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Abstract. We investigate the existence of an absolutely continuous martingale
measure. For continuous processes we show that the absence of arbitrage for gen-
eral admissible integrands implies the existence of an absolutely continuous (not
necessarily equivalent) local martingale measure. We also rephrase Radon-Nikodym
theorems for predictable processes.

1.Introduction.

In our paper Delbaen and Schachermayer (1994a) we showed that for locally bounded finite
dimensional stochastic price processes S, the existence of an equivalent (local) martingale mea-
sure – sometimes called risk neutral measure – is equivalent to a property called No Free Lunch
with Vanishing Risk (NFLVR). We also proved that if the set of (local) martingale measures
contains more than one element, then necessarily, there are non equivalent absolutely contin-
uous local martingale measures for the process S. We also gave an example, see Delbaen and
Schachermayer (1994a) Example 7.7, of a process that does not admit an equivalent (local)
martingale measure but for which there is a martingale measure that is absolutely continuous.
The example moreover satisfies the weaker property of No Arbitrage with respect to general
admissible integrands. We were therefore lead to the investigation of the relation between the
two properties, the existence of an absolutely continuous martingale measure (ACMM) and the
absence of arbitrage for general admissible integrands (NA).

From an economic viewpoint a local martingale measure Q, that gives zero measure to a non
negligible event, say F , poses some problems. The price of the contingent claim that pays one
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unit of currency subject to the occurrence of the event F , is given by the probability Q[F ]. Since
F is negligible for this probability, the price of the commodity becomes zero! In mosteconomic
models preference relations are supposed to be strictly monotone and hence there would be
an infinite demand for this commodity. At first sight the property (ACMM) therefore seems
meaningless in the study of general equilibrium models. But as the present paper shows, for
continuous processes it is a consequence of the absence of arbitrage (NA). We therefore think
that the (ACMM) property has some interest also from the economic viewpoint.

Throughout the paper all variables and processes are defined on a probability space (Ω,F ,P).
The space of all measurable functions, equipped with the topology of convergence in probability
is denoted by L0(Ω,F ,P) or simply L0(Ω) or L0. If F ∈ F has non zero measure then the
closed subspace of functions, vanishing on the complement F c of F is denoted by L0(F ). The
conditional probability with respect to a non negligible event F is denoted by PF and is defined
as PF [B] = P[F∩B]

P[F ] . To simplify terminology we say that a probability Q that is absolutely
continuous with respect to P is supported by the set F if Q is equivalent to PF , in particular we
then have Q[F ] = 1. Indicator functions of sets F , etc. are denoted by 1F etc.. The probability
space Ω is equipped with a filtration (Ft) 0≤t<∞. We use the time set [0,∞[ as this is the
most general case. Discrete time sets and bounded time sets can easily be imbedded in this
framework. We will mainly study continuous processes and in this case the discrete time set
makes no sense at all. However section 2 contains some results that remain valid for processes
with jumps.

We assume that the filtration (Ft) 0≤t<∞ satisfies the usual assumptions, i.e. it is right
continuous and saturated for P-null sets. Stopping times are with respect to this filtration.
We draw the attention of the reader to the problem that when P is replaced by an absolutely
continuous measure Q, these usual hypotheses will no longer hold. In particular we will have
to saturate the filtration with the Q-null sets.

The process S, sometimes denoted as (St) 0≤t<∞, is a fixed cadlag, locally bounded process
that is a semimartingale with respect to (Ω,(Ft) 0≤t<∞,P). The process S is supposed to take
values in the d-dimensional space Rd and may be interpreted as the (discounted) price process
of d stocks. If T1 and T2 are two stopping times such that T1 ≤ T2 then ]]T1,T2]] is the stochastic
interval {(t,ω) | t < ∞, T1(ω) < t ≤ T2(ω)} ⊂ [0,∞[ × Ω. Other intervals are denoted in a
similar way.

If H is a predictable process we say that H is simple if it is a linear combination of elements of
the form f 1]]T1,T2]] where T1 ≤ T2 are stopping times and f is FT1 measurable. For the theory of
stochastic integration we refer to Protter’s book (1990) and for vector stochastic integration we
refer to Jacod’s book (1979). The reader who is not familiar with vector stochastic integration
can think of S as being one dimensional, i.e. d = 1. If H is a d-dimensional predictable process
that is S integrable, then the process obtained by stochastic integration is denoted H · S, its
value at time t is (H · S)t.

A strategy is a predictable process that is integrable with respect to the semimartingale S
and that satisfies H0 = 0. As in Delbaen and Schachermayer (1994a) we will need the concept
of admissible strategy.

1.1 Definition. An S-integrable predictable strategy H is k-admissible, for k ∈ IR+, if the
process H · S is always bigger than −k and if the limit limt→∞(H · S)t exists almost surely. In
particular if H is 1-admissible then H · S ≥ −1.
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For a discussion of this topic and its origin in mathematical finance we refer to Harrison and
Pliska (1981).

We also refer to Harrison and Pliska (1981) for a discussion of the fact that – by considering
the discounted values of the stock price S – there is no loss of generality in assuming that the
”riskless interest rate r” is assumed to be zero, as we shall assume throughout the paper to
alleviate notation. The outcome (H · S)∞ can be seen as the net profit (or loss) by following
the strategy H. If the time set is bounded, then of course, the condition on the existence of
the limit at ∞ becomes vacuous. As shown in our paper Delbaen and Schachermayer (1994a),
theorem 3.3, the existence of the limit at infinity follows from arbitrage properties.

Fundamental in the proof of the existence of an equivalent local martingale measures are the
sets

K1 = { (H · S)∞ | H 1-admissible strategy } and

K = { (H · S)∞ | H admissible }.

From Delbaen and Schachermayer (1994a), corollary 3.7, we recall

1.2 Definition. We say that the semimartingale S satisfies the No Arbitrage condition with
respect to general admissible integrands or(abbreviated (NA)) if

K ∩ L0
+(Ω) = {0}.

We say that the semimartingale S satisfies the No Free Lunch Property with respect to gen-
eral admissible integrands (abbreviated (NFLVR)) if for a sequence of S-integrable strategies
(Hn)n≥1 such that each Hn is a δn-admissible strategy and where δn tends to zero, we have that
(H · S)∞ tends to zero in probability P.

The following theorem describes the relation between theNFLV R property and the existence
of a local martingale measure. The equivalence of these two properties (A resp. D below) is the
subject of Delbaen and Schachermayer (1994a), corollary 3.8 and Theorem 1.1. The equivalence
with properties B and C below was proved in Delbaen and Schachermayer (1994c), theorem 4,
see also Delbaen and Schachermayer (1994d).

1.3 Theorem. For a locally bounded semimartingale S the following properties are equivalent:
(A) S satisfies (NFLVR).
(B)
(1) S satisfies the property (NA) and
(2) K1 is bounded in L0.

(C)
(1) S satisfies the property (NA) and
(2) there is a strictly positive local martingale L such that at infinity L∞ > 0, P a.s. and

such that LS is a local martingale.
(D) S admits an equivalent local martingale measure Q.

In the present paper we will enlarge the scope of the preceding theorem by giving conditions
for the existence of an absolutely continuous local martingale measure. In particular we shall
prove in section 4 the following central result of the paper.
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1.4 Main Theorem. If the continuous semimartingale S satisfies the No Arbitrage property
with respect to general admissible integrands, then there is an absolutely continuous local mar-
tingale measure for the process S.

The paper is organised as follows. Section 2 contains some well known material on the
existence of predictable Radon-Nikodym derivatives. The results are mainly due to C. Doléans
and are scattered in the ”Séminaires”. We need a more detailed version for finite dimensional
processes. More precisely we treat the case of a predictable measure taking values in the set of
positive operators on the space Rd, and we investigate under what conditions a vector measure
has a Radon-Nikodym derivative with respect to this operator-valued measure. In this context
we say that an operator is positive when it is positive definite. (If we would be aiming for a
coordinate free approach, we would rather interprete such an operator valued measure as taking
values in the set of semi-positive bilinear forms on Rd). This Radon-Nikodym problem, even
for deterministic processes is not treated in the literature (to the best of our knowledge). The
proofs are straightforward generalisations of the one-dimensional case. For completeness we
give full details.

We need these techniques to prove in section 3 the fact that if the continuous semimartingale
S = M + A does not allow arbitrage (with respect to general admissible integrands) then dA
may be written as dA = d〈M,M〉h for some predictable IRd-valued process h. This result seems
wellknown to people working in Mathematical Finance, but to the best of our knowledge at least
the d-dimensional version of this theorem has not been presented in the literature. In section
3 we then investigate the no arbitrage properties and we introduce the concept of immediate
arbitrage. We also give an example that illustrates this phenomenon.

In section 4 we prove the main theorem stated above.
The results of this paper were presented at the seminar in the Tokyo University in summer

1993. We thank Professor Kotani and Professor Kusuoka for the invitation and for discussions
on this topic. We also thank W. Brannath for discussions on the current proof of theorem 3.7,
and an anonymous referee for valuable suggestions.

After finishing this paper we were informed of the paper of Levental and Skorohod (1994),
which has a very significant overlap with our results here. In particular, although our framework
is more general, the content and the probabilistic approach we give here to proving Theorem
3.7 are essentially identical to that of Lemma 2 of Levental and Skorohod (1994). Their proof
appears to have been constructed earlier than ours, although this theorem based on a rather
more complicated analytic proof was already presented by the present authors during the SPA
conference in Amsterdam in June 93 (1993) and in the seminar of Tokyo University in Septem-
ber 93. Also, theorem 1 of Levental and Skorohod (1994) corresponds to our Main Theorem
1.4 under the additional assumption that the local martingale part M of the continuous semi-
martingale S is of the form M = Σ ·W , where W is a d-dimensional Brownian motion defined
on its (saturated) natural filtration and Σ = (Σt)0≤t≤1 an adapted matrix valued process such
that each Σt is invertible.

2. The Predictable Radon-Nikodym Derivative

In this section we will prove Radon-Nikodym theorems for stochastic measures. We first
deal with the case of one dimensional processes. A stochastic measure on R+ is described
by a stochastic process of finite variation. In our setting it is convenient to require that the
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measure has no mass at zero, i.e. the initial value of the process is 0. If we have two predictable
stochastic measures defined by the finite variation processes A and B respectively, we can for
almost every ω in Ω decompose the A-measure in a part absolutely continuous with respect
to the B-measure and a component that is singular to it. We are interested in the problem
whether such a decomposition can be done in a measurable or even predictable way. Similar
problems can be stated for the optional and for the measurable case. For applications in section
3, we only need the case of continuous processes. However the more general case is almost the
same and therefore we treat, at little extra cost, processes with jumps.

2.1 Theorem.

(1) If A: IR+ ×Ω→ R is a predictable, cadlag process of finite variation on finite intervals,
then the process V defined as Vt equal to the variation of A on the interval [0, t], is
cadlag and predictable.

(2) If A: IR+ ×Ω→ R is a predictable, cadlag process of finite variation on finite intervals,
if V is defined as in 1, then there is a decomposition of R+ × Ω into two disjoint,
predictable subsets, D+ and D−, such that

At =
∫ t

0

(1D+ − 1D−) dV

(3) If A:R+ × Ω→ R is a predictable, cadlag process of finite variation on finite intervals,
if V is cadlag, predictable and increasing, then there are ϕ:R+×Ω→ R predictable and
N a predictable subset of R+ × Ω such that

At =
∫

[0,t]

ϕu dVu +
∫

[0,t]

1N (u) dAu and
∫
R+

1N dVu = 0

Proof. (1) We give the proofs only in the case A0 = V0 = 0. For the proof we need some results
from the general theory of stochastic processes. (see Dellacherie and Meyer (1980)) One of
these results says that there is a sequence of predictable stopping times (Tn)n≥1 that exhausts
all the jumps of A. Fix n and let (τk)0≤k≤Nn be the finite ordered sequence of stopping times
obtained from the set {0, 1/2n, . . . n/2n, T1, . . . Tn}.

Put V n =
∑Nn−1
k=0 |Aτk+1 −Aτk | 1[[τk+1,∞[[

Because A is predictable, the variables Aτk are Fτk− measurable and hence the processes V n

are predictable. Because V n tends pointwise to V , this process is also predictable.
(2) The second part is proved using a constructive proof of the Hahn-Jordan decomposition

theorem. It could be left as an exercise but we promised to give details. Let V = var(A)
as obtained in the first part. Being predictable and cadlag, the process is locally bounded
(Dellacherie and Meyer (1980)) and hence there is an increasing sequence (Tn)n≥1 of stopping
times such that Tn ↑ ∞ and VTn ≤ n. Define now

H = {ϕ | ϕ predictable and E[
∫
IR+

ϕ2 dVu] <∞}
5



With the obvious inner product 〈ϕ,ψ〉 = E[
∫
ϕuψu dVu], the space H divided by the obvious

subspace {ϕ | E[
∫
ϕ2 dVu] = 0}, is a Hilbert space. For each n we define the linear functional

Ln on H as
Ln(ϕ) = E[

∫
[0,Tn]

ϕu dAu].

Since
|
∫

[0,Tn]

ϕu dAu| ≤
∫

[0,Tn]

|ϕu| dVu ≤
√
n(
∫

[0,Tn]

ϕ2
u dVu)1/2 ,

the functional Ln is well defined. Therefore there is ψn such that

Ln(ϕ) = E[
∫

[0,Tn]

ϕuψ
n
u dVu].

Clearly the elements ψn and ψn+1 agree for functions ϕ supported on [[0, Tn]]. Hence (with the
convention that T0 = 0) we have that ψ =

∑
n≥1 ψ

n1]]Tn−1,Tn]] is predictable and satisfies for
all n:

Ln(ϕ) = E[
∫

[[0,Tn]]

ϕψ dV ].

Let now Ct = At −
∫ t

0
ψu dVu. We will show that C = 0. First we show that C is continuous.

Let τ be a predictable stopping time. Define ϕ = ∆Cτ1[[τ ]]. By definition of C and by the
property of ψ we have for all n that E[(∆C)2

τ∧Tn ] = 0. This shows that C is continuous. Next
we put ϕ = C1[[0,Tn∧t]] and we find that E[C2

Tn∧t] = 0. From this it follows that for all t we
have that Ct = 0. Because C is cadlag, this implies that the process C vanishes identically.

Until now we proved that in a predictable way dA = ψ dV . Let now D+ = {ψ = 1} and let
D− = IR+ × Ω \D+. Both sets are predictable and from ordinary measure theory we deduce
that At =

∫ t
0
(1D+ − 1D−) dV . This gives us the desired Hahn-Jordan decomposition.

(3) The third part is again standard, a constructive proof of Lebesgue’s decomposition the-
orem. Let A and V be given. As in ordinary measure theory we decompose A into its positive
and its negative part. Part 2 shows that this can be done in a predictable way. It is therefore
sufficient to prove the claim for A increasing. We define B = A+ V . We now repeat the proof
of the second part and we find ψ predictable 0 ≤ ψ ≤ 1 and dA = ψdB. Let N = {ψ = 1},
a predictable set. We find dA = ψ dA + ψ dV . As in the classical proof we deduce from this
equality that dA = 1N dA+ ϕdV where

∫
1N dV = 0 and where ϕ is predictable. ¤

2.2 Corollary. If A and V are as in part 3 of theorem 2.1, if dA ¿ dV with respect to the
predictable sigma-algebra, i.e. for each predictable set N the property

∫
1N dV = 0 implies that

also
∫

1N dA = 0, then for almost all ω the measure dA(ω) is absolutely continuous with respect
to dV (ω) on IR+.

For applications in finance we need a vector measure generalisation of the preceding results.
The theory was developped by Jacod (1979). We need two kinds of vector measures. The first
kind is an ordinary vector measure taking values in Rd. The second kind is an operator valued
measure that takes values in the set of all operators on Rd. In daily language, in the space
of all d × d matrices. Positive measures on IR+ are generalised as measures that take values
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in the cone Pos(Rd) of all positive semi-definite operators on Rd. In this setting the variation
process V becomes a predictable, cadlag, increasing process V : IR+ × Ω → Pos(Rd). On the
set of all operators we put the nuclear norm; for positive operators this simply means the trace
of the operator. Let now λt = trace(Vt). The process λ is predictable, cadlag and increasing.
Again we assume V0 = 0, which results in λ0 = 0. We have that dV ¿ dλ in the sense that
all elements of the matrix function define measures that are absolutely continuous with respect
to λ. If we calculate the Radon-Nikodym derivative using dyadic approximations we see that
dV = σ dλ, where σ is a predictable process taking values in Pos(Rd).

For a positive operator a we have that the range R(a) is invariant under a and that on R(a)
the operator a is invertible. If we define Pa as the orthogonal projection on R(a) we see that
a−1 = a−1 ◦ Pa is a generalised inverse of a. More precisely we have a ◦ a−1 := a−1 ◦ a = Pa.
The correspondence between a, a−1 and Pa can be described in a Borel measurable way. This
is an easy exercise but we promised to give details.

First note that, for each strictly positive operator b0, the map b→ b−1 is continuous at b0.
To calculate Pa we simply take the limit

lim
ε↓0

a ◦ (a+ ε id)−1.

This constructive definition shows that the mapping a → Pa is a Borel measurable mapping.
The same trick is used to obtain the generalised inverse

a−1 = lim
ε↓0

a ◦ (a+ ε id)−2.

The processes σ−1 and Pσ are therefore still predictable since they are the composition of a
predictable and a Borel measurable mapping.

We will now describe a kind of absolute continuity of a vector measure with respect to an
operator valued measure. Let ν be a measure defined on the σ-ring of relatively compact Borel
sets of IR+ and taking values in Rd. Let µ be a measure defined on the same σ-ring and taking
values in Pos(Rd). We say that ν ¿ µ, if whenever f : IR+ → Rd is a Borel function such that
either f(t) = 0 or ‖f(t)‖ = 1, the expression dµ f = 0 (as a vector measure) implies f ′dν = 0
(as a scalar measure). (f ′ is the transpose of f). One can show that in this case the measure
ν has a Radon-Nikodym derivative with respect to µ. Again we will need a predictable version
of this theorem, so we give details.

Suppose that A: IR+×Ω→ Rd is predictable, cadlag and of finite variation on finite intervals.
Suppose that A0 = 0. Let V be as above, predictable, cadlag taking values in Pos(Rd) and
increasing. Suppose that for every predictable process f : IR+ × Ω→ Rd, such that ‖f(t, ω)‖ is
either 0 or 1, the relation dV f = 0 implies that f ′dA = 0. This means that dA ¿ dV in a
predictable way. Let λ = trace(V ) and let N be a predictable null set for λ, i.e. 1N dλ = 0. For
such a predictable set N and for each predictable k we have 1N dV k = 0. The hypothesis on A
then implies that 1N k′dA = 0. This shows that dA¿ dλ and the predictable Radon-Nikodym
theorem (applied for each coordinate) shows the existence of a predictable Rd-valued process g
such that dA = g dλ. Now (id− σ ◦ σ−1) dV = dV (id− σ ◦ σ−1) = (id− σ ◦ σ−1)σ dλ = 0 and
by the assumption on A we have (id−σ ◦σ−1) dA = 0. This implies that (id−σ ◦σ−1) g dλ = 0
and that up to null sets for λ, we have g ∈ R(σ). Let now h = σ−1(g). Then obviously σ(h) = g
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(because g ∈ R(σ)!!), h ∈ R(σ) and dA = σ h dλ = dV h. The range R(σ) could have been
called the infinitesimal range R(dV ) of the measure V . It is easy to show that it does not
depend on the control measure. We completed the proof of the following theorem.

2.3 Theorem. If V is an increasing predictable cadlag process, taking values in the cone of
the positive semi-definite operators on Rd, then the vector measure defined by the predictable
IRd-valued cadlag process A of finite variation is of the form dA = dV h, for some predictable
IRd-valued process h, if and only if for each predictable IRd-process f , such that ‖f(t, ω)‖ is
either 0 or 1, the relation dV f = 0 implies f ′dA = 0.

2.4 Remark. If S is a semimartingale with values in Rd, then the bracket [S, S] and — if it
exists — also the bracket 〈S, S〉 define increasing processes with values in Pos(Rd). The fact
that values are taken in Pos(Rd) is a reformulation of the Kunita-Watanabe inequalities:

|d[Si, Sj ]| ≤
√
d[Si, Si] d[Sj , Sj ]

|d〈Si, Sj〉| ≤
√
d〈Si, Si〉 d〈Sj , Sj〉

3. The No Arbitrage Property and Immediate Arbitrage.

We now turn to the main theme of the paper, a detailed analysis of the notion of ”no
arbitrage”. We start with an easy lemma, which turns out to be very useful. It shows that the
general case of an arbitrage may be reduced to two special kinds of arbitrage.

3.1 Lemma. If the cadlag semimartingale S does not satisfy the No Arbitrage property with
respect to general admissible integrands then at least one of the two following statements holds

(1) There is an S-integrable strategy H and a stopping time T , P[T <∞] > 0 such that H
is supported by [[T, T + 1[[, H · S ≥ 0 and (H · S)t > 0, for t > T .

(2) There is an S-integrable 1-admissible strategy K, ε > 0 and two stopping times T1 ≤ T2

such that T2 < ∞ on {T1 < ∞}, P[T2 < ∞] > 0, K = K1]]T1,T2]] and (K · S)T2 ≥ ε on
the set {T2 <∞}.

Proof. Let S allow arbitrage and let H be a 1-admissible strategy that produces arbitrage, i.e.,
(H ·S)∞ ≥ 0 with strict inequality on a set of strictly positive probability. We now distinguish
two cases. Either the process H ·S is never negative or the process H ·S becomes negative with
positive probability. In the first case let T = inf{t : (H · S)t > 0}.

Let (θn)∞n=1 be a dense in ]0, 1[ and let H̃ =
∑∞
n=1 2−nH1[[T,T+θn[[. Then H̃ satisfies (1).

We thank an anonymous referee for correcting a slip in a previous version of this paper at this
point.

In the second case we first look for ε > 0 such that P[inft(H · S)t < −2ε] > 0. We then
define T1 as the first time the process H · S goes under −2ε, i.e.

T1 = inf{t | (H · S)t < −2ε}.
On the set {T1 < ∞} we certainly have that the process H · S has to gain at least 2ε. Indeed
at the end the process H · S is positive and therefore the time

T2 = inf{t | t > T1,(H · S)t ≥ −ε}
is finite on the set {T1 <∞}. We now put K = H1]]T1,T2]]. The process K is 1-admissible since
(K · S)t ≥ −1 + 2ε on the set {T1 <∞}. Also (K · S)T2 ≥ ε on the set {T1 <∞}. ¤
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3.2 Definition. We say that the semimartingale S admits immediate arbitrage at the stopping
time T , where we suppose that P[T < ∞] > 0, if there is an S-integrable strategy H such that
H = H1]]T,∞]], and (H · S)t > 0 for t > T .

3.3 Remark. (a) Let us explain why we use the term immediate arbitrage. Suppose S admits
immediate arbitrage at T and that H is the strategy that realises this arbitrage opportunity.
Clearly H · S ≥ 0 and (H · S)T+t > 0 for all t > 0 almost surely on {T < ∞}. Hence we can
make an arbitrage almost surely immediately after the stopping time T has occured.

(b) Lemma 3.1 shows that either we have an immediate arbitrage oppurtunity or we have
a more conventional form of arbitrage. In the second alternative the strategy to follow is also
quite easy. We wait until time T1 and then we start our strategy K. If the strategy starts at
all (i.e. if T1 <∞) then we are sure to collect at least the amount ε in a finite time. It is clear
that such a form of arbitrage is precisely what one wants to avoid in economic models. The
immediate arbitrage seems, at first sight, to be some mathematical pathology that can never
occur. However the concept of immediate arbitrage can occur as the following example shows.
In model building one therefore cannot neglect the phenomenon.

3.4 Example. Take the one-dimensional Brownian motion W = (Wt)t∈[0,1] with its usual
filtration. For the price process S we take St = Mt + At = Wt +

√
t which satisfies the

differential equation dSt = dWt+ dt
2
√
t
. We will show that such a situation leads to “immediate”

arbitrage at time T = 0. Take Ht = 1√
t(ln t)2 . With this choice the integral on the drift-term∫ t

0
Hu

du
2
√
u

= 1
2 (ln(t−1))−1 is convergent.

As for the martingale part, the random variable
∫ t

0
Hu dWu has variance∫ t

0
1

u(ln u)4 du which is of the order ln(t−1)−3. The iterated logarithm law implies that for

t = t(ω) small enough |(H ·W )t(ω)| ≤ C
√

(ln(t−1))−3 ln ln((ln(t−1))3) ≤ C ′(ln(t−1))−5/4. It
follows that, for t small enough, we necessarily have that (H · S)t(ω) > 0. We now define
the stopping time T as T = inf{t > 0 | (H · S)t = 0} and, for n > 0, Tn = T ∧ n−1. Clearly
(H ·S)T ≥ 0 and P[(H ·S)Tn > 0] tends to 1 as n tends to infinity. By considering the integrand
L =

∑∞
n=1 αnH

Tn for a sequence αn > 0 tending to zero sufficiently fast, we can even obtain
that (L · S)t is almost surely strictly positive for each t > 0.

We now give some more motivation why such a form of arbitrage is called immediate ar-
bitrage. In the preceding example, for each stopping time T > 0 the process S − ST admits
an equivalent martingale measure Q(T ) given by the density fT = exp(− 1

2

∫ 1

T
1√
u
dWu −

1/8
∫ 1

T
1
u du). We can check this by means of the Girsanow-Maruyama formula or we can

checkit even more directly via Itô’s rule. This statement shows that if one wants to make an
arbitrage profit one has to be very quick since a profit has to be the result of an action taken
before time T .

Let us also note that the process S also satisfies the (NA) property for simple integrands. As
is well known it suffices to consider integrands of the form f1]]T0,T1]] where f is FT0-measurable
(see Delbaen and Schachermayer (1994e)). Let us show that such an integrand does not allow
an arbitrage. Take T0 ≤ T1 two stopping times. We distinguish between P[T0 > 0] = 1 and
T0 = 0. (The 0− 1 law for F0 (Blumenthal’s theorem) shows that one of the two holds).
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If T0 > 0, P a.s. then the result follows immediately from the existence of the martingale
measure Q(T0) for the process S − ST0 .

If T0 = 0 we have to prove that ST1 ≥ 0 (or ST1 ≤ 0) implies that ST1 = 0 a.s..
We concentrate on the first case and assume to the contrary that ST1 ≥ 0 and P{ST1 > 0} >

0. Note that it follows from the law of the iterated logarithm that inf{t|St < 0} = 0 almost
surely, hence the stopping times

Tε = inf{t > ε|St < −ε}
tend to zero a.s. as ε tends to zero. Let ε > 0 be small enough such that {Tε < T1} has positive
measure to arrive at a contradiction:

0 > EQ(Tε)[STε1(Tε<T1)] = EQ(Tε)[ST11(Tε<T1)] ≥ 0.

The following theorem, which is based on the material developped in section 2, is well known
and has been around for some time. At least in dimension d = 1 the result should be known
for a long time. For dimension d > 1, the presentation below is, we guess, new.

3.5 Theorem. If the d-dimensional, locally bounded semimartingale S satisfies the (NA) prop-
erty for general admissible integrands, then the Doob-Meyer decomposition S = M +A satisfies
dA = d〈M,M〉h where h is a d-dimensional predictable process and where d〈M,M〉 denotes the
operator valued measure defined by the d× d matrix process (〈M,M〉)i,j≤d. The process h may
be chosen to take its values in the infinitesimal range R(d〈M,M〉).
Proof. We apply the criterion of section 2. Take f a d-dimensional predictable process such
that the measure d〈M,M〉 f is zero and such that either f has norm one or norm zero. It
is obvious that the stochastic integral f ′ · M exists and results in the zero process. If the
process f ′ ·A is not zero then we replace f by the sign function coming from the Jordan-Hahn
decomposition of f ′ · A. This sign function φ is a predictable process equal to +1 or −1. The
predictable integrand g = φ f still satisfies g ·M = 0 but the component g′ · A now results
in an arbitrage profit. This contradiction shows that the criterion of section 2 is fulfilled and
hence the existence of the process h is proved. If we write d〈M,M〉 as σ dλ for some control
measure λ and an operator valued predictable process σ, then we may, by the results of section
2, suppose that ht is in the range of the operator σt. ¤

The following theorem is the basic theorem in dealing with the (NA) property in the case of
continuous price processes.

3.6 Theorem. If the continuous semimartingale S with Doob-Meyer decomposition S = M +
A satisfies the (NA) property for general admissible integrands, then we have dS = dM +
d〈M,M〉 h where the predictable process h satisfies:

(1)

T = inf
{
t |
∫ t

0

h′u d〈M,M〉u hu =∞
}
> 0 a.s..

(2) The [0,∞]-valued increasing process
∫ t

0
h′u d〈M,M〉u hu is continuous; in particular it

does not jump to ∞.
10



Proof. The existence of the process h follows from the preceding theorem. The stopping time
T is well defined. The first claim on the stopping time T follows from the second, so we limit
the proof to the second statement. We will prove that the set

F = {T <∞} ∩ {
∫ T+ε

T

h′t d〈M,M〉t ht =∞ ∀ε > 0}

has zero measure. Clearly F is, by right continuity of the filtration, an element of the σ-algebra
FT . As the process 〈M,M〉t is continuous, assertion (2) will follow from the fact that P[F ] = 0.
Suppose now to the contrary that F has strictly positive measure. We then look at the process
1F (S−ST ), adapted to the filtration (FT+t)t≥0 and we replace the probability P by PF . With
this notation the theorem is reduced to the case T = 0. This case is treated in the following
theorem. It is clear that this will end the proof. ¤
3.7 Immediate Arbitrage Theorem. Suppose the d-dimensional continuous semi- martin-
gale S has a Doob-Meyer decomposition given by

dSt = dMt + d〈M,M〉t ht

where h is a d-dimensional predictable process. Suppose that a.s.

(1)
∫ ε

0

h′t d〈M,M〉t ht =∞ ∀ ε > 0.

Then for all ε > 0, there is an S-integrable strategy H such that H = H1[[0,ε]], H · S ≥ 0 and
P[(H · S)t > 0] = 1, for each t > 0. In other words S admits immediate arbitrage at ¿time
T = 0.

Proof. The proof of the theorem is based on the following lemma

3.8 Lemma. If (1) holds almost surely then for any a, ε, η > 0 we can find 0 < δ < ε/2 and
an a-admissible integrand H with

H = H 1]]δ,ε]]∫ ε
δ
|H ′s dA|s +

∫ ε
δ
H ′s d〈M,M〉sHs < 2 + a

P [(H · S)ε ≥ 1] ≥ 1− η.

Proof of the Lemma. Fix a, ε, η > 0 and let R ≥ max{ 8
η

(
1+a
a

)2
, (1 + a)2}. Since (1) is satisfied

almost surely, we have that

lim
δ↓0,K↑∞

P
[∫ ε

δ

1{|h|≤K} h′t d〈M,M〉t ht ≥ R
]

= 1.

Hence we can find a K > 0 and a 0 < δ < ε/2 such that

∞ >

∫ ε

δ

1{|h|≤K} h′t d〈M,M〉t ht ≥ R
11



on a Fε-measurable set Λ with P [Λ] ≥ 1− η
2 . Let

T = inf{t > 0 |
∫ t

δ

1{|h|≤K} h′t d〈M,M〉t ht ≥ R} ∧ ε

and let H = 1+a
R h1]]δ,T ]] 1{|h|≤K}. Then∫ ε

0

H ′s d〈M,M〉sHs ≤
(1 + a)2

R

and ∫ ε

0

|Hs dA|s ≤ (1 + a) a.s..

Therefore H is S-integrable. Moreover, (H ·A)ε = 1 + a on Λ.
Since ‖H ·M‖22 = E[

∫ ε
0
H ′sd〈M,M〉sHs] ≤ (1+a)2

R we obtain from Doob’s inequality together
with Tchebychew’s inequality (both in their L2–version)

(2) P [(H ·M)∗ ≥ a] ≤ 4
(

1 + a

a

)2 1
R
≤ η

2

We now localize H to be a-admissible. Let

T2 = inf {t > 0 | (H ·M)t < −a} ∧ T.
Then T2 = T on {(H ·M)∗ ≤ a} and from (2) we obtain

P
[
(H 1[[0,T2]] · S)ε ≥ 1

]
≥ P [{(H ·A)ε ≥ 1 + a} ∩ {(H ·M)∗ < a}]
≥ P [Λ]− P [(H ·M)∗ ≥ a] ≥ 1− η

which proves the lemma. ¤
Proof of the Immediate Arbitrage Theorem. Assume that (1) is valid for almost every ω ∈ Ω.
We will now construct an integrand which realizes immediate arbitrage. Let ε0 > 0 be such
that ε0 ≤ min (ε, 1

2 ). By lemma 3.8 we can find a stricly decreasing sequence of positive
numbers (εn)n≥0 with limn→∞ εn → 0 and integrands Hn = Hn1]]εn+1,εn]] such that Hn is 4−n–
admissible,

∫ εn
εn+1
|(Hn)′s dAs|+

∫ εn
εn+1

(Hn)′s d〈M,M〉s (Hn)s < 3/2n and P [(Hn · S)εn ≥ 2−n] ≥
1− 2−n. Let Ĥ =

∑∞
n=1Hn. Then Ĥ is S-integrable. Define

T (ω) = inf
{
t > 0 | (Ĥ · S)t = 0

}
.

We claim that T (ω) > 0 for almost every ω ∈ Ω. Since P [(Hn · S)εn < 2−n] ≤ 2−n, we
obtain from the Borel–Cantelli Lemma that for almost every ω ∈ Ω there is a N(ω) ∈ N with
(Hn · S)εn(ω) > 2−n for all n > N(ω). If n > N(ω) and εn+1 < t ≤ εn then

(Ĥ · S)t(ω) =
∞∑
k>n

(Hk · S)εk(ω)︸ ︷︷ ︸
≥2−n

+ (Hn · S)t(ω)︸ ︷︷ ︸
≥−2−(n+1)

≥ 1
2n+1

12



and we have verified the claim. Hence

lim
t→0

P
[(
Ĥ 1[[0,T ]] · S

)
t
> 0
]

= 1 .

Finally let

H =
∞∑
n=1

2−nĤ1]]0,T∧εn[[

to find an S-integrable predictable process supported by [0, ε] such that (H · S)t > 0 for each
t > 0. ¤

4. The existence of an absolutely continuous martingale measure.

We start this section with the investigation of the support of an absolutely continuous risk
neutral measure. The theory is based on the analysis of the density given by a Girsanow–
Maruyama transformation. If dSt = dMt+d〈M,M〉t ht defines the Doob-Meyer decomposition
of a continuous semimartingale, where h is a d-dimensional predictable process and where M is a
d-dimensional continuous local martingale, then the Girsanov–Maruyama transformation is, at
least formally, given by the local martingale Lt = exp(

∫ t
0
−h′u dMu − 1/2

∫ t
0
h′u d〈M,M〉u hu),

L0 = 1. Formally one can verify that LS is a local martingale. However, things are not
so easy. First of all, there is no guarantee that the process h is M -integrable, so L need
not be defined. Second, even if L is defined, it may only be a local martingale and not a
uniformly integrable martingale. The examples in Schachermayaer (1993) and in Delbaen and
Schachermayer (1994b) show that even when an equivalent risk neutral measure exists, the local
martingale L need not to be uniformly integrable. In other words a risk neutral measure need
not be given by L. Third, in case the two previous points are fulfilled, the density L∞ need not
be different from zero a.s..

What can we save in our setting? In any case, theorem 3.6 shows that in the case when S
satisfies the No Arbitrage property for general admissible integrands, the process h satisfies the
properties

(1)

T = inf{t |
∫ t

0

h′d〈M,M〉h =∞} > 0 a.s..

(2) The [0,∞]-valued proces
∫ t

0
h′u d〈M,M〉u hu is continuous; in particular it does not jump

to ∞.
In this case the stochastic integrals h ·M and h · S can be defined on the interval [[0, T [[ and at
time T we have that LT can be defined as the left limit. The theory of continuous martingales
(Revuz and Yor (1991)) shows that

{LT = 0} =

{∫ T

0

h′t d〈M,M〉t ht =∞
}
.

If after time T , i.e. for t > T , we put Lt = 0 the process L is well defined, it is a continuous local
martingale, satisfies dLt = −Lt h′t dMt and LS is a local martingale. The process X = 1

L − 1
13



is also defined on the interval [[0, T [[ and on the set {LT = 0} its left limit equals infinity. The
crucial observation is now that on the interval [[0, T [[, we have that dXt = 1

Lt
h′t dSt.

This follows simply by plugging in Itô’s formula (compare Delbean and Schachermayer
(1994c)).

For each ε > 0 let τ ε be the stopping time defined by τε = inf{t | Lt ≤ ε}. Because the
process X is always larger than −1, the stopped processes Xτε are outcomes of admissible
integrands. If Q is an absolutely continuous probability measure such that S becomes a lo-
cal martingale than, by theorem 1.3 we have that the set H =

{
Xτε

∞ | ε > 0
}

is bounded in
L0({dQdP > 0}). But it is clear that on the set {LT = 0}, the set H is unbounded.

As a consequence we obtain the following

4.1 Lemma. If the continuous semimartingale S satisfies the No Arbitrage condition with
respect to general admissible integrands and if Q is an absolutely continuous local martingale
measure for S, then {dQdP > 0} ⊂ {LT > 0}.

In order to prove the existence of an absolutely continuous local martingale measure Q we
therefore should restrict ourselves to measures supported by

F = {LT > 0}.
Note that the No Arbitrage condition implies that P[F ] > 0. Indeed, suppose that P[F ] = 0

and let
U = inf{t : Lt ≤

1
2
}.

We than have that P[U <∞] = 1, LU ≡ 1
2 and therefore XU ≡ 1. Hence H = 1

Lh
′1[[0,U ]] is a

1-admissible integrand such that (H · S)∞ ≡ XU ≡ 1, a contradiction to (NA).
So we will look at the process S under the conditional probability measure PF .
Our strategy will be to verify that S satisfies the property (NFLVR) with respect to PF

which will imply the existence of a local martingale measure Q for S which is equivalent to PF
and therefore absolutely continuous with respect to P . But there are difficulties:

Under the measure PF the Doob-Meyer decomposition will change, there will be more ad-
missible integrands and the verification of the No Free Lunch Property with Vanishing Risk for
general admissible integrands (under PF !!) is by no means trivial.

We are now ready to reformulate the main theorem stated in the introduction in a more
precise way and to abord the proof:

4.2 Main Theorem. If the continuous semimartingale S satisfies the No Arbitrage property
with respect to general admissible integrands, then with the notation introduced above, it satisfies
the No Free Lunch Property with Vanishing Risk with respect to PF .

As a consequence there is an absolutely continuous local martingale measure that is equivalent
to PF , i.e. it is precisely supported by the set F .

The proof of the theorem still needs some auxiliary steps which will be stated below.
We first deal with the problem of the usual hypotheses under the measure PF . The σ-algebras

F̃t of the PF -augmented filtration are obtained from Ft by adding all PF null sets. It is easily
seen that the new filtration is still right continuous and satisfies the usual hypotheses for the
new measure PF . The following technical results are proved in Delbaen and Schachermayer
(1994d).
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4.3 Proposition. If τ̃ is a stopping time with respect to the filtration (F̃t)t≥0 then there is a
stopping time τ with respect to the filtration (Ft)t≥0 such that PF a.s. we have τ̃ = τ . If τ̃ is
finite or bounded then τ may be chosen to be finite or bounded.

4.4 Proposition. If H̃ is a predictable process with respect to the filtration (F̃t)t≥0 then there is
a predictable process H with respect to the filtration (Ft)t≥0, such that PF a.s. we have H̃ = H.

This settles the problem of the usual hypotheses. Each time we need a F̃-predictable process,
we can without danger, replace it by a predictable process for F . Without further notice we
will do this.

The process S is a semimartingale with respect to the system (F̃ ,PF ). This is well known,
see Protter (1990).

Remark also that for PF we have that
∫∞

0
h′u d〈M,M〉u hu <∞ a.s.. We will need this later

on.
As a first step we will decompose S into a sum of a PF -local martingale and a predictable

process of finite variation. Because PF is only absolutely continuous with respect to P we need
an extension of the Girsanov-Maruyama formula for this case. The generalisation was given by
Lenglart (1977). We need the cadlag martingale U defined as

Ut = E
[

1F
P[F ]

| Ft
]

Note that U is not necessarily continuous, as we only assumed that S is continuous and not
that each Ft-martingale is continuous.

Together with the process U we need the stopping time

ν = inf{t | Ut = 0} = inf{t > 0 | Ut− = 0}

(see Dellacherie and Meyer (1980) for this equality).

4.5 Lemma. ν = T P-almost surely.

Proof of the lemma. We first show that for an arbitrary stopping time σ we have that Lσ > 0
on the set {Uσ > 0}. Let A be a set in Fσ such that P[A∩{Uσ > 0}] > 0. This already implies
that P[A ∩ F ] > 0. Indeed we have that

E[1A1F | Fσ] = P[F ]1A Uσ

and hence we necessarily have that P[A ∩ F ] > 0. The following chain of equalities is almost
trivial ∫

A∩{Uσ>0}
Lσ =

∫
A

Lσ 1{Uσ>0} ≥ P[F ]
∫
A

Lσ Uσ =
∫
A

Lσ1F =
∫
A∩F

Lσ.

The last term is strictly positive since Lσ > 0 on F . This proves that for each set A such that
P[A ∩ {Uσ > 0}] > 0 we must have

∫
A∩{Uσ>0} Lσ > 0. This implies that Lσ > 0 on the set

{Uσ > 0}, hence ν ≤ T .
The converse inequality is less trivial and requires the use of the (NA) property of S. We

proceed in the same way. Take G ∈ Fσ such that G ⊂ {Lσ > 0} and P[G] > 0. Suppose that
15



Uσ = 0 on G. We will show that this leads to a contradiction. If Uσ = 0 on G then clearly
G ∩ F = ∅. But on F c we have that Lt tends to zero and hence 1

Lt
tends to ∞. We know that

1
Lt
− 1 can be obtained as a stochastic integral with respect to S. We take the stopping time

µ =∞ on Gc and equal to inf{t | Lt ≤ 1
2Lσ} on the set G. The outcome

1G =
(

1
Lµ
− 1
Lσ

)
Lσ 1G

is the result of a 1-admissible strategy and clearly produces arbitrage. We may therefore suppose
that P[G∩F ] > 0 and hence we also have

∫
G
Uσ > 0. Again this suffices to show that Uσ > 0 on

the set {Lσ > 0} and again implies that T ≤ ν. The proof of the lemma is complete now. ¤

Proof of the Main Theorem. We now calculate the decomposition of the continuous semimartin-
gale S under PF . If S = M + A is the Doob-Meyer decomposition of S under P then, under
PF we write S = M̃ + Ã where Ãt = At +

∫ d〈M,U〉s
Us

, see Lenglart (1977). This integral exists
for the measure PF since on F the process U is bounded away from 0. A more explicit formula
for Ã can be found if we use the structure of 〈M,U〉. We thereto use the Kunita-Watanabe
decomposition of the L2 martingale U with respect to the martingale M . This is done in the
following way (see Jacod (1979)). The space of all L2 martingales of the form α ·M is a stable
space and in fact we have ‖(α ·M)∞‖2 = E[

∫
α′ d〈M,M〉α]. The orthogonal projection of U∞

on this space is given by (β ·M)∞ for some predictable process β, where of course

E[
∫
β′ d〈M,M〉β] <∞.

In this notation we may write:
d〈M,U〉 = d〈M,M〉β.

It follows that also
∫
β′ d〈M,M〉β < ∞ a.s. for the measure PF and the measure dÃ can be

written as

dÃ = d〈M,M〉(ht +
βt
Ut

) = d〈M,M〉 kt.

Here we have put k = h+ β
U to simplify notation.

To prove the NFLV R property for S under PF we use the criterion of theorem 1.3 above.
Step 1: the set of 1-admissible integrands for PF is bounded in L0(F )
From the properties of β and h we deduce that for the measure PF , the integral∫ ∞

0

k′td〈M,M〉kt <∞ PF a.s.

The PF local martingale L̃ is now defined as

L̃t = exp
(
−
∫ t

0

k′u dM̃u −
1
2

∫ t

0

k′u d〈M,M〉u ku
)
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It follows that
L̃∞ > 0 PF a.s.

It is chosen in such a way that L̃S is a PF local martingale and therefore the set K̃1 constructed
with the 1-admissible, with respect to PF !!!, integrands, is bounded in L0(PF ).

In particular this also excludes the possibility of immediate arbitrage for S with respect to
PF .

Step 2: S satisfies (NA) with respect to PF (and with respect to general admissible inte-
grands).

Since by step 1 immediate arbitrage is excluded the violation of the (NA) property would,
by lemma 3.1, give us a predictable integrand H such that for PF the integrand is of finite
support, is S-integrable and 1-admissible. When the support of H is contained in ]]σ1, σ2]] it
gives an outcome at least ε on the set {σ1 <∞}. All this, of course, with respect to PF .

The rest of the proof is devoted to the transformation of this phenomenon to a situation
valid for P.

Without loss of generality we may suppose that for the measure P we have σ1 ≤ σ2 ≤ T , we
replace e.g. the stopping time σ2 by max(σ1, σ2) and then we replace σ1 and σ2 by respectively
min(T, σ1) and min(T, σ2). All these substitutions have no effect when seen under the measure
PF . Since PF [{σ1 < σ2 <∞}] > 0, we certainly have that P[{σ1 < σ2 < T}] > 0.

Roughly speaking we will now use the strategy H to construct arbitrage on the set F and we
use the process 1

L to construct a sure win on the set F c, as on the interval [[0, T [[, the process
1
L − 1 equals K · S for a well chosen integrand K. When we add the two integrands, H and K,
we should obtain an integrand that gives arbitrage on Ω with respect to P and this will provide
the desired contradiction.

Let the sequence of stopping times τn be defined as τn = inf
{
t | Lt ≤ 1

n

}
. We have that

τn ↑ T for P and τn ↑ ∞ for the measure PF . Since we have that Lτn > 0 a.s. we also have that
Uτn > 0 a.s.. It follows that on the σ-algebra Fτn the two measures, P and PF are equivalent.
We can therefore conclude that for each n the integrand H1[[0,τn]] as well as the integrand
K1[[0,τn]] is S integrable and 1-admissible for P. The last integrand still has to be renormalised.

In fact on the set F itself, the lower bound −1 for the process K · S is too low since it will
be compensated at most by ε. We therefore transform K in such a way that it will stay above
ε/2 but will nevertheless give outcomes that are very big on the set F c. Let us define

K̃ = K1{σ1<T}
ε

2
Lσ1

K̃n = K̃ 1[[0,τn]]

H̃ = H1{σ1<T}

H̃n = H̃ 1[[0,τn]].

From the preceding considerations it follows that the integrands H̃n are all 1-admissible for
P and that the integrands K̃n are ε/2-admissible for P. The outcomes (K̃n ·S)τn tend to ∞ on
F c ∩ {σ1 < T}, and the outcomes (H̃n · S)τn become larger than ε on the set F ∩ {σ1 < T}.
When we add them we see that on the set {σ1 < T} we have

lim inf
n→∞

((H̃ + K̃) · S)τn = lim inf
n→∞

((H̃n + K̃n) · S)τn ≥
ε

2
.
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Define now the stopping time µ as

µ = τn if n is the first number such that ((H̃n + K̃n) · S)τn ≥
ε

4
.

The stopping time µ is finite on the set {σ1 < τ}. The integrand J = (H̃ + K̃)1]]0,µ]] is now S
integrable and is certainly 1 + ε

2 admissible. By the definition of the stopping time µ we have
that (J ·S)µ ≥ ε

41{σ1<T}, producing arbitrage. Since the process S satisfied the (NA) property,
we arrived at a contradiction.

Step 2 is therefore completed and this ends the proof of the theorem. ¤
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