
4-Round Resettably-Sound Zero Knowledge

Kai-Min Chung1, Rafail Ostrovsky2, Rafael Pass3,
Muthuramakrishnan Venkitasubramaniam4, and Ivan Visconti5

1 Academia Sinica, Taiwan
kmchung@iis.sinica.edu.tw

2 UCLA, Los Angeles, CA, USA
rafail@cs.ucla.edu

3 Cornell University, Ithaca, NY 14850, USA
chung@cs.cornell.edu

4 University of Rochester, Rochester, NY 14627, USA
muthuv@cs.rochester.edu

5 University of Salerno, Italy
visconti@unisa.it

Abstract. While 4-round constructions of zero-knowledge arguments
are known based on the existence of one-way functions, constuctions of
resettably-sound zero-knowledge arguments require either stronger as-
sumptions (the existence of a fully-homomorphic encryption scheme), or
more communication rounds. We close this gap by demonstrating a 4-
round resettably-sound zero-knowledge argument for NP based on the
existence of one-way functions.

1 Introduction

Zero-knowledge (ZK) interactive protocols [18] are paradoxical constructs that
allow one player (called the Prover) to convince another player (called the Ver-
ifier) of the validity of a mathematical statement x ∈ L, while providing zero
additional knowledge to the Verifier. We are here interested in a stronger notion
of zero-knowledge arguments known as resettably-sound zero-knowledge. This no-
tion, first introduced by Barak, Goldwasser, Goldreich and Lindell (BGGL)[2],
additionally requires the soundness property to hold even if the malicious prover
is allowed to “reset” and “restart” the verifier. This model is particularly relevant
for cryptographic protocols being executed on embedded devices, such as smart
cards. BGGL provided a construction of a resettably-sound zero-knowledge ar-
gument for NP based on the existence of collision-resistant hash-functions. More
recently, Bitansky and Paneth [5] presented a resettably-sound zero-knowledge
argument based on the existence of an oblivious transfer (OT) protocol. Finally,
Chung, Pass and Seth (CPS) [10] show how to construct such protocol based on
the minimal assumption of one-way functions (OWFs).1

1 As shown by Ostrovsky and Wigderson, one-way functions are also “essentially”
necessary for non-trivial zero-knowledge [25]. In [9] one-way functions have been
shown to suffice also when resettable zero knowledge is desired.

Y. Lindell (Ed.): TCC 2014, LNCS 8349, pp. 192–216, 2014.
c© International Association for Cryptologic Research 2014

4-Round Resettably-Sound Zero Knowledge 193

Our focus here is on the round-complexity of resettably-sound zero-knowledge
arguments. All the above protocols only require a constant number of rounds;
but what is the exact round-complexity? The original BGGL protocol requires
8 rounds and collision-resistant hash functions (CRHs); an implementation in
6 rounds of the BGGL construction has been shown in [24]. More recently, Bi-
tansky and Paneth in [6] improved the round complexity of resettably-sound
zero knowledge to 4 rounds but additionally requiring the existence of a fully
homomorphic encryption (FHE) schemes [13,8]. Additionally they showed a 6-
round protocol based on trapdoor permutations. In contrast, for “plain” (i.e.,
not resettably-sound) zero-knowledge, Bellare, Jakobsson and Yung [4] show how
to obtain a 4-round zero-knowledge argument for NP based on the existence of
the existence of one-way functions. This leaves open the question of whether
round-efficient (namely 4-round) resettably-sound arguments can be based on
weaker assumptions than FHE.

1.1 Our Results

We close the gap between resettably-sound and “plain” zero-knowledge argu-
ments, demonstrating a 4-round resettably sound zero-knowledge argument (of
knowledge) based solely on the existence of OWFs.

Theorem 1 (Informal). Assume the existence of one-way functions. Then
there exists a 4-round resettably-sound zero-knowledge argument of knowledge
for every language in NP .

Our starting point is the constant-round resettably-sound zero-knowledge ar-
gument for NP due to CPS. Our central contribution is a method for “collapsing”
rounds in this protocol. A key feature of the CPS protocol is that, although the
protocol consist of many rounds, the honest prover actually just sends commit-
ments to 0 in all but two of these rounds. These “commitment to 0” preamble
messages are only used by the simulator; roughly speaking, the simulator uses
these message to come up with a “fake witness” that it can use in the remain-
ing part of the protocol. On a very high-level, we show that all these pream-
ble messages can be run in parallel, if appropriately adjusting the remaining
two messages. An initial observation is that if we simply run all the preamble
rounds in parallel—in a single “preamble slots”—then both completeness and
zero-knowledge will still hold; the problem is that soundness no longer holds. In
fact, soundness of the CPS protocol relies on the fact that the preamble messages
are executed in sequence. Our key-idea for dealing with this issue is to have the
verifier additionally provide a signature on the message-response pair for the
“preamble” slot, and we now modify the “fake witness” part of the protocol to
be a chain of signatures of the preamble messages in the right order. Soundness
is now restored, and zero-knowledge simulation can be re-established by having
the simulator rewind the preamble slot to get a signed sequence of messages in
the right order.

194 K.-M. Chung et al.

1.2 Techniques

To explain our techniques in more detail, let us first recall Barak’s non-black-
box zero knowledge protocol on which BGGL is based, and then recall how CPS
modify this protocol to only rely on OWF. We finally explain how to “collapse”
rounds in this protocol.

Barak’s Protocol and the BGGL Transformation. Recall that Barak’s protocol
relies on the existence of a family of collision-resistant hash function h : {0, 1}∗ →
{0, 1}n; note that any such family of collision-resistant hash functions can be
implemented from a family of collision-resistant hash functions mapping n-bit
string into n/2-bit strings using tree hashing [21]. Roughly speaking, in Barak’s
protocol, on common input 1n and x ∈ {0, 1}poly(n), the Prover P and Verifier
V , proceed in two stages. In Stage 1, V starts by selecting a function h from
a family of collision-resistant hash function and sends it to P ; P next sends a
commitment c = Com(0n) of length n, and finally, V next sends a “challenge”
r ∈ {0, 1}2n; we refer to this as the “commit-challenge” round. In Stage 2, P
shows (using a witness indistinguishable argument of knowledge) that either x
is true, or that c is a commitment to a “hash” (using h) of a program M (i.e.,
c = Com(h(M)) such that M(c) = r.

Roughly speaking, soundness follows from the fact that even if a malicious
prover P ∗ tries to commit to (the hash of) some program M (instead of com-
mitting to 0n), with high probability, the string r sent by V will be different
from M(c) (since r is chosen independently of c). To prove ZK, consider the
non-black-box simulator S that commits to a hash of the code of the malicious
verifier V ∗; note that, by definition, it thus holds that M(c) = r, and the simu-
lator can use c as a “fake” witness in the final proof. To formalize this approach,
the witness indistinguishable argument in Stage 2 must actually be a witness in-
distinguishable universal argument (WIUARG) [22,1] since the statement that c
is a commitment to a program M of arbitrary polynomial-size, and that proving
M(c) = r within some arbitrary polynomial time, is not in NP . WIUARGs are
known based on the existence of CRH and those protocols are constant-round
public-coin; as a result, the whole protocol is constant-round and public-coin.

Finally, BGGL show that any constant-round public-coin zero-knowledge ar-
gument of knowledge can be transformed into a resettable-sound zero-knowledge
argument, by simply having the verifier generate its (random) message by ap-
plying a pseudorandom function to the current partial transcript.2

The CPS Protocol. We now turn to recall the ideas from CPS for removing the
use of CRHs in Barak’s protocol. Note that hash functions are needed in two
locations in Barak’s protocol. First, since there is no a-priori polynomial upper-
bound of the length of the code of V ∗, we require the simulator to commit to the

2 Strictly speaking, Barak’s protocol is not a argument of knowledge, but rather a
“weak” argument of knowledge (see [1,2] for more details), but the transformation
of [2] applies also to such protocol.

4-Round Resettably-Sound Zero Knowledge 195

hash of the code of V ∗. Secondly, since there is no a-priori polynomial upper-
bound on the running-time of V ∗, we require the use of universal arguments (and
such constructions are only known based on the existence of collision-resistant
hash functions).

The main idea of CPS is to notice that digital signature schemes—which can
be constructed based on one-way functions—share many of the desirable proper-
ties of CRHs, and to show how to appropriately instantiate (a variant of) Barak’s
protocol using signature schemes instead of using CRHs. More precisely, CPS
show that by relying on strong fixed-length signature schemes, which can be con-
structed based on one-way functions, one can construct signature tree analogous
to the tree hashing that could be used to compress arbitrary length messages
into a signature of length n and satisfies an analogue collision-resistance prop-
erty. A strong fixed-length signature scheme allows signing messages of arbitrary
polynomial-length (e.g length 2n) using a length n signature and satisfies that
no polynomial time attacker can obtain a new signature even for messages that
it has seen a signature on [14].

CPS then show how to replace tree hashing by signature trees by appropriately
modifying Barak’s protocol. Firstly, CPS adds a signature slot at the beginning
of the protocol. More precisely, in an initial stage of the protocol, the verifier
generates a signature key-pair sk,vk and sends only the verification key vk to
the prover. Next, in a “signature slot”, the prover sends a commitment c of some
message to the verifier, and the verifier computes and returns a valid signature σ
of c (using sk). This is used by the simulator to construct a signature tree through
rewinding the (malicious) verifier as a fake witness for WIUARG in an analogous
way as before. Note that the commitment is used to hide the message to be
signed from the malicious verifier, and as such, the signature tree is constituted
by signatures of commitments of signatures...etc—this is referred to as a Sig-com
tree. On the other hand, soundness follows in a similar way to Barak’s protocol
by relying on the fact that Sig-com tree satisfy a strong “collision-resistance”
property—namely, no attacker getting the vk can find collisions, even given
access to a signing oracle.

Secondly, CPS use a variant of Barak’s protocol due to Pass and Rosen [26],
which relies on a special-purpose WIUARG, in which the honest prover never
needs to perform any hashing.3 More precisely, the WIUARG consist two phases:
a first phase where the honest provery simply sends commitments to 0n, and a
second phase where it proves that either x ∈ L or the messages it committed to
consistutes a valid UARG proving that the prover knows a fake witness.

While this protocol is not public-coin, CPS nevertheless shows that it suffices
to apply the PRF transformation of BGGL to just the the public-coin part of the
protocol to obtain a resettably soundness protocol; recall that the only part of
the protocol that is not public-coin is the “signature slot” and, thus, intuitively,
the only “advantages” a resetting prover gets is that it may rewind the signature
slot, and thus get an arbitrary polynomial number of signatures on messages of
its choice. But, as noted above, signature trees are collision-resistant even with

3 In fact, an early version of Barak’s protocol also had this property.

196 K.-M. Chung et al.

respect to an attacker that gets an arbitrary polynomial number of queries to a
signing oracle and thus resettable-soundness follows in exactly the same way as
the (non-resetting) soundness property.

Formalizing this intuition, however, is subtle. CPS first introduce an “oracle-
aided” model where both players have access to a signing oracle, and construct a
public-coin zero knowledge argument of knowledge in this model. Then the trans-
formation of [2] is applied to this protocol to obtain an oracle-aided resettably-
sound zero-knowledge argument of knowledge. CPS then show a general trans-
formation for turning the protocol into a “fixed-input” resettably-sound zero-
knowledge argument (of knowledge) in the “plain” model (i.e. without any or-
acle); fixed-input resettable-soundness means that resettable soundness is only
required to hold with respect to a single fixed input. Finally, CPS show another
general transformation that turns any fixed-input resettable soundness argument
of knowledge into “full-fledged” resettable sound argument (or knowledge). Com-
bining all these steps leads to constant-round resettably-sound zero-knowledge
argument of knowledge for NP based on one-way functions.

Collapsing Rounds for the CPS Protocol. We are now ready to explain our
method for collapsing rounds in the CPS protocol. Note that, although the CPS
protocol consists of many rounds, the honest prover actually just sends commit-
ments to 0, in all but the final two rounds, where the prover shows that it either
has a “fake witness” or that x ∈ L. More precisely, in the final “proof phase” of
the protocol (where the prover only sends two messages), the prover shows the
verifier that either x ∈ L or that the “committed UARG” transcript is accepting.
The key idea is to modify the protocol to let the prover show in the “proof phase”
that either x ∈ L or it knows a ”commit-challenge” pair (c, r) and a committed
UARG transcript showing that the commit-challenge pair was successful. This,
alone, clearly does not work: soundness no longer hold if the prover can come
up with its own “invented transcript”. Inspired by the work of Lin and Pass
[20], we instead require the prover to show that it knows a transcript—that has
been signed, message-by-message, by the verifier through a “signature-chain”. A
similar approach was used also in [11,19]. Once we have done this change, we
can simply remove all messages in the preamble phase (where the honest prover
commits to 0) and just replace them with a signature slot. More precisely, we
modify the CPS protocol in the following way:

– We start by running two signature slots in parallel: the first one is used for
the signature-trees as in the original CPS protocol; the second one is used
for the “signature-chain”.

– In parallel with the signature slots, we start running the modified “proof
phase” where the prover is requested to (using a WI argument of knowledge)
prove that either x ∈ L or it knows a ”successful” transcript for the preamble
phase that has been signed, message-by-message, in the right sequence using
the second signature key.

Intuitively, simulation can be performed similarly to CPS, except that instead of
simply providing the UARG messages in the protocol, the simulator rewinds the

4-Round Resettably-Sound Zero Knowledge 197

signature slot to get an appropriately signed transcript of the UARG protocol.
(Proving this is a bit delicate since the CPS simulator is already providing its
own rewindings, so we need to be careful to ensure that the composition of these
rewindings does not blow up the expected running-time.)

The key challenge, however, is proving resettable-soundness of the resulting
protocol. On a very high-level, we shows that how to transform any resetting
attacker to a “stand-alone” (i.e., non-resetting) attacker for oracle-aided CPS
protocol (recall that the CPS protocol was first constructed in an oracle-model
where the prover and verifier have access to signature oracles, and then the
oracle-aided protocol was transformed into a protocol in the “plain” model by
adding the the signature slots).4 Roughly speaking, we show how to extract out
the implicit transcript messages from any successful resetting prover and we can
then use these messages in the (oracle-aided) CPS protocol. This is not entirely
trivial, since in the CPS protocol these messages need to be provided one-by-one,
whereas we can only extract out a full transcript. Our key technical contribution
consist of showing how to appropriately rewind the resetting attacker to make it
provide accepting transcript that are consistent with a current partial transcript
of the CPS protocol. We here rely on the properties of signature-chains, and the
fact the the protocol only has a constant number of rounds.

2 Definitions

We now give definitions for interactive proof/argument systems with all variants
that are useful in this work.

Definition 1 (interactive proofs [17]). A proof system for the language L, is
a pair of interactive Turing machines (P, V) running on common input x such
that:

– Efficiency: P and V are PPT.
– Completeness: There exists a negligible function ν(·) such that for every pair

(x,w) such that RL(x,w) = 1,

Prob[〈P (w), V 〉(x) = 1] ≥ 1− ν(|x|).
– Soundness: For every x �∈ L and for every interactive Turing machine P ∗

there exists a negligible function ν(·) such that

Prob[〈P ∗, V 〉(x) = 1] < ν(|x|).
In the above definition we can relax the soundness requirement by considering

P ∗ as PPT. In this case, we say that (P, V) is an argument system.

We denote by view
P (w)
V ∗(x,z) the view (i.e., its private coins and the received mes-

sages) of V ∗ during an interaction with P (w) on common input x and auxiliary
input z.

4 This is a slight oversimplification; we actually need to slightly modify the oracle-
aided CPS protocol. See Section 3 for more details.

198 K.-M. Chung et al.

Definition 2 (zero-knowledge arguments [17]). Let (P, V) be an interac-
tive argument system for a language L. We say that (P, V) is zero knowledge
(ZK) if, for any probabilistic polynomial-time adversary V ∗ receiving an auxil-
iary input z, there exists a probabilistic polynomial-time algorithm SV ∗ such for

all pairs (x,w) ∈ RL the ensembles {viewP (w)
V ∗(x,z)} and {SV ∗(x, z)} are compu-

tationally indistinguishable.

Arguments of knowledge are arguments where there additionally exists an
expected PPT extractor that can extract a witness from any successful prover,
and this is a stronger notion of soundness. We will give now a definition that is
slightly weaker than the standard definition of [3] but is useful for our construc-
tions.

Note, also, that in the following definition, the extractor is given non-black
box access to the prover. This is an essential property for our techniques.

Definition 3 (arguments of knowledge [2]). Let R be a binary relation. We
say that a probabilistic, polynomial-time interactive machine V is a knowledge
verifier for the relation R with negligible knowledge error if the following two
conditions hold:

– Non-triviality: There exists a probabilistic polynomial-time interactive ma-
chine P such that for every (x,w) ∈ R, all possible interactions of V with
P on common input x, where P has auxiliary input w, are accepting, except
with negligible probability.

– Validity (or knowledge soundness) with negligible error: There exists a
probabilistic polynomial-time machine K such that for every probabilistic
polynomial-time machine P ∗, every polynomial p(·) and all sufficiently large
x’s,
Pr[w ← K(desc(P ∗), x) ∧RL(x,w) = 1] > Pr[〈P ∗, V 〉(x) = accept]− 1

p(|x|)
where 〈P ∗, V 〉(x) denotes V ’s output after interacting with P ∗ upon common
input x and desc(P ∗) denotes the description of P ∗’s strategy.

Further, (P, V) is an argument of knowledge for relation R.

Definition 4 (witness indistinguishability [12]). Let L be a language in
NP and RL be the corresponding relation. An interactive argument (P, V) for
L is witness indistinguishable (WI) if for every verifier V ∗, every pair (w0, w1)
such that (x,w0) ∈ RL and (x,w1) ∈ RL and every auxiliary input z, the fol-
lowing ensembles are computationally indistinguishable:

{viewP (w0)
V ∗(x,z)} and {viewP (w1)

V ∗(x,z)}.

2.1 Resettably-Sound Proofs

A polynomial-time relation R is a relation for which it is possible to verify in
time polynomial in |x| whether R(x,w) = 1. Let us consider an NP-language L
and denote by RL the corresponding polynomial-time relation such that x ∈ L

4-Round Resettably-Sound Zero Knowledge 199

if and only if there exists w such that RL(x,w) = 1. We will call such a w a
valid witness for x ∈ L. A negligible function ν(k) is a non-negative function
such that for any constant c < 0 and for all sufficiently large k, ν(k) < kc.
We will denote by Probr[X] the probability of an event X over coins r. The
abbreviation “PPT” stands for probabilistic polynomial time. We will use the
standard notion of computational indistinguishability [16].

Let us recall the definition of resettable soundness due to [2].

Definition 5 (resettably-sound arguments [2]). A resetting attack of a
cheating prover P ∗ on a resettable verifier V is defined by the following two-
step random process, indexed by a security parameter k.

1. Uniformly select and fix t = poly(k) random-tapes, denoted r1, . . . , rt, for
V , resulting in deterministic strategies V (j)(x) = Vx,rjdefined by Vx,rj (α) =

V (x, rj , α),
5 where x ∈ {0, 1}k and j ∈ [t]. Each V (j)(x) is called an incar-

nation of V .
2. On input 1k, machine P ∗ is allowed to initiate poly(k)-many interactions

with the V (j)(x)’s. The activity of P ∗ proceeds in rounds. In each round
P ∗ chooses x ∈ {0, 1}k and j ∈ [t], thus defining V (j)(x), and conducts a
complete session with it.

Let (P, V) be an interactive argument for a language L. We say that (P, V)
is a resettably-sound argument for L if the following condition holds:

– Resettable-soundness: For every polynomial-size resetting attack, the proba-
bility that in some session the corresponding V (j)(x) has accepted and x /∈ L
is negligible.

We will also consider a slight weakening of the notion of resettable soundness,
where the statement to be proven is fixed, and the verifier uses a single random
tape (that is, the prover cannot start many independent instances of the verifier).

Definition 6 (fixed-input resettably-sound arguments [27]). An interac-
tive argument (P, V) for a NP language L with witness relation RL is fixed-
input resettably-sound if it satisfies the following property: For all non-uniform
polynomial-time adversarial resetting prover P ∗, there exists a negligible function
μ(·) such that for every all x /∈ L,

Pr[R ← {0, 1}∞; (P ∗VR(x), VR)(x) = 1] ≤ μ(|x|)
The following theorem was proved in [10]

Claim 1. Let (P, V) be a fixed-input resettably sound zero-knowledge (resp. wit-
ness indistinguishable) argument of knowledge for a language L ∈ NP . Then
there exists a protocol (P ′, V ′) that is a (full-fledged) resettably-sound zero-
knowledge (resp. witness indistinguishable) argument of knowledge for L.

As a result, in the sequel, we only focus on proving fixed-input resettable-
soundness.
5 Here, V (x, r, α) denotes the message sent by the strategy V on common input x,
random-tape r, after seeing the message-sequence α.

200 K.-M. Chung et al.

2.2 Commitment Schemes

We now give a definition for a commitment scheme. For readability we will use
“for all m” to mean any possible message m of length polynomial in the security
parameter.

Definition 7. (Gen,Com,Ver) is a commitment scheme if:

- efficiency: Gen, Com and Ver are polynomial-time algorithms;
- completeness: for all m it holds that Pr[hcom ← Gen(1n); (com, dec) ←
Com(hcom,m) : Ver(hcom,com, dec,m) = 1] = 1;

- binding: for any polynomial-time algorithm committer∗ there is a negligible
function ν such that for all sufficiently large k it holds that:
Pr[hcom ← Gen(1n); (com,m0,m1, dec0, dec1) ← committer∗(hcom) :
m0 �= m1 and Ver(hcom,com, dec0,m0) = Ver(hcom,com, dec1,m1) = 1] ≤
ν(k);

- hiding: for any algorithm polynomial-time receiver∗ there is a negligible
function ν such that for all m0,m1 where |m0| = |m1| and all sufficiently
large k it holds that

Pr [(hcom, aux) ← receiver(1n); b ← {0, 1}; (com, dec) ← Com(hcom,mb)

: b ← receiver∗(com, aux)] ≤ 1

2
+ ν(n)

When hcom is clear from context, we often say “m, dec is a valid opening for
com” to mean that Ver(hcom,com, dec,m) = 1.

Collision-resistant hash functions. We will use hash functions as defined below.

Definition 8. Let H = {hα} be an efficiently sampleable hash function ensem-
ble where hα : {0, 1}∗ → {0, 1}α. We say that H is collision-resistant against
polynomial size circuits if for every (non-uniform) polynomial-size circuit fam-
ily {An}n∈N , for all positive constants c, and all sufficiently large k, it holds
that

Prob[α
R→ {0, 1}k : An(α) = (x, x′) ∧ hα(x) = hα(x

′)] < n−c.

2.3 Signature Trees

Constructions of universal arguments (defined later) rely on Merkle-trees and
collision-resistant hash-functions to be able to commit to a program of arbitrary
polynomial length where no apriori-bound is known. In [10], they construct an
analog to Merkle-trees, called signature trees, while relying only on one-way
functions. Below, we recall definitions from [10]. Some of the text in this section,
is copied verbatim from [10]

4-Round Resettably-Sound Zero Knowledge 201

Definition 9 (Strong Signatures). A strong, length-�, signature scheme SIG
is a triple (Gen, Sign,Ver) of PPT algorithms, such that

1. for all n ∈ N,m ∈ {0, 1}∗,

Pr[(sk,vk) ← Gen(1n), σ ← Signsk(m);Vervk(m,σ) = 1 ∧ |σ| = �(n)] = 1

2. for every non-uniform PPT adversary A, there exists a negligible function
μ(·) such that

Pr
[
(sk,vk) ← Gen(1n), (m,σ) ← ASignsk(·)(1n) :

Vervk(m,σ) = 1 ∧ (m,σ) /∈ L] ≤ μ(n),

where L denotes the list of query-answer pairs of A’s queries to its oracle.

Strong, length-�, deterministic signature schemes with �(n) = n are known
based on the existence of OWFs; see [23,28,14] for further details.

Definition 10 (Signature Trees). Let SIG = (Gen, Sign,Ver) be a strong,
length-n signature scheme. Let (sk,vk) be a key-pair of SIG, and s be a string
of length 2d. A signature tree of the string s w.r.t. (sk,vk) is a complete binary
tree of depth d, defined as follows.

– A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at position γ in s.

– An internal node lγ indexed by γ ∈ ⋃d−1
i=0 {0, 1}i satisfies that

Vervk((lγ0, lγ1), lγ) = 1.

To verify whether a Γ is a valid signature-tree of a string s w.r.t. the signature
scheme SIG and the key-pair (sk,vk) knowledge of the secret key sk is not
needed. However, to create a signature-tree for a string s, the secret key sk is
needed.

Definition 11 (Signature Path). A signature path w.r.t. SIG, vk and
a root lλ for a bit b at leaf γ ∈ {0, 1}d is a vector ρ =
((l0, l1), ((lγ≤10, lγ≤11), . . . (lγ≤d−10, lγ≤d−11)) such that for every i ∈ {0, . . . , d−1},
Vervk((lγ≤i0, lγ≤i1), lγ≤i

) = 1.

Let PATHSIG(ρ, b, γ, lλ,vk) = 1 if ρ is a signature path w.r.t. SIG, vk, lλ for
b at γ.

2.4 Sig-Com Schemes

Definition 12 (Sig-Com Schemes). Let SIG = (Gen, Sign, Ver) be a strong,
length-n, signature scheme, and let com be a non-interactive commitment
schemes. Define SIG′ = (Gen′, Sign′,Ver′) to be a triple of PPT machines de-
fined as follows:

202 K.-M. Chung et al.

– Gen′ = Gen.
– Sign′sk(m) : compute a commitment c = com(m; τ) using a uniformly selected

τ , and let σ = Signsk(c); output (σ, τ)
– Ver′vk(m,σ, τ) : Output 1 iff Vervk(com(m, τ), σ) = 1.

We call SIG′ the Sig-Com Scheme corresponding to SIG and com.

Definition 13 (Sig-Com Trees). Let SIG = (Gen, Sign, SHVerhcom) be a
strong, length-n signature scheme, let com be a non-interactive commitment
and let SIG′ = (Gen′, Sign′,SHVer′hcom

) be the sig-com scheme corresponding to
SIG and com. Let (sk,vk) be a key-pair of SIG′, and s be a string of length 2d.
A signature tree of the string s w.r.t. (sk,vk) is a complete binary tree of depth
d, defined as follows.

– A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at position γ in s.

– An internal node lγ indexed by γ ∈ ⋃d−1
i=0 {0, 1}i satisfies that there exists

some τγ such that Ver′vk((lγ0, lγ1), lγ , τγ) = 1.

Definition 14 (Sig-Com Path). Let SIG′ = (Gen′, Sign′, Ver′) be a sig-com
scheme. A sig-com path w.r.t. SIG′, vk and a root lλ for a bit b at leaf γ ∈ {0, 1}d
is a vector ρ = ((l0, l1, τλ), ((lγ≤10, lγ≤11, τγ≤1

), . . . , (lγ≤d−10, lγ≤d−10, τγ≤d−1
) such

that for every i ∈ {0, . . . , d − 1}, Ver′vk((lγ≤i0, lγ≤i1), lγ≤i
, τγ≤i

)) = 1. Let

PATHSIG′
(ρ, b, γ, lλ,vk) = 1 if ρ is a signature path w.r.t. SIG′, vk, lλ for

b at γ.

2.5 Oracle-Aided Zero Knowledge Protocols

In this section we recall definitions of oracle-aided protocols from [10].
Let O be a probabilistic algorithm that on input a security parameter n, out-

puts a polynomial-length (in n) public-parameter pp, as well as the description
of an oracle O. The oracle-aided execution of an interactive protocol with com-
mon input x between a prover P with auxiliary input y and a verifier V consist
of first generating pp, O ← O(1|x|) and then letting PO(x, y, pp) interact with
V (x, pp).

Definition 15 (Oracle-aided Interactive Arguments). A pair of oracle al-
gorithms (P, V) is an O-oracle aided argument for a NP language L with witness
relation RL if it satisfies the following properties:

– Completeness: There exists a negligible function μ(·), such that for all x ∈ L,
if w ∈ RL(x),

Pr[pp, O ← O(1|x|); (PO(w), V)(x, pp) = 1] = 1− μ(|x|)
– Soundness: For all non-uniform polynomial-time adversarial prover P ∗,

there exists a negligible function μ(·) such that for every all x /∈ L,

Pr[pp, O ← O(1|x|); (P ∗O, V)(x, pp) = 1] ≤ μ(|x|)

4-Round Resettably-Sound Zero Knowledge 203

Additionally, if the following condition holds, (P, V) is an O-oracle aided argu-
ment of knowledge:

– Argument of knowledge: There exists a expected PPT algorithm E such that
for every polynomial-size P ∗, there exists a negligible function μ(·) such that
for every x,

Pr[pp, O ← O(1|x|);w ← EP∗O(x,pp)(x, pp);w ∈ RL(x)]

≥ Pr[pp, O ← O(1|x|); (P ∗O, V)(x, pp) = 1]− μ(|x|)
Definition 16 (Oracle-aided Resettably-sound Interactive Argu-
ments). An O-oracle aided resetting attack of a cheating prover P ∗ on a
resettable verifier V is defined by the following three-step random process,
indexed by a security parameter n.

1. An initial setup where a public parameter and an oracle are generated:
pp, O ← O(1n). P ∗ is given pp and oracle access to O.

2. Uniformly select and fix t = poly(n) random-tapes, denoted r1, . . . , rt, for
V , resulting in deterministic strategies V (j)(x) = Vx,rjdefined by Vx,rj (α) =

V (x, rj , α), where x ∈ {0, 1}n and j ∈ [t]. Each V (j)(x) is called an incar-
nation of V .

3. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions
with the V (j)(x)’s. The activity of P ∗ proceeds in rounds. In each round
P ∗ chooses x ∈ {0, 1}n and j ∈ [t], thus defining V (j)(x), and conducts a
complete session with it.

Let (P, V) be an O-oracle aided interactive argument for a language L. We
say that (P, V) is an O-oracle aided resettably-sound argument for L if the
following condition holds:

– O-oracle aided resettable soundness: For every polynomial-size resetting at-
tack, the probability that in some session the corresponding V (j)(x) has ac-
cepted and x /∈ L is negligible.

Oracle-Aided Universal Arguments. Universal arguments (introduced in [1]
and closely related to CS-proofs [22]) are used in order to provide “efficient”
proofs to statements of the form y = (M,x, t), where y is considered to be
a true statement if M is a non-deterministic machine that accepts x within t
steps. The corresponding language and witness relation are denoted LU and RU
respectively, where the pair ((M,x, t), w) is in RU if M (viewed here as a two-
input deterministic machine) accepts the pair (x,w) within t steps. Notice that
every language in NP is linear time reducible to LU . Thus, a proof system for
LU allows us to handle all NP-statements. In fact, a proof system for LU enables
us to handle languages that are beyond NP , as the language LU is NE-complete
(hence the name universal arguments).6

6 Furthermore, every language in NEXP is polynomial-time (but not linear-time)
reducible to LU .

204 K.-M. Chung et al.

Definition 17 (Oracle-aided Universal Argument). An oracle-aided pro-
tocol (P, V) is called an O-oracle-aided universal argument system if it satisfies
the following properties:

– Efficient verification: There exists a polynomial p such that for any y =
(M,x, t), and for any pp, O generated by O, the total time spent by the (prob-
abilistic) verifier strategy V , on common input y, pp, is at most p(|y|+ |pp|).
In particular, all messages exchanged in the protocol have length smaller than
p(|y|+ |pp|).

– Completeness with a relatively efficient oracle-aided prover: For every (y =
(M,x, t), w) in RU ,

Pr[pp, O ← O(1|y|); (PO(w), V)(y, pp) = 1] = 1.

Furthermore, there exists a polynomial q such that the total time spent by
PO(w), on common input y = (M,x, t), pp, is at most q(TM (x,w) + |pp|) ≤
q(t+ |pp|), where TM (x,w) denotes the running time of M on input (x,w).

– Weak proof of knowledge for adaptively chosen statements: For every polyno-
mial p there exists a polynomial p′ and a probabilistic polynomial-time oracle
machine E such that the following holds: for every non-uniform polynomial-
time oracle algorithm P ∗, if

Pr[pp, O ← O(1n);R ← {0, 1}∞; y ← P ∗O
R (pp) :

(P ∗O
R (pp), V (y, pp)) = 1] > 1/p(n)

then

Pr[pp, O ← O(1n);R, r ← {0, 1}∞; y ← P ∗O
R (pp) : ∃w = w1, . . . wt ∈ RU(y)

s.t. ∀i ∈ [t], E
P∗O

R
r (pp, y, i) = wi] >

1

p′(n)

where RU (y)
def
= {w : (y, w) ∈ RU}.

Let SIG′ be a canonical sig-com scheme with SIG = (Gen, Sign, Ver) and com
being its underlying signature scheme and commitment scheme.

Definition 18 (Signature Oracle). Given SIG = (Gen, Sign,Ver) a signature
scheme , we define a signature oracle OSIG as follows: On input a security
parameter n, OSIG(1n) generates (vk, sk) ← Gen(1n) and lets pp = vk and
O(m) = Signsk(m) for every m ∈ {0, 1}poly(n).
Definition 19 (Valid Sig-com Oracle). An oracle O′ is a valid (SIG′, �) or-
acle if there is a negligible μ(·) such that for every n ∈ N , the following holds
with probability 1 − μ(n) over pp, O ← O′(1n): for every m ∈ {0, 1}�(n), O(m)
returns (σ, τ) such that Ver′vk(m,σ, τ) = 1 with probability at least 1− μ(n).

Definition 20. An OSIG-aided universal arg. (P, V) has (SIG′, �)-completeness
if there exists a prover P ′ such that the completeness condition holds for (P ′, V)
when the oracle OSIG is replaced by any valid (SIG′, �) oracle O′.

4-Round Resettably-Sound Zero Knowledge 205

The following theorem was proved in [10] (relying on Barak and Goldreich [1])

Theorem 2. Let SIG′ be a canonical sig-com scheme with SIG and com being
its underlying signature scheme and commitment scheme. Then there exists a
(SIG′, �)-complete OSIG-aided universal argument with �(n) = 2n.

3 A Variant of the Signature Oracle-Aided ZK Protocol
from CPS

In this section, we provide a formal protocol description and theorem statement
for a slight variant of the CPS protocol in a signature oracle-aided model. We
will show in the next section how to collapse rounds of this protocol, and prove
resettable soundness of the collapsed protocol by reducing the resetting attacker
to a stand-alone (i.e., non-resetting) adversary that breaks soundness of this
protocol.

Common Input: An instance x of a language L ∈ NP with witness relation RL.
Auxiliary input to P : A witness w such that (x,w) ∈ RL.
Primitives Used: A canonical sig-com scheme SIG′ with SIG and com as the

underlying signature and commitment schemes, and a (SIG′, �)-complete OSIG-
aided universal argument (PUA, VUA) with �(n) = 2n.

Set Up: Run (pp, O) ← OSIG(1n), add pp to common input for P and V . Fur-
thermore, allow P oracle access to O.

Stage One (Trapdoor—Commit-Challenge):
P1: Send c0 = com(02n, τ0) to V with uniform τ0

V1: Send r
$←{0, 1}4n to P

Stage Two (Encrypted Universal Argument):
P2: Send c1 = com(02n, τ1) for uniformly selected τ1
V3: Send r′, uniformly chosen random tape for VUA
P3: Send c2 = com(0k, τ2) for uniformly selected τ2, where k is the length of

PUA’s second message.
Stage Three: (Main Proof)

P ⇔ V : A WI-AOK 〈PWI, VWI〉 proving the OR of the following statements:
1. ∃ w ∈ {0, 1}poly(|x|) s.t. (x,w) ∈ RL.
2. ∃ 〈p1, p2, τ1, τ2〉 s.t. (〈c0, r, c1, c2, r′, pp〉, 〈p1, p2, τ1, τ2〉) ∈ RL2 (defined

in Fig. 2).

Fig. 1. OSIG-aided ZK Argument of Knowledge

We refer the readers to Section 1.2 for the ideas and intuition behind the
CPS protocol. A formal description of the protocol can be found in Figure 1
and 2, where we make a slight modification to the language proved in the UA
where we require the committed program either output the string r when fed
a commitment to its own description or output r as the second component of

206 K.-M. Chung et al.

4-tuple output when fed by a string of length shorter than r. This modification is
inconsequential to the soundness property of the protocol, but will be useful for
us to prove soundness of the collapsed protocol in the next section. The following
theorem follows by [10].

Theorem 3. Assume the existence of one-way functions. The protocol defined
in Figure 1 and 2 is a signature oracle-aided zero-knowledge argument of knowl-
edge for NP.

Relation 1: Let SIG′ a sig-com scheme, with underlying signature scheme SIG
and commitment scheme com. Let ECC be a binary error-correcting code
with constant min-distance and efficient encoding algorithm. We say that
〈c0, r, pp〉 ∈ L1 if ∃〈τ0, d, lλ, C, {ρi}i∈[2d], y〉 such that
– c0 = com((d, lλ), τ0)
– (d, lλ) are the depth and root of a sig-com tree for C w.r.t. pp
– Each ρi is a valid sig-com path for leaf i of this sig-com tree. That is,

PATHSIG′
(ρi, Ci, i, lλ, pp) = 1 for each i.

– C = ECC(Π) for some circuit Π
– Π(c0) = r or |y| < 2n and Π(y) = (s1, r, s2, s3) for some strings s1, s2, s3

and appropriate encoding of the 4-tuple.
We let RL1 be the witness relation corresponding to L1.

Relation 2: Let L1 be described as above, with respect to SIG′ and ECC. Let
(PUA, VUA) be a (SIG′, �)-complete OSIG-aided universal argument with �(n) =
2n. We say that 〈c0, r, c1, c2, r′, pp〉 ∈ L2 if ∃〈p1, p2, τ1, τ2〉 such that
– c1 = com(p1, τ1), c2 = com(p2, τ2).
– (p1, r

′, p2) constitutes an accepting (PUA, VUA) transcript for 〈c0, r, pp〉 ∈
L1.

We let RL2 be the witness relation corresponding to L2.

Fig. 2. Relations used in the OSIG-aided ZK protocol in Fig. 1

4 4-Round Resettably-Sound Zero Knowledge

We are now ready to describe our 4-round protocol. Our protocol relies on Blum’s
4-round Hamiltonicity WI-AOK, 〈PWI, VWI〉 [7]. Our protocol is obtained by first
constructing a ”basic” protocol where the verifier uses ”fresh” randomness in
each round, and then applying the BGGL transformation to this protocol (i.e.,
having the verifier pick its randomness by applying a PRF to the current tran-
script). The ”basic” protocol proceeds as follows.

1. The verifier V picks two signature key pairs (vk, sk) and (vk′, sk′) using
Gen(1k). V also generates the first message BH1 for the WI AoK.

4-Round Resettably-Sound Zero Knowledge 207

The language considered for the WI argument of knowledge is identical to one
used in the protocol presented in the previous section, i.e. (x, vk, vk′) ∈ L∗

iff

(a) ∃ w ∈ {0, 1}poly(|x|) s.t. (x,w) ∈ RL.

(b) ∃ 〈c0, r, c′1, r′, p1, p2, τ1, τ2, σ1, σ2〉 s.t.
(〈vk, vk′〉, 〈c0, r, c1, r′, p1, p2, τ1, σ1, σ2〉) ∈ RL3 (defined in Fig. 4).

V sends vk, vk′, BH1 to the prover P.

2. P responds with a commitment c to the all 0’s string of length k and the
second message for the WI AoK, BH2.

3. V sends r, σ, σ′, BH3 to the prover where r ← {0, 1}3k, σ and σ′ are signatures
of messages c|r and c under keys sk and sk′ respectively and BH3 is the third
message of WI AoK .

4. P finally sends BH4, the fourth message of the WI AoK. The verifier accepts
if the transcript (BH1, BH2, BH3, BH4) is accepting for (x, h, vk) ∈ L∗.

We finally modify the basic protocol by having the verifier first pick a random
seed s for a PRF f and then, at each round, generating the randomness it needs
by applying the fs to the current transcript.

A formal description of the protocol is presented in Figure 3.

Theorem 4. Assume the existence of OWFs, then protocol in Fig. 3 is a 4-
round resettably sound zero knowledge argument of knowledge.

Proof. We prove completeness and resettable-soundness of the protocol. As
proved in [10], it suffices to prove fixed-input resettable-soundness.

Completeness. Completeness of 〈P, V〉 follows directly from the completeness of
the WI-AOK protocol.

Common Input: An instance x of a language L ∈ NP with witness relation RL.
Auxiliary input to P : A witness w such that (x,w) ∈ RL.

1 : V → P: Send BH1, vk, vk
′ where (vk, sk) ← Gen(1n) and (vk′, sk′) ← Gen(1n).

2 : P → V: Send BH2, c = com(02n, τ) for a randomly chosen τ .

3 : V → P: Send BH3, r, σ, σ
′ where r ← {0, 1}3n, σ ← sign(sk, c|r) and σ′ ←

sign(sk′, c).
4 : P → V: Send BH4.

We finally modify the above protocol by having the verifier first pick a random
seed s for a PRF f and then, at each round, generating the randomness it needs
by applying the fs to the current transcript.

Fig. 3. Our 4-round rsZK Argument of Knowledge π = (P, V)

208 K.-M. Chung et al.

Relation 3: Let L1 be as described in Fig 2, with respect to SIG′ and ECC. Let
(PUA, VUA) be a (SIG′, �)-complete OSIG-aided universal argument with �(n) =
2n. We say that 〈vk, vk′〉 ∈ RL3 , if ∃ 〈c0, r, c1, r′, p1, p2, τ1, σ1, σ2〉) ∈ RL3 such
that
– Vervk(c0|r, σ1) = 1,c1 = com(p1|σ1, τ1) and Vervk(c1|r′, σ2) = 1.
– (p1, r

′, p2) constitutes an accepting (PUA, VUA) transcript for 〈c0, r, vk′〉 ∈
L1.

We let RL3 be the witness relation corresponding to L3.

Fig. 4. Relations used in the protocol in Fig. 3

Soundness. To prove the fixed-input resettable-soundness of 〈P, V〉, we show how
to convert a malicious prover P ∗ for 〈P, V〉 into an oracle-aided malicious prover
B that violates the stand-alone soundness of 〈Pzk, Vzk〉 (from the previous sec-
tion).

First, we consider the experiment hybA
1 (n, z) where we run an adversary

A on input (n, z) by supplying the messages of an honest verifier, with the
exception that the verifier challenges, i.e. r and BH3 in the third message are
chosen uniformly at random even in the rewindings instead of applying the PRF.
Upon completion, we run the extractor of the WI AoK in a random session to
obtain witness w. If this witness is not a real witness, output the transcript along
with w. Otherwise output ⊥.

From the pseudo-randomness of F , we know that if P ∗ convinces an honest
verifier of a false statement with non-negligible probability in the original ex-
periment, then it will succeed in proving a false statement with non-negligible
probability in hyb1 as well. Since there are only polynomially many sessions,
hybP∗

1 (n, z) outputs the second (or fake) witness with non-negligible probabil-
ity.

More precisely, for a statement (x, vk, vk′) ∈ L∗ the fake witness contains
〈c0, r, c′1, r′, p1, p2, τ1, σ1, σ2〉. From the unforgeability of the signature scheme
under verifier key vk, it follows that, if P ∗ proves using the fake witness, then
P ∗ must have obtained σ1, σ2 by querying the verifier with the appropriate
commitment as part of the second message of the protocol. Let J1 (and J2) be
the random variable representing the message index where the commitment c0
and the corresponding signature σ1 (resp., c

′
1 and σ2) were sent in the experiment

hybP∗
1 (n, z). We also denote by J3 the message index where P ∗ sends (the same)

BH2 of the convincing session. We set each of them to ⊥ if no such session exists.
From the unforgeability of the signature scheme and the binding property of the
commitment, we have the following claims.

Claim 2. For every adversary A there exists a negligible function ν1() such that
for all n ∈ N, z ∈ {0, 1}∗, the probability that the output of hybA

1 (n, z) is not ⊥
and any of J1,J2 or J3 is ⊥ is at most ν1(n).

4-Round Resettably-Sound Zero Knowledge 209

Claim 3. For every adversary A there exists a negligible function ν2() such that
for all n ∈ N, z ∈ {0, 1}∗, the probability that the output of hybA

1 (n, z) is not ⊥,
J1,J2,J3 �= ⊥ and J1 ≥ J2 or J2 > J3 is at most ν2(n).

Before proving Claims 2 and 3, we prove soundness using these claims. Con-
sider BO(1n, pp) that internally incorporates P ∗ and begins an internal emula-
tion by supplying the verifier messages internally and proceeds as follows:

1. B picks three integers i1, i2, i3 at random such that i1 < i2 < i3.

2. B selects keys (vk, sk) ← Gen(1n). It then internally feeds P ∗ with
(BH1, vk, pp) where BH1 is the first message of the WI-AOK proving language
L∗. To generate the third message as the verifier, B∗ first queries the oracle
with the commitment c received in the second message of that session and
obtains σ′. Then it generates a random string r and obtains a signature for
c|r, σ under key sk. B then feeds P ∗ with BH3, r, σ, σ

′ where BH3 is honestly
generated. In this manner B continues with the emulation internally.

3. B continues the emulation until the partial transcript has i1 messages. If
this is not a second message of any session, it halts. Otherwise, it takes the
commitment c as part of this message and forwards it to Vzk as the first
message in the external execution. Upon receiving the challenge r from the
external verifier, it forwards that challenge internally as part of the third
message corresponding to the same session; it generates σ, σ′ as before. It
then continues the emulation until the partial transcript has i2 messages. If
this is not a second message of any session, it halts. Otherwise, let β be the
partial transcript and α be its session number.

4. Next, it continues the emulation from β until the partial transcript has
totally i3 messages. If the last message is not the third message of session α
it halts. Otherwise, let the partial transcript be (β :: β1) (where :: denotes
concatenating transcripts). Now, it runs two random continuations from i3
to completion and extracts a witness use in the WI-AOK using the special-
sound property. Let the two transcripts be (β :: β1 :: β11) and (β :: β1 :: β12).
If it fails to extract a fake witness internally then it halts. If it obtains a fake
witness but the witness does not contain c, r from the previous step it halts.
Otherwise, it takes p1 from the witness and sends com(p1, τ1) where τ1 is
randomly chosen externally to Vzk.

5. Upon receiving the challenge r′ from Vzk, B internally rewinds P ∗ to the
prefix β. B starts a new continuation from this point and feeds r′ as part
of the third message in the current session. B then continues the internal
emulation until the partial transcript (β :: β2) has i3 messages. Once again B
extracts the witness in the WI-AOK by emulating two random continuations
to completion from (β :: β2), say (β :: β2 :: β21) and (β :: β2 :: β22). If
c, r, p1, r

′ are not part of the witness B aborts. Otherwise it takes p2 from
the witness and sends com(p2, τ2) where τ2 is randomly chosen externally
to Vzk.

6. B stops the internal emulation and proceeds to complete the external exe-
cution with Vzk by using (p1, p2, τ1, τ2) as the witness for the proof phase.

210 K.-M. Chung et al.

It follows from the soundness of the WI AOK and the wayRL3 is defined, that
if B succeeds in extracting the fake witness that contains the appropriate previ-
ous messages, then, except with negligible probability, B succeeds in convincing
Vzk in the external execution. It suffices to argue that B is able to achieve this
with non-negligible probability. Recall that P ∗ succeeds in convincing a false
statement to V with non-negligible probability, say 1

p(n) .

By Claims 2 and 3, it holds for sufficiently large n that with probability
at least 1

p(n) − ν1(n) − ν2(n) that P ∗ cheats and J1,J2,J3 �= ⊥ and J1 <

J2 < J3 in hybP∗
1 (n, z). Since there are only polynomially many sessions we can

further assume that there exists a polynomial p1(n) and functions i1(), i2(), i3()
such that, for sufficiently large n, with probability 1

p1(n)
over the experiment

hybP∗
1 (n, z), it holds that J1 = i1(n), J2 = i2(n) and J3 = i3(n). For a complete

transcript β of an interaction with P ∗, we say event WO(β) occurs if J1(β) =
i1(n), J2(β) = i2(n) and J3(β) = i3(n) (for well-ordered).

We now analyze the success probability of B. We do this by analyzing the
probability that B succeeds in each of the steps iteratively.

Event E1: We say E1 holds if i1 = i1(n), i2 = i2(n) and i3 = i3(n). Since
there are only polynomially many sessions, this happens with polynomial
probability, say 1

p2(n)
.

Event E2: We say that E2 holds for a partial transcript β, i.e. E2(β) = 1, if β is
of length i2 and WO holds in random continuation from β with probability

1
2p1(n)

. Since WO holds with probability 1
p1(n)

, using an averaging argument,

we can conclude that with probability at least 1
2p1(n)

over partial transcripts

of length i2, WO holds in a random continuation with probability at least
1

2p1(n)
. So conditioned on E1, E2(β) holds with probability 1

2p1(n)
over β.

Event E3: We say that E3 holds for a partial transcript β, i.e. E3(β) = 1, if β is
of length i3 and WO holds in random continuation from β with probability

1
4p1(n)

. We estimate the probability E3 holds conditioned on E2 and E1. If

E1 and E2 holds for transcript β, we know a random continuation from β
yields a transcript where WO holds with probability at least 1

2p1(n)
. So using

another averaging argument, we get that, Pr[E3(β :: β1)|E2(β)∧E1] ≥ 1
4p1(n)

B succeeds if it extracts the correct witness in Steps 4 and 5. More precisely,
B will succeed except with negligible probability, if WO holds in all of (β :: β1 ::
β11), (β :: β1 :: β12), (β :: β1 :: β21) and (β :: β1 :: β21) as the witness will
be correct and the special-sound extractor will succeed. This probability can be
written as

Pr[B succeeds] = Pr [WO(β :: β1 :: β11) ∧WO(β :: β1 :: β12)

∧WO(β :: β1 :: β21) ∧WO(β :: β1 :: β22)]− 2ν(n) (1)

4-Round Resettably-Sound Zero Knowledge 211

where ν(·) is the probability that the special-sound extractor fails. From the
description of the events, it holds that

Pr[WO(β :: β1 :: β11)|E3(β :: β1) ∧ E1] ≥ 1

4p1(n)

Pr[E3(β :: β1)|E2(β) ∧ E1] ≥ 1

4p1(n)

Pr[E2(β)|E1] ≥ 1

2p1(n)

Pr[E1] ≥ 1

p2(n)

And similar bounds hold for the other transcripts as well. Therefore, simplifying
Equation 1, we get that

Pr[B succeeds] ≥ 1

p2(n)

1

2p1(n)

(
1

4p1(n)

)2 (
1

4p1(n)

)4

− 2ν(n)

which is non-negligible
We remark that the transformation works only for a constant-round protocol

since B makes a guess for each round (i.e., i1, i2 and i3) each correct only with
polynomial probability.

It only remains to prove Claims 2 and 3. This on a high-level will follow from
the binding property of the commitment and the unforgeability of the signature
scheme.
Proof of Claim 2. Since the output of hyb1 is not⊥, it immediately follows that
J3 �= ⊥. We now show that P ∗ must have obtained the signature σ1, σ2 obtained
from the witness by sending the commitment and receiving the corresponding
random string with the signature in some session. Suppose not, then we can
violate the unforgeability of the signature scheme by constructing an adversary
C that receives a verification key vk as input conducts the hyb1 experiment
by supplying vk to P ∗ and forwarding all signing queries to the signing oracle.
Finally upon extracting a fake witness, C simply outputs either (c0|r, σ1) or
(c′1|r′, σ2) which ever is valid.
Proof of Claim 3. Using the preceding argument, we can conclude that the
signatures must be obtained before P ∗ convinces the verifier in some session,
i.e. J1 < J3 and J2 < J3.

7 It only remains to argue that J3 > J1 > J2

does not happen. Assume for contradiction that with non-negligible probability
J1,J2,J3 �= ⊥ and J3 > J1 > J2. This means that P ∗ was able to commit to
a signature σ1 as part of p1|σ1 in session J2 before it obtained the signature σ1

from the verifier in session J1. We construct an adversary C that violates the
collision-resistance property of the signature scheme.

C on input (n, vk) and oracle access to a signing oracle Signsk() first selects
i1, i2 and i3 at random. Then it internally incorporates P ∗(n, z) and begins an

7 Consider C that proceeds as in Claim 2, but stops at a random session, extracts the
witness and outputs the signature obtained from the witness.

212 K.-M. Chung et al.

internal emulation of an execution of P ∗ as follows. It forwards the verification-
key vk internally to P ∗ as part of the first message and generates all the verifier
messages honestly except the signatures corresponding to vk which it obtains
by feeding the corresponding message to the signing oracle. C then runs the
emulation until the partial transcript, say β, has i2 messages. If this is not
the second message of a session, C halts. Otherwise, it spawns two random
continuation from β until the partial transcripts, say (β :: β1) and (β :: β2)
of both threads has i3 messages. If in either of the thread the current message
is not the second message of a session C halts. Otherwise, it runs two random
continuations from both (β :: β1) and (β :: β2) to obtain (β :: β1 :: β11),
(β :: β1 :: β12), (β :: β1 :: β21) and (β :: β1 :: β21) and run the special-sound
extractor of the WI-AOK protocol to obtain two witnesses. If the extractor
succeeds in extracting a fake witness from both these sessions and σ1 is the
same in both these witnesses, then the message signed will be different with
high-probability. This is because the message being signed has a random string
r of length O(n) and for two threads to have the same challenge is exponentially
small, say ν1(n). Therefore, by the soundness of the WI-AOK protocol we have
two different messages with the same signature. C outputs them as a collision.

To argue that C succeeds with non-negligible probability we proceed exactly
as in the previous argument. We know that with non-negligible probability, there
exists i1(n), i2(n), i3(n) such that J1 = i1(n),J2 = i2(n),J3 = i3(n) and J2 >
J1 > J3 with probability 1

p1(n)
. Lets call this event WO as before. Define events

E1, E2 and E3 exactly as before. Following the same approach we can conclude
that C succeeds with probability at least

1

p2(n)

1

2p1(n)

(
1

4p1(n)

)2 (
1

4p1(n)

)4

− 2ν(n)− ν1(n)

which is non-negligible and thus we arrive at a contradiction.

Argument of Knowledge Since the OSIG-oracle aided 〈Pzk, Vzk〉 protocol is also
a argument of knowledge, from the proof of soundness, it holds that our 4-round
protocol is also an argument of knowledge.

Zero Knowledge. Before we describe the simulator, we need the following defi-
nition of a valid SIG′′-oracle similar to Definition 19.

Definition 21 (Valid SIG′′ Oracle). An oracle O′′ is a valid (SIG′′, �) oracle
if there is a negligible μ(·) such that for every n ∈ N , the following holds with
probability 1−μ(n) over pp, O ← O′′(1n): for every m ∈ {0, 1}�(n), O(m) returns
(BH2, c, r, σ, τ) such that Vervk(c|r, σ) = 1, c = com(m, τ) and r is the second
string in the tuple output by V ∗ when fed BH2, c with probability at least 1−μ(n).

Consider some malicious (w.l.o.g. deterministic) verifier Ṽ ∗ for (P, V) of size
TṼ ∗ . We remark that while the simulator for the resettably-sound ZK protocol
in [10] had one signing slot, here we have a slot that serves as a signing slot for
two different keys sk and sk′. We use two signing keys for simplicity. We use

4-Round Resettably-Sound Zero Knowledge 213

two keys for simplicity. We construct a simulator S for Ṽ ∗ that starts simulating
(P, Ṽ ∗) until it receives BH1 and two verification keys vk, vk′. Let V ∗ be the
“residual” verifier after the first message is sent. It then proceeds as follows.

1. S prepares a valid (SIG′, 2n) oracle O′ and (SIG′′, 2n) oracle O′′ by rewinding
V ∗ and using the second and third message of the protocol as a Signing Slot
for both sk and sk′. This step is essentially the same as what the simulator
does in the protocol presented in [10] which in turn is inspired by Goldreich-
Kahan [15]),

2. S will convince V ∗ in the WI-AOK using the second witness. Towards this, S
will first use oracle O′ to produce a Sig-com tree for C = ECC(Π) where Π =
V ∗. Let d and lλ be the depth and root of the Sig-com tree. Using the oracle
O′′, S obtains (c0, r, σ1, τ) where (c0, r, vk

′) ∈ RL1 and Vervk(c0|r, σ1) = 1.
3. S then generates the first prover message p1 using the witness for (c0, r, vk

′) ∈
RL1 . Using the oracle O′′ again, S generates c1, r

′, σ2, τ1 such that c1 =
com(p1|σ1, τ1) and Vervk(c1|r′, σ2) = 1. S now generates the second prover
message p2 for the UA using r′ as the challenge message for the UA.

4. Finally, S rewinds V ∗ to the top and completes the interaction with V ∗ by
using 〈c0, r, c1, r′, p1, p2, τ1, σ1, σ2〉 as the second witness in the WI-AOK.

The correctness of S follows essentially using the same proof as in [10]. First,
we argue that S can prepare valid oracles for both the keys. Given valid oracles,
S obtains a valid second witness for the WI-AOK. It then runs V ∗ in a straight-
line manner by generating messages for the WI-AOK protocol using the second
witness and all the other messages as the honest prover. Indistinguishability of
the output of the simulator follows directly from the witness-indistinguishability
property of the WI-AOK protocol. It only remains to argue that S can prepare
valid OSIG′

and OSIG′′
oracles. We remark that the approach we take is similar

to [10], with the exception that the preamble phase of the oracle preparation is
executed only once for both oracles. First S executes the following preamble.

– S sends c, BH2 to V ∗ where c = com(02n; τ) with uniform τ and BH2 is a
random dummy second message of the Blum-Hamiltonicity protocol8, and
then receives BH3, r, σ, σ

′ from V ∗. If σ is not a valid signature of c|r under
verification vk or σ′ is not a valid signature of c under vk′, then the simulation
halts immediately and outputs the transcript up to that point.

– S repetitively queries V ∗ with fresh commitments com(02n; τ) at the Signing
Slot along with dummy BH2 messages until it collects 2n valid signatures. Let
t be the number of queries S̃ makes.

Preparing OSIG ′′
Oracle: Define O′′ that outputs pp = vk, and an oracle O that

on input a message m ∈ {0, 1}2n, proceeds as follows: O repetitively queries V ∗

at the Signing Slot with fresh commitments cm = com(m; τ) with dummy BH2
messages for at most t times. If V ∗ ever replies BH3, r, σ, σ′ where Vervk(cm|r, σ) =
1, then O outputs (BH2, cm, r, σ, τ). Otherwise, O returns ⊥.

8 Recall that, in the second message of the Blum-Hamiltonicity protocol, the prover
sends a set of commitments. Hence, to generate a dummy message, the simulator
can simply commit to the all 0’s string.

214 K.-M. Chung et al.

Preparing OSIG′
Oracle: Define O′ that outputs pp = vk′, and an oracle O that

on input a message m ∈ {0, 1}2n, proceeds as follows: O repetitively queries
V ∗ at the Signing Slot with fresh commitments com(m; τ) for at most t times.
If V ∗ ever replies a valid signature σ′ for com(m, τ), then O outputs (σ′, τ).
Otherwise, O returns ⊥.

We now analyze the running time. If t ≥ 2n/2, then S aborts. To analyze this
part of the simulator S, we introduce some notation. Let p(m) be the proba-
bility that V ∗ on query BH2, cm where BH2 is the specific second message of the
Blum-Hamiltonicity protocol and cm = com(m, τ) of m ∈ {0, 1}2n a random
commitment returns a valid signature of cm|r under sk where r is part of V ∗’s
output when fed BH2, cm and a valid signature of cm under sk′. Let p = p(02n).

We first show that S runs in expected polynomial time. To start, note that S
aborts at the end of the Signature Slot with probability 1− p, and in this case,
S runs in polynomial time. With probability p, S continues to invoke a strictly
polynomial-time simulator S for the residual V ∗, which has size bounded by
TṼ ∗ . Thus, S runs in some T = poly(T~V∗) time and makes at most T queries
to both its oracles, which in turn runs in time t · poly(n) to answer each query.
Also note that S runs in time at most 2n, since S aborts when t ≥ 2n/2. Now,
we claim that t ≤ 10n/p with probability at least 1−2−n, and thus the expected
running time of S is at most

(1− p) · poly(n) + p · T · (10n/p) · poly(n) + 2−n · 2n ≤ poly(T~V∗ , n).

To see that t ≤ 10n/p with overwhelming probability, let X1, . . . , X10n/p be i.i.d.
indicator variables on the event that V ∗ returns a valid signature for the message
02n, and note that t ≤ 10n/p implies

∑
iXi ≤ 2n, which by a standard Chernoff

bound, can only happen with probability at most 2−n.
Finally, we argue indistinguishability. First, the computational hiding prop-

erty of com implies that there exists some negligible ν(·) such that |p(m)− p| ≤
ν(n) for every m ∈ {0, 1}2n. Now we consider two cases. If p ≤ 2ν, then the
indistinguishability trivially holds since the interaction aborts at the end of the
Signature Slot (in this case, the view is perfectly simulated) with all but negligi-
ble probability. On the other hand, if p ≥ 2ν, we show that O′′ generated by S
is a valid (SIG′′, 2n) oracle for SIG′′ and O′ generated by S is a valid (SIG′, 2n)
oracle for SIG′ with overwhelming probability, and thus the indistinguishability
of S follows by the indistinguishability of S.

To see that O′′ is a valid (SIG′′, 2n) oracle for SIG′′ with overwhelming prob-
ability, note again by a Chernoff bound that n/p ≤ t ≤ 2n/2 with probability at
least 1−2−Ω(n). In this case, for every m ∈ {0, 1}2n, p(m) ≥ p−ν ≥ p/2 implies
that t ≥ n/2p(m), and thus O(m) learns a valid signature of com(m; τ) from V ∗

with probability at least 1 − 2−Ω(n). A similar argument establishes that O′ is
a valid (SIG′, 2n) oracle for SIG′ with overwhelming probability. This concludes
the proof of correctness.

Acknowledgment. Ostrovsky’s research is supported in part by NSF
grants CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174;

4-Round Resettably-Sound Zero Knowledge 215

US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Fac-
ulty Research Award, Xerox Faculty Research Award, B. John Garrick Founda-
tion Award, Teradata Research Award, Lockheed-Martin Corporation Research
Award, Defense Advanced Research Projects Agency through the U.S. Office of
Naval Research under Contract N00014-11-1-0392.

Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Fac-
ulty Fellowship, NSF Award CNS-1217821, NSF CAREERAward CCF-0746990,
NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA
and AFRL under contract FA8750-11-2- 0211.

Chung is supported by NSF Award CNS-1217821, NSF Award CCF-1214844
and Pass’ Sloan Fellowship.

Visconti’s research is supported in part by the MIUR Project PRIN “GenData
2020”.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies or positions,
either expressed or implied, of the Department of Defense, the Defense Advanced
Research Projects Agency or the U.S. Government.

References

1. Barak, B., Goldreich, O.: Universal arguments and their applications. In: Compu-
tational Complexity, pp. 162–171 (2002)

2. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: FOCS 2002, pp. 116–125 (2001)

3. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

4. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 280–305. Springer, Heidelberg (1997)

5. Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-black-
box simulation technique. In: FOCS (2012)

6. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: STOC (2013)

7. Blum, M.: How to prove a theorem so no one else can claim it. In: Proc. of the
International Congress of Mathematicians, pp. 1444–1451 (1986)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

9. Chung, K.M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resettability from
one-way functions. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, pp. 60–69. IEEE Computer Society (2013)

10. Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions
and applications to resettable security. In: STOC. ACM (2013)

11. Di Crescenzo, G., Persiano, G., Visconti, I.: Improved setup assumptions for 3-
round resettable zero knowledge. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 530–544. Springer, Heidelberg (2004)

12. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC 1990, pp. 416–426 (1990)

216 K.-M. Chung et al.

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178. ACM (2009)

14. Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge University
Press (2001)

15. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology 9(3), 167–190 (1996)

16. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC 1985, pp. 291–304. ACM (1985),
http://doi.acm.org/10.1145/22145.22178

18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

19. Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Constant-round con-
current zero knowledge in the bounded player model. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 21–40. Springer, Heidelberg (2013)

20. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: STOC, pp. 705–714 (2011)

21. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

22. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4),
1253–1298 (2000)

23. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC 1989, pp. 33–43 (1989)

24. Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance.
Electronic Colloquium on Computational Complexity (ECCC) 19, 164 (2012)

25. Ostrovsky, R., Wigderson, A.: One-way fuctions are essential for non-trivial zero-
knowledge. In: ISTCS, pp. 3–17 (1993)

26. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC 2005, pp. 533–542 (2005)

27. Pass, R., Tseng, W.L.D., Wikström, D.: On the composition of public-coin zero-
knowledge protocols. SIAM J. Comput. 40(6), 1529–1553 (2011)

28. Rompel, J.: One-way functions are necessary and sufficient for secure signatures
(1990)

http://doi.acm.org/10.1145/22145.22178

	4-Round Resettably-Sound Zero Knowledge
	1 Introduction
	1.1 Our Results
	1.2 Techniques

	2 Definitions
	2.1 Resettably-Sound Proofs
	2.2 Commitment Schemes
	2.3 Signature Trees
	2.4 Sig-Com Schemes
	2.5 Oracle-Aided Zero Knowledge Protocols

	3 A Variant of the Signature Oracle-Aided ZK Protocol from CPS
	4 4-Round Resettably-Sound Zero Knowledge
	References

