entries to ρ̂′, except darg values are
replaced with delay∗s when there is a corresponding delay∗ in p. Parts 2 and 3
add new ρ̂′ entries for delay∗s and forces not accounted for in ρ̂. When the
given p is a ϕ-transformed program, then the resulting ρ̂′ satisfies that program.

Laziness by Need 95

Lemma 2. If (ρ̂, ̂D, ̂S, ̂F) |= p, then ξ[[ρ̂]]ϕ[[p]]
ρ̂ ̂D ̂S ̂F |= ϕ[[p]]ρ̂ ̂D ̂S ̂F .

Finally, theorem 3 states the safety property. It says that evaluating a trans-
formed program cannot generate an exception due to delays or delay∗s.

Theorem 3 (Safety). For all p and (ρ̂, ̂D, ̂S, ̂F) |= p, if ϕ[[p]]ρ̂ ̂D ̂S ̂F = d . . . e,
then e ��−→→ d... dexn, and e ��−→→ d... dexn

∗.

Proof. (Sketch) Using Soundness, the analysis rules in figure 5, and Lemma 2.

4.4 Idempotency

Our transformation is not idempotent. Indeed, it may be necessary to refactor
a program multiple times to get the “right” amount of laziness. For example:

let x = 〈long computation〉 in let y = 〈short computation involving x〉
in (delay y)

The long computation should be delayed but applying our transformation once
only delays the short computation. To delay the long computation, a second
transformation round is required. In practice, we have observed that one round
of laziness refactoring suffices to handle the majority of cases. However, section 6
presents a real-world example requiring multiple transformations so our tool
currently allows the programmer to decide how often to apply the refactoring.

5 A Prototype Implementation

We have implemented refactoring for laziness as a tool for Racket [10], in the
form of a plugin for the DrRacket IDE. It uses laziness analysis to automatically
insert delay and force expressions as needed, with graphical justification.

5.1 Constraint Solving Algorithm

Computing our laziness analysis requires two stages: (1) generate a set of con-
straints from a program, and (2) solve for the least solution using a conventional
worklist algorithm [18]. The graph nodes are the variables and labels in the pro-

gram, plus one node each for ̂D, ̂S, and ̂F . Without loss of generality, we use
only labels for the nodes and ρ̂ for the analysis result in our description of the
algorithm. There exists an edge from node �1 to �2 if there is a constraint where
ρ̂(�2) depends on ρ̂(�1); the edge is labeled with that constraint. Thus one can
view a node � as the endpoint for a series of data flow paths. To compute ρ̂(�), it
suffices to traverse all paths from the leaves to �, accumulating values according
to the constraints along the way.

The analysis result is incrementally computed in a breadth-first fashion by
processing constraints according a worklist of nodes. Processing a constraint

96 S. Chang

entails adding values to ρ̂ so the constraint is satisfied. The algorithm starts by
processing all constraints where a node depends on a value, e.g., val ∈ ρ̂(�);
the nodes on the right-hand side of these constraints constitute the initial work-
list. Nodes are then removed from the worklist, one at a time. When a node
is removed, the constraints on the out-edges of that node are processed and a
neighbor � of the node is added to the worklist if ρ̂(�) was updated while pro-
cessing a constraint. A node may appear in the worklist more than once, but
only a finite number of times, as shown by the following termination argument.

Termination and Complexity of Constraint Solving

Inspecting the constraints from section 3 reveals that an expression requires re-
cursive calls only for subexpressions. Thus, a finite program generates a finite
number of constraints. For a finite program with finitely many labels and vari-
ables, the set of possible abstract values is also finite. Thus, a node can only
appear in the worklist a finite number of times, so algorithm must terminate.

We observe in the constraint-solving algorithm that, (1) a node � is added to
the worklist only if ρ̂(�) is updated due to a node on which it depends being in
the worklist, and (2) values are only ever added to ρ̂; they are never removed. For
a program of size n, there are O(n) nodes in the dependency graph. Each node
can appear in the worklist O(n) times, and a data flow path to reach that node
could have O(n) nodes, so it can take O(n2) node visits to compute the solution
at a particular node. Multiplying by O(n) total nodes, means the algorithm may
have to visit O(n3) nodes to compute the solution for all nodes.

5.2 Laziness Refactoring Tool

Our prototype tool uses the result of the analysis and the ϕ function from sec-
tion 3.5 to insert additional delays and forces. In contrast to the mathematical
version of ϕ, its implementation avoids inserting delays and forces around
values and does not insert duplicate delays or forces.

We evaluated a number of examples with our tool including the n-queens
problem from section 2. Figure 9 (top) shows the program in Racket, including
timing information and a graphical depiction of the answer. Despite the use of
lcons,8 the program takes as long as an eager version of the same program (not
shown) to compute an answer. Figure 9 (bot) shows the program after our tool
applies the laziness transformation. When the tool is activated, it: (1) computes
an analysis result for the program, (2) uses the result to insert delays and
forces, highlighting the added delays in yellow and the added forces in blue,
and (3) adds arrows originating from each inserted delay, pointing to the source
of the laziness, thus explaining its decision to the programmer in an intuitive
manner. Running the transformed program exhibits the desired performance.

8 Though lcons is not available in Racket, to match the syntax of our paper, we
simulate it with a macro that wraps a delay around the second argument of a cons.

Laziness by Need 97

F
ig
.
9
.
E
va

lu
a
tin

g
n
-q
u
een

s
in

R
a
ck
et:

o
n
ly

la
zy

c
o
n
s
(to

p
),

a
fter

refa
cto

rin
g
(b

o
t)

98 S. Chang

6 Laziness in the Large

To further evaluate our idea and our tool, we examined the Racket code base
and some user-contributed packages for manual uses of laziness. We found several
erroneous attempts at adding laziness and we verified that our tool would have
prevented many such errors.9 We consider this investigation a first confirmation
of the usefulness of our tool. The rest of the section describes two of the examples.

The DMdA languages [5] allow students to write contracts for some data
structures. These contracts are based on Findler et al.’s lazy contracts [8]. The
contracts are primarily implemented via a constructor with a few lazy fields. Ad-
ditionally, several specialized contract constructors for various data structures
call the main constructor. However, since the specialized constructors are imple-
mented with ordinary strict functions, to preserve the intended lazy behavior,
the programmer must manually propagate the laziness to the appropriate argu-
ments of these functions, similar to the Scala example from section 2. Thus, a
small amount of laziness in the main contract constructor requires several more
delays scattered all throughout the program. Adding these delays becomes te-
dious as the program grows in complexity and unsurprisingly, a few were left
out. Our tool identified the missing delays, which the author of the code has
confirmed and corrected with commits to the code repository.

A second example concerns queues and deques [21] based on implicit recursive
slowdown [20, Chapter 11], where laziness enables fast amortized operations and
simplifies the implementation. The library contained several performance bugs,
as illustrated by this code snippet from a deque enqueue function:

define enqueue(elem dq) = ...

let strictprt = 〈extract strict part of dq〉
newstrictprt = 〈combine elem and strictprt〉
lazyprt = force 〈extract lazy part of dq〉
lazyprt1 = 〈extracted from lazyprt〉
lazyprt2 = 〈extracted from lazyprt〉

in Deque newstrictprt (delay 〈combine lazyprt1 and lazyprt2〉)
The function enqueues elem in deque dq, which has a lazy part and a strict
part. In one execution path, the lazy part is extracted, forced, and separated
into two additional pieces. Clearly, the forcing is unnecessary because neither of
the pieces are used before they are inserted back into the new deque. Worse, the
extra forcing slows the program significantly. For this example, activating our
tool twice fixes the performance bug. For a reasonably standard benchmark, the
fix reduced the running time by an order of magnitude. The authors of the code
have acknowledged the bug and have merged our fix into the code repository.

7 Related Work

The idea of combining strict and lazy evaluation is old, but most works involve re-
moving laziness from lazy languages. We approach strict-lazy programming

9 The examples were first translated to work with the syntax in this paper.

Laziness by Need 99

from the other, relatively unexplored, end of the spectrum, starting with a strict
language and then only adding laziness as needed. This seems worthwhile since
empirical studies indicate that most promises in a lazy language are
unneeded [6,15,16,23]. Starting with a strict language also alleviates many disad-
vantages of lazy evaluation such as difficulty reasoning about space/time
consumption.

The most well-known related work is strictness analysis [4,17], which calcu-
lates when to eagerly evaluate arguments without introducing non-termination.
With our work, calculating divergence properties is not sufficient since even ter-
minating programs may require additional laziness, as seen in examples from this
paper. Hence we take a different, flow-analysis-based approach.10 Researchers
have also explored other static [7] and dynamic [2,6,15] laziness-removal tech-
niques. However, these efforts all strive to preserve the program’s semantics. We
focus on the problem of strict programmers trying to use laziness, but doing
so incorrectly. Thus our transformation necessarily allows the semantics of the
program to change (i.e., from non-terminating to terminating), but hopefully in
a way that the programmer intended in the first place.

Sheard [25] shares our vision of a strict language that is also practical for
programming lazily. While his language does not require explicit forces, the
programmer must manually insert all required delay annotations.

8 Future Work

This paper demonstrates the theoretical and practical feasibility of a novel ap-
proach to assist programmers with the introduction of laziness into a strict con-
text. We see several directions for future work. The first is developing a modular
analysis. Our transformation requires the whole program and is thus unsatisfac-
tory in the presence of libraries. Also, we intend to develop a typed version of
our transformation and tool, so typed strict languages can more easily benefit
from laziness as well. We conjecture that expressing strictness information via
types may also provide a way to enable a modular laziness-by-need analysis.

Acknowledgements. Partial support provided by NSF grant CRI-0855140.
Thanks to Matthias Felleisen, Eli Barzilay, David Van Horn, and J. Ian Johnson
for feedback on earlier drafts.

References

1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer
Programs. MIT Press (1984)

2. Aditya, S., Arvind, Augustsson, L., Maessen, J.W., Nikhil, R.S.: Semantics of pH:
A parellel dialect of Haskell. In: Proc. Haskell Workshop, pp. 34–49 (1995)

10 Interestingly, we conjecture that our approach would be useful to lazy programmers
trying to insert strictness annotations, such as Haskell’s seq, to their programs.

100 S. Chang

3. Appel, A., Blume, M., Gansner, E., George, L., Huelsbergen, L., MacQueen, D.,
Reppy, J., Shao, Z.: Standard ML of New Jersey User’s Guide (1997)

4. Burn, G.L., Hankin, C.L., Abramsky, S.: Strictness analysis for higher-order func-
tions. Sci. Comput. Program. 7, 249–278 (1986)

5. Crestani, M., Sperber, M.: Experience report: growing programming languages for
beginning students. In: Proc. 15th ICFP, pp. 229–234 (2010)

6. Ennals, R., Peyton Jones, S.: Optimistic evaluation: an adaptive evaluation strat-
egy for non-strict programs. In: Proc. 8th ICFP, pp. 287–298 (2003)

7. Faxén, K.F.: Cheap eagerness: speculative evaluation in a lazy functional language.
In: Proc. 5th ICFP, pp. 150–161 (2000)

8. Findler, R.B., Guo, S.-Y., Rogers, A.: Lazy Contract Checking for Immutable Data
Structures. In: Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083,
pp. 111–128. Springer, Heidelberg (2008)

9. Flanagan, C., Felleisen, M.: Modular and polymorphic set-based analysis: Theory
and practice. Tech. Rep. TR96-266, Rice Univ. (1996)

10. Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2012-1, PLT Inc. (2012),
http://racket-lang.org/tr1/

11. Friedman, D., Wise, D.: Cons should not evaluate its arguments. In: Proc. 3rd
ICALP, pp. 257–281 (1976)

12. Hughes, J.: Why functional programming matters. Comput. J. 32, 98–107 (1989)
13. Jones, N.D.: Flow analysis of lambda expressions. Tech. rep., Aarhus Univ. (1981)
14. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml

system, release 3.12, Documentation and user’s manual. INRIA (July 2011)
15. Maessen, J.W.: Eager Haskell: resource-bounded execution yields efficient iteration.

In: Proc. Haskell Workshop, pp. 38–50 (2002)
16. Morandat, F., Hill, B., Osvald, L., Vitek, J.: Evaluating the Design of the R Lan-

guage. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 104–131. Springer,
Heidelberg (2012)

17. Mycroft, A.: Abstract interpretation and optimising transformations for applicative
programs. Ph.D. thesis, Univ. Edinburgh (1981)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(2005)

19. Odersky, M.: The Scala Language Specification, Version 2.9. EPFL (May 2011)
20. Okasaki, C.: Purely Functional Data Structures. Cambridge Univ. Press (1998)
21. Hari Prashanth, K.R., Tobin-Hochstadt, S.: Functional data structures for Typed

Racket. In: Proc. Scheme Workshop (2010)
22. Rees, J., Clinger, W. (eds.): Revised3 Report on the Algorithmic Language Scheme.

ACM SIGPLAN Notices (December 1986)
23. Schauser, K.E., Goldstein, S.C.: How much non-strictness do lenient programs

require? In: Proc. 7th FPCA (1995)
24. Sestoft, P.: Replacing function parameters by global variables. Master’s thesis,

Univ. Copenhagen (1988)
25. Sheard, T.: A pure language with default strict evaluation order and explicit lazi-

ness. In: 2003 Haskell Workshop: New Ideas Session (2003)
26. Shivers, O.: Control-flow analysis in scheme. In: Proc. PLDI, pp. 164–174 (1988)
27. Wadler, P., Taha, W., MacQueen, D.: How to add laziness to a strict language,

without even being odd. In: Proc. Standard ML Workshop (1998)

http://racket-lang.org/tr1/

	Laziness by Need
	Laziness in a Strict World
	Motivating Examples
	Reorganizations Interfere with Laziness
	Laziness Must Propagate
	Idiomatic Lazy Programming in a Strict Language

	Refactoring For Laziness
	Language Syntax
	Analysis Step 1: 0-CFA
	Analysis Step 2: Adding delay and force
	Analysis Step 3: Laziness Analysis
	The Refactoring Transformation

	Correctness
	Language Semantics
	Soundness of the Analysis
	Safety of Refactoring
	Idempotency

	A Prototype Implementation
	Constraint Solving Algorithm
	Laziness Refactoring Tool

	Laziness in the Large
	Related Work
	Future Work
	References

