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A SET OF POSTULATES FOR THE FOUNDATION 
OF LOGIC.' 

BY ALONZO CHURCH.2 

1. Introduction. In this paper we present a set of postulates for the 
foundation of formal logic, in which we avoid use of the free, or real, 
variable, and in which we introduce a certain restriction on the law of 
excluded middle as a means of avoiding the paradoxes connected with the 
mathematics of the transfinite. 

Our reason for avoiding use of the free variable is that we require that 
every combination of symbols belonging to our system, if it represents 
a proposition at all, shall represent a particular proposition, unambigou- 
ously, and without the addition of verbal explanations. That the use of 
the free variable involves violation of this requirement, we believe is 
readily seen. For example, the identity 

(1) a(b+c) = ab+ac 

in which a, b, and c are used as free variables, does note state a definite 
proposition unless it is known what values- may be taken on by these 
variables, and this information, if not implied in the context, must be given 
by a verbal addition. The range allowed to the variables a, b, and c 
might consist of all real numbers, or of all complex numbers, or of some 
other set, or the ranges allowed to the variables might differ, and for 
each possibility equation (1) has a different meaning. Clearly, when this 
equation is written alone, the proposition intended has not been completely 
translated into symbolic language, and, in order to make the translation 
complete, the necessary verbal addition must be expressed by means of 
the symbols of formal logic and included, with the equation, in the formula 
used to represent the proposition. When this is done we obtain, say, 

(2) R(a) R(b)J (c) Dabc . a(b + c) = a b + ac 

where R (x) has the meaning, "x is a real number," and the symbol 9)abc 

has the meaning described in ?? 5 and 6 below. And in this expression 
there are no free variables. 

IReceived October 5, 1931. 
2 This paper contains, in revised form, the work of the author while a National Research 

Fellow in 1928-29. 
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A further objection to the use of the free variable is contained in the 
duplication of symbolism which arises when the free, or real, variable 
and the bound, or apparent, variable are used side by side.3 Corresponding 
to the proposition, represented by equation (1) when a, b, and c stand 
for any three real numbers, there is also a proposition expressed without 
the use of free variables, namely (2), and between these two propositions 
we know of no convincing distinction. An attempt to identify the two 
propositions is, however, unsatisfactory, because substitution of (1) for (2), 
when the latter occurs as a part of a more complicated expression, cannot 
always be allowed without producing confusion. In fact, the only feasible 
solution seems to be the complete abandonment of the free variable as 
a part of the symbolism of formal logic.' 

Rather than adopt the method of Russell for avoiding the familiar para- 
doxes of mathematical logic,5 or that of Zermelo,6 both of which appear 
somewhat artificial, we introduce for this purpose, as we have said, a certain 
restriction on the law of excluded middle. This restriction consists in 
leaving open the possibility that a propositional function F may, for some 
values X of the independent variable, represent neither a true proposition 
nor a false proposition. For such a value X of the independent variable 
we suppose that- F (X) is undefined and represents nothing, and we use 
a system of logical symbols capable of dealing with propositional functions 
whose ranges of definition are limited. 

In the case of the Russell paradox the relevance of this proposed restric- 
tion on the law of excluded middle is evident. The formula P which leads 
to this paradox may be written, in the notation explained below, 

) .,--op (gp)} I(I . - So (Sp)). It has the property that if we assume P then 
we can infer P and if we assume P then we can infer P. On ordinary 
assumptions both the truth and the falsehood of P can be deduced in con- 
sequence of this property, but the system of this paper, while it provides 
for the existence of a propositional function S . Sp (p) does not provide 
either that this propositional function shall be true or that it shall be false, 
for the value I S-! . So (S) of the independent variable. 

Other paradoxes either disappear in the same way, or else, as in the 
case of the Epimenides or the paradox of the least undefinable ordinal, 

3 Cf. the introduction to the second edition of Whitehead and Russell's Principia Mathematica. 
4Unless it is retained as a mere abbreviation of notation. 
5 B. Russell, Mathematical Logic as based on the Theory of Types, Amer. Jour. Math., 

vol. 30 (1908), pp. 222-262. A list of some of these paradoxes, with a reference to the 
source of each, will be found in this article, or in Whitehead and Russell, Principia 
Mathematica, vol. 1, pp. 63-64. 

6E. Zermelo, Untersuchungen uber die Grundlagen der Mengenlehre, Math. Annalen, 
vol. 65 (1908), pp. 261-281. 
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348 A. CHURCH. 

they contain words which are not definable in terms of the undefined 
symbols of our system, and hence need not concern us. 

The paradox of Burali-Forti is not, however, so readily disposed of. 
The question whether this paradox is a consequence of our postulates, or 
what modification of them will enable us to avoid it, probably must be 
left open until the theory of ordinal numbers which results from the 
postulates has been developed. 

Whether the system of logic which results from our postulates is 
adequate for the development of mathematics, and whether it is wholly 
free from contradiction, are questions which we cannot now answer except 
by conjecture. Our proposal is to seek at least an empirical answer to 
these questions by carrying out in some detail a derivation of the con- 
sequences of our postulates, and it is hoped either that the system will 
turn out to satisfy the conditions of adequacy and freedom from contra- 
diction or that it can be made to do so by modifications or additions. 

2. Relation to intuitionism. Since, in the postulate set which is 
given below, the law of the excluded middle is replaced by weaker 
assumptions, the question arises what the relation is between the system 
of logic which results from this set, and the intuitionism of L. E. J. Brouwer.7 

The two systems are not the same, because, although both reject a 
certain part of the principle of the excluded middle, the parts rejected 
are different. The law of double negation, denied by Brouwer, is preserved 
in the system of this paper, and the principle, which Brouwer accepts, 
that a statements from which a contradiction can be inferred is false, we 
find it necessary to abandon in certain cases. 

Our system appears, however, to have the property, which relates it 
to intuitionism, that a statement of the form E x . F (x) (read, "there 
exists x such that F (x)") is never provable unless there exists a formula M 
such that F (M) is provable. 

3. The abstract character of formal logic. We do not attach 
any character of uniqueness or absolute truth to any particular system 
of logic. The entities of formal logic are abstractions, invented because 
of their use in describing and systematizing facts of experience or observation, 
and their properties, determined in rough outline by this intended use, 
depend for their exact character on the arbitrary choice of the inventor. 

7 See L. E. J. Brouwer, Intuitionistische Mengenlehre, Jahresbericht der D. Math. Ver., 
vol. 28 (1919), pp. 203-208, and Mathematik, Wissenschaft und Sprache, Monatshefte fur 
Math. u. Phys., vol. 36 (1929), pp. 153-164, and many other papers. 

8 We purposely use the word, "statement", because we wish to reserve the word, "propo- 
sition", for something either true or false. A statement, in the form of a proposition, which 
fails to be either true or false, we regard as a mere group of symbols, without significance. 
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We may draw the analogy of a three dimensional geometry used in 
describing physical space, a case for which, we believe, the presence of 
such a situation is more commonly recognized. The entities of the 
geometry are clearly of abstract character, numbering as they do planes 
without thickness and points which cover no area in the plane, point sets 
containing an infinitude of points, lines of infinite length, and other things 
which cannot be reproduced in any physical experiment. Nevertheless 
the geometry can be applied to physical space in such a way that an 
extremely useful correspondence is set up between the theorems of the 
geometry and observable facts about material bodies in space. In building 
the geometry, the proposed application to physical space serves as a rough 
guide in determining what properties the abstract entities shall have, but 
does not assign these properties completely. Consequently there may be, 
and actually are, more than one geometry whose use is feasible in 
describing physical space. Similarly, there exist, undoubtedly, more than 
one formal system whose use as a logic is feasible, and of these systems 
one may be more pleasing or more convenient than another, but it cannot 
be said that one is right and the other wrong. 

In consequence of this abstract character of the system which we are 
about to formulate, it is not admissible, in proving theorems of the system, 
to make use of the meaning of any of the symbols, although in the appli- 
cation which is intended the symbols do acquire meanings. The initial 
set of postulates must of themselves define the system as a formal struc- 
ture, and in developing this formal structure reference to the proposed 
application must be held irrelevant. There may, indeed, be other appli- 
cations of the system than its use as a logic. 

4. Intuitive logic. It is clear, however, that formulas composed of 
symbols to which no meaning is attached cannot define a procedure of 
proof or justify an inference from one formula to another. If our postu- 
lates were expressed wholly by means of the symbols of formal logic 
without use of any words or symbols having a meaning, there would be 
no theorems except the postulates themselves. We are therefore obliged 
to use in some at least of our postulates other symbols than the unde- 
fined terms of the formal system, and to presuppose a knowledge of the 
meaning of these symbols, as well as to assume an understanding of a 
certain body of principles which these symbols are used to express, and 
which belong to what we shall call intuitive logic.9 It seems desirable 

9 The principles of intuitive logic which we assume initially form, of course, a part of 
the body of facts to which the formal system, when completed, is to be applied. We 
should not, however, allow this to confuse us as to the clear cut distinction between in- 
tuitive logic and formal logic. 
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to make these presuppositions as few and as simple as we can, but there 
is no possibility of doing without them. 

Before proceeding to the statement of our postulates, we shall attempt 
to make a list of these principles of intuitive logic which we find it ne- 
cessary to assume and of the symbols a knowledge of whose meanings 
we presuppose. The latter belong to what we shall call the language of 
intuitive logic, as distinguished from the language of formal logic which 
is made up of the undefined terms of our abstract system. 

We assume that we know the meaning of the words symbol and formula 
(by the word formula we mean a set of symbols arranged in an order of 
succession, one after the other). We assume the ability to write symbols 
and to arrange them in a certain order on a page, and the ability to 
recognize different occurrences of the same symbol and to distinguish 
between such a double occurrence of a symbol and the occurrence of 
distinct symbols. And we assume the possibility of dealing with a formula 
as a unit, of copying it at any desired point, and of recognizing other 
formulas as being the same or distinct. 

We assume that we know what it means to say that a certain symbol 
or formula occurs in a given formula, and also that we are able to pick 
out and discuss a particular occurrence of one formula in another. 

We assume an understanding of the operation of substituting a given 
symbol or formula for a particular occurrence of a given symbol or 
formula. 

And we assume also an understanding of the operation of substitution 
throughout a given formula, and this operation we indicate by an 
S, SxU j representing the formula which results when we operate on the 
formula U by replacing X by Y throughout, where Y may be any symbol 
or formula but X must be a single symbol, not a combination of several 
symbols. 

We assume that we know how to recognize a given formula as being 
obtainable from the formulas of a certain set by repeated combinations of 
the latter according to a given law. This assumption is used below in 
defining the term "well-formed". It may be described as an assumption 
of the ability to make a definition by induction, when dealing with groups 
of symbols. 

We assume the ability to make the assertion that a given formula is 
one of those belonging to the abstract systeim-which we are constructing, 
and this assertion we indicate by the words is true. As an abbreviation, 
however, we shall usually omit the words is true, the mere placing of 
the formula in an isolated position being taken as a sufficient indication 
of them. 
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We assume further the meaning and use of the word every as part of 

the language of intuitive logic, and the use in connection with it of variable 

letters, which we write in bold face type to distinguish them from variable 
letters used in the language of formal logic. These variable letters, written 

in bold face type, stand always for a variable (or undetermined) symbol 

Qr formula. 
We assume the meaning and use of the following words from the 

language of intuitive logic: there is, and, or, if ... then, not, and is in 

the sense of identity. That is, we assume that we know what combinations 
of these words with themselves and our other symbols constitute propositions, 
and, in a simple sense, what such propositions mean. 

We assume that we know how to distinguish between the words and 

symbols we have been enumerating, which we shall describe as symbols 
of intuitive logic, and other symbols, which are mere symbols, without 
meaning, and which we shall describe as formal symbols. 

We assume that we know what it is to be a proposition of intuitive 

logic, and that we are able to assert such propositions, not merely one 

proposition, but various propositions in succession. And, finally, we assume 

the permanency of a proposition once asserted, so that it may at any 

later stage be reverted to and used as if just asserted. 
In making the preceding statements it becomes clear that a certain 

circle is unavoidable in that we are unable to make our explanations of 

the ideas in question intelligible to any but those who already understand 

at least a part of these ideas. For this reason we are compelled to 

assume them as known in the beginning independently of our statement 
of them. Our purpose has been, not to explain or convey these ideas, 

but to point out to those who already understand them what the ideas 

are to which we are referring and to explain our symbolism for them. 
5. Undefined terms. We are now ready to set down a list of the 

undefined terms of our formal logic. They are as follows: 

I{ ()2 Al] n, XM2 &, aJ a,2 A. 

The expressions { } ( ) and i [ ] are not, of course, single symbols, but 

sets of several symbols, which, however, in every formula which will be 

provable as a consequence of our postulates, always occur in groups in 

the order here given, with other symbols or formulas between as indicated 
by the blank spaces. 

In addition to the undefined terms just set down, we allow the use, in 

the formulas belonging to the system which we are constructing, of any 

other formal symbol, and these additional symbols used in our formulas 
we call variables. 
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An occurrence of a variable x in a given formula is called an occurrence 
of x as a bound variable in the given formula if it is an occurrence of x 
in a part of the formula of the form Ax [M]; that is, if there is a formula M 
such that 1x[M] occurs in the given formula and the occurrence of x in 
question is an occurrence in A x [M]. All other occurrences of a variable 
in a formula are called occurrences as a free variable. 

A formula is said to be well-formed if it is a variable, or if it is one 
of the symbols H, A, &, a-, &, A, or if it is obtainable from these symbols 
by repeated combinations of them of one of the forms {M} (N) and I x [Ml, 
where x is any variable and M and N are symbols or formulas which are 
being combined. This is a definition by induction. It implies the following 
rules: (1) a variable is well-formed (2) H, X, &, a1%-, &, and A are well-formed 
(3) if M and N are well-formed then {M} (N) is well-formed (4) if x is 
a variable and M is well-formed then ) x [MI is well-formed. 

All the formulas which will be provable as consequences of our postulates 
will be well-formed and will contain no free variables. 

The undefined terms of a formal system have, as we have explained, 
no meaning except in connection with a particular application of the system. 
But for the formal system which we are engaged in constructing we have 
in mind a particular application, which constitutes, in fact, the motive for 
constructing it, and we give here the meanings which our undefined terms 
are to have in this intended application. 

If F is a function and A is a value of the independent variable for which 
the function is defined, then {F} (A) represents the value taken on by the 
function F when the independent variable takes on the value A. The usual 
notation is F(A). We introduce the braces on account of the possibility 
that F might be a combination of several symbols, but, in the case that F 
is a single symbol, we shall often use the notation F(A) as an abbreviation 
for the fuller expression.10 

Adopting a device due to Schonfinkel," we treat a function of two 
variables as a function of one variable whose values are functions of one 
variable, and a function of three or more variables similarly. Thus, what 
is usually written F (A,B) we write { { F} (A)} (B), and what is usually written 
F(A, B, C) we write {{{F} (A)} (B)} (C), and so on. But again we frequently 
find it convenient to employ the more usual notations as abbreviations. 

If M is any formula containing the variable x, then 2 x [M] is a symbol 
for the function whose values are those given by the formula. That is, 

"'The braces { } are, as a matter of fact, superfluous and might have been omitted 
from our list of undefined terms, but their inclusion makes for readability of formulas. 

11 M. Schonfinkel, lYber die Bausteine der mathematischen Logik, Math. Annalen, vol. 92 
(1924), pp. 305-316. 
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I x[M] represents a function, whose value for a value L of the independent 
variable is equal to the result Sx MI of substituting L for x throughout M, 
whenever Sx M I turns out to have a meaning, and whose value is in any 
other case undefined. 

The symbol 17 stands for a certain propositional function of two inde- 
pendent variables, such that H(F, G) denotes, " G (x) is a true proposition 
for all values of x for which F (x) is a true proposition." It is necessary 
to distinguish between the proposition H (F, G) and the proposition 
_x F(x) D G(x) (read, "For every x, F(x) implies G(x)"). The latter 
proposition justifies, for any value M of x, the inference F(M) 9 G(M), 
and hence can be used only in the case that the functions F and G are 
defined for all values of their respective independent variables. The pro- 
position H(F, G) does not, on the other hand, justify this inference, although, 
when {F}I(M) is known to be true, it does justify the inference {G}(M). 
And the proposition H(F, G) is, therefore, suitable for use in the case that 
the ranges of definition of the functions F and G are limited. 

The symbol X stands for a certain propositional function of one inde- 
pendent variable, such that E(F) denotes, "There exists at least one value 
of x for which F(x) is true." 

The symbol & stands for a certain propositional function of two inde- 
pendent variables, such that, if P and a are propositions, & (P, Q) is the 
logical product P-and-Q. 

The symbol stands for a certain propositional function of one inde- 
pendent variable, such that, if P is a proposition, then - (P) is the negation 
of P and may be read, "Not-P". 

The symbol t stands for a certain function of one independent variable, 
such that, if F is a propositional function of one independent variable, 
then t(F) denotes, "The object x such that {F}(x) is true." 

The symbol A stands for a certain function of two independent variables, 
the formula A(F, M) being read, "The abstraction from M with respect 
to F." 

6. Abbreviations and definitions. In practice we do not use actu- 
ally the notation just described, but introduce various abbreviations and 
substituted notations, partly for the purpose of shortening our formulas 
and partly in order to render them more readable. We do not, however, 
regard these abbreviations as an essential part of our theory but rather 
as extraneous. When we use them we do not literally carry out the 
development of our system, but we do indicate in full detail how this 
development can be carried out, and this is for our purpose sufficient. 

As has been said above, we use {F} (A, B) as an abbreviation for 
{{F}(A)}(B) and similarly in the case of functions of larger numbers of 
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variables. Moreover, alike in the case of functions of one variable and 
in the case of functions of two or more variables, we omit the braces 
{ I whenever the function is represented by a single symbol rather than 
by an expression consisting of several symbols. Thus, if F is a single 
symbol, we write F(A) instead of {F} (A) and F(A, B) instead of {F} (A, B) 
or {{F} (A)} (B). 

We shall usually write [M][N] instead of & (M, N) or { {&} (M)} (N), and 
--[M] instead of -(M) or {s} (M). 

When F is a single symbol, we shall often write F x [M] instead of 
F (2 x [MI). 

Instead of H(2x[M], 2x[N]), we shall write [M] cx[N]. And 

[iXy[M]]Dx[[M1Dy[N]] we abbreviate further to [MDOxy [N], and 

[t y [. z [M]]] cx [[.7 z [M]J y[[M] Oz [N]]] we abbreviate to [M] OXy [N] and 
so on. 

Moreover, whenever possible without ambiguity, we omit square brackets 
[1, whether the brackets belong to the undefined term 2 [ ] or whether they 
appear as a part of one of our abbreviations. In order to allow the 
omission of square brackets as often as possible, we adopt the convention 
that, whenever there are more than one possibility, the extent of the 
omitted square brackets shall be taken as the shortest. And when the 
omission of the square brackets is not possible without ambiguity, we 
can sometimes substitute for them a dot, or period. This dot, when it 
occurs within a parenthesis, enclosed by either square brackets [ ], round 
parentheses ( ), or braces { }, stands for square brackets extending from 
the place where the dot occurs and up to the end of the parenthesis, 
or, if the parenthesis is divided into sections by commas as in the case 
of functions of two or more variables, extending from the place where 
the dot occurs and up to the first of these commas or to the end of the 
parenthesis, whichever is first reached. And when the dot is not within 
any parenthesis, it stands for square brackets extending from the place 
where it occurs and up to the end of the entire formula. In other words, 
a dot represents square brackets extending the greatest possible distance 
forward from the point where it occurs. 

In addition to these abbreviations, we allow afreely the introduction 
of abbreviations of a simpler sort, which we call definitions, 12 and which 
consist in the substitution of a particular single symbol for a particular 
well-formed formula containing no free variables. 

12 There seems to be, as a matter of fact, no serious objection to treating definitions 
as an essential part of the system rather than as extraneous, but we believe it more con- 
sistent to class them with our other and more complicated abbreviations. 
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We introduce at once the following definitions, using an arrow to 
mean "Stands for", or, "Is an abbreviation for": 

V V rP)* . v 

Q V Si H nip, V) . t(V, 10 
E i whr y 

Sp .S (7r) 
V(P, Q) is to be read, "P or Q", U(P, Q) is to be read, "P implies Q", 

Q (F, G) is to be read "F and G are equivalent" and E(M) is to be read 
"M exists" 

And in connection with these symbols just defined we introduce some 
further abbreviations. For V(P, Q) we write [P] v [Q], and for U(P, Q) 
we write [P1 9 [Q]. We abbreviate Q (Q x . M, i x . N) to [Ml x [N]. And 
we abbreviate E(x) Ox [M] to 'x[M], which may be read, "For every x, M". 

The notion of a class may be introduced by means of the definition: 

K A(Q). 

The formula K(F) is then to be read, "the class of x's such that (F} (x) 
true." 

7. Postulates. We divide our postulates into two groups, of which 
the first consists of what we shall call rules of procedure and the second of 
what we shall call formal postulates. The latter assert that a given formula 
is true, and contain nothing from the language of intuitive logic other than 
the words is true (and even these words, as already explained, we leave 
unexpressed when we write the postulates). And the former, the rules of 
procedure, contain other words from the language of intuitive logic. 

The theorems which are proved as consequences of these postulates ale 
of the same form as the postulates of the first group, namely, that a certain 
formula is true. And the proof of a theorem consists of a series of steps 
which, from a set of one or more postulates of the first group as a starting 
point, leads us to the theorem, each step being justified by an appeal to 
one of the rules of procedure. 

The postulates of our first group, the rules of procedure, are five in 
number: 

I. If J is true, if L is wtell-formed, if all the occurrences of the variable x 
in L are occurrences as a bound variable, and if the 'cariable y does 
not occur ill L, then K, the result of utbstit'uting Sx LI for a particular 
occurrence of L in J, is also trite. 

II. If J is true, if M and N are ?uell-formed, if the variable X occurs in M, 
and if the bound variables in M are distinct both from the variable x 
and from the free variables in N, then K, the result of substituting 
Sx MI for a particular occurrence of {i x. M} (N) in J, is also true. 



356 A. CHURCH. 

III. If J is true, if M and N are well-formed, if the variable x occurs in M, 
and if the bound variables in M are distinct both from x and from 
the free variables in N, then K, the result of substituting {Ax . M} (N) 
for a particular occurrence of SN MI in J, is also true. 

IV. If {F} (A) is true and F and A are well-formed, then Z (F) is true. 
V. If H(F, G) and {F}(A) are true, and F, G, and A are well-formed, 

then {G} (A) is true. 
And our formal postulates are the thirty-seven following: 

1. JJzp(sr) O (spo qso). 

2. 'x . So (x) 3qD (. 1 )) 3 (x). 

3. -X(Qf) 36 * [Qfz W x so (z] A, * (Pf t) [Q * o()x H s VZ) D 

4o 

(e 
W 

* Ye 
Ox so (X 

, 
Y )] Oy 

* 
Qez WZ Ox( 

(z) 
(X)) 2 .) 

19. X i OX1 ['0(u, /)] *ry .0(u). OH (xy).~0y]9u~('u) 

5. 1 (Tf) OT . I H(Tf y,) :)? * s (f (x)) O)fx t (f (x)). 

6. 'x * So (x) p ),p * 11(q, q(x)) .q D (xp x). 

7. So (x,2 f (x)) )+fx * 1(So (x),4 (x)) )? tp (x,2 f (x)) 
8. (e) Q *1 ZY [e WZ Ox so (X, A) O(P * [e Wz Ox ff(so Wz 2 0 30 

[e W o DSp (X; 2 A OYU,(y). 

9. 'X Sp qTq(s).pq 

24. p (fPxVW) ODq (so) 

11. so(X 2X) OTXz (so W) 

1 2. -X (Sp) 3) T Zx (p) (x) . 

13. X (so) 3 T .[so (x) Ox0(x)] 3 tpU(so ) 

14. p Op . q Oq pq. 
15. 1q) q vpy. 
16. pq Opq q. 
17. Zx Ze [T Wx . % 0(x . I MO, 0)] O)O n(602 V). 

18. -'- H(q2 1) Dq),p Z X . (x) . @(X) . H7(IP 0) 

19. Zx o [ 0 S (? 1, x) * 0 (11) * (SO (Y)) 0 @(Y)] 0 TU (SP W)) 

20. - (q) Z) hx . So (x) . 
21. p Op ---q O) pq. 
22. --I) p -q Oq -. pq. 
23. --p Op ---q Oq'-'p q. 
24. p Dv . - .p q] ;)q 

- 
q. 
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25. As.w(it) .V (u)] O)qou * [[[ap WX * 
V) 

(X)] Ox e (X)] - 

[IH (X). t(X)] S e (XI x)] . [a g (X) . (x)J D xQ (X)] D O ((U). 

26. 1p tp) . 

27. -p O p. 

28. T(h) re l (at ) Obewe ( free ara 2 te) 
29. 2(SP) ap . 3(t) 00, l(w, ). 

30. 'X So (X) e me [n (X) a pp (X) O n oU(f, o)] Ooe of (d))u. 

31. Sp (l (e)) Air n(O 2 S). 
32. E (0~)) Oe Z(0). 

33o [ (x cy) c r g (yi t ) oz S (x te)] [Sp (X And) O Sp (ye x)] Oun ti (th v)numer 
ip (A (Sp it)) 00 Y) y(A(Sp, v)). 

34. bty (x, y) pooy , each) tz Sp (i t becounted (x, y) ity So (ye, x)]mlpit 
[Sp(x y) Oxy 0 (x, y)] Oe - 0(?t v) Ouv - -V(A (So u)) Op (A(So, v)). 

35. [it (A (9, u)) )y 0 t (A (Sp, v))] O)v p v(it , v) @ 

36. E (A (Sp)) O~p . Sp (x , y) Oxy~ * Sp (y, 2) )z Sp (x,2 Z) 

37. E (A (p)) OT . Sp (x , y) Oxwy Sp (y , x) . 

8. The relation between free and bound variables. By a steqp 
in a proof we mean an application of one of the rules of procedure IV 
or V, occurring in the course of the proof. And in counting the number 
of steps in a proof, each step is to be counted with its proper multiplicity. 
That is, if a formula M is proved and then used r times as a premise for 
subsequent steps of the proof, then each step in the proof of M is to be 
counted r times. 

If M and N are well-formed and if N can be derived from M by suc- 
cessive applications of the rules of procedure I, II, and III, then M is said 
to be convertible into N, and the process is spoken of as a conversion of 
M into N. 

The formula N is said to be provable as a consequence of the formula M, 
if M is well-formed, and N could be made a provable formula by adding M 

to our list of formal postulates as a thirty-eighth postulate. Either of the 

formulas, M or N, or both, may contain free variables, since although none 
of our formal postulates contains free variables, there is, formally, nothing 
to prevent our adding a thirty-eighth postulate which does contain free 

variables. 
We conclude by proving about our system of postulates the three 

following theorems: 
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THEOREM I. Suppose that M contains x as a free variable, and that Xx. M 
is provable, and that N is provable as a consequence of M. Then, if N 
contains x as a free variable, the formula [M] Ox N is provable. And if N 
does not contain x as a free variable, the formula N itself is provable. 

We shall prove this theorem by induction with respect to the number 
of steps in the proof of N as a consequence of M. 

If this number of steps is zero, then M is convertible into N, and, since M 
contains x as a free variable, so does N. Hence in this case [M] Ox,. N 
may be proved as follows. 

Before each formula we give a symbol which will subsequently be used 
in referring to it. And after each formula we give the means by which 
it is inferred, that is, the number of the rule of procedure and a reference to 
the premise or premises, or, if the formula is one of our formal postulates, 
the number of that postulate. 

B1: xx. M -provable by hypothesis. 
A1: {2 S 2(q)} (ix . M) --IIl, B1. 
A2: 2(Dp)qH(p ,Sp) -1. 

As: {2 s (Sp, Sp)} (t x . M) -V, A2, A1. 
A4: [M]OX.M -IJA3. 
A5: [Ml] Ox N -by conversion, from A4. 

Suppose now, as the hypothesis of our induction, that our theorem is 
true whenever the number of steps in the proof of N as a consequence of 
M is not greater than n. And consider a case in which this number of 
steps is n + 1 . 

The last step in the proof of N as a consequence of M might be an 
application of Rule IV, with premise {F} (A) and conclusion iY(F) or it 
might be an application of Rule V, with premises l(F, G) and IF) (A) and 
conclusion {G} (A). In the former case, F might or might not contain x 
as a free variable, and A might or might not contain x as a free variable. 
In the latter case, F, G, and A each might or might not contain x as a free 
variable. All these possibilities must be considered separately. 

Case 1, the last step in the proof of N as a consequence of M is an 
application of Rule V, A is identical with x, and neither F nor G contains x 
as a free variable. We can prove [M] OxD N as follows: 

B1: x . M -provable, by hypothesis. 
Al: {I(or) 2(7 (2 X. M) -Illy B1. 

A3 : > (ah - [ord (he me Xb IT"(Z Sm .17() . y X/ *0S(X) AtpRx J (axhM -V!3,~ 
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A4: {l x [O(x)D)x (x)] Dq * H(Sp, iV)D ,. o(x)DOX (x)}(x . M) -I, As. 
A6: [{ x . M } (x) Ox s (xj] C, .H s(Sp, i) Op *I{R x * M} (x) Ox 1 (x) -I, A4. 

A6: [[M] Ox S (x)] 9q . Il(S, 0p)D . {Ix * M} (x) Ox t (x) -II, A5.13 

A7: [[M] OX S (x)] DO . n(9, 2V) D . [Ml Ox (x) -II, A6. 

B2: [M] Ox { F} (x) -provable, by hypothesis of induction. 

A8: {iS.[M]OxSo(x)}(F) -Ill, B2. 
A9: Sp. 17(Sp, f) D ,.[M] Ox Vb(x)}(F) -V, A7, Ax. 

Alo: 17(F,2 V) Dip [MlOx V (x) - II, Ag. 
B8: H (F, G) -provable, by hypothesis of induction. 

All: {123V (F, tj')}(G) -III, B8. 

A12: 11 J[MI Ox V(x)} (G) -V? Alo2 All. 

A13: [Ml Dxf G} (x) -II, A12. 

Al4: [M Ox . N -by conversion, from A18, since {G} (x) is convertiable 
into N. 

Case 2, the last step in the proof of N as a consequence of M is an 
application of Rule V, and F contains x as a free variable, and G and A 
do not. We can prove N as follows: 

B': - x. M provable by hypothesis. 
A1: le2(e)}(lx. M) -III B1. 
A2: X (e) De . -N Y le) Ox g (x, y )P * [e Ox) IV (Sp W 9 ip 

[e(x)Dx e(x, y)] DOtp(y) -8. 

A4: (le . 'XY[e(X) OX S (X, A) DI * VX~) 0- H(w(-) W] 01 0 
[QX 3WOxS (X, Oy)] W 8 (y}I X * M) - V, AasA. 

A5: -2yjl * MI [(X) 0. s (X, y)] Op * [Q() x - I(X .IIs(X), Op 3 [e(x)Dx M (x y)] DOtxt'(y)}(].x. M) -I, A8. 
A6: -y[{[x.M}(x) S x (x y)]A D * [{U M}(x) Mx O(9(X) t)] A 

[{ x. M}(x)OxS(xy)] 91 tp(y) -H, A4. 

A6: y[[M]DOxT(xAy)] Oq.[{x. M}(x)Dx f (0 (X),1 0)] . 

[JIx . M}(X) Ox (XY Y)] Ov V(y) - II2 A6. 
[{.x. M}(x)Dxwp(x~y)] Dv t~(y) -II, A8. 

A8: Xy[[M][DX (x, y)] A D [[M] Dl O (x (x), i)] D ,. 

RLMl Ox V (X,)] A Y q) (Y) -II, A7. 

"3Evidently, we may suppose, without loss of generality, that M does not contain x as 
a bound variable, because, if the formula M did contain x as a bound variable, it would 
be convertible into a formula H' which did not contain x as a bound variable. A siimilar 
remark applies frequently below. 
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B2: [Ml Ox {F} (A) -provable, by hypothesis of induction. 
A9: [M] DX {2 x . F} (x, A) -JII, B2. 

Alo: {fy . [M] Ox { x. F} (x, y)} (A) III, A9. 
All: zy . [M] OX{x .i F} (x, y) -IV, Al o. 
A12: {iw Spy * [Ml Ox Sp (x, y)} (AX * F) III,2 All.x 
Als: I I so. [[M] OX 11(S (X) , V)] 00 - 

[[M] Ox S (x, y)] Dy ip(y)} (A *x F) -V, A8, A12 2 
A14: [[M]Dxl(Fx.F F}(x),. )] D?. [[M]{ x x. F} (x, y)]D y) ) -II, A1. 
A15: [[M] DOx (F, t)] Di * [[M D {x F} (y) DFx, y]by) - - -A1 A1. 

A16: [[Ml Ox II(F, 2p)] 00 [[Ml OxI {F} (Y)] Oyi (Y) -II, Al5. 
B8: [M] Ox II(F, G) -provable, by hypothesis of induction. 
A17: {lIb [M] OxD (F, V))} (G) -III, B8. 

A18: {2 t * [[M] Ox {F} (y)] ODV t(y)} (G) -V, A16, A17. 
A19: [IMI Ox {F} (y)] Ox {G} (y) -II, A18. 

A20: {fy * [M]D x {F} (y)} (A) IIJ, B2. 
A21: {2y{G} (y)} (A) .T, A19, A20. 
A22: {G} (A) -II, A21 
N -by conversion, from A22. 

Case 3, the last step in the proof of N as a consequence of M is an 
application of Rule IV, A is identical with x, and F does not contain x 
as a free variable. By hypothesis, X x. M is provable, and from it, by 
conversion and an application of Rule IV, we can obtain X . gs (I x. M). 
Therefore, using Postulate 9, we can prove Sp (2x . M) OD, (Sp). And hence, 
using Postulate 5, we can prove f (x, I x . M) Ofx Z (f(x)). M~oreover 2 x. M 
becomes by conversion x. {xyI 2 I . o S(y)} (x, Ix. M), and this combined 
with the preceding yields {2y2gI . -o(y)} (x, 2x. M)DOx ({2y2gp . Sp(y)} (x)). 
And this last formula becomes by conversion [Ml DxI {Ix E(x)} (x). 

Now using Postulate 3, since Zx. M is provable, we can obtain 
[LM] Ox Sp (x)] D. . H(Sp, i b) D*. [M] Ox f (x). Hence, using the last formula 
in the preceding paragraph, we can prove H(I x E(x), p) Dp * [M] Dx iV (x). 
And hence, using Postulate 9, we can prove [MI Ox. ?s(x) D., (Sp). 

Thus we are able to prove [M] Ox H (F', G'), where F' stands for I So . SO (x) 
and G' for I2 p Z (Sp). And, by the hypothesis of our induction, we are 
able to prove [M Ox {F'} (A'), where A' stands for F. Therefore, by the 
method of Case 2, we can prove {G'} (A'), and from it by conversion, N. 

Case 4, the last step in the proof of N as a consequence of M is an 
application of Rule IV, and A contains x as a free variable, and F does 
not. Since {F} (A) is convertible into {2x{F} (A)} (x), we are able, by the 
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method of Case 3, to prove Ix. (F} (A). This last formula is convertible 
into Ix. (F} ({(x. A} (x)). Hence, using Postulate 10, we can prove 2(F) 
and from it by conversion, N. 

Case 5, the last step in the proof of N as a consequence of M is an 
application of Rule IV, and F contains x as a free variable, and A does 
not. By the hypothesis of our induction, we can prove [M] Ox {F} (A). 
Hence we can prove E(A), and hence, using Postulate 9, s (A) Op (iy). 
And combining this result with Postulate 5, we can obtain f(x, A) x ~(f(x)). 

Now, by the method of Case 3, we can prove Zx. {F} (A) which is con- 
vertible into Xx. {Ax. F} (x, A). Combining this with the preceding, we 
can obtain {Ax. F} (x, A) Ox ((IxF} (x)). And this is convertible into 
(F} (A) Ox 2 (F). 

Thus we are able to prove H(F', G') where F' stands for Axx. { F} (A) 
and G' stands for Ix Z(F). And, by the hypothesis of our induction, we 
are able to prove [M] Ox {F'} (x). Therefore, by the method of Case 1, we 
can prove [M] Ox {G'} (x), and from it by conversion, [M] Ox. N. 

Case 6, the last step in the proof of N as a consequence of M is an 
application of Rule IV, and F contains x as a free variable, and A is 
identical with x. By hypothesis, Xx. M is provable, and, by the hypothesis 
of our induction, [M] Ox {F} (x) is provable. Therefore, by the method of 
Case 3, we can prove Xx. { F} (x), and this is convertible into Ix. { (x . F} (x, x). 
Hence, using Postulate 11, we can obtain {F} (x) Ox Z (F). 

Thus we are able to prove H(F', G') where F' stands for A x. {F} (x) 
and G' stands for A x Z (F). And, by the hypothesis of our induction, we 
are able to prove [M] Ox {F'} (x). Therefore, by the method of Case 1, we 
can prove [Ml Ox {G'} (x), and from it by conversion, [M] -x . N. 

Case 7, the last step in the proof of N as a consequence of M is an 
application of Rule IV, and both F and A contain x as a free variable. 
By the hypothesis of our induction, [Ml] Ox {F} (A) is provable, and this is 
convertible into [Ml OxD, {y {F} ({2Ax . A} (y))} (x). Therefore, by the method 
of Case 6, we can prove [Ml OxD y. {F} ({Qx. A} (y)). 

This last formula is convertible into [M1OxfIYD2y!(tx. A} (y))}(F). 
Therefore, by the method of Case 4, we can prove -g' ly -g ({1 x .A} (y)). 
And, combining this with Postulate 10, we can obtain Xy (jAx.A}(y))] Z(w). 
And hence, combining with Postulate 5, we can obtain 

I y - Uf(x {A *Ix A) (y{))] Ofx I (f(x)). 

By the method of Case 3, using [Ml OX Iy. {F} ({Ax A} (y)), we can prove 
x Zy-{F}({ x.A} (y)) and this is convertible into Xx.Yy.{Ax.F}(x, {Ax.A}(y)). 

Combining this last formula with the formula at the end of the preceding 
24 
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paragraph, we can obtain Xy [{I x . F) (x, {. x . A} (y))] OX i ((2 x . F) (x)). 
And this is convertible into Xy [{F} ({2x . A) (y)] Ox. 2 (F). 

Thus we are able to prove fl(F', G') and [Ml Ox {F'} (x) where F' stands 
for 2x y. {F} ({2 x . A) (y)) and G' stands for i x (F). Therefore, by the 
method of Case 1, we can prove [M] Ox {G') (x), and from it by conversion, 
[Ml Ox . N. 

Case 8, the last step in the proof of N as a consequence of M is an 
application of Rule V, and A contains x as a free variable, and F and G 
do not. By the hypothesis of our induction, [Ml Ox {F} (A) is provable. 
Hence, by the method of Case 4, we can prove. X(F). And, by the 
method of Case 3, we can prove .Yx. {F) (A), which is convertible into 
Zx . IF) ({R x .-A} (x)). 

Also, by the hypothesis of our induction, H1(F, G) is provable. Hence, 
using Postulate 5, we can obtain {F) (f(x)) Ofx {G) (f(x)) and from this, using 
x . {F)({Ax.A)(x)), we can obtain {F)({AX.A}(x))Ox{G)({ix*A}(x)). 
From this last formula, using Rule II, we can obtain lI(F', G'), where F' 

and G' stand respectively for Ax. IF) (A) and Ax. {GI (A). And, applying 
Rule III to [Ml DX (F) (A), we can prove [M] Ox {F') (x). Therefore, by the 
method of Case 1, we can prove [M] Ox {G') (x) and from it by conversion, 
[Ml Ox . N. 

Case 9, the last step in the proof of N as a consequence of M is an 
application of Rule V, and G contains x as a free variable, and F and A 
do not. By the hypothesis of our induction, {F) (A) is provable, and hence, 
using Postulate 2, 1 (F, i) DOp i (A) is provable. 

Also, by the hypothesis of our induction, [MI x IH(F, G) is provable, and 
from this by conversion we can obtain [M] Ox {2 if'J1(F if')) (G). 

Thus we can prove 1l(F', G') and [M] Ox {F') (A') where F' stands for 
i if' 1I(F, f) and G' stands for if'. f'(A), and A' stands for G. Therefore, 
by the method of Case 8, we can prove [MlI Ox{G') (A') and fiom it by 
conversion, [Ml Ox . N. 

Case 10, the last step in the proof of N as a consequence of M is an 
application of Rule V, and F and G contain x as a free variable, and A 
does not. We can prove [M] Ox. N as follows: 

B1: xx . M -provable, by hypothesis. 

A,: {f2e(e)} (Ax * M) -III, B1. 

As: 2(e) De * Zy[() DxWOXSo(XIy )] do.[ e(x)WDX( (M)Y , ( D)) ip. 

[e z)Ox w (X, BY)] Oy * e~z W OxV(X, BY) - 4, 
A., IIse *- zy [e(x) Ox9 w(x, y)] hoT . [e (z) OxII(so (x) +(x))] Do 

[e Gu Ox SO rem ,, A O n al e W , Ox I, ]Y))( BD -V A2 Al. 
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A4: {ile. Y[e(T) DX O(X, Y)] 3 *[Q(X) DX l(SP(X) t(X))] 3 w 

[e(x) Dx (x, y)A Dy * Q(x) Dx V(x, y)} (Ix * M) -I, A8. 
A5: Zy[{IIx. M} (x) OX p(x, y)] OD. [{I x. M} (x) DOx I(p(x), V(x))] 2Xp. 

A: IXy MI Op(xx, y)J y. {)x. M} (x) ox (x), y) -] A4. 
A6: 2y[[M] Dl OS(X, y)] OD* [[MI * H MI(( OX ,(SP(x)) D ,] DI . 

[{I x . M}I(X)x) 9 (X y)A *{i x *M} (X)MDxI (X Y) II, A6 . 
A7: 'ZY [[M OX SO (x,7 y)] DIP . [[M OX n(g (x) WAj) DIP 

[{ix . MI (x o)x Box A Oy) -) .ix. MI (x o)x VP(x7 y) -11, A6. 

A8: Zy[[M] O)x a(x, y)] Op . [[Ml Ox H(sp(x), V(x))] Op . 
[[M] Ox (x, y)A Ov. {ix . M} (x)D) tp(x, y) II, A7. 

As: y[[M] ox so(x, y)] A . [[Ml Ox I(p(x), lp(x))J 2. 
[[Ml ox s (x, y)]D O. * [MI ox lp (x(, y) -II, A8. 

B2: [M] Ox {F} (A) -provable by hypothesis of induction. 

Ajo: [Ml Ox {ix . F} (X, A) HI7, B., 
All: fly .[M Ox t ix y)} (x. F) VA) IAI, Ajo. 
A12: Xy .[M]l Ox ,ix F} (x y) IIVA All* 
A7: MI H(Fyp[M]Dx)) Dy)(.IxF) ) [I [A12A 
A14: {s . [[Ml OX J1((F,{ x.G }V(x))j -I * [[MB]. So (X ) Y)j Y 

[M] )x t[(x, y) (Fx ()} (F)-V AG I AllA 
A20: [[IMl)Ox[([{A F}(y) (x)J, V(x))] Dp y * [[M] Ox {} x * F} (x) y)] -Ay A 

[M] o{x (Xy Y) -II A{ ) 
A16: [[M] Ox {(F, } (x))] 11 B [[Ml Ox {2 x . F} (x y)] Oy 

[MA Ox M D(x { Y) (II, A15A 
A17: [[MlOx H(F { (x))] A[M.l Ox {F} O] Oy[M]Ox (xy) II A16 
Bs: [Ml O)x 17(F G) -provable, by hypothesis of induction. 
A18: [Ml Ox N(F Ix -y Gn (x)) HI Bf . 
Al: cio n [Mo Rux l(F, a(x))n (I G) ad altr A ca 
A20 : (IV t* [[Ml Ox {F} (y)] Oy . [Ml Ox V(x y))(Ix. G) _-V, A17 , A2 . 
All : [[Ml Ox {F} (y)] Oy . [Ml Ox 11x G} (x, y) - II A20. 
A22: [[Ml O)x IF) (y)] O)y [Ml O)x (GI (y) -III A2. 
A2s: fly * [Ml O)x IF) (y)) (A) -III7 B2. 
A,24: (Iy * [Ml O)x {G} (y/)) (A) _V, A22 , A2g 

A.,: [Ml Ox (G) (A) II, A24 * 

A26: [Ml O)x .N -by conversion, from A,^ 

Case 11, the last step in the proof of N as a consequence of M is an 
application of Rule V, and F and G and A all three contain x as a free 

24* 
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variable. We include, in particular, the case that F and G both contain x 
as a free variable and A is identical with x, since there is nothing to be 
gained by treating this case separately. By the hypothesis of our in- 
duction, [Ml cx{ F) (A) is provable, and this is convertible into 

[Ml cX {ix {fy . S' F I) (x, {fy . Sx Al) (x))} (x). 

Therefore, by themethodof Case3, wecanproveXx{Ay. Sx Fj} (x, {2y.SxAj} (x)). 
Hence, using Postulate 7, we can prove 

{2y.Sx Fj} (x, {2y. SxAl} (x)) x.II({Ay.S Flj} (x), V(x)) D) V (x, {2y.S'Al} (x)), 
and this is convertible into 

I F) (A) OX . H (F, V (x)) D (x, A). 

And hence, by the method of Case 1, since [Ml Ox {F} (A) is provable, 
we can prove [M] O .Hl(F, b (x)) 2h V (x, A). 

Thus we are able to prove [M] :), I(F', G') where F'stands for A 4H(F, V(x)) 
and G' stands for AtV. p (x, A). And, by the hypothesis of our induction, 
we are able to prove [M] )D {F'} (A'), where A' stands for Ix. G. There- 
fore, by the method of Case 10, we can prove [M] 2X {G'} (A') and from 
it by conversion, [M] OX. N. 

Case 12, the last step in the proof of N as a consequence of M is an 
application of Rule V, and F and A both contain x as a free variable, 
and G does not contain x as a free variable. As before, A may, in 
particular, be identical with x. By the hypothesis of our induction, 
[M] Ox {F} (A) is provable, and this is convertible into [MI Ox { So. So (A)) (F). 
Therefore, by the method of Case 7, we can prove [M] OX ho . rp (A), and 
this is convertible into [M] OX {Ix E(x)} (A). Hence, using Postulate 2, 
and the method of Case 8, we can prove [Ml Ox. * (A) Do,. H(9, if) Dp V (A). 
And hence, by the method of Case 11, since [Ml D, {F} (A) is provable, 
we can prove [M]9 .l1U(F, ) DOi V (A). 

Thus we are able to prove [MI OX II(F', G') where F' stands for tfH(F, V) 
and G' stands for 2 i. i V(A). And, by the hypothesis of our induction, 
we are able to prove [M] OX { F') (A') where A' stands for G. Therefore, 
by the method of Case 10, we can prove [M] Ox {G'} (A'), and from it by 
conversion, [Ml OX . N. 

Case 13, the last step in the proof of N as a consequence of M is an 
application of Rule V, and A is identical with x, G contains x as a free 
variable and F does not. By the hypothesis of our induction, [MI :x (F) (x) 
is provable, and this is convertible into [MI Ox {Ap . 9 (x)} (F). Therefore, 
by the method of Case 5, we can prove [M] Ox 2 S.o S (x) and this is con- 
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vertible into [Ml 0X E(x). Hence, using Postulate 6, and the method of 
Case 1, we can prove [Ml Ox . Sp (x) DO . J1(!P, if (x)) DOp t (x, x). And hence, 
by the method of Case 10, since [M] Ox {F} (x) is provable, we can prove 
[Ml Ox . H(F, V)(x)) 00 V (x , x). 

Thus we are able to prove [ M] Ox I(F', G') where F' stands for A lI(F, (x)), 
and G' stands for A. . i V(x, x). And, by the hypothesis of our induction, 
we are able to prove [M] OX {F'} (A') where A' stands for Ax . G. There- 
fore, by the method of Case 10, we can prove [Ml Ox {G'} (A') and from 
it by conversion, [M] OX . N. 

Case 14, the last step in the proof of N as a consequence of M is an 
application of Rule V, and G and A both contain x as a free variable, 
and F does not contain x as a free variable. By the hypothesis of our 
induction, we can prove [M] OX {F} (A) and hence, by the method of Case 4, 
we can prove 2 (F). Hence, using Postulate 5, we can prove l(F, ip) D+p. 
{F} (ftx)) DO f' (f(x)). And, by the hypothesis of our induction, we 
can prove [Ml :x H(F, G), which is convertible into [M] OX {,pIl (F, if)) (G). 
Therefore, by the method of Case 8, we can prove 

[Ml Ox f2o F)(f (x)) Of (f (x)) (G), 

which is convertible into [Ml Ox. {F} (f(x)) Ofx {G} (f(x)). 
Moreover, by conversion from [M] Ox {F} (A) we can prove 

[Ml Ox {Ax. {F} ({Ax . A) (x))} (x), 

and therefore, by the method of Case 3, we can prove Xx. {F} ({1 x . A) (x)). 
Hence, by the method of Case 9, using the formula at the end of the 
preceding paragraph, we can prove 

[Ml Dx. {F} ({Ax . A) (x)) Ox {G} ({ix . A) (x)). 

Hence, using [M] Ox {l x . {F) ({l x . A) (x))) (x) and the method of Case 13, 
we can prove 

[M] Dx {.xe {G) ({Ax . A) (x))} (x). 

And hence finally, by conversion, we can prove [M] OX . N. 
Case 15, the last step in the proof of N as a consequence of M is an 

application of Rule V, and neither F nor G nor A contains x as a free 
variable. By the hypothesis of our induction, 1(F, G) and {F) (A) are 
both provable. Hence, using Rule V, { G) (A) is provable, and from it by 
conversion, N. 

Case 16, the last step in the proof of N as a consequence of M is an 
application of Rule IV, and neither F nor A contains x as a free variable. 
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By the hypothesis of our induction, {F} (A) is provable. Hence, using 
Rule IV, Z (F) is provable, and from it by conversion, N. 

COROLLARY. Suppose that M contains x and y as free variables and that 
Z x 2 y . M is provable, and that N is provable as a consequence of M. Then 
if N contains neither x nor y as a free variable, the formula N is a provable 
formula. If N contains y as a free variable, the formula [M] Dxy . N is a 
provable formula. And if N contains x as a free variable, the formula 
[M] 0yx . N is a provable formula. 

And similarly for cases where M cotains a greater number of free 
variables. 

THEOREM II. If X (F) is provable, and G does not contain x as a free 
variable, and {G} (x) is provable as a consequence of {F} (x), then H(F, G) 
is provable. 

For, using Postulate 12, we can prove Z x . {F} (x). Therefore, by 
Theorem I, {F} (x) Ox {G} (x) is provable. And hence, using Postulate 13, 
we can prove 11(F, G). 

THEOREM III. If Z (F) is provable, and N does not contain x as a free 
variable, and N is provable as a consequence of {F} (x), then N is provable. 

For, using Postulate 12, we can prove X x. {F} (x). Therefore, by 
Theorem I, N is provable. 

-Moreover it is readily seen that if our rules of procedure are to be 
Rules I-V and if Theorems II and III are to be true of our system then 
Postulates 1 -13 must be, if not postulates (as we have taken them to 
be), at least provable formulas. 

PRINCETON UNIVERSITY, PRINCETON, N. J. 
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