
Tracking Rootkit Footprints with a Practical Memory Analysis System

Weidong Cui
Microsoft Research

wdcui@microsoft.com

Zhilei Xu
Massachusetts Institute of Technology

timxu@mit.edu

Marcus Peinado
Microsoft Research

marcuspe@microsoft.com

Ellick Chan
University of Illinois at Urbana-Champaign

emchan@illinois.edu

Abstract

In this paper, we present MAS, a practical memory anal-
ysis system for identifying a kernel rootkit’s memory
footprint in an infected system. We also present two
large-scale studies of applying MAS to 848 real-world
Windows kernel crash dumps and 154,768 potential mal-
ware samples.

Error propagation and invalid pointers are two key
challenges that stop previous pointer-based memory
traversal solutions from effectively and efficiently ana-
lyzing real-world systems. MAS uses a new memory
traversal algorithm to support error correction and stop
error propagation. Our enhanced static analysis allows
the MAS memory traversal to avoid error-prone opera-
tions and provides it with a reliable partial type assign-
ment.

Our experiments show that MAS was able to analyze
all memory snapshots quickly with typical running times
between 30 and 160 seconds per snapshot and with near
perfect accuracy. Our kernel malware study observes
that the malware samples we tested hooked 191 differ-
ent function pointers in 31 different data structures. With
MAS, we were able to determine quickly that 95 out of
the 848 crash dumps contained kernel rootkits.

1 Introduction

Kernel rootkits represent a significant threat to computer
security because, once a rootkit compromises the OS ker-
nel, it owns the entire software stack which allows it to
evade detections and launch many kinds of attacks. For
instance, the Alureon rootkit [1] was infamous for steal-
ing passwords and credit card data, running botnets, and
causing a large number of Windows systems to crash.
Kernel rootkits also present a serious challenge for mal-
ware analysis because, to hide its existence, a rootkit at-
tempts to manipulate the kernel code and data of an in-
fected system.

An important task in detecting and analyzing kernel
rootkits is to identify all the changes a rootkit makes to
an infected OS kernel for hijacking code execution or
hiding its activities. We call these changes a rootkit’s
memory footprint. We perform this task in two common
scenarios: We detect if real-world computer systems are
infected by kernel rootkits. We also analyze suspicious
software in a controlled environment. One can use either
execution tracing or memory analysis in a controlled en-
vironment, but is usually limited to memory analysis for
real-world systems. In this paper we focus on the mem-
ory analysis approach since it can be applied in both sce-
narios.

After many years of research on kernel rootkits, we
still lack a practical memory analysis system that is ac-
curate, robust, and performant. In other words, we ex-
pect such a practical system to correctly and quickly
identify all memory changes made by a rootkit to arbi-
trary systems that may have a variety of kernel modules
loaded. Furthermore, we lack a large-scale study of ker-
nel rootkit behaviors, partly because there is no practi-
cal system that can analyze memory infected by kernel
rootkits in an accurate, robust and performant manner.

In this paper, we present MAS, a practical memory
analysis system for identifying a rootkit’s memory foot-
print. We also present the results of two large-scale ex-
periments in which we use MAS to analyze 837 kernel
crash dumps of real-world systems running Windows 7,
and 154,768 potential malware samples from the reposi-
tory of a major commercial anti-malware vendor. These
are the two major contributions of this paper.

Previous work [2, 3, 19] has established that, to iden-
tify a rootkit’s memory footprint, we need to check not
only the integrity of kernel code and static data but also
the integrity of dynamic data, and the real challenge lies
in the latter task.

In order to locate dynamic data, these systems first lo-
cate static data objects in each loaded module, then re-
cursively follow the pointers in these objects and in all

newly identified data objects, until no new data object
can be added. Unlike the earlier systems, KOP [3] in-
cludes generic pointers (e.g., void∗) in its memory traver-
sal, and shows that failing to do so will prevent the mem-
ory traversal from reaching about two thirds of the dy-
namic objects.

Previous solutions do not sufficiently address an im-
portant practical problem of this memory traversal pro-
cedure: its tendency to accumulate and propagate errors.
A typical large real-world kernel memory image is bound
to contain invalid pointers. That is, there are likely to be
dynamic objects with pointer fields not pointing to valid
objects. Following such pointers results in objects being
incorrectly included in the object mapping. Worse, such
identification errors can be propagated due to the nature
of the recursive, greedy memory traversal. A single in-
correctly identified data object may cause many more
mistakes in the subsequent traversal.

Invalid pointers may exist for a variety of reasons. For
example, an object may have been allocated, but not yet
initialized. KOP is exposed to a second source of poten-
tial errors. KOP tries to follow all generic pointers. If the
pointer type cannot be uniquely determined, KOP tries
to decide the correct type using a heuristic. A fraction of
these guesses are bound to be incorrect.

In light of these problems, we design MAS to con-
trol the number of errors that arise from following invalid
pointers and to contain their effects. Instead of perform-
ing a greedy memory traversal that is vulnerable to error
propagation, MAS uses a new traversal scheme to sup-
port error correction. MAS also uses static analysis to
derive information that can be used to uniquely identify
many objects and their types without having to rely on
the recursive traversal procedure. Furthermore, MAS is
not subject to errors caused by ambiguous pointers, i.e.,
pointers whose type cannot be uniquely determined. It
uses an enhanced static analysis to identify unique types
for a large fraction of generic pointers and ignores all
remaining ambiguous pointers. While this may reduce
coverage, it will never cause an object to be recognized
incorrectly. Our evaluation will show that the impact on
coverage is minor. Finally, before accepting an object,
MAS checks a number of constraints, including new con-
straints we derive from our static analysis.

We implemented a prototype of MAS and compared
it with KOP on eleven crash dumps of real-world sys-
tems running Windows Vista SP1. MAS’s performance
is one order of magnitude better than KOP regarding both
static analysis and memory traversal. MAS did not miss
or misidentify any function pointers found by KOP, but
KOP missed or misidentified up to 40% of suspicious
function pointers (i.e., function pointers that point to un-
trusted code).

In our large-scale experiments, we ran MAS over

crash dumps taken from 837 real-world systems run-
ning Windows 7 and memory snapshots taken from Win-
dows XP SP3 VMs subjected to one of 154,768 potential
real-world malware samples. For the Windows 7 crash
dumps, MAS took 105 seconds to analyze a single dump
on average. It identified a total of about 400,000 suspi-
cious function pointers. We were able to verify the cor-
rectness of all but 24 of them. Moreover, with the results
of MAS, we were able to quickly identify 90 Windows 7
crash dumps (and five Windows Vista SP1 crash dumps)
that were infected by kernel rootkits. In our study of
malware samples, MAS required about 30 seconds to
analyze each VM memory snapshot. Our study shows
that the kernel rootkits we tested hooked 191 function
pointer fields in 31 data structures. It also shows that
many malware samples had identical footprints, which
suggests that we can use MAS to detect new malware
samples/families that have different memory footprints.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the paper. Sections 3 and
4 describe the design of MAS and explain the algorithms
used for static analysis and memory traversal. Section 5
explains how we evaluate the set of objects found by
MAS for suspicious activity. Section 6 describes our
implementation of MAS. Section 7 describes our evalua-
tion of MAS. Section 8 and Section 9 describe two large-
scale experiments in which we analyze malware samples
and identify rootkits from crash dumps. Sections 10 and
Section 11 discuss related work and limitations. Finally,
Section 12 concludes the paper.

2 Overview

The goal of MAS is to identify all memory changes a
rootkit makes for hijacking execution and hiding its ac-
tivities. MAS does so in three steps: static analysis,
memory traversal, and integrity checking.

Static Analysis: MAS takes the source code of the OS
kernel and drivers as the input and uses a pointer
analysis algorithm to identify candidate types for
generic pointers such as void∗ and linked list con-
structs. Furthermore, it also computes the associa-
tions between data types and pool tags [18].

Memory Traversal: MAS tries to identify dynamic
data objects in a given memory snapshot. Besides
the snapshot, the input includes the type related in-
formation derived from static analysis and the sym-
bol information [15] for each loaded module (if it is
available).

Integrity Checking: MAS identifies the memory
changes a rootkit makes by inspecting the integrity
of code, static data and dynamic data (recognized

2

from memory traversal). In addition to checking
if some code section is modified, MAS detects two
kinds of violations: (1) a function pointer points to
a memory region outside of a list of known good
modules; (2) a data object is hidden from a system
program. The list of identified integrity violations
is the final output of MAS. Such information can be
used to detect if a system is infected by a rootkit or
analyze a rootkit’s behavior.

Next we describe these three steps in detail.

3 Static Analysis

In this section, we present our demand-driven pointer
analysis algorithm. After that, we describe how we use
this algorithm to identify candidate types for generic
pointers and data types associated with pool tags.

3.1 Demand-Driven Pointer Analysis
We use demand-driven pointer analysis because we do
not need the alias information for all the variables in a
program, which traditional pointer analyses compute. In-
stead, we only compute the alias sets of generic pointers,
a small portion of all the variables in a program.

Our demand-driven pointer analysis follows largely
the approach of Zheng and Rugina [27]. Since our goal
is to precisely identify candidate types for generic point-
ers, we extend Zheng and Rugina’s pointer analysis to
be field-sensitive, context-sensitive and partially flow-
sensitive. We achieve partial flow-sensitivity by convert-
ing a program to the Static Single Assignment (SSA)
form conservatively. We enforce context-sensitivity in
a way similar to [23]. We handle indirect calls in our
analysis as well.

Next we will summarize the approach of [27] and pro-
vide a detailed description of our extension to field sen-
sitivity.

3.1.1 Program Expression Graph

The algorithm of [27] operates on a Program Expression
Graph (PEG), a graph representation of all expressions
and assignments in a C-like program. In this paper, we
represent an expression as a C variable with ∗ (for the
dereference operation), & (for the take-address opera-
tion) and→ (for the field operation). In a PEG, the nodes
are program expressions, and the edges are of two kinds:

Assignment Edge (A): For each assignment e1 = e2,
there is an A-edge from e2 to e1.

Dereference Edge (D): For each dereference ∗e, there
is a D-edge from e to ∗e; for each address &e, there
is a D-edge from &e to e.

!"
!"

#"$"%&'"
(#"$"%)'"
(&"$"*'"

!")"$"*"

%&" &" (&"

#" (#")"%)"

*"

+"
+"
+"

!"
!"
!"

!"

!"
!"

!"
+"
+"

+"

+"
+"

+"

!"
!"

!"

Figure 1: Sample program and its PEG

For each A and D edge, there is also a corresponding
inverse edge in the opposite direction, denoted by A and
D. The edges can also be treated as relations between the
corresponding nodes; so relations A and D are the inverse
relations of A and D. Figure 1 shows a sample program
and its PEG.

3.1.2 CFL-Reachability

In addition to the A and D relations (edges), we further
define two relations between expressions (nodes):

Value Alias (V): If a and b may evaluate to the same
value, we say they are value aliases, represented as
aV b.

Memory Alias (M): If the addresses of a and b may de-
note to the same location, we say they are memory
aliases, represented as aMb.

Given an interesting expression p, our pointer analy-
sis searches for the set of expressions q such that pV q.
We call this set thevalue alias set of p. Similar to [27],
we formulate the computation of the V relation as a
Context-Free Language (CFL) reachability problem [21]
over the program expression graph. Specifically, a rela-
tion R over the nodes of a PEG can be formulated as a
CFL-reachability problem by constructing a grammar G
such that a node pair (a,b) has the relation R if and only
if there is a path from a to b such that the sequence of
labels along the path belongs to the language L(G). The
context-free grammar GV for value and memory alias re-
lations is:

Value Aliases: V ::= M |MAV | VAM
Memory Aliases: M ::= ε | DV D

The grammar GV has non-terminals V and M, and ter-
minals A, A, D, and D. Readers can verify that the sample
PEG in Figure 1 contains a path from b to c with label se-
quence DADADDA that can be produced by the V non-
terminal in GV . So the grammar successfully deducts
that b and c are value aliases. The intuition behind each
production rule is:

M ::= ε a is a memory alias of itself.

3

!"
!"

!"
#"
#"

#"

"$"%"&"'()" $*#""%"&"(+,#"&"'%(-#)")" $*.""%"&"(+,."&"'%(-.)")"

! (""%"&"/$")" ! (-#""%"&"/%(+,#)")" ! (-.""%"&"/%(+,.)")"

$00123"(&/$"
/$" %/$)-#"

$"
%/$)-."

$*#"

$*."

."

."
." !"

!"

!"!"
!"
!"

Figure 2: The relation of struct, field, and base pointer;
and the corresponding PEG representation.

M ::= DV D Given ∗pDpV qD∗q then, because p and q
are value aliases, ∗p and ∗q are memory aliases.

V ::= M Memory aliases are also value aliases.

V ::=VAM Given aV bAcMd, the value of a propagates
to c, which may reside in the same memory as d.
Thus, a and d are value aliases. Similarly V ::=
MAV .

Given this grammar, Zheng and Rugina go on to con-
struct a hierarchical state machine and design an algo-
rithm that decides whether two expressions are memory
aliases. They also sketch an extension of the alias analy-
sis algorithm for computing the value alias set of a single
expression, which we adopt in MAS. Next, we describe
how we extend the basic grammar to achieve field sensi-
tivity.

3.1.3 Field Sensitivity

Field-sensitivity is necessary for our pointer analysis
since we want to distinguish a generic pointer field from
other fields in the same data structure. Field-insensitive
analysis, on the other hand, treats all fields in a data struc-
ture as the structure itself.

Fields in C can be represented by means of pointer
arithmetic: given a base pointer p and a field f , &(p→
f) is the field pointer which points to a field inside the
structure ∗p. We use p+ f to denote &(p→ f), and
p+ f is in fact the result of offsetting p by a fixed number
of bytes determined by field f . The other constructs p→
f (= ∗(p+ f)) and a. f (= (&a)→ f = ∗(&a+ f)) are
merely syntactic sugar, as shown in Figure 2.

To support field-sensitivity in our pointer analysis, we
first add edges to the PEG to represent the field relations.
For every field descriptor, we create a field label fi. Then
for each base pointer p, if its field pointer p+ fi exists
in the program, we add an edge labeled fi from p to p+
fi and an inverse edge fi in the opposite direction. As
shown in Figure 2.

Zheng and Rugina [27] suggest adding V ::= fiV fi to
the grammar GV for field-sensitivity. With this addition,
the grammar becomes:

M ::= (DV D)?
V ::= M | (M?A)∗V (AM?)∗ | fiV fi

typedef struct {

void *header; // call this field F

int status;

} KOBJECT;

KOBJECT *x, *y;

*x = *y;

Figure 3: Example code of struct assignment.

However, we observe that this is insufficient to track
all the value aliases because of a feature in C called struct
assignment. One can assign a structure to another as
if they were both simple variables, and the effect is the
same as doing assignments between corresponding fields
recursively (because each field can possibly be an em-
bedded structure).

Figure 3 shows a simple example where handling
struct assignment becomes crucial to the analysis. x→
header and y → header are value aliases, as well as
x→ status and y→ status. However, the extended gram-
mar suggested by Zheng and Rugina can not capture
these alias relationships correctly. The relevant edges
connecting from x→ header to y→ header produce the
label sequence D f DAD f D, which cannot be generated
from the “V” non-terminal in Zheng and Rugina’s ex-
tended grammar. Struct assignment is a common fea-
ture widely used in various programs. We must handle it
properly when computing value aliases.

Struct assignment can only happen when the two vari-
ables involved are of the same type, and that type is
precisely known to the compiler. Taking advantage of
this property, we have an effective and efficient fix for
Zheng and Rugina’s algorithm. In the program expres-
sion graph, we expand each struct assignment to the in-
dividual assignments of all corresponding fields. In the
example code, ∗x = ∗y is expanded to x→ header = y→
header;x→ status = y→ status. If some field is an em-
bedded struct, then this expansion is done recursively,
eventually down to the “leaf” fields. The program ex-
pression graph built this way is free of struct assignment,
and Zheng and Rugina’s extended grammar works prop-
erly on this kind of PEG.

3.2 Type Candidate Inference

We have implemented Zheng and Rugina’s algorithm
with our extension to do demand-driven pointer analysis.
MAS uses this pointer analysis to derive the set of type-
related information for identifying dynamic data object
in memory traversal. The set of type-related information
has two parts: candidate types for generic pointers and
candidate types for pool tags [18] Note that we use can-
didate types and type candidates interchangeably. Next
we will describe how we derive them in detail.

4

3.2.1 Candidate Types of Generic Pointers

A generic pointer is a pointer whose type definition does
not reveal the actual type of the data it refers to. In MAS,
we consider two kinds of generic pointers: void∗ and
pointers in linked list constructs. We consider linked list
constructs because the declared type of its pointer fields
does not reflect the larger data structure it links together
in the list.

For an expression p of type void∗, its candidate types
are the set of types of its value aliases. For instance,
given FOO ∗ q; void ∗ p; p = q, we get p’s candidate
type as FOO∗. To derive the candidate types for a pointer
field fi of type void∗, we need to consider all its instances.
Thus, fi’s candidate types are the set of types of all the
value aliases of the pointer field’s instances in the form
of X → fi.

We need to solve two problems to compute candidate
types for pointer fields in linked list constructs. First,
we are concerned with the larger data structures that are
linked together in a list. When a linked list pointer field’s
value alias is in the form of &(a−> fi), we say its nested
candidate type is &(A−> fi) where a’s type is A∗. This
nested candidate type allows us to identify the larger data
structure A when the linked list pointer points to its field
fi. For simplicity, we still use candidate types when we
discuss linked list constructs.

Second, the head node and the entry nodes in a linked
list tend to have different data structures. If we do not
differentiate them, the candidate types of a linked list
pointer field will have both types, which causes unnec-
essary type ambiguity. To solve this problem, we lever-
age the semantics of APIs for linked list constructs. For
instance, InsertTailList is a function in Windows [16] for
inserting an entry at the tail of a doubly linked list. It
takes two parameters, ListHead and Entry. To differenti-
ate the list head and entry, we compute the value alias
sets of ListHead/InsertTailList and Entry/InsertTailList,
where a/ f unc represents the parameter a of a function
f unc. Then we match value aliases from each set based
on the call stack. For each valid pair of &(a→ fi) and
&(b→ f j), we derive that a list head at &(A→ fi) has a
nested candidate type of &(B→ f j) where a’s type is A∗
and b’s type is B∗. This approach requires prior knowl-
edge of all linked list constructs and their APIs. Given
the limited number of such constructs, it is not a hurdle
for adapting MAS to large programs like the Windows
kernel and drivers.

To control the number of candidate types, we apply
three refinement techniques to the basic algorithm. First,
for every linked list pointer p, MAS excludes all value
aliases q of p if q’s type is different from p. This is be-
cause we did not observe any link list pointers being con-
verted to other types, and such value aliases are almost

struct A {

struct C ac;

struct D ad;

};

struct B {

struct C bc;

struct E be;

};

Figure 4: Example of a common nested type.

always false positives introduced by imprecise analysis.
Second, for each pointer path from p to its value alias q,
we check if it involves a type cast to void∗. If so, we will
ignore the path. We do this for two reasons: the type be-
fore the cast has already revealed the candidate type, and
we avoid the noisy aliases following the type cast. Third,
when there are multiple candidate types, we look for the
largest common nested types among all candidate types.
If such a common nested type exists, we use it as the sin-
gle candidate type. In the example shown in Figure 4,
the largest common nested type of struct A and struct B
is struct C.

3.2.2 Candidate Types of Pool Tags

In recent Windows operating systems, pool tags [18] are
used to track memory allocations of one or more par-
ticular data types by a kernel component. A pool tag
is a four-character literal passed to the pool manager at
a memory allocation or deallocation. One such API is
ExAllocatePoolWithTag. For many pool tags, a memory
block with a particular pool tag is always allocated for
a unique data type. For instance, “Irp ” is always for
the data type IRP. In MAS, we use static analysis to au-
tomatically unearth the associations between a pool tag
and data types and use them in our memory traversal.
We call the types associated with a pool tag the candidate
types for the pool tag. Note that such associations are not
limited to Windows. In the Linux kernel, the slab allo-
cator is used to provide specialized per-type allocations.
In this paper, our design and implementation are focused
on supporting Windows kernel pool management. But
the techniques can be easily ported to support Linux ker-
nel memory management.

Our approach for computing pool tag’s type infor-
mation is similar to the approach used for linked
list constructs. Taking ExAllocatePoolWithTag
as an example, we first compute the value
alias sets for return/ExAllocatePoolWithTag and
Tag/ExAllocatePoolWithTag, where the former rep-
resents the return value of ExAllocatePoolWithTag and
the latter is the pool tag parameter. Since pool tags are
usually specified directly at function calls for memory
allocations, we do a simple traversal by following as-

5

signments on the program expression graph to compute
the “value alias” set of Tag/ExAllocatePoolWithTag.
Then we match the value aliases in each set based on the
call stack. For instance, given the following code, our
analysis will infer that the pool tag ’DooF’ is associated
with the type FOO.

FOO ∗ f = (FOO∗) ExAllocatePoolWithTag(NonPagedPool,
sizeo f (FOO), ′DooF ′);

4 Memory Traversal

In this section, we describe how MAS locates dynamic
data objects in a given memory snapshot and identifies
their types. The inputs to this step include the mem-
ory snapshot, the type related information derived from
static analysis, and the symbol information [15] for each
loaded module in the memory snapshot (if it is available).

The basic memory traversal in MAS is similar to pre-
vious work [2, 3, 19]. It first locates the static objects
in each loaded module based on the symbol informa-
tion, then performs a breadth-first traversal by follow-
ing pointers in the static objects and all newly identified
data objects until no new object is added. MAS follows
generic pointers for which our static analysis was able to
derive a unique type. In the absence of a robust method
for resolving multiple type candidates during memory
traversal, MAS ignores all ambiguous pointers.

In order to increase coverage, MAS uses the associa-
tions between a pool tag and data types that may appear
in memory blocks labeled with this tag. We directly iden-
tify data objects (i.e., without following a pointer) when
a pool tag is only associated with a single data type.

Invalid pointers are common in kernel memory for
many reasons. There may be a lag between the time
a pool block is allocated and the time it is initialized.
Also, a dangling pointer may point to a pool block that
was freed and allocated again for different use. There
exist even data objects that are partially initialized due to
performance optimizations (or programming errors).

Our solution to invalid pointers have two main com-
ponents: constraint checking and error correction. We
only add a new data object during memory traversal or
during type assignment based on pool tags if it satisfies
the following constraints.

• Size Constraint: a data object must lie completely
within a memory block. (We collect the information
of all allocated memory blocks before the memory
traversal.)

• Pointer Constraint: a data object’s pointer fields
must either be null or point to the kernel address
range.

• Enum Constraint: a data object’s enum fields must
take a valid enum value which is stored in the PDB
files.

• Pool Tag Constraint: the type of a data object must
be in the set of data types associated with the pool
block in which the data object is located.

KOP [3] only checks size and pointer constraints,
which is not effective for smaller sized objects since they
tend to have fewer pointer fields and fit into most mem-
ory blocks. The checking of pool tag constraints allows
MAS to mitigate this problem.

A final constraint states that two incompatible objects
cannot occupy overlapping addresses. We say two over-
lapped objects are type compatible if their overlapped
parts have equivalent types (i.e., with the same mem-
ory layout after being expanded into primitive types and
pointers). For example, one object may be a sub struc-
ture of the other object. We check this constraint before
accepting an object. A violation of this constraint is a
clear indication that an error has been made or is about
to be made. Either the new object or the existing object
that collides with it must be wrong.

We select one of the two objects based on several con-
fidence criteria. Objects that we found without following
pointers, such as global variables or objects identified
through pool tags, are not subject to invalid pointer er-
rors. We always select such objects over other objects.
If both objects were found by following pointers, we
select the larger object, since we typically check more
constraints for larger objects. If the decision is to reject
the existing object, we also remove all objects that were
added by following its pointers recursively and cannot be
reached from other objects.

5 Integrity Checking

The last step in identifying a kernel rootkit’s memory
footprint is to perform integrity checking. The inputs to
integrity checking include the memory snapshot, the list
of data objects identified from memory traversal, the pdb
and image file of each loaded module when it is avail-
able. Note that the set of image files serves as the white
list of trusted code.

A rootkit tampers with kernel memory for two main
purposes: run its own code and hide its own activity. To
do so, a rootkit either hijacks kernel execution by mod-
ifying code or function pointers or directly manipulates
kernel data. MAS checks three kinds of integrity as fol-
lows.

• Code Integrity: trusted code in memory should
match with the image file on disk.

6

• Function Pointer Integrity: function pointers should
point to the trusted code.

• Visibility Integrity: data objects found by MAS
should be visible to system tools (e.g., those avail-
able in a debugger for listing processes and mod-
ules).

The visibility integrity checking allows MAS to report
hidden objects such as hidden processes and hidden mod-
ules. For instance, to find hidden processes, MAS uses a
debugger command (e.g., !process) to get the list of pro-
cesses in a memory snapshot, then compares it with the
process objects found by memory traversal. If a process
object is not in the list returned by the debugger com-
mand, it is marked as a hidden process. To check func-
tion pointer integrity, MAS inspects not only well known
hooking points such as the system call table but also each
function pointer in the data objects identified from the
memory traversal. Function pointers that point to a mem-
ory region outside of the trusted code are reported as sus-
picious function pointers. Violations of code integrity are
reported as suspicious code hooks.

MAS can be used in two scenarios: detect if a real-
world system is infected by rootkits or analyze the be-
havior of a malware sample in a controlled environment.
If the white list of trusted code is complete, any integrity
violation can be automatically attributed to rootkit in-
fection. It is trivial to construct such a complete list
based on a copy of a clean system in a controlled envi-
ronment. However, when checking real-world systems,
such a complete list may be available in some cases (e.g.,
machines inside an enterprise or virtual machines in a
cloud) but not always. When the list of trusted code is
incomplete, we will need an expert to inspect integrity
violations reported by MAS before deciding if a system
is infected. We will report our experiences of detecting
rootkits from real-world crash dumps in Section 9.

6 Implementation

We implemented MAS with 12,000 lines of C++ code for
the static analysis and 24,000 lines of code for memory
traversal and integrity checking.

For static analysis, we developed a PREfast [14] plu-
gin to extract information from the AST trees generated
by the Microsoft C/C++ compiler. We implemented the
pointer analysis as a stand alone DLL that, upon request,
computes the value alias set for a given program expres-
sion based on the information extracted by the PREfast
plugin. Since our pointer analysis is demand-driven and
can run in parallel, we implemented our type candidate
lookup to take advantage of that. We run a separate par-
allel job for each generic pointer. After all parallel jobs

are done, we merge the inferred type relations together.
We implemented the parallel type candidate lookup on a
cluster running Windows HPC Server 2008 R2 [17].

For analyzing memory snapshots, the key logic was
implemented as an extension of WinDbg [13]. In ad-
dition, we implemented a DLL based on the Debug In-
terface Access SDK [12] to programmatically access the
symbol information stored in PDB files [15].

During memory traversal, we frequently access two
kinds of data, allocated memory blocks and data objects
identified, where a memory block may contain multiple
data objects and no two data objects overlap in memory.
We use a multi-level data structure in MAS in order to
obtain fast store and retrieve operations for the two kinds
of type data. At the bottom level, we use a page-table
like data structure to achieve fast lookup for an arbitrary
address. Here a hash table simply based on the starting
addresses of allocated memory blocks cannot meet our
need because a given memory address may fall into the
middle of a memory block. Given a memory address,
if there exists a memory block that covers it, the lookup
in the bottom-level structure returns a pointer to a data
structure that stores all the information for the memory
block. In this data structure, we use a sorted list to store
all the data objects identified in the memory block. We
choose a sorted list because the number of data objects
on a single memory block is small.

To speed up type check, we maintain a cache of
matched subtypes and their offsets for each aggregate
type and check the cache first before doing the type con-
sistency check in a brute force way. We choose to use
a cache because, for an aggregate type, type consistency
checks usually occur repeatedly for a small number of its
nested types.

7 Evaluation

This section evaluates the accuracy, robustness and per-
formance of MAS. We perform the evaluation on three
sets of memory snapshots: (a) 154,768 memory snap-
shots derived from our large scale kernel malware anal-
ysis; (b) a set of 837 real-world crash dumps from end
user machines running Windows 7; (c) a set of 11 real-
world crash dumps from end user machines running Win-
dows Vista SP1. The last set of Windows Vista SP1 crash
dumps allowed us to compare MAS directly to KOP [3].
For our analysis on real-world crash dumps, the white
list of trusted code contains all the binaries available on
Microsoft’s symbol server. For our analysis of malware
samples, the white list of trusted code contains all the bi-
naries from a clean VM image. Our experiments were
conducted on a machine running Intel Xeon Quad-Core
2.93 GHz with 12 GB RAM unless specified otherwise.

7

Id Size (MB) Modules Fct. ptrs. MAS Fct. ptrs. KOP FP. KOP FN. KOP
1 245 154 64 43 22 21
2 149 144 55 47 28 8
3 305 203 673 N/A N/A N/A
4 270 157 257 236 37 21
5 247 159 75 45 19 30
6 127 125 46 38 9 8
7 315 157 283 265 30 18
8 250 141 105 97 26 8
9 204 144 50 40 26 10

10 255 141 167 157 24 10
11 312 203 235 189 11 46

Table 1: Results on eleven Windows Vista SP1 crash dumps. “Fct. ptrs.” represents the number of function pointers
correctly identified by MAS or KOP.

7.1 Accuracy and Robustness

The goal of this section is to evaluate the accuracy and
robustness of MAS. We face the general difficulty that it
is hard and time consuming to obtain an object mapping
that is known to be correct (i.e., ground truth) even in a
controlled environment. For the real-world crash dumps
for which we had no data beyond the crash dumps them-
selves, it appears unclear if and how a ground truth could
be established. Given these methodological difficulties,
much of the evidence we present in this section has to be
indirect.

Our first data set consists of the outputs of MAS on
the 837 Windows 7 crash dumps. We tried to estab-
lish whether the function pointers reported by MAS as
suspicious are indeed function pointers. We inspected
whether the target of the function pointers appeared to be
the beginning of a function. The vast majority of func-
tion pointer targets contained a small set of code patterns
corresponding to function preambles. This allowed us
to automate most of pointer checks by running a pro-
gram that checks for these patterns. We inspected the
remaining pointers manually. We applied a second crite-
rion to the function pointers whose targets did not appear
to be code. We accepted all function pointer candidates
that were fields in objects whose existence could be de-
rived directly and unambiguously from the symbol infor-
mation. This included global variables and objects that
could be reached from global variables by following only
uniquely determined typed pointers. This left us with a
total of 24 dubious pointers out of total of 398,987 func-
tion pointers that MAS had output.

The eleven Windows Vista SP1 crash dumps in our
data set allowed us to perform a direct comparison with
KOP. We examined manually all discrepancies between
the outputs of MAS and KOP. KOP appeared to suffer
from both false positives and false negatives (see Ta-

ble 1). We first examined all function pointers returned
by MAS and found that they are valid. Then we exam-
ined manually the targets of all function pointers reported
by KOP that had not been output by MAS. None of the
targets appeared to be the start of a function. Thus, we
classified these pointers as false positives for KOP (FP.
KOP in Table 1). We also observed a number of func-
tion pointers that were found by MAS, but not by KOP.
Since we had concluded that the targets of these point-
ers are function entry points, we classified them as false
negatives for KOP (FN. KOP in Table 1). KOP missed
as much as 40% of the function pointers found by MAS.
Furthermore, KOP as much as 40% of the function point-
ers reported by KOP appear to be incorrect.

We also tried to interpret the function pointers returned
by MAS. A large fraction of the reported function point-
ers appeared to point to third-party drivers that were not
included in our static analysis. However, in addition to
detecting the footprints of widely used anti-virus soft-
ware, we also found clear signs of rootkit infections in
five out of the eleven crash dumps. We will discuss how
we detect rootkits in real-world crash dumps in Section 9.

Next, we attempted to estimate the internal consis-
tency of the objects found by MAS. We examined the
complete kernel object mappings produced by MAS for
inconsistent pointers. These are pointers whose type is
incompatible with the object type that the object map-
ping has assigned to the pointer’s target. For example,
an object mapping might contain an object of type T1 at
address A. Another object in the mapping might contain
a pointer P of some other type T2 6= T1 that also points to
A. P is an inconsistent pointer. Such inconsistencies may
exist even if the object mapping is error free because of
invalid pointers in objects and because of memory cor-
ruptions in the crash dump. But they may also indicate
errors in the object mapping, for example as a result of
following invalid pointers. We call an object inconsis-

8

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

1 2 3 4 5 6 7 8 9 10 11

Figure 5: Percentage of inconsistent objects in the object
mappings for MAS (left) and KOP (right). KOP did not
produce a result for the third dump.

tent if it is the target of at least one inconsistent pointer.
Figure 5 displays the percentage of inconsistent objects
in the object mappings found by MAS and KOP for the
Windows Vista SP1 crash dumps. We consider this num-
ber to be an indication of the correctness of the object
mapping. On average, the object mappings produced by
MAS contain 0.5% inconsistent objects. This number is
1% for the objects mappings produced by KOP.

7.2 Performance
This section evaluates the running time of MAS.

Static Analysis We performed the static analysis for
Windows XP SP3, Windows Vista SP1 and Windows 7.
Our evaluation is focused on Windows Vista SP1 since it
allows us to compare MAS and KOP directly. The static
analysis on Windows Vista SP1 includes the Windows
kernel and a set of 63 standard drivers (such as win32k,
ntfs and tcpip). This is the same set of drivers analyzed
by KOP. The code base has 3.5 million lines of code. The
program expression graph has 2.2 million nodes and 7.3
million edges. MAS performed almost 23,000 candidate
type lookups.

We performed the static analysis on a 100 node cluster
running Windows Server 2008 R2 HPC Edition, where
each node has two Quad-Core 2.5 GHz Xeon processors
with 16 GB RAM. Each node was used to perform 228
candidate type lookups. The whole static analysis took
less than 5 hours. The corresponding time for KOP re-
ported in [3] is 48 hours on a somewhat older, single pro-
cessor machine.

The key advantage of MAS over KOP is that MAS’s
static analysis can run in parallel. This allows MAS to

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11

Figure 6: Running times in seconds of MAS (left) and
KOP (right) on eleven real-world Windows Vista SP1
crash dumps. KOP did not produce a result for the third
dump.

finish the static analysis in 5 hours on 100 nodes. On the
other hand, the combined machine time of 500 hours is
much larger than KOP’s running time. This is partly be-
cause MAS does not achieve perfect parallelization. For
instance, it takes 0.5 hour to load the program expres-
sion graph into memory on every node; alias analyses
for indirect calls are computed on demand on each node
and thus are not shared, which causes repeated computa-
tions as well. Furthermore, MAS converts a program to
the Static Single Assignment (SSA) form conservatively,
which increases the computation.

Dynamic Analysis Next, we report on the total run-
ning times of memory traversal and integrity checking of
MAS on three sets of memory snapshots. Figure 6 dis-
plays the running times of MAS and KOP on the eleven
Windows Vista SP1 crash dumps. On average, MAS
(160 seconds per dump) is more than 9 times faster than
KOP (24.5 minutes per dump). KOP failed to terminate
on crash dump 3 within the two hour time limit we had
set.

Figure 7 displays the distribution of MAS’s running
times on the 837 Windows 7 crash dumps. The running
times are concentrated between 40 and 160 seconds. The
average running time is 105 seconds, and 99.9% of all
runs complete in less than 5 minutes.

Finally, the average running time of MAS on the
154,768 memory snapshots from our large-scale mal-
ware study is 31 seconds. The running time distribution
is highly concentrated around this value.

In summary, our experiments demonstrate that MAS
can quickly and accurately analyze real-world crash
dumps as well as memory snapshots of virtual machines.

9

Figure 7: Running time (in seconds) distribution of MAS
on 837 real-world Windows 7 crash dumps.

When compared directly, MAS was nearly an order of
magnitude faster than KOP. MAS did not misidentify or
miss any functions pointers found by KOP in the eleven
Windows Vista SP1 dumps, but KOP missed or misiden-
tified as much as 40% of the suspicious function point-
ers.

8 Kernel Malware Study

In this section we present the results of our study of
a large collection of 154,768 potential malware sam-
ples that we obtained from a major vendor of anti-virus
software. These samples originated from a variety of
sources. Their behavior was unknown to us. This in-
cluded the question whether a sample even contained
malware. All samples were different types of Windows
binaries: executables (.exe), dynamically linked libraries
(.dll) and drivers (.sys).

We used MAS to analyze the samples. More precisely,
for each sample, we booted a clean Windows XP SP3
VM with 256 MB of RAM and one virtual processor and
loaded and executed it. We ran .exe’s directly. We ran
.dll’s with the help of a standard executable that loads a
dll and causes its DllMain function to be executed. We
loaded drivers (.sys) using the service control manager
(sc.exe). After launching the sample, we waited for one
minute, then took a memory snapshot of the VM, con-
verted it into a Windows crash dump and ran MAS over
the crash dump.

In order to gain additional insight into the events that
take place in the VM, we wrote a driver that makes most
of the kernel address space of the VM not executable
(by setting the corresponding bits in the page tables) and
catches and records any non-execute (NX) page faults.
The driver also records the loading and unloading of ker-
nel modules and the allocation and deallocation of pool

blocks. We loaded the driver in the VM before launching
the sample.

We used a 25 node compute cluster to evaluate all
154,768 samples. The cluster nodes were running Win-
dows Server 2008 R2. We used Hyper-V as our Virtual
Machine Monitor. On each cluster node, we ran between
4 and 8 VMs, running a total of 164 VMs simultaneously
at any time. Each job ran for 2 to 3 minutes. Since the
VM jobs were I/O bound we took a number of measures
to manage disk traffic: The VMs used differencing disks
based on a single base image. We interleaved the startup
of VMs such that the I/O intensive phases at the begin-
ning and end of some jobs coincided with the one minute
idle period of other jobs. All 154,768 jobs completed in
less than 48 hours.

MAS reported kernel behaviors for only 89,474 of the
samples. We analyzed the events recorded by our driver
for the remaining 65,294 samples for which MAS had
output no results. The driver logs showed that, in all but
1286 cases, neither module loading nor non-executable
page faults were recorded. For the 1286 samples, the
driver logs showed that no non-executable page faults
were detected, and some modules were loaded after the
sample was launched but all of the modules had been un-
loaded before the memory snapshot was taken. Based on
this evidence, it appears that the memory snapshots for
which MAS reported no results did not contain any data
that MAS should have reported.

There are several potential reasons for the relatively
large number of samples without reportable kernel be-
haviors. As stated above, some of the samples may sim-
ply not have been malware. Also, the crude way in which
we launch the samples may have caused samples to fail
to execute. It may also have caused malware not to be-
come active. Techniques for reliably triggering malware
have been studied elsewhere [5, 8] and are not the focus
of this paper. The rest of this section presents the results
of our analysis for the 89,474 samples for which MAS
reported kernel behaviors.

8.1 General Behavior Statistics

Table 2 displays counts on the different categories of ker-
nel behavior we observed. The count for a category is the
number of samples that displayed behavior in that cate-
gory. Some samples displayed behaviors in more than
one category. Most categories correspond to modifica-
tions of static data structures that can be detected with ex-
isting tools. IDT represents modifications to the function
pointers in the processor’s interrupt descriptor table. Sy-
senter represents modifications to the hardware register
that determines the target address of a sysenter instruc-
tion. Callgate represents similar modifications to func-
tion pointers in hardware-defined call gate structures.

10

Category Count
IDT 20
Sysenter 1
Callgate 23
Syscall Table (SSDT) 3652
Hidden Process 1476
Hidden Module 43828
Code Hooks 17744
Module Imports and Exports 103
Function Pointer 84051

Table 2: Distribution of malware behaviors.

The next group of categories represents static
software-defined function pointers. The system call table
(SSDT) is a table of function pointers to the individual
system call handler functions. Hidden process and hid-
den module stand for attempts to hide processes or mod-
ules by removing them from the data structures Windows
maintains to keep track of processes and loaded mod-
ules. Code Hooks represent modifications of legitimate
executable code. Module Imports and Exports represent
tampering with the function pointers in the import and
export lists of loaded modules.

Finally, the Function Pointer category includes mod-
ifications to function pointers in data objects found in
MAS’s memory traversal. Most of the objects are dy-
namic data (i.e., reside in the kernel pool) and some of
them are from global variables. This is by far the most
frequent category. About 94% of the samples display
this behavior in some form. Since this is also the one
category for which existing tools provide at best limited
information, we examined it in more detail.

8.2 Function Pointer Hooking
We found that the samples were hooking a total of
191 unique function pointer fields from 31 different
data structures belonging to the Windows kernel and
five drivers (ntfs, fastfat, ndis, fltmgr, null). Fig-
ure 8 shows the number of samples that hooked each
of the 191 function pointer fields. We observe a high
concentration on a small set of pointers and a long
tail. The two plateaus between 0 and 60 correspond
mostly to function pointers from nt! DRIVER OBJECT

and nt! FAST IO DISPATCH. Almost 50% of the func-
tion pointers were hooked by only one or two samples.

We also counted the number of distinct dynamic func-
tion pointers hooked by each sample. The distribution
is displayed in Figure 9. It is highly concentrated. Al-
most half the samples hook exactly 32 function pointers.
There is a smaller concentration around the value 4. This
high concentration suggests that versions or exact copies

1

10

100

1000

10000

100000

1 51 101 151

Figure 8: Number of samples that hooked each of the
191 different function pointers for which MAS detected
hooking.

of the same underlying malware are present in a large
number of samples. We further investigated this obser-
vation by clustering the samples.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

0 10 20 30 40 50 60 70

Figure 9: Distribution of the number of dynamic function
pointers hooked by each sample

8.3 Clustering
To cluster samples, we first extracted the following infor-
mation from MAS’s report as a sample’s footprint. For
each suspicious function pointer, we use a tuple includ-
ing “FUNCPTR” (indicating this tuple is about function
pointers), function pointer field name, and data struc-
ture name. To differentiate the cases when different
known drivers are hooked, we replaced the data struc-
ture name (“nt! DRIVER OBJECT”) with a driver name
(e.g., “\Driver \disk”) for known drivers. For each code
hook, we use a tuple including “CODEHOOK”, mod-
ule name, function name, offset, and the number of

11

1

10

100

1000

10000

100000

1 51 101 151 201 251 301 351 401

Figure 10: Sizes of clusters of samples with identical
MAS footprints.

bytes that were modified. For hidden modules or pro-
cesses, we simply used a tuple “HIDDEN MODULE”
or “HIDDEN PROC”. We handled other behaviors sim-
ilarly. Note that we carefully chose not to include any
names or values that are easily modifiable by malware
(e.g., a malicious driver’s name or a hidden module’s
name). The tuples in each sample’s footprint are sorted
so that we can easily compare two samples’ signatures.

We assigned samples into the same cluster if they had
identical footprints. This mapped the 89,474 samples
into 414 clusters whose sizes ranged from 1 to 30,411.
A total of 272 clusters contained at least two samples.
Figure 10 shows the distribution of cluster sizes.

To understand whether all samples in a cluster used
a single kernel driver, we counted the number of differ-
ent sized drivers loaded by samples in each cluster (see
Figure 11). A total of 209 clusters have at least two dif-
ferent sized drivers loaded. This indicates that different
malicious kernel drivers have shown identical MAS foot-
prints. Thus we can potentially use MAS’s footprints to
automatically detect new malware samples. We leave the
investigation of this approach to future work.

9 Crash Dump Study

In this section we report our experience in using MAS to
detect kernel rootkits in real-world crash dumps. Since
the white list of trusted code is incomplete for the end
user machines from which the crash dumps were col-
lected, we cannot automate the process of rootkit detec-
tion entirely. However, we can leverage the findings from
our kernel malware study to identify suspicious crash
dumps before manually inspecting them.

From Table 2 we can see that the three most common
behaviors of rootkits are hooking function pointers, hid-

0

10

20

30

40

50

60

70

1 51 101 151 201 251 301 351 401

Figure 11: The numbers of different sized drivers loaded
by samples of each cluster.

ing modules, and placing code hooks. Since many suspi-
cious function pointers reported by MAS point to benign
third-party drivers that are not on our white list, simply
using the existence of suspicious function pointers is not
an effective way to identify suspicious crash dumps. For
rootkits that hook both function pointers and hide mod-
ules, the hooked function pointers usually do not point to
a loaded module but either a pool block, a hidden module
or some other memory region. We used this observation
to ignore function pointers whose targets fall into loaded
modules. We are aware that this may cause us to miss
non-stealthy kernel malware that simply installs a driver.
To handle such cases, we would need to either grow the
white list or do more manual analysis. We also ignore
function pointers whose targets do not appear to be the
beginning of a function since they do not allow us to dif-
ferentiate reliably between buggy rootkits and memory
corruptions. In our study we used these conditions to do
initial filtering to identify suspicious dumps. This initial
filtering was done automatically.

For the eleven Windows Vista SP1 crash dumps, we
found seven of them to be suspicious after the ini-
tial filtering. Our manual investigation confirmed that
five crash dumps contain rootkits (e.g., hooking sev-
eral driver’s dispatch routines, hiding its own driver).
The other two were benign because the code hooks
were placed by two anti-virus systems. Each of them
hooked one of two very frequently called functions,
KiFastCallEntry and SwapContext. We concluded that a
code hook was placed by anti-virus software if the hook’s
target falls into a module and internet search results in-
dicated that the module belongs to an anti-virus vendor
based on the module’s name.

For the 837 Windows 7 crash dumps, we found 177
suspicious dumps after the initial filtering. We quickly
verified that 85 dumps that contain hidden modules were

12

all infected by kernel rootkits. Out of the remaining 92
crash dumps, 82 dumps only contain code hooks, and the
other ten contain suspicious function pointers that do not
point to a loaded module. We manually analyzed these
ten dumps and found that five of them contain rootkits
and the other five have corrupted global function tables
which let them pass the initial filtering. We cannot decide
if the corruptions were due to a rootkit or a kernel bug.
The 82 dumps with only code hooks have 37 different
hooking patterns. For each hooking pattern, we picked
one dump and manually inspected it with MAS’s report.
Surprisingly, all the code hooks appeared to be placed by
anti-virus software.

In summary, with the process described above, we
were able to quickly identify five Windows Vista SP1
dumps and 90 Windows 7 dumps that contain kernel
rootkits. All the manual inspections described in this sec-
tion took a total of less than one hour. This demonstrates
that MAS is an effective tool for identifying rootkit foot-
prints in real-world systems.

10 Related Work

MAS is not the first system that attempts to identify a
kernel rootkit’s footprint in a memory snapshot. But it is
the first practical system that can do so with high accu-
racy, robustness and performance.

Our work was inspired by KOP [3]. While KOP is
the first system to type dynamic data in a kernel memory
snapshot with very high coverage, it lacks in robustness
and performance. Our evaluation has shown that MAS is
an order of magnitude faster than KOP in both static anal-
ysis and memory traversal. More importantly, when ana-
lyzing real-world crash dumps of systems running Win-
dows Vista SP1, we observed no errors in MAS’s output.
In contrast, up to 40% of the function pointers reported
by KOP appeared to be incorrect.

Kernel integrity checking has been studied in a large
body of work. SBCFI [19] and Gibraltar [2] both lever-
age type definitions and manual annotations to traverse
memory and inspect function pointers. Both fall short in
data coverage as a result of not handling generic point-
ers [3]. A recent system called OSck [7] also discovers
kernel rootkits by detecting modifications to kernel data.
Instead of memory traversal, OSck identifies kernel data
and their types by taking advantage of the slab allocation
scheme used in Linux. It provides per-type allocations
and enables direct identification of kernel data types. The
slab allocator is unavailable on Windows operating sys-
tems, which makes Osck less useful for Windows. This
problem cannot be solved by the mapping between pool
tags and data types since it is not a one-to-one mapping.
Worse, a pool tag may correspond to different types, and
several data structures may be stored in one pool block.

MAS leverages source code and program-defined
types to identify dynamic data and their types. Several
other systems have tried to solve this problem without ac-
cess to source code and type definitions. Laika [4] uses
Bayesian unsupervised learning to infer data structures
and their instances. REWARDs [11] recognizes dynamic
data and their types when they are passed as parame-
ters to known APIs at runtime. TIE [10] reverse engi-
neers data type abstractions from binary programs based
on type reconstruction theory and is not limited to a sin-
gle execution trace. These reverse engineering tools are
more effective for analyzing small to medium scale pro-
grams than for large-scale programs like the Windows
kernel. Both MAS and KOP demonstrate that source
code is critical for achieving high data coverage when
analyzing kernel memory snapshots.

WhatsAt [20] is a tool for dynamic heap type in-
ference. It uses type information embedded in debug
symbols and attempts to assign a compatible program-
defined type to each heap block by checking type con-
straints. If a block is untypable, WhatsAt uses it as a
hint for heap corruptions and type safety violations. The
main difference between WhatsAt and MAS is that what-
sat cannot scale to large programs such as the Windows
kernel.

MAS leverages a new demand-driven pointer analysis
algorithm to enable precise but fast analysis for identi-
fying type candidates for generic pointers in large-scale
C/C++ programs. The key idea behind the demand-
driven analysis is to formulate the pointer analysis prob-
lem as a Context-Free Language (CFL) reachability
problem, which was explored in previous work [21,
24, 23, 27]. In [21], Reps first introduced the concept
of transforming program analysis problems to graph-
reachability problems. In [24], Sridharan et. al. apply
this idea to demand-driven points-to analysis for Java.
In [23], Sridharan and Bodik present a refinement-based
algorithm for demand-driven context-sensitive analysis
for Java. In [27], Zheng and Rugina describe a demand-
driven alias analysis algorithm for C. We adopt their al-
gorithm and extend it to support field-sensitivity. We also
achieve context-sensitivity in a way similar to [23]. In
KOP [3], Carbone et. al. extend the algorithm presented
in [6] to be context- and field-sensitive. The key advan-
tage of MAS over KOP is that MAS’s static analysis can
run in parallel.

MAS works on memory snapshots to analyze kernel
rootkit behavior. Several other systems [9, 22, 26] have
used virtualization-based dynamic tracing for the same
purpose. Soft-timer based attacks [25] are detectable by
MAS since the callback function pointer injected by the
malware is always in memory and can potentially be de-
tected by MAS.

13

11 Limitations

A key limitation faced by MAS is that an attacker who is
familiar of MAS’s design can potentially disrupt MAS’s
memory traversal by manipulating the kernel memory.
MAS checks several constraints (see Section 4) before
adding a new data object. If an attacker were able to find
some pointer or enum fields in a data structure that may
take arbitrary values without crashing the OS, he could
potentially mislead MAS to reject instances of such a
data structure by changing them to violate the pointer or
enum constraints. The impact of this limitation remains
unclear because we are not aware of such data structures.
Moreover, even when such data structures exist, it is un-
clear if they will affect the identification of security sen-
sitive data (e.g., hooked function pointers).

Another limitation of MAS is due to the existing im-
plementation in Windows. Currently an attacker can
modify the tag of a pool block without crashing Win-
dows, and thus use it to mislead MAS. However, this lim-
itation can be eliminated if the pool manager checks the
tag of a pool block against the expected pool tag passed
as a function argument when the pool block is freed.

12 Conclusions

We have presented MAS, a practical memory analy-
sis system that can accurately and quickly identify a
rootkit’s memory footprint. We applied MAS to analyze
848 crash dumps collected from end user machines and
154,768 potential malware samples obtained from a ma-
jor anti-virus vendor. Our experiments show that MAS
was able to quickly analyze all memory snapshots with
typical running times between 30 and 160 seconds per
snapshot and with near perfect accuracy. With MAS, we
were able to quickly identify 95 crash dumps that con-
tain rootkits. Our kernel malware study shows that rootk-
its hooked 191 different function pointers in 31 different
data structures. Furthermore, it demonstrates that many
malware samples installed different kernel drivers but
had identical memory footprints, which suggests a fu-
ture research direction on leveraging memory footprints
to automatically detect new malware samples.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful feedback. We are very grateful to
many colleagues for their valuable feedback, sugges-
tions and help throughout the effort of making MAS
real: Alex Moshchuk, Anil Francis Thomas, Barry Bond,
Bryan Parno, Chris Hawblitzel, David Molnar, Dennis
Batchelder, Eddy Hsia, Galen Hunt, Gloria Mainar-Ruiz,

Helen Wang, Jay Stokes, Jeffrey Chung, Jen-Lung Chiu,
Jim Jernigan, Pat Winkler, Randy Treit, Reuben Olinsky,
Rich Draves, Ryan Kivett, Scott Lambert, Tim Shoultz,
YongKang Zhu.

References
[1] The Alureon rootkit. http://en.wikipedia.org/wiki/

Alureon.

[2] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Automatic in-
ference and enforcement of kernel data structure invariants. In
Proceedings of the 24th Annual Computer Security Applications
Conference (2008).

[3] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M., AND
JIANG, X. Mapping kernel objects to enable systematic integrity
checking. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security (CCS) (November 2009).

[4] COZZIE, A., STRATTON, F., XUE, H., AND KING, S. T. Dig-
ging for data structures. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2008), OSDI’08, USENIX Association,
pp. 255–266.

[5] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
Malware analysis via hardware virtualization extensions. In Pro-
ceedings of the 15th ACM Conference on Computer and Commu-
nications Security (CCS 2008) (October 2008).

[6] HEINTZE, N., AND TARDIEU, O. Ultra-fast aliasing analysis us-
ing CLA - a million lines of C code in a second. In SIGPLAN
Conference on Programming Language Design and Implementa-
tion (2001).

[7] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND
WITCHEL, E. Ensuring operating system kernel integrity with
OSck. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2011), ASPLOS ’11, ACM,
pp. 279–290.

[8] KOLBITSCH, C., KIRDA, E., AND KRUEGEL, C. The power
of procrastination: Detection and mitigation of execution-stalling
malicious code. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS 2011) (October
2011).

[9] LANZI, A., SHARIF, M., AND LEE, W. K-tracer: A system
for extracting kernel malware behavior. In Proceedings of the
16th Annual Network and Distributed System Security Sympo-
sium (2009).

[10] LEE, J., AVGERINOS, T., AND BRUMLEY, D. Tie: Principled
reverse engineering of types in binary programs. In Proceedings
of the 18th Annual Network and Distributed System Security Sym-
posium (Feb. 2011), pp. 251–268.

[11] LIN, Z., ZHANG, X., AND XU, D. Automatic reverse engineer-
ing of data structures from binary execution. In Proceedings of
the 17th Annual Network and Distributed System Security Sym-
posium (NDSS’10) (San Diego, CA, February 2010).

[12] MICROSOFT. Debug interface access SDK. http://msdn.

microsoft.com/en-us/library/x93ctkx8(VS.71).aspx.

[13] MICROSOFT. Debugging Tools for Windows. http:

//www.microsoft.com/whdc/devtools/debugging/

default.mspx.

[14] MICROSOFT. PREfast. http://msdn.microsoft.com/

en-us/library/ff550543(v=vs.85).aspx.

14

[15] MICROSOFT. Symbols and symbol files. http:

//msdn.microsoft.com/en-us/library/windows/

hardware/ff558825(v=vs.85).aspx.

[16] MICROSOFT. Windows driver kit. http://msdn.microsoft.
com/en-us/windows/hardware/gg487428.aspx.

[17] MICROSOFT. Windows HPC Server 2008 R2. http://www.

microsoft.com/hpc.

[18] MICROSOFT. Windows kernel pool tags. http:

//msdn.microsoft.com/en-us/windows/hardware/

gg463213.aspx.

[19] NICK L. PETRONI, J., AND HICKS, M. Automated detection
of persistent kernel control-flow attacks. In Proceedings of the
14th ACM Conference on Computer and Communications Secu-
rity (CCS) (October 2007).

[20] POLISHCHUK, M., LIBLIT, B., AND SCHULZE, C. W. Dynamic
heap type inference for program understanding and debugging. In
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (New York, NY,
USA, 2007), POPL ’07, ACM, pp. 39–46.

[21] REPS, T. Program analysis via graph reachability. In Proceed-
ings of the 1997 International Logic Programming Symposium
(October 1997).

[22] RILEY, R., JIANG, X., AND XU, D. Multi-aspect profiling
of kernel rootkit behavior. In Proceedings of the 4th ACM
SIGOPS/EuroSys Conference on Computer Systems (April 2009).

[23] SRIDHARAN, M., AND BODIK, R. Refinement-based context-
sensitive points-to analysis for java. In Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (June 2006).

[24] SRIDHARAN, M., GOPAN, D., SHAN, L., AND BODIK, R.
Demand-driven points-to analysis for Java. In Proceedings of the
20th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems Languanges, and Applications (OOPSLA) (Octo-
ber 2005).

[25] WEI, J., PAYNE, B. D., GIFFIN, J., AND PU, C. Soft-timer
driven transient kernel control flow attacks and defense. In
Proceedings of the 24th Annual Computer Security Applications
Conference (ACSAC 2008) (December 2008).

[26] YIN, H., SONG, D., MANUEL, E., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing system-wide information flow for
malware detection and analysis. In Proceedings of the 14th
ACM Conferences on Computer and Communication Security
(CCS’07) (October 2007).

[27] ZHENG, X., AND RUGINA, R. Demand-driven alias analysis for
C. In Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL) (January
2008).

15

