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Abstract

Scaling up deep learning algorithms has been
shown to lead to increased performance in
benchmark tasks and to enable discovery of
complex high-level features. Recent efforts
to train extremely large networks (with over
1 billion parameters) have relied on cloud-
like computing infrastructure and thousands
of CPU cores. In this paper, we present tech-
nical details and results from our own sys-
tem based on Commodity Off-The-Shelf High
Performance Computing (COTS HPC) tech-
nology: a cluster of GPU servers with Infini-
band interconnects and MPI. Our system is
able to train 1 billion parameter networks on
just 3 machines in a couple of days, and we
show that it can scale to networks with over
11 billion parameters using just 16 machines.
As this infrastructure is much more easily
marshaled by others, the approach enables
much wider-spread research with extremely
large neural networks.

1. Introduction

A significant amount of effort has been put into de-
veloping deep learning systems that can scale to very
large models and large training sets. With each leap
in scale new results proliferate: large models in the
literature are now top performers in supervised vi-
sual recognition tasks (Krizhevsky et al., 2012; Cire-
san et al., 2012; Le et al., 2012), and can even learn
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to detect objects when trained from unlabeled im-
ages alone (Coates et al., 2012; Le et al., 2012). The
very largest of these systems has been constructed by
Le et al. (Le et al., 2012) and Dean et al. (Dean et al.,
2012), which is able to train neural networks with over
1 billion trainable parameters. While such extremely
large networks are potentially valuable objects of AI
research, the expense to train them is overwhelming:
the distributed computing infrastructure (known as
“DistBelief”) used for the experiments in (Le et al.,
2012) manages to train a neural network using 16000
CPU cores (in 1000 machines) in just a few days, yet
this level of resource is likely beyond those available
to most deep learning researchers. Less clear still is
how to continue scaling significantly beyond this size
of network. In this paper we present an alternative
approach to training such networks that leverages in-
expensive computing power in the form of GPUs and
introduces the use of high-speed communications in-
frastructure to tightly coordinate distributed gradient
computations. Our system trains neural networks at
scales comparable to DistBelief with just 3 machines.
We demonstrate the ability to train a network with
more than 11 billion parameters—6.5 times larger than
the model in (Dean et al., 2012)—in only a few days
with 2% as many machines.

Buoyed by many empirical successes (Uetz & Behnke,
2009; Raina et al., 2009; Ciresan et al., 2012;
Krizhevsky, 2010; Coates et al., 2011) much deep
learning research has focused on the goal of building
larger models with more parameters. Though some
techniques (such as locally connected networks (Le-
Cun et al., 1989; Raina et al., 2009; Krizhevsky, 2010),
and improved optimizers (Martens, 2010; Le et al.,
2011)) have enabled scaling by algorithmic advan-
tage, another main approach has been to achieve scale
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through greater computing power. Two axes are avail-
able along which researchers have tried to expand:
(i) using multiple machines in a large cluster to in-
crease the available computing power, (“scaling out”),
or (ii) leveraging graphics processing units (GPUs),
which can perform more arithmetic than typical CPUs
(“scaling up”). Each of these approaches comes with
its own set of engineering complications, yet significant
progress has been made along each axis (Raina et al.,
2009; Krizhevsky et al., 2012; Ciresan et al., 2012; Uetz
& Behnke, 2009; Dean et al., 2012). A clear advantage
might be obtained if we can combine improvements in
both of these directions (i.e., if we can make use of
many GPUs distributed over a large cluster). Unfor-
tunately, obvious attempts to build large-scale systems
based on this idea run across several major hurdles.

First, attempting to build large clusters of GPUs is
difficult due to communications bottlenecks. Consider,
for instance, using widely-implemented map-reduce in-
frastructure (Dean & Ghemawat, 2004; Chu et al.,
2007) to employ our GPUs in a “data parallel” mode,
where each GPU keeps a complete copy of the neu-
ral network parameters but computes a gradient using
a different subset of the training data. The network
parameters must fit on a single GPU—limiting us to,
say, 250 million floating-point parameters (1 GB of
storage). Our GPU code is capable of computing a
gradient for these parameters in just milliseconds per
training image, yet copying parameters or gradients to
other machines will take at least 8 seconds over com-
modity Ethernet—several orders of magnitude slower.
Parallelizing the gradient computations with “model
parallelism”, where each GPU is responsible for only
a piece of the whole neural network, reduces band-
width requirements considerably but also requires fre-
quent synchronization (usually once for each forward-
or backward-propagation step). This approach works
well for GPUs in a single server (which share a high-
speed bus) (Krizhevsky, 2010; Krizhevsky et al., 2012)
but is still too inefficient to be used with Ethernet net-
works. For these reasons, we turn to the use of high-
end networking infrastructure to remove the commu-
nications bottleneck between servers and enable us to
exploit both fast GPU computation and to “scale out”
to many servers. Our cluster incorporates Infiniband
interconnects, which are dramatically faster (in terms
of both bandwidth and latency) than typical Ethernet
networks.

The second major problem with building larger sys-
tems is a software challenge: managing computation
and communication amongst many GPUs significantly
complicates algorithm design. For instance, we must
create well-optimized code for the GPUs themselves,

sometimes requiring algorithm-specific assumptions to
maximize performance. Similarly, while low-level mes-
sage passing software deals with some of the communi-
cations difficulties, we have found the message-passing
metaphor cumbersome for building deep learning algo-
rithms. In this paper, we will highlight several useful
engineering solutions we have come across that greatly
simplify development for systems like ours. Conceiv-
ably, these solutions could be boiled down to a soft-
ware library, packaged and optimized for use by other
researchers in the future.

In the remainder of this paper we will detail the im-
plementation of our large-scale model-parallel train-
ing system for deep neural networks as developed for
COTS HPC computing infrastructure. After describ-
ing our base hardware and software setup, we will de-
tail several pieces of our software implementation in
Section 4. We will then verify the scalability of our
approach experimentally and present several results
obtained from our implementation in Section 5. In
particular, we will demonstrate the ability to replicate
some of the experiments from (Le et al., 2012) (the
largest training system in the literature) with just 3
machines, and also give results from an 11 billion pa-
rameter network trained with our cluster in just a few
days.

2. Cluster Setup

Our cluster is comprised of 16 servers, each with 2
quad-core processors. Each server contains 4 NVIDIA
GTX680 GPUs and an FDR Infiniband adapter. The
GPUs each have 4GB of memory and are capable of
performing about 1 TFLOPS (single-precision) with
well-optimized code. The Infiniband adapter connects
to the other servers through an Infiniband switch, and
has a maximum throughput of 56 Gbps along with
very low end-to-end latency (usually microseconds for
small messages).

This particular server configuration was chosen to bal-
ance the number of GPUs with CPUs, which we have
found to be important for large-scale deep learning.
In previous work, multi-GPU systems have demon-
strated their ability to rapidly train very large neural
networks (Ciresan et al., 2011; Krizhevsky et al., 2012)
(usually convolutional neural networks). Such systems
rely on high-speed access to other GPUs across the
host PCI bus to avoid communications bottlenecks—
and it makes sense to put many GPUs into a single
server in this case. But this approach scales only to 4
GPUs or perhaps 8 GPUs before the host machine be-
comes overburdened by I/O, power, cooling, and CPU
compute demands. As a result, we have limited our-
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Figure 1. Basic structure of our network. The full network
is constructed from 3 stacks of the filtering, pooling and
local contrast normalize (LCN) layers as in (Le et al., 2012).

selves to 4 GPUs per server and relied on Infiniband to
make communication feasible amongst GPUs in sepa-
rate servers.

All of our software is written in C++ and built atop
the MVAPICH2 (Wang et al., 2011) MPI implementa-
tion. MPI provides a standard message passing inter-
face that allows multiple processes in a cluster to ex-
change blocks of data. MVAPICH2 handles all of the
low-level communications over Infiniband in response
to MPI API calls and includes integrated support for
GPUs. Pointers to data in GPU memory can be pro-
vided as arguments to MPI calls to initiate transfers
from one GPU to another, even when the destination
GPU is in another server.

This off-the-shelf software infrastructure gives us a
foundation on top of which to build our deep learn-
ing system. When our system starts up, every server
spawns one process for each of its GPUs. Each pro-
cess claims one GPU and is assigned an ID number
(“rank”) by the MPI implementation. Since each GPU
has its own process, all communication amongst GPUs
occurs through MPI. Though message-passing is a very
low-level operation (and is not especially natural for
building deep learning systems), we will show later
how most of the communication can be abstracted eas-
ily making it much simpler to build deep learning al-
gorithms on top of MPI.

3. Algorithm and Network Architecture

In this paper we will focus on the implementation
of the sparse autoencoder described in (Le et al.,
2012), though other variants could be implemented as
well (Ranzato et al., 2007; Glorot et al., 2011). Closely
following (Le et al., 2012), our network is constructed
from stacks of neurons with each stack composed of
three layers: a linear filtering layer, a pooling layer,
and a local contrast normalization layer (Figure 1).
This stack is replicated 3 times to form a 9 layer net-
work.

The first two layers implement selective features (“sim-
ple cells”) and invariant features (Hyvärinen & Hoyer,
2000; Hyvärinen et al., 2001) (“complex cells” (Hubel
& Wiesel, 1959)). These elements are common to
many other architectures (Garrigues & Olshausen,
2010; LeCun et al., 2004; Riesenhuber & Poggio, 1999),
though we note that like (Le et al., 2012) we use untied
filter banks—every neuron has its own parameters,
in contrast to convolutional networks (LeCun et al.,
1989; Krizhevsky et al., 2012) where spatially trans-
lated neurons use the same filter. The contrast nor-
malization layer has been found empirically to be use-
ful in many systems (Jarrett et al., 2009) and appears
to aid training of higher layers in the network. Each
of the layers makes use of “local receptive fields” (Le-
Cun et al., 1989; Raina et al., 2009; Krizhevsky, 2010):
each neuron (linear filter, pooling unit, or local con-
trast unit) uses only a small window of inputs from
the layer below to compute its output, which will be a
necessary feature for our distributed implementation.

We train this network in a greedy, layer-wise fash-
ion (Hinton et al., 2006; Bengio et al., 2006). The
pooling and normalization layers have fixed parame-
ters like those in (Le et al., 2012), and thus we need
only train the filter layers. To do so, we optimize the
following unsupervised learning objective over the lin-
ear filter parameters, W , and a scalar scaling parame-
ter α:

minimize
W,α

∑
i

||W>(αWx(i))− x(i)||22+ (1)

λ
∑
j

√
Vj(αWx(i))2

subject to ||W (k)||2 = 1,∀k.

Here x(i) is the i’th training example (a training image,
or features computed by lower layers of the network),
Vj is a vector of weights for the j’th pooling unit1 and
λ is a sparsity penalty (set to 0.1 in all of our exper-
iments). W (k) is the filter for the k’th neuron, which
is constrained to have unit norm. Note also that in
this formulation the reconstruction penalty (first line
of (1)) uses W> as the “decoding” weights rather than
using a separate matrix of weights. This saves a sub-
stantial amount of memory, which will be important
for training our largest networks.

The optimization problem (1) is solved using a stan-
dard mini-batch stochastic gradient descent proce-
dure with momentum (Rumelhart et al., 1986; Hin-
ton, 2010). The gradient for the entire objective can
be computed using gradient back-propagation. To en-

1The weights for all of our pooling units are fixed to 1
with a 5x5 square receptive field.
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force the normalization constraint in our gradient de-
scent procedure we define W (k) = W̃ (k)/||W̃ (k)||2 in
the objective above and then optimize over W̃ .

4. Implementation

We now describe in more technical detail several key
aspects of our implementation of the training algo-
rithm above for our HPC cluster. To begin, we note
that we must solve two basic problems to arrive at an
efficient (and hopefully not too complex) implementa-
tion: (i) we require highly optimized GPU code (“ker-
nels”) for all major computational operations, and (ii)
we must develop a scheme for distributing the compu-
tations over many GPUs and managing the communi-
cation between them (which, since we are using MPI,
will involve passing messages between GPUs). Fortu-
nately, these problems can be dealt with separately, so
we will visit each in turn.

As a preliminary, we note that the first layer of our
network takes in a mini-batch of images which can
be represented as a 4D array of size M -by-w-by-w-
by-c, where M is the mini-batch size, w is the image
width and height, and c is the number of input chan-
nels. In our experiments we will use a large unlabeled
dataset of 200x200 color images so each image may be
thought of as a 3D grid of 200-by-200-by-3 values, and
each mini-batch is just an array of M such 3D grids.
The output of the network layer can similarly be rep-
resented as a 4D grid of M -by-r-by-r-by-d responses,
where r and d are determined by the size and number
of filters. This layout is shown in Figure 2, which we
will explain in more detail below. We will think of our
GPU and MPI code as operating on these 4D arrays.

4.1. CUDA kernels

Our cluster uses NVIDIA GTX680 GPUs, and our
GPU code is written with NVIDIA’s CUDA lan-
guage (NVI). We will not detail the particulars of the
code, but instead describe a few basic observations
that have enabled us to write highly optimized ker-
nels for the most important computations.

Deep learning systems, including the sparse auto-
encoder in Section 3, rely on just a few major oper-
ations. Point-wise operations (e.g., addition or scalar
nonlinearities) are very easy to implement efficiently.
The more difficult operations to implement are those
that involve local connectivity. In particular, the
weight matrixW in Eq. 1 is very sparse: the filterW (k)

for each neuron has non-zero entries only for indices
j corresponding to xj in a local spatial region. This
sparsity means that we cannot use optimized linear
algebra code designed for dense matrices, and generic

w=200 

w=200 

c=3 

f 

r 
d 

s 

Figure 2. Schematic showing the notation and local recep-
tive field connectivity of our network. Our input is an
M -by-w-by-w-by-c image. (The fourth dimension M , the
image index within a mini-batch, is not shown here.) Each
neuron has a filter of size f that connects to all c input
channels. All neurons sharing a receptive field are orga-
nized into 3D blocks (see Section 4.1; a 2-by-2-by-2 block
arrangement is shown here). Each block of neurons sees a
different receptive field shifted by step size s. The output
representation is also a 4D array, but of size M -by-r-by-r-
by-d. The setup for our higher-layer filters, pooling units,
and contrast normalization units is analogous.

sparse linear algebra code tends to be much slower.

Unfortunately, writing optimized code for this oper-
ation turns out to be difficult. Recent GPUs rely
heavily on instruction-level parallelism (ILP) in ad-
dition to thread parallelism and have fairly sophisti-
cated cache hierarchies and instruction pipelines. Op-
timizing code for such architectures is thus increas-
ingly difficult to perform without expert knowledge
of each GPU architecture. Indeed, our own code to
compute y = WX (where X is a matrix represent-
ing a mini-batch of images 2) achieved disappointing
performance: 300 GFLOPS on GPUs capable of more
than 1 TFLOPS peak. As well, experience from convo-
lutional neural network implementations (Krizhevsky,
2010), like storing the filter coefficients in cache mem-
ory, has turned out not to be applicable: for our largest
networks, a single filter can be larger than the entire
shared memory cache of the GPU.

The main insight that we have used to implement
much better kernels is to make a small change to
our neural network structure so that computation of
Y = WX may be very efficiently implemented as a
large number of smaller dense matrix multiplies. In
particular, if we have a set of neurons F that share a
single receptive field (i.e., for every k ∈ F the filters

2For a mini-batch of size M , X would have M columns.
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Figure 3. Our locally-connected filter operation is, intu-
itively, equivalent to a block-sparse matrix multiply. For
large blocks, the operation can run nearly as efficiently as
a dense matrix-matrix multiply.

W (k) have the same sparsity pattern), then we can
compute the responses using a dense matrix-matrix
multiplication: YF = WFXF . Here, WF is the ma-
trix of filters for neurons in F obtained by extract-
ing the non-zero columns of W and the correspond-
ing rows of X (denoted XF ). This situation is de-
picted in Figure 3. Provided the number of neurons
in each set F (number of rows of WF ) and the num-
ber of images in a mini-batch (columns of X) are large
enough, each block of filter responses YF may be com-
puted almost identically to standard matrix-matrix
multiplications—-we need only alter the fetching of
columns in W and rows in X to follow the correct
pattern.

For our implementation we referenced the highly-
optimized MAGMA BLAS matrix-matrix multiply
kernels (Tomov et al., 2011), which make use of ad-
vanced techniques including pre-fetching, exploitation
of ILP, and careful register usage. By following the
basic skeleton but mapping row and column fetches to
the appropriate locations in our filter array W and in-
puts X we are able to execute operations like Y = WX
at speeds competitive with a full dense multiply.

To compute the linear responses Y = WX efficiently
with our optimized kernel, we must have a set F of
many neurons sharing identical receptive fields. To
ensure that we have such structure, we use block local
connectivity as shown in Figure 2. In this setup, we
group neurons into 3D blocks where all of the neurons
in each block share an identical receptive field. We aim
to make the blocks large enough to ensure efficient ex-
ecution of our GPU code.3 We can make the blocks in

3For current Fermi- and Kepler-class Nvidia GPUs, we
aim to have blocks of 96 neurons and minibatches of M =

Figure 2 larger by expanding their width or depth, but
in order to keep the total number of neurons constant
we must also use a larger step size s (e.g., s = 4).

The four most-used computations in our code are:
Wx, W>x, δ x>4 and (surprisingly) the normaliza-
tion of the columns of W . This last operation is sim-
ple but memory bandwidth-limited. The first three,
on the other hand, all use the approach described
above. Their computational throughput is shown in
Table 1. On some models of consumer GPUs (e.g., an
overclocked GTX580) the fastest kernel can exceed 1
TFLOPS.

GPU sgemm Wx W>x δ x>

GTX 680 1080 885 808 702
GTX 580 OC 1221 1015 887 798

Table 1. Average computation throughput (GFLOPS) for
the most heavily-used compute kernels. Compare to
sgemm applied to comparably-sized dense matrices. (For
larger matrices, sgemm peak may be higher.)

4.2. Communication with MPI

Given implementations of the basic mathematical op-
erations on the GPU, it is possible to build a single-
GPU system to train neural networks of the form in
Section 3. To expand to multiple GPUs we need to
first divide up the computational work amongst the
GPUs in the cluster and then organize their commu-
nication so that the end result matches what would
be produced on a single GPU. In this paper, we will
parallelize across GPUs using a strictly model parallel
scheme: each GPU is responsible for a separate part
of the computation, but all of the GPUs work together
on the same mini-batch of input samples.

We think of the GPUs in our cluster as being arranged
in a multi-dimensional grid. For simplicity we will use
a 2D grid of 2-by-2 GPUs as an example. Recall that
our input mini-batch as well as all of the neuron re-
sponses can be thought of as 4D arrays of values. A
natural way to break up these arrays over our GPUs is
to partition the spatial dimensions (width and height)
evenly over our 2D grid. For example, at the input
layer where we have a M-by-200-by-200-by-3 pixel ar-
ray, each GPU claims a M -by-100-by-100-by-3 chunk
of the input image. The colored regions in Figure 4
show how we might split an input image and neuron
responses for the next layer over a grid of 4 GPUs.

96 images.
4δ is the gradient computed during back-propagation—

δ x> is the gradient with respect to the filters W , which
requires us to deal with the local receptive field structure.
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GPU	  0	   GPU	  1	  

GPU	  2	   GPU	  3	  

Figure 4. The image arrays are partitioned over the GPUs
along the spatial dimensions. (Best viewed in color.) In
this example, GPU 3 is responsible for computing re-
sponses of neurons in the green block. To facilitate this,
the distributed array ensures that all of the inputs within
the dotted black rectangle (the “input window”) in the in-
put layer are copied to GPU 3 before the responses are
calculated.

This distribution of the arrays also implies one possible
distribution for computation: each GPU is responsible
for computing the responses of any neurons that have
been assigned to it by the above partitioning scheme.
For example, in Figure 4, GPU 3 must compute all of
the neuron responses in the large green block of the
top layer. Given this partition of neurons over GPUs
we can also partition the filter weights W so that filter
W (k) is stored on the same GPU as the k’th neuron. In
principle, computation of the filter responses is carried
out using the same GPU code as for a single-GPU
implementation, but with one caveat: it is often the
case that the inputs needed to compute the output of
the k’th neuron will reside on several GPUs and thus
we need to arrange for these “missing” inputs to be
fetched from their homes before computation can be
performed. In Figure 4, one block of neurons on GPU
3 might need to access inputs from both GPU 3 and
GPU 2.

Implementing these fetches is messy and often difficult
to think about during development. We have found
that a simple distributed array abstraction hides vir-
tually all communication from the rest of the compu-
tational code. For each such array, GPU i specifies
an output window outputi in the global array that it
plans to fill with results. Similarly, it specifies a sec-
ond window inputi that it will need to read in order
to continue the computation. At runtime GPU i will
send a message to GPU j containing all of the values
in the window outputi∩inputj and receive a message
from GPU j containing values from inputi ∩outputj .
The received values are written to a local array (along
with the outputs from GPU i), yielding a globally con-
sistent view of data in window inputi. Computation
can then proceed as usual. In Figure 4, the input win-

dow input3 for GPU 3 in our example is shown with
a black dotted line.

In practice, the input window used by Layer N over-
laps substantially with the output window used by
Layer N − 1, and thus most of the needed data is al-
ready available. This abstraction is most useful though
when this arrangement does not quite work out—for
instance when a neuron has a large receptive field and
thus requires values from many GPUs (not just neigh-
boring GPUs in the grid), or when uneven partitions
result in strange configurations of the input and out-
put areas. These “edge cases” are hidden by the array
implementation and the GPU code sees only a local
memory buffer that is properly populated with data.

Though we will not describe it in further detail
here, we note that a small tweak is needed to al-
low overlapping output windows—i.e., regions of the
global distributed array that are written by multiple
GPUs. Simply: the overlapping response values are
summed up. We use this primarily to implement back-
propagation.

5. Experiments

5.1. Scaling efficiency

We have evaluated the efficiency of our system as we
scale out to many GPUs. To measure the efficiency
of scaling, we performed short optimization runs with
varying numbers of GPUs and varying sizes of neu-
ral networks. For each run we recorded the average
time taken to compute an update to all of the lay-
ers, as would be done during full joint training of the
network. This computation requires us to do a feed-
forward pass through all layers and compute the ob-
jective function for each stack. We must then perform
a complete backward pass from the top of the network
to the bottom and compute gradient updates for all
of the parameters. This exercises all of the compo-
nents of our system and is representative of the most
demanding computations performed by deep learning
systems, including those that use fine-tuning from su-
pervised objectives.

We report the time taken to perform a mini-batch up-
date for several network sizes in Figure 5. Figure 6
shows the factor speedup obtained relative to a sin-
gle GPU, normalized by the number of parameters in
each network. As can be seen in Figure 6, using many
GPUs does not yield significant increases in computa-
tional throughput for small networks, but our system
excels when working with much larger networks.

In absolute terms, our system is fast enough to train
the largest networks we have used (with over 11 billion
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Figure 5. Time taken to perform a mini-batch update for
all weights in large neural networks of sizes ranging from
180 million parameters up to 11.2 billion parameters.
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Figure 6. Factor speedup obtained for varying sizes of net-
work and number of GPUs, normalized for the size of the
network.

parameters) in just a few days. A single mini-batch
update (mini-batch size of 96 images) for the 3rd stack
of such a network takes less than 0.6 seconds and a full
epoch through our 10 million image training set takes
about 17 hours. In total, allowing for 2 epochs to train
the 2nd and 3rd stacks in our networks (the 1st stack
trains very quickly), our 11 billion parameter models
can be trained in roughly 3 days.

5.2. High-level, object-selective features

It was recently shown that very large neural networks
trained from only unlabeled data can learn to iden-
tify objects, such as human faces, in images (Le et al.,
2012). We have replicated such a result using our sys-
tem but at drastically reduced expense. We will briefly
describe these experiments.

We construct an unlabeled training set by harvesting
10 million YouTube video thumbnails. We rescale each
thumbnail so that its height is 200 pixels, and crop
out the central 200-by-200 pixel region. These 200-by-
200 color images are contrast normalized and whitened
offline then distributed to local disk on our cluster for
training.

We trained a network with 3 stacks as in Section 3

where each filtering layer used 20-by-20-by-d receptive
fields (where d is the depth of the input array), filter
blocks of size 4-by-4-by-8 with a step size of s =4 pix-
els between receptive fields.5 This setup is very close
to the one in (Le et al., 2012). The entire network
has about 1.8 billion filter parameters. Following (Le
et al., 2012), we tested each neuron in the trained net-
work by recording its response to images from a labeled
diagnostic set containing 13152 labeled faces from the
Labeled Faces in the Wild (Huang et al., 2007) dataset
and 48000 distractor images from ImageNet. The neu-
ron’s selectivity for “faces” is quantified by computing
the highest classification accuracy6 it can achieve on
this set. Like (Le et al., 2012) and a similar result
in (Coates et al., 2012), we have found that some neu-
rons in our network are selective for faces. These neu-
rons are able to classify a diagnostic image as “face” or
“not-face” with 88% accuracy (whereas random guess-
ing would achieve only 64.7% on our benchmark). We
have performed the same test for other objects with re-
sults summarized in Table 2. We have also visualized
the optimal response for these object-selective neurons
in Figure 7. This is done using the constrained opti-
mization procedure as in (Le et al., 2012) with similar
results.

(a) Face (b) Body (c) Cat

Figure 7. Optimal stimuli visualizations for highest-ranked
object-selective neurons found in our 1.8 billion parameter
network.

Finally, to demonstrate the scalability of our system,
we also trained a much larger network from the same
dataset. This network used 20-by-20-by-3 filters for
the first layer but with filter blocks of size 4-by-4-by-
18 (step size of s =4). The 2nd and 3rd stacks used the
same filter block size, but larger filters: each filter is
32-by-32-by-18 elements. We continue to use the same
5-by-5 pooling and contrast normalization, though it is
likely that improvements can be obtained by adjusting
these parameters in the future.

Surprisingly, we have found that the most object-

5We used greedy, layer-wise training in our experiments.
We found that jointly tuning the network yielded a lower
objective function value but did not improve the results
here.

6We report accuracies on a reweighted set to make com-
parisons with (Le et al., 2012) easier. In that work, they
used 13026 faces and 37000 distractors.
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Object Random guess Best in random net Best in 1.8B param. net Best in 11B param. net.
Human faces 64.7% 64.8% 88.2% 86.5%
Upper body 64.7% 64.8% 80.2% 74.5%

Cats 64.7% 64.8% 73.0% 69.4%

Table 2. Classification rates for neurons found to be selective for objects, similar to those found by Le et al. (Le et al.,
2012). Numbers in the left columns are from a 1.8 billion parameter neural network; the right-most column gives results
from our 11.2 billion parameter network.

selective neurons in this large network are less selec-
tive for our test object classes than in the smaller net-
work, although they are still much better than random
guessing. The classification performance of the best
neurons in our 11 billion parameter network are listed
in Table 2. We have found that the introduction of
nonlinearities and substantial hyperparameter tuning
improves these numbers slightly, but it is possible that
new algorithms or analysis methods will be needed for
the sizes of networks that we are now able to train.

6. Discussion and Conclusion

We have presented details of a very large scale deep
learning system based on high performance comput-
ing infrastructure that is widely available. With our
system we have shown that we can comfortably train
networks with well over 11 billion parameters—more
than 6.5 times as large as the one reported in (Dean
et al., 2012) (the largest previous network), and using
fewer than 2% as many machines.

Though it has taken significant effort to make the best
use of HPC infrastructure, we have described in this
paper several components useful for deep learning that
are efficient and easily implemented. In particular, we
found that distributed arrays allow us to hide commu-
nications during our forward and backward propaga-
tion steps and that highly optimized GPU kernels can
be built with semantics and implementation akin to
matrix-matrix multiplication code to handle locally-
connected neuron computations—a major source of
complexity and optimization issues in our other expe-
riences with GPUs. These are components that, with
wider adoption of HPC systems, might reasonably be
packaged into optimized software libraries.

Though we are clearly able to train extremely large
neural networks, we have not yet identified a combina-
tion of algorithms and architecture yielding much bet-
ter results for our unsupervised tests. Our 11 billion
parameter network relies heavily on an architecture
that has not changed much from the (“small”) 1 bil-
lion parameter network in (Le et al., 2012). Neverthe-
less, with such large networks now relatively straight-
forward to train, we hope that wider adoption of this
type of training machinery in deep learning will help

spur rapid progress in identifying how best to make
use of these expansions in scale.
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