
COHERENT RISK MEASURES ON

GENERAL PROBABILITY SPACES
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1. Introduction and Notation

The concept of coherent risk measures together with its axiomatic characterization
was introduced in the paper [ADEH1] and further developed in [ADEH2]. Both
these papers supposed that the underlying probability space was finite. The aim
of this paper is twofold. First we extend the notion of coherent risk measures
to arbitrary probability spaces, second we deepen the relation between coherent
risk measures and the theory of cooperative games. In many occasions we will
make a bridge between different existing theories. In order to keep the paper self
contained, we sometimes will have to repeat known proofs. In March 2000, the
author gave a series of lectures at the Cattedra Galileiana at the Scuola Normale
di Pisa. The subject of these lectures was the theory of coherent risk measures
as well as applications to several problems in risk management. The interested
reader can consult the lecture notes [D2]. Since the original version of this paper
(1997), proofs have undergone a lot of changes. Discussions with colleagues greatly
contributed to the presentation. The reader will also notice that the theory of
convex games plays a special role in the theory of coherent risk measures. It was
Dieter Sondermann who mentioned the theory of convex games to the author and
asked about continuity properties of its core, see [D1]. It is therefore a special
pleasure to be able to put this paper in the Festschrift.
Throughout the paper, we will work with a probability space (Ω,F , P). With
L∞(Ω,F , P) (or L∞(P) or even L∞ if no confusion is possible), we mean the space
of all equivalence classes of bounded real valued random variables. The space
L0(Ω,F , P) (or L0(P) or simply L0) denotes the space of all equivalence classes
of real valued random variables. The space L0 is equipped with the topology of
convergence in probability. The space L∞(P), equipped with the usual L∞ norm, is
the dual space of the space of integrable (equivalence classes of) random variables,
L1(Ω,F , P) (also denoted by L1(P) or L1 if no confusion is possible). We will
identify, through the Radon–Nikodym theorem, finite measures that are absolutely
continuous with respect to P, with their densities, i.e. with functions in L1. This
may occasionally lead to expressions like ‖µ− f‖ where µ is a measure and f ∈ L1.
If Q is a probability defined on the σ-algebra F , we will use the notation EQ to
denote the expected value operator defined by the probability Q. Let us also recall,
see [DS] for details, that the dual of L∞(P) is the Banach space ba(Ω,F , P) of all
bounded, finitely additive measures µ on (Ω,F) with the property that P(A) = 0
implies µ(A) = 0. In case no confusion is possible we will abbreviate the notation
to ba(P). A positive element µ ∈ ba(P) such that µ(1) = 1 is also called a finitely
additive probability, an interpretation that should be used with care. To keep
notation consistent with integration theory we sometimes denote the action µ(f) of
µ ∈ ba(P) on the bounded function f , by Eµ[f ]. The Yosida-Hewitt theorem, see
[YH], implies for each µ ∈ ba(P), the existence of a uniquely defined decomposition
µ = µa + µp, where µa is a σ–addtive measure, absolutely continuous with respect
to P, i.e. an element of L1(P), and where µp is a purely finitely additive measure.
Furthermore the results in [YH] show that there is a countable partition (An)n of
Ω into elements of F , such that for each n, we have that µp(An) = 0.

The paper is organised as follows. In section 2 we repeat the definition of coherent
risk measure and relate this definition to submodular and supermodular function-
als. We will show that using bounded finitely additive measures, we get the same
results as in [ADEH2]. This section is a standard application of the duality theory
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between L∞ and its dual space ba. The main purpose of this section is to introduce
the notation. In section 3 we relate several continuity properties of coherent risk
measures to properties of a defining set of probability measures. This section relies
heavily on the duality theory of the spaces L1 and L∞. Examples of coherent risk
measures are given in section 4. By carefully selecting the defining set of probabil-
ity measures, we give examples that are related to higher moments of the random
variable. Section 5 studies the extension of a coherent risk measure, defined on the
space L∞ to the space L0 of all random variables. This extension to L0 poses a
problem since a coherent risk measure defined on L0 is a convex function defined on
L0. Nikodym’s result on L0, then implies that, at least for an atomless probability
P, there are no coherent risk measures that only take finite values. The solution
given, is to extend the risk measures in such a way that it can take the value +∞
but it cannot take the value −∞. The former (+∞) means that the risk is very bad
and is unacceptable for the economic agent (something like a risk that cannot be
insured). The latter (−∞) would mean that the position is so safe that an arbitrary
amount of capital could be withdrawn without endangering the company. Clearly
such a situation cannot occur in any reasonable model. The main mathematical
results of this section are summarised in the following theorem

Theorem. If Pσ is a norm closed, convex set of probability measures, all abso-
lutely continuous with respect to P, then the following properties are equivalent:

(1) For each f ∈ L0
+ we have that

lim
n

inf
Q∈Pσ

EQ[f ∧ n] < +∞

(2) There is a γ > 0 such that for each A with P[A] ≤ γ we have

inf
Q∈Pσ

Q[A] = 0.

(3) For every f ∈ L0
+ there is Q ∈ Pσ such that EQ[f ] < ∞.

(4) There is a δ > 0 such that for every set A with P[A] < δ we can find an
element Q ∈ Pσ such that Q[A] = 0.

(5) There is a δ > 0, as well as a number K such that for every set A with
P[A] < δ we can find an element Q ∈ Pσ such that Q[A] = 0 and ‖dQ

dP
‖∞ ≤

K.

In the same section 5, we also give extra examples showing that, even when the
defining set of probability measures is weakly compact, the Beppo Levi type the-
orems do not hold for coherent risk measures. Some of the examples rely on the
theory of non–reflexive Orlicz spaces. In section 6 we discuss, along the same lines
as in [ADEH2], the relation with the popular concept, called Value at Risk and
denoted by V aR. Section 7 is devoted to the relation between convex games, co-
herent risk measures and non–additive integration. We extend known results on the
sigma–core of a game to cooperative games that are defined on abstract measure
spaces and that do not necessarily fulfill topological regularity assumptions. This
work is based on previous work of Parker, [Pa] and of the author [D1]. In section
8 we give some explicit examples that show how different risk measures can be.
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2. The General Case

In this section we show that the main theorems of the papers [ADEH1] and [ADEH2]
can easily be generalised to the case of general probability spaces. The only diffi-
culty consists in replacing the finite dimensional space RΩ by the space of bounded
measurable functions, L∞(P). In this setting the definition of a coherent risk mea-
sure as given in [ADEH1] can be written as:

Definition 2.1. A mapping ρ : L∞(Ω,F , P) → R is called a coherent risk measure
if the following properties hold

(1) If X ≥ 0 then ρ(X) ≤ 0.
(2) Subadditivity: ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).
(3) Positive homogeneity: for λ ≥ 0 we have ρ(λX) = λρ(X).
(4) For every constant function a we have that ρ(a + X) = ρ(X) − a.

Remark. We refer to [ADEH1] and [ADEH2] for an interpretation and discussion of
the above properties. Here we only remark that we are working in a model without
interest rate, the general case can “easily” be reduced to this case by “discounting”.
Although the properties listed in the definition of a coherent risk measure have a
direct interpretation in mathematical finance, it is mathematically more convenient
to work with the related submodular function, ψ, or with the associated supermod-
ular function, φ. The definitions we give below differ slightly from the usual ones.
The changes are minor and only consist in the part related to positivity, i.e. to part
one of the definitions.

Definition 2.2. A mapping ψ:L∞ → R is called submodular if
(1) For X ≤ 0 we have that ψ(X) ≤ 0.
(2) If X and Y are bounded random variables then ψ(X + Y ) ≤ ψ(X) + ψ(Y ).
(3) For λ ≥ 0 and X ∈ L∞ we have ψ(λX) = λψ(X)

The submodular function is called translation invariant if moreover
(4) For X ∈ L∞ and a ∈ R we have that ψ(X + a) = ψ(X) + a.

Definition 2.2’. A mapping φ:L∞ → R is called supermodular if
(1) For X ≥ 0 we have that φ(X) ≥ 0.
(2) If X and Y are bounded random variables then φ(X + Y ) ≥ φ(X) + φ(Y ).
(3) For λ ≥ 0 and X ∈ L∞ we have φ(λX) = λφ(X)

The supermodular function is called translation invariant if moreover
(4) For X ∈ L∞ and a ∈ R we have that φ(X + a) = φ(X) + a.

Remark. If ρ is a coherent risk measure and if we put ψ(X) = ρ(−X) we get a
translation invariant submodular functional. If we put φ(X) = −ρ(X), we ob-
tain a supermodular functional. These notations and relations will be kept fixed
throughout the paper.

Remark. Submodular functionals are well known and were studied by Choquet in
connection with the theory of capacities , see [Ch]. They were used by many authors
in different applications, see e.g. section 7 of this paper for a connection with game
theory. We refer the reader to [Wa1] for the development and the application of the
theory to imprecise probabilities and belief functions. These concepts are certainly
not disjoint from risk management considerations. In [Wa2], P. Walley gives a
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discussion of properties that may also be interesting for risk measures. In [Maa],
Maaß gives an overview of existing theories.
The following properties of a translation invariant supermodular mappings φ, are
immediate

(1) φ(0) = 0 since by positive homogeneity: φ(0) = φ(2 ∗ 0) = 2φ(0).
(2) If X ≤ 0, then φ(X) ≤ 0. Indeed 0 = φ (X + (−X)) ≥ φ(X) + φ(−X) and

if X ≤ 0, this implies that φ(X) ≤ −φ(−X) ≤ 0.
(3) If X ≤ Y then φ(X) ≤ φ(Y ). Indeed φ(Y ) ≥ φ(X) + φ(Y − X) ≥ φ(X).
(4) φ(a) = a for constants a ∈ R.
(5) If a ≤ X ≤ b, then a ≤ φ(X) ≤ b. Indeed X − a ≥ 0 and X − b ≤ 0.
(6) φ is a convex norm-continuous, even Lipschitz, function on L∞. In other

words |φ(X − Y )| ≤ ‖X − Y ‖∞.
(7) φ (X − φ(X)) = 0.

The following theorem is an immediate application of the bipolar theorem from
functional analysis.

Theorem 2.3. Suppose that ρ:L∞(P) → R is a coherent risk measure with associ-
ated sub(super)modular function ψ (φ). There is a convex σ(ba(P), L∞(P))–closed
set Pba of finitely additive probabilities, such that

ψ(X) = sup
µ∈Pba

Eµ[X] and φ(X) = inf
µ∈Pba

Eµ[X].

Proof. Because −ρ(X) = φ(X) = −ψ(−X) for all X ∈ L∞, we only have to show
one of the equalities. The set C = {X | φ(X) ≥ 0} is clearly a convex and norm
closed cone in the space L∞(P). The polar set C◦ = {µ | ∀X ∈ C : Eµ[X] ≥ 0} is
also a convex cone, closed for the weak∗ topology on ba(P). All elements in C◦ are
positive since L∞

+ ⊂ C. This implies that for the set Pba, defined as Pba = {µ |
µ ∈ C◦ and µ(1) = 1}, we have that C◦ = ∪λ≥0λPba. The duality theory, more
precisely the bipolar theorem, then implies that C = {X | ∀µ ∈ Pba : Eµ[X] ≥ 0}.
This means that φ(X) ≥ 0 if and only if Eµ[X] ≥ 0 for all µ ∈ Pba. Since
φ(X − φ(X)) = 0 we have that X − φ(X) ∈ C and hence for all µ in Pba we find
that Eµ[X − φ(X)] ≥ 0. This can be reformulated as

inf
µ∈Pba

Eµ[X] ≥ φ(X).

Since for arbitrary ε > 0, we have that φ(X − φ(X) − ε) < 0, we get that X −
φ(X)− ε /∈ C. Therefore there is a µ ∈ Pba such that Eµ[X −φ(X)− ε] < 0 which
leads to the opposite inequality and hence to:

inf
µ∈Pba

Eµ[X] = φ(X).

�
Remark on notation. From the proof of the previous theorem we see that there is
a one–to–one correspondence between

(1) coherent risk measures ρ,
(2) the associated supermodular function φ(X) = −ρ(X),
(3) the associated submodular function ψ(X) = ρ(−X),
(4) weak∗ closed convex sets of finitely additive probability measures Pba ⊂

ba(P),
(5) ‖.‖∞ closed convex cones C ⊂ L∞ such that L∞

+ ⊂ C.
5



The relation between C and ρ is given by

ρ(X) = inf {α | X + α ∈ C} .

The set C is called the set of acceptable positions, see [ADEH2]. When we refer to
any of these objects it will be according to these notations.

Remark on possible generalisations. In the paper by Jaschke and Küchler, [JaK]
an abstract ordered vector space is used. Such developments have interpretations
in mathematical finance and economics. In a private discussion with Kabanov it
became clear that there is a way to handle transactions costs in the setting of risk
measures. In order to do this, one should replace the space L∞ of bounded real-
valued random variables by the space of bounded random variables taking values
in a finite dimensional space Rn. By replacing Ω by {1, 2, . . . , n} × Ω, part of the
present results can be translated immediately. The idea to represent transactions
costs with a cone was developed by Kabanov, see [Ka].

Remark on the interpretation of the probability space. The set Ω and the σ-algebra
F have an easy interpretation. The σ-algebra F for instance, describes all the
events that become known at the end of an observation period. The interpretation
of the probability P seems to be more difficult. The measure P describes with what
probability events might occur. But in economics and finance such probabilities
are subjective. Regulators of the finance industry might have a completely differ-
ent view on probabilities than the financial institutions they control. Inside one
institution there might be a different view between the different branches, trading
tables, underwriting agents, etc.. An insurance company might have a different
view than the reinsurance company and than their clients. But we may argue that
the class of negligible sets and consequently the class of probability measures that
are equivalent to P remains the same. This can be expressed by saying that only
the knowledge of the events of probability zero is important. So we only need
agreement on the “possibility” that events might occur, not on the actual value of
the probability.
In view of this, there are two natural spaces of random variables on which we can
define a risk measure. Only these two spaces remain the same when we change
the underlying probability to an equivalent one. These two spaces are L∞(Ω,F , P)
and L0(Ω,F , P). The space L0 cannot be given a norm and cannot be turned
into a locally convex space. E.g. if the probability P is atomless, i.e. supports a
random variable with a continuous cumulative distribution function, then there are
no nontrivial (i.e. non identically zero) continuous linear forms on L0, see [Ni]. The
extension of coherent risk measures from L∞ to L0 is the subject of section 5.

3. The σ–additive Case

The previous section gave a characterisation of translation invariant submodular
functionals (or equivalently coherent risk measures) in terms of finitely additive
probabilities. The characterisation in terms of σ–additive probabilities requires
additional hypotheses. E.g. if µ is a purely finitely additive measure, the expression
φ(X) = Eµ[X] gives a translation invariant submodular functional. This functional,
coming from a purely finitely additive measure cannot be described by a σ–additive
probability measure. So we need extra conditions.
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Definition 3.1. The translation invariant supermodular mapping φ:L∞ → R is
said to satisfy the Fatou property if φ(X) ≥ lim supφ(Xn), for any sequence,
(Xn)n≥1, of functions, uniformly bounded by 1 and converging to X in probabil-
ity.

Remark. Equivalently we could have said that the coherent risk measure ρ associ-
ated with the supermodular function φ satisfies the Fatou property if for the said
sequences we have ρ(X) ≤ lim inf ρ(Xn).

Using similar ideas as in the proof of theorem 2.3 and using a characterisation of
weak∗ closed convex sets in L∞, we obtain:

Theorem 3.2. For a translation invariant supermodular mapping φ, the following
4 properties are equivalent

(1) There is an L1(P)-closed, convex set of probability measures Pσ, all of them
being absolutely continuous with respect to P and such that for X ∈ L∞:

φ(X) = inf
Q∈Pσ

EQ[X].

(2) The convex cone C = {X | φ(X) ≥ 0} is weak∗, i.e. σ(L∞(P), L1(P))
closed.

(3) φ satisfies the Fatou property.
(4) If Xn is a uniformly bounded sequence that decreases to X a.s., then φ(Xn)

tends to φ(X).

Proof. (2) ⇒ (3) If C is weak∗ closed, then φ satisfies the Fatou property. Indeed
if Xn tends to X in probability, ‖Xn‖∞ ≤ 1 for all n and φ(Xn) → a, then
Xn − φ(Xn) ∈ C. Since C is weak∗ closed, the limit X − a is in C as well. This
shows that φ(X − a) ≥ 0 and this implies that a ≤ φ(X). This proves the Fatou
property.
(3) ⇒ (2) If φ satisfies the Fatou property, then C is weak∗ closed. This is essentially
the Krein-Šmulian theorem as used in a remark, due to Grothendieck, see [G],
Supplementary Exercise 1, Chapter 5, part 4. Translated to our special case of
C being a cone, this means that it is sufficient to check that C ∩ B1 is closed in
probability (B1 stands for the closed unit ball of L∞). So let Xn be a sequence of
elements in C, uniformly bounded by 1 and tending to X in probability. The Fatou
property then shows that also φ(X) ≥ 0, i.e. X ∈ C.
(2) ⇒ (1). This is not difficult and is done in exactly the same way as in theorem
2.3. But this time we define the polar C◦ of C in L1 and we apply the bipolar
theorem for the duality pair (L1, L∞). Because of C being weak∗ closed, this poses
no problem and we define:

C◦ =
{
f | f ∈ L1 and EP[fX] ≥ 0 for all X ∈ C

}
,

Pσ = {f | dQ = f dP defines a probability and f ∈ C◦} .

Of course we have
C◦ = ∪λ≥0λPσ.

So we find a closed convex set of probability measures Pσ such that

φ(X) = inf {EQ[X] | Q ∈ Pσ} .
7



(1) ⇒ (2), Fatou’s lemma implies that every translation invariant submodular map-
ping, that is given by the inf over a set of probability measures, satisfies the Fatou
property. Indeed for each Q ∈ Pσ we get

EQ[X] ≥ lim supEQ[Xn] ≥ lim supφ(Xn),

where Xn is a sequence, uniformly bounded by 1 and tending to X in probability.
We omit the proof of the other implications. �
Corollary 3.3. With the notations and assumptions of theorem 2.3 and 3.2 we get
that the set Pσ is σ(ba(P), L∞(P)) dense in Pba.

Remark on notation. From the proof of the previous theorem we see that there is
a one–to–one correspondence between

(1) coherent risk measures ρ having the Fatou property,
(2) closed convex sets of probability measures Pσ ⊂ L1(P),
(3) weak∗ closed convex cones C ⊂ L∞ such that L∞

+ ⊂ C.

We now give an answer to the question when a coherent risk measure can be given
as the supremum of expected values, taken with respect to equivalent probability
measures.

Definition 3.4. The coherent risk measure ρ is called relevant if for each set A ∈ F
with P[A] > 0 we have that ρ(−1A) > 0. When using the associated submodular
function, this means that ψ(1A) > 0 or when using the associated supermodular-
function: φ(−1A) < 0.

It is easily seen, using the monotonicity of ρ, that the property of being relevant is
equivalent to ρ(X) > 0 for each nonpositive X ∈ L∞ such that P[X < 0] > 0. The
economic interpretation of this property is straightforward.

Theorem 3.5. For a coherent risk measure, ρ, that satisfies the Fatou property,
the following are equivalent

(1) ρ is relevant.
(2) The set Pe

σ = {Q ∈ Pσ | Q ∼ P} is non empty.
(3) The set Pe

σ = {Q ∈ Pσ | Q ∼ P} is norm (i.e. L1 norm) dense in Pσ.
(4) There is a set P ′ ⊂ Pσ of equivalent probability measures such that

ψ(X) = sup
Q∈P′

EQ[X] and similarly φ(X) = inf
Q∈P′

EQ[X].

Proof. The other implications being trivial, we only show that (1) ⇒ (2). This is
a reformulation of the Halmos-Savage theorem [HS]. For convenience of the reader,
let us briefly sketch the exhaustion argument. Since the set Pσ is norm closed and
convex, the class of sets {{

dQ

dP
> 0

}
| Q ∈ Pσ

}
,

is stable for countable unions. It follows that up to P-null sets, there is a maximal
element. Because ρ is relevant, the only possible maximal element is Ω. From this
it follows that there is Q ∈ Pσ such that Q ∼ P. �
The following theorem characterises the coherent risk measures that satisfy a con-
tinuity property that is stronger than the Fatou property.
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Theorem 3.6. For a translation invariant supermodular mapping, φ, the following
properties are equivalent

(1) The set Pσ is weakly compact in L1.
(2) The sets Pba and Pσ coincide.
(3) If (Xn)n≥1 is a sequence in L∞, uniformly bounded by 1 and tending to X

in probability, then φ(Xn) tends to φ(X).
(4) If (An)n is a increasing sequence whose union is Ω, then φ(1An

) tends to
1.

Proof. Clearly (1) ⇔ (2). (1) ⇒ (3). If (1) holds, then the set Pσ is uniformly
integrable (by the Dunford-Pettis theorem, see [DS] or [G]) and it follows that
EQ[Xn] tends to EQ[X] uniformly over the set Pσ. This implies that φ(Xn) tends
to φ(X). Clearly (3) ⇒ (4). To prove (4) ⇒ (1) observe that (4) implies that the
set Pσ is uniformly integrable. Indeed, if Bn is a sequence of decreasing sets such
that the intersection ∩nBn is empty, then supQ∈Pσ

Q[Bn] ≤ 1− infQ∈Pσ Q[Bc
n] and

hence tends to 0. Pσ being convex and norm closed, this together with the (easy
part of the) Dunford-Pettis theorem, implies that Pσ is weakly compact. �

Example 3.7. This example shows that the property “φ(1An
) tends to zero for

every decreasing sequence of sets with empty intersection”, does not imply that ρ
satisfies the 4 properties of the preceding theorem. It does not even imply that
ρ, or φ, has the Fatou property. Take (Ω,F , P) big enough to support purely
finitely additive probabilities, i.e. L∞(P) is supposed to be infinite dimensional.
Take µ ∈ ba(P), purely finitely additive, and let Pba be the segment (the convex
hull) joining the two points µ and P. Because there is a σ–additive probability in
Pba, it is easily seen that ρ(1An) = −φ(1An) = − infQ∈Pba

(An) tends to zero for
every decreasing sequence of sets with empty intersection. But clearly the coherent
measure cannot satisfy the Fatou property since Pσ = {P} is not dense in Pba. To
find “explicitly” a sequence of functions that contradicts the Fatou property, we
proceed as follows. The measure µ is purely finitely additive and therefore, by the
Yosida-Hewitt decomposition theorem (see [YH]), there is a countable partition of
Ω into sets (Bn)n≥1 such that for each n, we have µ(Bn) = 0. Take now X an
element in L∞ such that EP[X] = 0 and such that Eµ[X] = −1. This implies
that ρ(X) = 1. For the sequence Xn we take Xn = X 1∪k≤nBk

. The properties
of the sets Bn imply that µ = 0 on the union ∪k≤nBk and hence we have that
ρ(Xn) = EP[Xn], which tends to 0 as n tends to ∞.

The next proposition characterises those coherent risk measures that tend to zero
on decreasing sequences of sets.

Theorem 3.8. For a coherent risk measure, ρ, the following are equivalent

(1) For every decreasing sequence of sets (An)n≥1 with empty intersection, we
have that φ(1An) = −ρ(1An) tends to zero.

(2) sup {‖µa‖ | µ ∈ Pba} = 1, (where µ = µa + µp is the Yosida–Hewitt decom-
position).

(3) The distance from Pba to L1, defined as inf{‖µ− f‖ | µ ∈ Pba, f ∈ L1(P)},
is zero.

Proof. We start the proof of the theorem with the implication that (2) ⇒ (1). So
we take (An)n≥1 a decreasing sequence of sets in F with empty intersection. We
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have to prove that for every ε > 0 there is n and µ ∈ Pba, such that µ(An) ≤ ε.
In order to do this we take µ ∈ Pba such that ‖µa‖ ≥ 1 − ε/2. Then we take n so
that µa(An) ≤ ε/2. It follows that µ(An) ≤ ε/2 + ‖µp‖ ≤ ε.
The fact that 1 implies 2 is the most difficult one and it is based on the following
lemma, whose proof is given after the proof of the theorem.

Lemma 3.9. If K is a closed, weak∗ compact, convex set of finitely additive, non-
negative measures, such that δ = inf{‖νp‖ | ν ∈ K} > 0, then there exists a
decreasing (nonincreasing) sequence of sets An, with empty intersection, such that
for all ν ∈ K, and for all n, ν(An) > δ/4.

If (2) were false, then
inf {‖µp‖ | µ ∈ Pba} > 0.

We can therefore apply the lemma in order to get a contradiction to (1).
The proof that (2) and (3) are equivalent is left to the reader. �
In the proof of the lemma, as well as in section 5, we will need a minimax theorem.
Since there are many forms of the minimax theorem, let us recall the one we need.
It is not written in its most general form, but this version will do. For a proof, a
straightforward application of the Hahn–Banach theorem together with the Riesz
representation theorem, we refer to Dellacherie–Meyer, [DM], page 404.

Minimax Theorem. Let K be a compact convex subset of a locally convex space
F . Let L be a a convex set of an arbitrary vector space E. Suppose that u is a
bilinear function u:E ×F → R. For each l ∈ L we suppose that the partial (linear)
function u(l, .) is continuous on F . Then we have that

inf
l∈L

sup
k∈K

u(l, k) = sup
k∈K

inf
l∈L

u(l, k).

Proof of Lemma 3.9. Of course, we may suppose that for each µ ∈ K we have
‖µ‖ ≤ 1 . If λ is purely finitely additive then the Yosida–Hewitt theorem implies
the existence of a decreasing sequence of sets, say Bn (depending on λ!), with
empty intersection and such that λ(Bn) = ‖λ‖. Given µ ∈ K, it follows that for
every ε > 0, there is a set, A (depending on µ), such that P[A] ≤ ε and such that
µ(A) ≥ δ. For each ε > 0 we now introduce the convex set, Fε, of functions, f ∈ L∞

such that f is nonnegative, f ≤ 1 and EP[f ] ≤ ε. The preceding reasoning implies
that

inf
µ∈K

sup
f∈Fε

Eµ[f ] ≥ δ.

Since the set K is convex and weak∗ compact, we can apply the minimax theorem
and we conclude that

sup
f∈Fε

inf
µ∈K

Eµ[f ] ≥ δ.

It follows that there is a function f ∈ Fε, such that for all µ ∈ K, we have that
Eµ[f ] ≥ δ/2. We apply the reasoning for ε = 2−n in order to find a sequence of
nonnegative functions fn, such that for each µ ∈ K we have Eµ[fn] ≥ δ/2 and such
that EP[fn] ≤ 2−n. We replace the functions fn by gn = supk≥n fk in order to
obtain a decreasing sequence gn such that, of course, Eµ[gn] ≥ δ/2 and such that
EP[gn] ≤ 2−n+1. If we now define An = {gn ≥ δ/4}, then clearly An is a decreasing
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sequence, with a.s. empty intersection and such that for each µ ∈ K we have that
µ(An) ≥ δ/4. �
Example 3.10. In example 3.7, Pba contained a σ–additive probability measure.
The present example is so that the properties of the preceding theorem 3.8 still
hold, but there is no σ–additive probability measure in Pba. In the language of
the theorem 3.8 (2), this simply means that the supremum is not a maximum. The
set Ω is simply the set of natural numbers. The σ-algebra is the set of all subsets
of Ω and P is a probability measure on Ω charging all the points in Ω. The space
L∞ is then l∞ and L1 can be identified with l1. The set F denotes the convex
weak∗-closed set of all purely finitely additive probabilities µ. Such measures can
be characterised as finitely additive probability measures such that µ({n}) = 0 for
all n ∈ Ω. This is also a quick way to see that that F is weak∗ closed. With δn we
denote the probability measure (in L1) that puts all its mass at the point n, the
so–called Dirac measure concentrated in n. The set Pba is the weak∗ closure of the
set



∑

n≥1

λn

(n + 1)2


 ν +

∑
n≥1

λn

(
1 − 1

(n + 1)2

)
δn | λn ≥ 0,

∑
n≥1

λn = 1, ν ∈ F


 .

The set is clearly convex and it defines a coherent risk measure, ρ. Since obviously
sup {‖µa‖ | µ ∈ Pba} = 1, the properties of theorem 3.8 hold. The difficulty consists
in showing that there is no σ–additive measure in the set Pba. Take an arbitrary
element µ ∈ Pba. By the definition of the set Pba there is a generalised sequence,
also called a net, µα tending to µ and such that

µα =


∑

n≥1

λα
n

(n + 1)2


 να +

∑
n≥1

λα
n

(
1 − 1

(n + 1)2

)
δn,

where each να ∈ F, where
∑

n λα
n = 1 and each λα

n ≥ 0. We will select subnets, still
denoted by the same symbol α, so that

(1) the sequence
∑

n λα
n δn tends to

∑
n κn δn for the topology σ(l1, c0). This is

possible since l1 is the dual of c0. This procedure is the same as selecting a
subnet such that for each n we have that λα

n tends to κn. Of course κn ≥ 0
and

∑
n κn ≤ 1.

(2) from this it follows that, by taking subnets, there is a purely finitely additive,
nonnegative measure ν′ such that

∑
n

λα
n

(
1 − 1

(n + 1)2

)
δn

tends to ∑
n

κn

(
1 − 1

(n + 1)2

)
δn + ν′

for the topology σ(ba, L∞).
(3) By taking a subnet we may also suppose that the generalised sequence να

converges for σ(ba, L∞), to a, necessarily purely finitely additive, element
ν ∈ F.

(4) Of course
∑

n
|λα

n−κn|
(n+1)2 tends to 0.

11



As a result we obtain that

µ =
∑

n

κn

(n + 1)2
ν + ν′ +

∑
n

κn

(
1 − 1

(n + 1)2

)
δn.

If this measure were σ–additive, then necessarily for the non absolutely continuous
part, we would have that ν′ +

∑
n

κn

(n+1)2 ν = 0. But, since these measures are
nonnegative, this requires that all κn = 0 and that ν′ = 0. This would then mean
that µ = ν′ = 0, a contradiction to µ(Ω) = 1.

4. Examples

The examples of this section will later be used in relation with V aR and in relation
with convex games. The coherent measures all satisfy the Fatou property and hence
are given by a set of probability measures. We do not describe the full set Pσ, the
sets we will use in the examples are not always convex. So in order to obtain the set
Pσ we have to take the closed convex hull. We recall, see the remark after corollary
3.3, that there is a one–to–one correspondence between norm-closed convex sets of
probability measures and coherent risk measures that satisfy the Fatou property.

Example 4.1. Here we take

Pσ = {Q | Q � P} .

The corresponding risk measure is easily seen to be ρ(X) = ess. sup(−X), i.e. the
maximum loss. It is clear that using such a risk measure as capital requirement
would stop all financial/insurance activities. The corresponding supermodular func-
tion is given by φ(X) = ess. inf(X).

Example 4.2. In this example we take for a given α, 0 < α < 1:

P = {P[ . |A] | P[A] > α} .

It follows that
ρ(X) = sup

P[A]>α

1
P[A]

∫
A

(−X) dP.

This measure was denoted as WCMα in [ADEH2]. Of course, if the space is
atomless, then it doesn’t matter if we use the condition P[A] ≥ α instead of the
strict inequality P[A] > α. We remark that in this example the Radon-Nikodym
derivatives dQ

dP
are bounded by 1/α and hence the set Pσ is weakly compact in L1.

In the case where P is atomless, we get that the closed convex hull (taken in L1(P))
of P is equal to

Pσ =
{

f | 0 ≤ f, ‖f‖∞ ≤ 1
α

and EP[f ] = 1
}

.

The extreme points of this set are of the form 1A

P[A] where P[A] = α, see [Lin].

Example 4.3. This example, as well as the next one, shows that although higher
moments cannot be directly used as risk measures, there is some way to introduce
their effect. For fixed p > 1 and β > 1, we consider the weakly compact convex set:

Pσ =

{
Q |

∥∥∥∥dQ

dP

∥∥∥∥
p

≤ β

}
.

If p = ∞ and β = 1/α, then we simply find back the preceding example. So we
will suppose that 1 < p < ∞. If we define q = p

p−1 , the conjugate exponent, then
we have the following result:
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Theorem 4.4. For nonnegative bounded functions X, we have that

c ‖X‖q ≤ ρ(−X) = ψ(X) ≤ β‖X‖q,

where c = min(1, β − 1).

Proof. The right hand side inequality is easy and follows directly from Hölder’s
inequality. Indeed for each h ∈ Pσ we have that

EP[Xh] ≤ ‖h‖p ‖X‖q ≤ β‖X‖q.

The left hand side inequality goes as follows. We may of course suppose that X

is not identically zero. We then define Y = Xq−1

‖X‖q−1
q

. As well known and easily

checked, we have that ‖Y ‖p = 1. Also EP[XY ] = ‖X‖q. We now distinguish two
cases:
Case 1: (1 − EP[Y ]) ≤ β − 1. In this case we put h = Y + 1 − EP[Y ]. Clearly
we have that EP[h] = 1 and ‖h‖p ≤ β. Of course we also have that EP[hX] ≥
EP[XY ] = ‖X‖q.
Case 2: (1 − EP[Y ]) ≥ β − 1. (Of course this can only happen if β ≤ 2). In this
case we take

h = αY + 1 − αEP[Y ] where α =
β − 1

1 − EP[Y ]
.

Clearly EP[h] = 1 and ‖h‖p ≤ α + 1 − (β − 1)EP[Y ]/(1 − EP[Y ]) ≤ β. But also
EP[Xh] ≥ α‖X‖q ≥ (β − 1)‖X‖q, since 1 − EP[Y ] ≤ 1. �
Remark. It is easily seen that the constant c has to tend to 0 if β tends to 1.
If we take p = 2 we get a risk measure that is related to the ‖.‖2 norm of the
variable. More precisely we find that, in the case p = 2 = β:

‖X‖2 ≤ ψ(X) = ρ(−X) ≤ 2‖X‖2

In insurance such a risk measure can therefore be used as a substitute for the stan-
dard deviation premium calculation principle. The use of coherent risk measures to
calculate insurance premiums has also been addressed in the paper [ADEH2]. For
more information on premium calculation principles, we refer to [Wan].

Remark. In section 5, we will give a way to construct analogous examples as the
one in 4.3, but where the Lp space is replaced by an Orlicz space.

Example 4.5, Distorted measures. In this example we define directly the coherent
risk measure. Section 7 will show that it is a coherent risk measure such that Pσ is
weakly compact. We only define ρ(−X) = ψ(X) for nonnegative variables X, the
translation property is then used to calculate the value for arbitrary bounded ran-
dom variables. The impatient reader can now check that the translation property
is consistent with the following definition:

ψ(X) = ρ(−X) =
∫ ∞

0

(P[X > α])β
dα.

The number β is fixed and is chosen to satisfy 0 < β < 1. The exponent q is defined
as q = 1/β. The reader can check that β = 0, gives us ‖X‖∞, already discussed
above. The value β = 1 just gives the expected value EP[X]. As usual the exponent
p is defined as p = q/(q − 1). The following theorem gives the relation between
this risk measure and the finiteness of certain moments. We include a proof for the
reader’s convenience.
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Theorem 4.6. If X is a nonnegative and such that
∫ ∞
0

(P[X > α])β
dα < ∞, then

also X ∈ Lq. If for some ε > 0, X ∈ Lq+ε, then
∫ ∞
0

(P[X > α])β
dα < ∞.

Proof. If k =
∫ ∞
0

P[X > α]1/qdα < ∞, then for every x ≥ 0 we have the inequality
xP[X > x]1/q ≤ k. This leads to xq−1P[X > x]1/p ≤ kq−1. From this we deduce
that

‖X‖q
q = q

∫ ∞

0

xq−1P[X > x] dx

= q

∫ ∞

0

xq−1P[X > x]1/p P[X > x]1/q dx

≤ qkq−1

∫ ∞

0

P[X > x]1/q dx

≤ qkq.

This gives us ‖X‖q ≤ q1/qk ≤ e1/ek ≤ 1.5 k. The other implication goes as follows.
If X ∈ Lq+ε for ε > 0, then we have that xq+εP[X > x] ≤ ‖X‖q+ε

q+ε = k. This
implies that

P[X > x] ≤ kx−(q+ε) and hence

P[X > x]1/q ≤ ‖X‖(1+
ε
q )

q+ε x−(1+ ε
q ) which gives∫ ∞

0

P[X > x]1/q dx ≤ ‖X‖(1+
ε
q )

q+ε

(
1 +

∫ ∞

1

x−(1+ ε
q ) dx

)

≤ ‖X‖(1+
ε
q )

q+ε

(
q + ε

ε

)
.

As expected, the constant on the right hand side tends to ∞ if ε tends to 0. �
We remark that in theorem 4.6, the converse statements do not hold. Indeed a
nonnegative variable X such that for x big enough, P[X > x] = 1

(x log x)q satisfies
X ∈ Lq, but nevertheless

∫ ∞
0

P[X > x]1/q dx = +∞. Also a nonnegative ran-
dom variable such that, again for x big enough, P[X > x] = 1

xq (log x)2q , satisfies∫ ∞
0

P[X > x]1/q dx < ∞ but there is no ε > 0 such that X ∈ Lq+ε.

Remark. Distorted probability measures were introduced in actuarial sciences by
Denneberg, see [De1].

Example 4.7. This example is almost the same as the previous one. Instead of
taking a power function xβ , we can, as will be shown in section 7, take any increas-
ing concave function f : [0, 1] → [0, 1], provided we assume that f is continuous,
that f(0) = 0 and f(1) = 1. The risk measure is then defined, for X bounded
nonnegative, as:

ψ(X) = ρ(−X) =
∫ ∞

0

f (P[X > α]) dα.

The continuity of f (at 0) guarantees that the corresponding set Pσ is weakly com-
pact. We will not make an analysis of this risk measure. Especially the behaviour
of f at zero, relates this coherent risk measure to Orlicz spaces, in the same way as
the xβ function was related to L1/β spaces.
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Example 4.8. This example, not needed in the rest of the paper, shows that in
order to represent coherent risk measures via expected values over a family of
probabilities, some control measure is needed. We start with the measurable space
([0, 1],F), where F is the Borel σ-algebra. A set N is of first category if it is
contained in the countable union of closed sets with empty interior. The class of
Borel sets of first category, denoted by N , forms a σ–ideal in F . For a bounded
function X defined on [0, 1] and Borel measurable, we define ρ(X) as the “essential”
supremum of −X. More precisely we define

ρ(X) = min {m | {−X > m} is of first category} .

Of course the associated submodular function is then defined as

ψ(X) = min {m | {X > m} is of first category} .

It is clear that ρ(X) defines a coherent risk measure. It even satisfies the Fatou
property in the sense that ρ(X) ≤ lim inf ρ(Xn), where (Xn)n≥1 is a uniformly
bounded sequence of functions tending pointwise to X. If ρ were of the form

ρ(X) = sup
Q∈Pσ

EQ[−X],

where Pσ is a family of probability measures, then elements Q of the family Pσ

should satisfy:
Q(N) = 0 for each set N of first category.

But if Q is a Borel measure that is zero on the compact sets of first category, then
it is identically zero. However we can easily see that

ρ(X) = sup
µ∈P

Eµ[−X],

where P is a convex set of finitely additive probabilities on F . The set P does
not contain any σ–additive probability measure, although ρ satisfies some kind of
Fatou property. Even worse, all elements in P are purely finitely additive.

5. Extension to the space of all measurable functions

In this section we study the problem of extending the domain of coherent risk
measures to the space L0 of all equivalence classes of measurable functions. We
will focus on those risk measures that are given by a convex set of probability
measures, absolutely continuous with respect to P. We start with a negative result.
The result is well known but for convenience of the reader, we give more or less full
details.

Theorem 5.1. If the space (Ω,F , P) is atomless, then there is no real–valued co-
herent risk measure ρ on L0. This means that there is no mapping

ψ:L0 → R,

such that the following properties hold:
(1) If X ≥ 0 then ψ(X) ≥ 0.
(2) Subadditivity: ψ(X1 + X2) ≤ ψ(X1) + ψ(X2).
(3) Positive homogeneity: for λ ≥ 0 we have ψ(λX) = λψ(X).
(4) For every constant function a we have that ψ(a + X) = ψ(X) + a.
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Proof. Suppose that such a mapping would exist, then it can be shown, exactly as
in section 2, that ψ(1) = 1. Also we have that for X ≤ 0, necessarily, ψ(X) ≤ 0.
By the Hahn–Banach theorem in its original form, see [Ban], there exists a linear
mapping f :L0 → R, such that f(1) = 1 and f(X) ≤ ψ(X) for all X ∈ L0. If
X ≥ 0 then also −f(X) = f(−X) ≤ ψ(−X) ≤ 0. It follows that f(X) ≥ 0 for
all X ≥ 0. So f is a linear mapping on L0 that maps nonnegative functions into
nonnegative reals. By a classic result of Namioka, see [Nam] (see below, somewhat
hidden in the proof of Theorem 5.4, for an outline of a direct proof), it follows
that f is continuous. But because the probability space is atomless, there are no
non-trivial linear mappings defined on L0, see [Ni]. This contradicts the property
that f(1) = 1 and ends the proof. �

Remark. Forrunning the definition of V aR, to be given in section 6, this theorem
shows, indirectly, that V aR cannot be coherent. More precisely, since V aR sat-
isfies properties 1,3 and 4 of the definition of coherent measure, V aR cannot be
subadditive.

Remark. For completeness and to illustrate why a control in probability (or in
L0–topology) is too crude, we give a sketch of the proof that there are no nontriv-
ial linear mappings defined on L0, see [Ni] for the original paper. More precisely
we show that if C ⊂ L0 is absolutely convex, closed and has non–empty interior,
then C = L0. This implies the non–existence of non-trivial linear mappings. The
proof can be given an interpretation in risk management. Indeed, the idea is to
approximate arbitrary (bounded) random variables by convex combinations of ran-
dom variables that are small in probability. We leave further interpretations to the
reader. Because C has non-empty interior, it follows that 0 is in the interior of C.
This implies the existence of ε > 0 such that for every set A ∈ F , with P[A] ≤ ε,
we have that α1A ∈ C and this for all scalars α ∈ R. Next, for η > 0 and X ∈ L∞

given, we take a partition of Ω into a finite number of sets (Ai)i≤N such that

(1) each set Ai has measure P[Ai] ≤ ε.
(2) there is a linear combination Y of the functions 1Ai such that ‖X−Y ‖∞ ≤ η.

Since the convex combinations of functions of the form αi1Ai exhaust all linear
combinations of the functions 1Ai , we find that Y ∈ C. Since C was closed we find
that X ∈ C. Finally since L∞ is dense in L0, we find that L0 = C.

The previous result seems to end the discussion on coherent measures to be defined
on L0. But economically it makes sense to enlarge the range of a coherent measure.
The number ρ(X) tells us the amount of capital to be added in order for X to
become acceptable for the risk manager, the regulator etc. If X represents a very
risky position, whatever that means, then maybe no matter what the capital added
is, the position will remain unacceptable. Such a situation would then be described
by the requirement that ρ(X) = +∞. Since regulators and risk managers are
conservative it is not abnormal to exclude the situation that ρ(X) = −∞. Because
this would mean that an arbitrary amount of capital could be withdrawn without
endangering the company. So we enlarge the scope of coherent measures as follows

Definition 5.2. A mapping ρ:→ R ∪ {+∞} is called a coherent measure defined
on L0 if

(1) If X ≥ 0 then ρ(X) ≤ 0.
(2) Subadditivity: ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).
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(3) Positive homogeneity: for λ > 0 we have ρ(λX) = λρ(X).
(4) For every constant function a we have that ρ(a + X) = ρ(X) − a.

The reader can check that the elementary properties stated in section 2 remain valid.
Also it follows from item one in the definition that ρ cannot be identically +∞.
The subadditivity and the translation property have to be interpreted liberally: for
each real number a we have that a + (+∞) = +∞.
We can try to construct coherent risk measures in the same way as we did in
theorems 2.2 and 3.2. However this poses some problems. The first idea could be
to define the risk measure of a random variable X as

sup
Q∈Pσ

EQ[−X].

This does not work since the random variable X need not be integrable for the
measures Q ∈ Pσ. To remedee this we could try:

sup
{
EQ[−X] | Q ∈ Pσ;X ∈ L1(Q)

}
or

sup
{
EQ[−X] | Q ∈ Pσ;X+ ∈ L1(Q)

}
.

Such definitions have the disadvantage that the set over which the sup is taken
depends on the random variable X. This poses problems when we try to compare
risk measures of different random variables. So we need another definition. The
idea is to truncate the random variable X from above, say by n ≥ 0. This means
that first, we only take into account the possible future wealth up to a level n. We
then calculate the risk measure, using the sup of all expected values and afterwards
we let n tend to infinity. By doing so we follow a conservative viewpoint. High
future values of wealth play a role, but their effect only enters through a limit
procedure. Very negative future values of the firm may have the effect that we
always find the value +∞. This, of course, means that the risk taken by the firm
is unacceptable. More precisely:

Definition 5.3. For a given, closed convex set, Pσ, of probability measures, all
absolutely continuous with respect to P, we define the associated support functional
ρPσ , or if no confusion is possible, ρ as

ρ(X) = lim
n→+∞

sup
Q∈Pσ

EQ [−(X ∧ n)] .

For the associated submodular function, ψ and the associated supermodular func-
tion φ, we then get:

ψ(X) = lim
n→−∞

sup
Q∈Pσ

EQ [X ∨ n] resp.

φ(X) = lim
n→+∞

inf
Q∈Pσ

EQ [X ∧ n] .

Of course we need a condition to ensure that ρ(X) > −∞, i.e. φ(X) < ∞, for all
X ∈ L0. This is achieved in the following theorem
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Theorem 5.4. With the notation of definition 5.3 we have that the following prop-
erties are equivalent

(1) For each X ∈ L0 we have that ρ(X) > −∞
(2) For each f ∈ L0

+ we have that

φ(f) = lim
n

inf
Q∈Pσ

EQ[f ∧ n] < +∞

(3) There is a γ > 0 such that for each A with P[A] ≤ γ we have

inf
Q∈Pσ

Q[A] = 0.

Under these conditions we have that ρ is a coherent risk measure defined on L0.

Proof. We first prove that (1) ⇒ (2). Let f ∈ L0
+. Clearly

−ρ(f) = − lim
n

sup
Q∈Pσ

EQ [−(f ∧ n)] = lim
n

inf
Q∈Pσ

EQ [f ∧ n] .

We next prove that (2) ⇒ (3). If 3 would not hold then for each n we would be
able to find An such that P[An] ≤ 2−n and such that

εn = inf
Q∈Pσ

Q[An] > 0.

Define now f =
∑

n
n1An

εn
. Because of the Borel–Cantelli lemma, f is well defined.

Let us also take m = n/εn. Then of course we have that for each n and for the
corresponding m:

lim
k→∞

inf
Q∈Pσ

EQ [f ∧ k] ≥ inf
Q∈Pσ

EQ[f ∧ m] ≥
(

n

εn

)
inf

Q∈Pσ

Q[An] ≥ n
εn

εn
= n,

which contradicts 2.
Let us now show that (3) ⇒ (1). For given X, let N be chosen so that P[X ≥ N ] ≤
γ, where γ is given by (3). Since for each n ≥ N we have, by (3), that

sup
Q∈Pσ

EQ [−(X ∧ n)] = sup
Q∈Pσ

EQ [−(X ∧ N)] ≥ −N,

we immediately get (1).
The last statement of the theorem is obvious. Positive homogeneity, subadditivity
as well as the translation property are easily verified. �
Proposition 5.5. The hypotheses of the previous theorem 5.4 are satisfied if for
each nonnegative function f ∈ L0, there is Q ∈ Pσ such that EQ[f ] < ∞.

The proof of the proposition is obvious. However we have more:

Theorem 5.6. If Pσ is a norm closed, convex set of probability measures, all
absolutely continuous with respect to P, then the equivalent properties of theorem
5.4 are also equivalent with:

(4) For every f ∈ L0
+ there is Q ∈ Pσ such that EQ[f ] < ∞.

(5) There is a δ > 0 such that for every set A with P[A] < δ, we can find an
element Q ∈ Pσ such that Q[A] = 0.

(6) There is a δ > 0, as well as a number K such that for every set A with
P[A] < δ, we can find an element Q ∈ Pσ such that Q[A] = 0 and ‖dQ

dP
‖∞ ≤

K.
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Remark. The proof of this theorem is by no means trivial, so let us first sketch
where the difficulty is. We concentrate on (4). Suppose that for a given nonnegative
function g, we have that

lim
n

inf
Q∈Pσ

EQ[g ∧ n] = φ(g) < ∞.

This means that for every n we can find fn ∈ Pσ such that

EP [fn (g ∧ n)] ≤ φ(g) + 1.

The problem is that the sequence fn does not necessarily have a weakly convergent
subsequence. If however we could choose the sequence (fn)n in such a way that it is
uniformly integrable, then it is relatively weakly compact, a subsequence would be
weakly convergent, say to an element f ∈ Pσ and a direct calculation then shows
that also

EP[fg] = lim
n

EP [f(g ∧ n)] = lim
n

lim
k

EP [fk(g ∧ n)]

≤ lim sup
k

EP [fk(g ∧ k)] ≤ φ(g) + 1 < +∞.

So in case Pσ is weakly compact, there is no problem. The general case however
is much more complicated and requires a careful selection of the sequence fn. The
original proof consisted in constructing a sequence fn in such a way that it be-
came uniformly integrable. This was quite difficult and used special features from
functional analysis. The present proof is much easier but in my viewpoint less
transparent. It uses the Hahn–Banach theorem directly.

Proof. It is clear that (6) ⇒ (5) ⇒ (4), which in turn implies the properties (1),(2)
and (3) of Theorem 5.4. So we only have to show that the properties (1),(2) and
(3) imply property (6). Let k > 2

γ and let A with P[A] < γ
2 be given. We will show

that 3 implies 6. We suppose the contrary. So let us take Hk = {f | |f | ≤ k, f =
0 on A}. If Hk and Pσ were disjoint we could, by the Hahn-Banach theorem,
strictly separate the closed convex set Pσ and the weakly compact, convex set Hk.
This means that there exists an element X ∈ L∞, ‖X‖∞ ≤ 1 so that

sup {E[Xf ] | f ∈ Hk} < inf {EQ[X] | Q ∈ Pσ} .

We will show that this inequality implies that ‖X1Ac‖1 = 0. Indeed if not, we
would have P[1Ac |X| > 2

γ ‖X1Ac‖1] ≤ γ
2 and hence for each ε > 0 there is a Q ∈ Pσ

so that Q[A ∪ {|X| > 2
γ ‖X1Ac‖1}] ≤ ε. This implies that the right side of the

separation inequality is bounded by 2
γ ‖X1Ac‖1. However, the left side is precisely

k‖X1Ac‖1. This implies k‖X1Ac‖1 < 2
γ ‖X1Ac‖1, a contradiction to the choice of

k. Therefore X = 0 on Ac. But then property 3 implies that the right side is 0,
whereas the left side is automatically equal to zero. This is a contradiction to the
strict separation and the implication 3 ⇒ 6 is therefore proved. �
Corollary 5.7. Let the closed convex set of probability measures Pσ satisfy the
(equivalent) conditions of theorem 5.6 (or 5.4). Then there is a constant K0 such
that all the sets, defined for K ≥ K0,

Pσ,K = {f | f ∈ Pσ and ‖f‖∞ ≤ K} ,

all satisfy the conditions of theorem 5.6.

Proof. Obvious
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Corollary 5.8. Let h be a strictly positive P-integrable random variable. If Pσ

satisfies the conditions of theorem 5.6, then there is a δ > 0 as well as a constant
K such that for each set A of measure P[A] < δ we can find an element f ∈ Pσ

such that ‖f/h‖∞ ≤ K.

Proof. It does not do any harm to normalise the function h. We therefore may
suppose that the measure dP′ = h dP is a probability, equivalent to P. When
working with the measure P′, the P-densities f ∈ Pσ have to be replaced with the
P′-densities f/h. The corollary is now a rephrasing of the theorem. �
Example 5.9. The reader might ask whether the set

Pσ,∞ = {f | f ∈ Pσ and ‖f‖∞ < ∞} ,

is dense in the set Pσ. This example shows that, in general, it is not the case.
The set Pσ is defined as follows. We start by taking an unbounded density, i.e. we
start by taking a nonnegative random variable f , such that f is unbounded and
EP[f ] = 1. Then we define:

Pσ = {λh + (1 − λ)f | 0 ≤ h ≤ 2,EP[h] = 1, 0 ≤ λ ≤ 1} .

Obviously, this set satisfies the properties of Theorem 5.6. It is also clear that the
only bounded elements in Pσ are the elements h such that ‖h‖∞ ≤ 2, i.e. where λ
is taken to be 1. The unbounded function f will never be in the closure.

Remark 5.10. In view of the discussions in the beginning of this section and after
having seen theorem 5.6, the reader might ask whether there was really a need to
have this special limit procedure. More precisely, let Pσ be a closed convex set of
probability measures, all absolutely continuous with respect to P. Suppose that Pσ

satisfies the conditions of Theorem 5.6, i.e. there is a δ > 0 such that for each set
A with P[A] ≤ δ, we can find an element Q ∈ Pσ with Q[A] = 0. The risk measure
ρ is now defined as

ρ(X) = lim
n

sup
Q∈Pσ

EQ [−(X ∧ n)] .

Is it true that also ρ(X) is given by the expression:

α(X) = sup
{
EQ [−X] | Q ∈ Pσ and X+ ∈ L1(Q)

}
?

The answer is no, as the following counter–example shows. Fix an atomless proba-
bility space. Take a number k > 1 and let K to be the set of all probability densities
g (with respect to P) such that ‖g‖∞ ≤ k. This set is a weakly compact set in L1(P).
Fix now a probability density h that is unbounded. Let Pσ be the set of all convex
combinations λh + (1 − λ)g where g ∈ K. This set is obviously closed and convex,
it is even weakly compact (since K is). Since h is unbounded it is easy to find a
P-integrable random variable X, such that EP[X+ h] = EP[X− h] = ∞. It is easy
to see that the only elements Q ∈ Pσ such that EQ[X+] < ∞ (or EQ[X−] < ∞)
are the ones in K. Hence we get that α(X) ≤ k ‖X‖L1(P), whereas ρ(X) = +∞.

Remark 5.11. The examples 4.1, 4.2 and 4.3 trivially satisfy the assumptions of
theorem 5.6. The distorted measure of example 4.5 doesn’t satisfy the assumptions
of theorem 5.6. The more general case of example 4.7 satisfies the assumptions of
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theorem 5.6 if and only if f(x) = 1 for some x < 1. This will become clear after
section 7.

The following examples show that Beppo Levi type theorems are false, even when
the set Pσ is weakly compact.

Example 5.12. We use the same notation as in example 5.10. The probability space
is supposed to be atomless. The set Pσ is the convex hull of the sets K of densities
that are bounded by 2 and the unbounded density h. The random variable X is
chosen so that EP[|X|] < ∞ but EP[X+h] = EP[X−h] = +∞. The sequence Xk is
defined as Xk = max(X,−k). Clearly Xk decreases to X. Now we have that for n
big enough the quantity EP[− (max(X,−k) ∧ n)h] = EP[h(X−∧k)]−EP[h(X+∧n)]
is smaller then −10‖X‖L1(P). We get that for n big enough the maximum is attained
for an element of K. It follows that for each k the quantity ρ(X) is bounded by
2‖X‖L1(P). But as seen before ρ(X) = +∞.

Example 5.13. This example is similar to the previous one but it does not have the
drawback that ρ(X) = +∞. We start with the same set Pσ. This time we select X
in such a way that +∞ > EP[X− h] ≥ 100‖X‖L1(P) and such that EP[X+ h] = +∞.
The sequence Xk is defined as Xk = −X− + 1{X>k}X

+. Exactly as before, for
each k the maximum expected value will be attained for an element in K and
hence ρ(X) ≤ 2‖X‖1. But Xk decreases to −X− for which the risk measure gives
ρ(−X−) ≥ 100‖X‖1.

Example 5.14. This, as well as the following example deals with increasing se-
quences. Again we use the same set Pσ. Let us take a nonnegative function f such
that EP[fh] = +∞. Define X = 0 and Xk = −f1{f>k}. Clearly Xk increases to 0
but for each k we have ρ(Xk) = +∞.

Example 5.15. In this example we fix the inconvenience that for each Xk the risk
measure gives the value +∞. This example is of a different nature and is related
to example 4.3. But this time we use a non reflexive Orlicz space to define the set
Pσ. Let us start with some notation and some review of the definition of an Orlicz
space (see [Nev] for more information on Orlicz spaces). All random variables will be
defined on the space [0, 1] equipped with the usual Lebesgue measure. To construct
an Orlicz space, we start with an increasing convex function Φ: IR+ → IR+ such that
Φ(0) = 0. Also we suppose that Φ(x)/x tends to +∞ for x → +∞. The derivative
ϕ = Φ′ should also satisfy ϕ(0) = 0 and we suppose that ϕ is continuous and
strictly increasing. (In a more general setup, not all these conditions are needed).
The space LΦ is now defined as the space of all (equivalence classes of) random
variables X such that there exists λ > 0 with EP[Φ(λ|X|)] < +∞. The norm is
then defined as

‖X‖Φ = inf
{

α > 0 | EP

[
Φ

( |X|
α

)]
≤ 1

}
.

It can be shown that this is indeed a norm and that the space LΦ is a Banach space.
With each function Φ as above, we associate the dual function Ψ. This function
has as its derivative the function which is the inverse function of ϕ. The spaces LΦ

and LΨ are in duality.
In our example we take Φ(x) = 1

2 log 2−1 ((x + 1) log(x + 1) − x). The expression
1

2 log 2−1 is introduced in order to have Φ(1) = 1 which together with Jensen’s
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inequality then implies that ‖X‖1 ≤ ‖X‖Φ for all X ∈ LΦ. The associated function
Ψ is then given by Ψ(y) = 1

2 log 2−1

(
ey(2 log 2−1) − 1

)
− y. Young’s inequality states

that EP[XY ] ≤ 2‖X‖Φ‖Y ‖Ψ. The dual of LΦ is LΨ, but the dual norm is only
equivalent (not equal) to ‖ · ‖Ψ, in fact

‖ · ‖Ψ ≤ ‖ · ‖(LΦ)∗ ≤ 2‖ · ‖Ψ.

Before defining the set Pσ, let us describe one of the pitfalls of Orlicz–space–theory.
If we define the function f(t) = log(t−1) then the function f is in LΨ. But as
can be verified by direct calculation, the norm ‖f − f ∧ k‖Ψ remains bigger than
2 log 2 − 1 = δ. This means that the bounded functions are not dense in LΨ. This
will in fact be the kernel of our example.
Let us now describe the set Pσ. Exactly as in example 4.3, we take

Pσ = {h | h ≥ 0,EP[h] = 1 and ‖h‖Φ ≤ 2} .

From de la Vallée Poussin’s theorem (on uniform integrability) it follows that Pσ

is weakly compact. Let us now take the function f = log(t−1) as above and let
X = 0 and Xk = −f1{f>k}. It follows from Young’s inequality that ρ(−f) < +∞.
Clearly Xk increases to 0. Since ‖Xk‖Ψ ≥ δ, we get the existence of an element gk

such that ‖gk‖Φ = 1 and such that EP[gk(−Xk)] ≥ δ/4. Since EP[gk] ≤ ‖g‖LΦ ≤ 1
we get that the function hk = gk + 1−EP[gk] is in Pσ. And of course we have that
EP[hk(−Xk)] ≥ δ/4. All this shows that ρ(Xk) does not decrease to zero.
The reader can check that the method used in the example above yields the following
generalization of the result 4.4.

Proposition 5.16. With the above notation for Young functions Φ with Φ(1) = 1,
and for

Pσ = {h | h probability density on Ω with ‖h‖Φ ≤ K} ,

where K ≥ 1, there is a constant δ = min(K−1, 1) > 0 such that for all nonpositive
random variables X, we have

δ‖X‖Ψ ≤ ρ(X) ≤ 2K‖X‖Ψ

Remark. It is of course a trivial consequence of the Beppo Levi theorem that the
following holds:
If (Xn)n≥1 is a sequence that is uniformly bounded from above and decreases to a
function X, then ρ(Xn) increases to ρ(X).

Remark. By choosing the appropriate sets Pσ, we can find measures that are related
to entropy or to the Esscher premium calculation principles. Based on a suggestion
by the author, premium calculation principles based on Orlicz norms were intro-
duced in [HG]. However, the premium calculation principles studied there, do not
satisfy the translation property.

6. The relation with V aR

The aim of this section is to give the relationship between coherent risk measures
and the popular, although not coherent, measure V aR. We will restrict the analysis
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for risk measures that are defined on L∞. The extension to the space L0 is straight-
forward provided the properties of theorems 5.4 and 5.6 are satisfied. It is not easy
to find a mathematically satisfactory definition of what is usually meant by V aR.
Expressions such as “V aR summarizes the maximal expected loss within a given
confidence interval” are hard to translate into a mathematical formula. The best
we can do is to define V aR as a quantile of the distribution of the random variable.
We start by defining what is meant by a quantile, see [EKM] for a discussion on
how to estimate quantiles for extreme value distributions.

Definition 6.1. If X is a real valued random variable, if 0 < α < 1, then we say
that q is an α-quantile if P[X < q] ≤ α ≤ P[X ≤ q].

It is easy to see that the set of quantiles forms a closed interval with endpoints q−α
and q+

α . These endpoints can be defined as

q−α = inf {q | P[X ≤ q] ≥ α}
q+
α = inf {q | P[X ≤ q] > α} .

The fact that there are different values for a quantile will cause some troubles in the
formulation of the theorems. Fortunately for a fixed variable X, the two quantiles
coincide for all levels α, except on at most a countable set.
We also use the following

Definition 6.2. The quantity V aRα(X) = −q+
α (X) is called the value at risk at

level α for the random variable X.

We start with a characterisation of coherent risk measures that dominate V aR, this
means that for every bounded random variable X, we have that ρ(X) ≥ V aRα(X).

Theorem 6.3. A coherent risk measure ρ dominates V aRα for bounded random
variables, if and only if for each set B, P[B] > α and each ε > 0, there is a measure
µ ∈ Pba such that µ(B) > 1 − ε.

Proof. We first prove necessity. Take ε > 0 and a set B such that P[B] > α. Since
V aRα(X) = 1 for the random variable X = −1B , we conclude from the inequality
ρ ≥ V aRα, that there is a measure µ ∈ Pba such that µ(B) ≥ 1 − ε.
For the sufficiency we take a random variable X as well as ε > 0 and we consider
the set B = {X ≤ q+

α + ε}. By definition of V aR, we get that P[B] > α. There
exists a measure µ ∈ Pba with the property µ(B) ≥ 1−ε. This gives the inequality

ρ(X) ≥ Eµ[−X] ≥ Eµ[−X1B ] − ε‖X‖∞ ≥ (1 − ε)(V aRα(X) − ε) − ε‖X‖∞.

Since the inequality holds for every ε > 0, we get the result ρ ≥ V aRα. �

Example 6.4. There are risk measures, satisfying the Fatou property, that dominate
V aRα but that do not dominate −q−α . We will construct a coherent risk measure ρ
and a set B of measure exactly equal to α such that supµ∈Pσ

µ(B) = 0. This will
do, since for X = −1B , we then have that q−α (X) = −1. The construction goes as
follows. As probability space we take the unit interval [0, 1] with the Borel sigma
algebra F and the Lebesgue measure, which we denote by P. We will now describe
a set of probability measures (or better a set of densities) P. The set Pσ is then
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the closed convex hull of P. For each set B of measure P[B] > α, we define the
density

hB =
1B∩[0,1−α]

P [B ∩ [0, 1 − α]]
.

The set P is defined as the set

P = {hB | P[B] > α} .

It follows from the construction that the properties of theorem 6.3 are fulfilled and
hence the corresponding risk measure ρ(X) = supP[B]>α EP[(−X)hB ] dominates
V aRα. But ρ(−1[1−α,1]) = 0 since all the densities are supported by [0, 1 − α]. As
easily seen we also have that q−α

(
−1[1−α,1]

)
= −1 and hence ρ does not dominate

the function −q−α .
The example has a little disadvantage. The risk measure ρ is not relevant. This
can be repaired by adding the measure P to the set P. We get that ρ is relevant
and we still have the inequality ρ(−1[1−α,1]) = P [[1 − α, 1]] = α < 1.
We end the discussion of this example with the following result, proved in the same
way as theorem 6.3.

Proposition 6.5. For a coherent risk measure the following are equivalent
(1) The risk measure is bigger than −q−α .
(2) For each set B, P[B] ≥ α and each ε > 0, there is a measure µ ∈ Pba such

that µ(B) > 1 − ε.

Corollary 6.6. If (Ω,F , P) is atomless, if Pσ is weakly compact in L1 and if ρ
dominates V aR, then ρ also dominates −q−α .

Proof. If P[A] = α, then we simply take a decreasing sequence of sets An of measure
P[An] > α, whose intersection is A. This can be done since the space is atomless.
For each n we can find hn ∈ Pσ such that EP[hn1An ] ≥ 1 − 1/n. Since the set Pσ

is weakly compact, the sequence hn has a weakly convergent subsequence, whose
limit we denote by h. Clearly (by weak compactness, i.e. uniform integrability) we
have that EP[h1A] = 1. The corollary now follows. �
Proposition 6.7. If ρ:L∞ → IR is a coherent risk measure that satisfies the Fatou
property and is defined with the set Pσ, if the extension ρ:L0 → IR∪{+∞} defined
as

ρ(X) = lim
n

sup
Q∈Pσ

EQ[−(X ∧ n)]

satisfies ρ(X) > −∞ for all X ∈ L0, if ρ dominates V aR for bounded random
variables, then ρ dominates V aR for all random variables.

Proof. The proof of this proposition is obvious. �
We now can give the first theorem on the relation between V aR and coherent risk
measures.

Theorem 6.8. For each bounded random variable X and each α, 0 < α < 1, we
have that

V aRα(X) = min {ρ(X) | ρ ≥ V aR, ρ coherent with the Fatou property } .
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Since V aR is not coherent this shows that there is no smallest coherent risk measure
that dominates V aRα.

Proof. We only have to show that for X given, we can find a coherent risk measure
that dominates V aRα and with the property that ρ(X) ≤ V aRα(X). For each
ε > 0, the set C = {X ≤ q+

α + ε} has measure P[C] > α. But the definition of q+
α

implies that P[X < q+
α ] ≤ α. It follows that the set D = {q+

α ≤ X ≤ q+
α + ε} has

strictly positive measure. Take now an arbitrary set B with measure P[B] > α.
Either we have that P[B ∩ Cc] �= 0, in which case we take hB = 1B∩Cc

P[B∩Cc] or we
have that B ⊂ C. In this case and because P[X < q+

α ] ≤ α we must have that
P[B ∩ D] > 0. We take hB = 1B∩D

P[B∩D] . The risk measure ρ is then defined as
ρ(Y ) = supP[B]>α EP[(−Y )hB ]. By theorem 6.3 we have that ρ dominates V aR

but for the variable X we find that EP[(−X)hB ] is always bounded by −q+
α , i.e.

ρ(X) ≤ V aRα(X). It follows that ρ(X) = V aRα(X). �
In order to prove the second theorem on the relation between V aR and coherent
risk measures, we need a characterisation of atomless spaces. (Compare proposition
5.4 in [ADEH2], where another, but not unrelated, kind of homogeneity of the space
Ω is used). The proof of the following proposition is left to the reader.

Proposition 6.9. For a probability space (E, E , Q) the following are equivalent
(1) The space is atomless.
(2) The space supports a random variable with a continuous distribution.
(3) Every probability measure on R is the distribution of a random variable

defined on E.
(4) There is an i.i.d. sequence of random variables fn such that Q[fn = 1] =

Q[fn = −1] = 1/2.
(5) Given a distribution ν on R, there is an i.i.d. sequence fn with distribution

ν.

Theorem 6.10. Suppose that (Ω,F , P) is atomless, suppose that ρ is a coherent
risk measure that satisfies the Fatou property, dominates V aRα and only depend
on the distribution of the random variable, then ρ ≥ WCMα (see example 4.2 for a
definition of WCM). In other words WCMα is the smallest coherent risk measure,
dominating V aR and being distribution invariant.

Proof. We first show that

ρ(X) ≥ EP[−X | X ≤ q+
α ].

So let us take ε > 0. The set A = {X ≤ q+
α +ε} has measure P[A] > α, by definition

of q+
α . The variable Y defined as

Y = X on Ac and Y = EP[X | A] on A

satisfies V aRα(Y ) = EP[−X | A] and hence ρ(Y ) ≥ EP[−X | A]. We will now
show that ρ(Y ) ≤ ρ(X), which will then prove the statement ρ(X) ≥ EP[−X |
X ≤ q+

α + ε]. To achieve this goal, we consider the atomless probability space
(A,F ∩ A, P[ . | A]). On this space we consider an i.i.d. sequence of functions fn

each having the same distribution as X under the measure P[ . | A]. For each n we
define the random variable

Xn = X on Ac and Xn = fn on A.
25



The sequence Xn is a sequence of identically distributed random variables and the
strong law of large numbers implies that X1+...Xn

n tends to Y almost surely. The
convexity and the Fatou property then imply that

ρ(Y ) ≤ lim inf ρ

(
X1 + . . . Xn

n

)
≤ lim inf

1
n

n∑
1

ρ(Xn) = ρ(X).

So we obtain that ρ(X) ≥ EP[−X | X ≤ q+
α + ε]. If we let ε tend to zero, the right

hand side converges to EP[−X | X ≤ q+
α ] and we get the inequality

ρ(X) ≥ EP[−X | X ≤ q+
α ].

Unfortunately the conditional expectation does not define a coherent risk measure.
This is due to the fact that quantiles are not continuous with respect to any rea-
sonable topology. So we still need an extra argument. Since the space is atomless
we can, as can be shown easily, find a decreasing sequence of random variables
X + 1/n ≥ Zn ≥ X, tending to X in �L∞–norm and such that each Zn has a
continuous distribution. For each n we then have that

ρ(Zn) ≥ EP[−Zn | Zn ≤ q+
α (Zn)] = WCMα(Zn).

If n tends to infinity the left hand side tends to ρ(X). The right hand side tends
to WCMα(X). �
Corollary 6.11. Suppose that (Ω,F , P) is atomless, suppose that ρ is a coherent
risk measure that satisfies the Fatou property, dominates V aRα and only depends
on the distribution of the random variable, then ρ also dominates the function −q−α .
In particular WCMα dominates −q−α .

Proof. We only have to show that WCMα dominates −q−α . This follows directly
from corollary 6.6.

7. Convex Games and Comonotone Risk Measures

This section describes the relation between convex games and some coherent risk
measures. The basic tool is Choquet integration theory, also called non linear
integration. The use of non linear premium calculation principles was investigated
by Denneberg [De1]. In [De2] the relation with Choquet integration theory is
developed. In Delbaen, [D1], and Schmeidler, [Schm1], the reader can find the
basics of convex game theory needed in this section.

Definition 7.1. A 2-alternating, or strongly superadditive or supermodular, set
function is defined as a function w:F → IR+, that satisfies the property

(1) w(A ∩ B) + w(A ∪ B) ≤ w(A) + w(B).
If moreover

(2) A = B, P a.s., implies w(A) = w(B),
we say that w is absolutely continuous with respect to P. A game is defined as a
function v:F → R+.
A convex game, defined on the space (Ω,F , P) is defined as a function v:F → R+

such that
(1) v(A ∩ B) + v(A ∪ B) ≥ v(A) + v(B).
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If moreover

(2) A = B, P a.s., implies w(A) = w(B),

we say that v is absolutely continuous with respect to P

Convex games v and 2-alternating functions w are related through the relations
v(Ω) = w(Ω) and v(A) = v(Ω) − w(Ac). The number v(A) is interpreted as the
minimum, the coalition A, has to get. If the relation between v and w is used
to transform a convex game into a 2-alternating function, the quantity w(A) is
interpreted as the maximum the coalition A is allowed to get.

Remark. In this section, we will mostly require that the game or the 2-alternating
set function is “absolutely continuous” with respect to P. We need this property in
order to use P as a control measure. See example 4.8 and example 7.9 below.

Definition 7.2. The core C(v), of the game v is the set of all finitely additive
nonnegative measures µ ∈ ba(Ω,F), such that µ(Ω) = v(Ω) and such that for all
sets A ∈ F we have µ(A) ≥ v(A). The σ-core, Cσ(v) is the set of all σ–additive
measures in the core.

Remark. In case the game v is absolutely continuous with respect to P, it is easily
seen that C(v) (resp. the σ–core Cσ(v)) is actually a subset of ba(Ω,F , P) (resp.
L1(Ω,F , P)). Indeed if P[A] = 0, then for µ ∈ C(v) we necessarily have that
µ(Ac) ≥ v(Ac) = v(Ω). This implies that µ(A) = 0.
In [Schm1] and [D1] the reader can find the following properties of the core of a
game v.

(1) The core of a convex game is non empty.
(2) The core is a weak∗ compact convex subset of ba.
(3) If for each increasing sequence An, with union equal to Ω, the numbers

v(An) tend to 1, then the core is a weakly compact subset of L1.
(4) For a bounded nonnegative function X the following equality holds (again

we used the relation between v and the 2-alternating set function w):

ψ(X) = sup
µ∈C(v)

Eµ[X] =
∫ ∞

0

w(X > x) dx, and

φ(X) = inf
µ∈C(v)

Eµ[X] =
∫ ∞

0

v(X > x) dx.

(5) If v(Ω) = 1, then ρ(X) = ψ(−X) = supµ∈C(v) Eµ[−X] = − infµ∈C(v) Eµ[X],
defines a coherent risk measure.

Definition 7.3. Two functions X and Y defined on Ω are said to be comonotone
if almost surely (X(ω) − X(ω′))(Y (ω) − Y (ω′)) ≥ 0 for the product measure P ⊗ P

on Ω × Ω.

Schmeidler, [Schm2] proved the following

Theorem 7.4. The coherent risk measure ρ comes from a convex game v, i.e.

ρ(X) = ψ(−X) = sup
µ∈C(v)

Eµ[−X],
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if and only if ρ is comonotone, i.e. ρ(X + Y ) = ρ(X) + ρ(Y ) for comonotone
functions X and Y .

In [D1], section 12, an example of a convex game was given, using so called distorted
measures. The example given there, corresponds to the function f(x) = 1−e−x

1−e−1 of
theorem 7.5 below. More precisely the following holds

Theorem 7.5. If f : [0, 1] → [0, 1] is an increasing concave function such that
f(0) = 0 and f(1) = 1, then the function w(A) = f(P[A]) defines a 2-alternating
set function. If f is continuous (at 0), then the core of the associated game v is a
weakly compact set in L1.

Proof. We only have to show that the function w is 2-alternating, the rest follows
from the general theorems stated above. As we will see below, the function f
satisfies: for 0 ≤ x, y, z and x + y + z ≤ 1:

f(x + z) + f(y + z) ≥ f(z) + f(x + y + z).

If we now take x = P[A \ B], y = P[B \ A], z = P[A ∩ B], we get the desired result.
The inequality for f can be proved as follows:

f(x + z) + f(y + z) = f(x + z) + f(z) +
∫

]z,z+y]

f ′(du)

≥ f(x + z) + f(z) +
∫

]x+z,x+z+y]

f ′(du) by concavity of f

≥ f(z) + f(x + y + z).

�
Corollary 7.6. For 0 ≤ β ≤ 1, the function f(x) = xβ defines a 2-alternating
set function w(A) = (P[A])β . We also have that ψ(X) =

∫ ∞
0

P[X > x]β dx for
nonnegative functions X. The examples 4.2, 4.5 and 4.7 above therefore define a
coherent measure. For 1 ≥ β > 0 we have that Pσ is weakly compact.

Remark 7.7. We state without further proof that for 0 < α < 1 and for the function
defined as f(x) = x/α if x ≤ α and f(x) = 1 for x ≥ α, the 2-alternating function
w(A) = f(P[A]) defines a convex game, that has as its core, the set Pσ of example
4.2. Therefore the risk measure WCMα is comonotone. The set in example 4.3,
cannot be obtained as the core of a convex game. We verify this using comono-
tonicity and under the extra assumption that the probability space is atomless. Let
us, for β > 1, define

Pσ =
{
f | 0 ≤ f,EP[f ] = 1,EP[f2] ≤ β2

}
.

Take two sets B ⊂ A such that P[B] < P[A] = 1
β2 . If the risk measure were

comonotone, then the same function f ∈ Pσ could be used to calculate ρ(−1A)
and ρ(−1B). But as easily seen, the function f = 1A

P[A] gives EP[f1A] = ρ(−1A),
whereas for −1B the optimal function is different from f . Indeed some functions
of the form f ′ = λ1B + (1 − λ) with 0 < λ < 1 yield a greater value. The reader
can check, but this is not necessary to obtain the result, that the optimal function
for −1B is indeed of the form λ 1B

P[B] + (1−λ), where λ is chosen so that ‖f ′‖2 = β.

In [Pa], Parker investigates the existence of σ–additive elements in the core of a
game. This problem is related to our section 3. Especially theorem 3.2 can be
translated as follows
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Theorem 7.8. Let v be convex game as described in definition 7.1. Suppose that
v is continuous from above, i.e. for each decreasing sequence of sets An with inter-
section A we have that v(A) = limn v(An). In that case the σ–additive elements of
the core of v, the σ–core Cσ(v), is weak∗ dense, i.e. σ(ba, L∞), in the core C(v).

Remark. We remark that the above theorem does not use regularity assumptions.
In this sense the theorem generalises the results of [Pa].

Proof. For simplicity and without loss of generality we may suppose that v(Ω) = 1.
If X is a nonnegative bounded random variable then we can write

φ(X) = inf
µ∈C(v)

Eµ[X] =
∫ ∞

0

v(X > x) dx.

If Xn is a sequence of random variables, 0 ≤ Xn ≤ 1, and tending a.s. to a random
variable X, then for each ε > 0 we can write

φ(X) =
∫ 1

0

v({X > x}) dx ≥
∫ 1

0

lim
n

v (∪m≥n{Xm > x + ε}) dx

≥
∫ 1

0

lim sup
m

v({Xm > x + ε}) dx ≥ lim sup
m

∫ 1

0

v({Xm > x + ε}) dx

≥ lim sup
m

∫ 1

0

v({Xm > x}) dx − ε ≥ lim sup
m

φ(Xm) − ε.

The first inequality is an immediate consequence from the inclusion {X > x} ⊃
∩n ∪m≥n {Xm > x + ε} and the continuity of v from above. The second inequality
follows from monotonicity of v, the third inequality is Fatou’s lemma and the fourth
inequality follows via a change of variables x + ε into x. Since ε was arbitrary we
get that ρ satisfies the Fatou property. Theorem 3.2 can now be applied. �

Example 7.9 or example 3.8 again. Let us take Ω = [0, 1] and F the Borel sigma
algebra on [0, 1]. The game v is defined as follows v(A) = 1 if A is a set of second
category, i.e. contains a dense Gδ set. Otherwise we put v(A) = 0. The reader can
check that v is a convex game and that v is continuous from above. However if µ is
an element of the core, we must have that µ(A) = 1 if A is a set of second category.
From this it follows that µ(A) = 0 if the set A is of first category. Exactly as in
example 3.8, this shows that µ cannot be σ–additive. It follows that Cσ(v) = ∅.
This shows that some kind of control measure is needed.
In [Pa], Parker refers to [Bi] for an example of a convex game, continuous from
above, and such that the σ–core is empty. The example in [Bi] is based on Ulam’s
work, [Ul]. This work is based on the continuum hypothesis, more precisely it is
based on the hypothesis that the continuum is not a weakly measurable cardinal.
See also [Ha], remark at the end of exercise 3 of chapter 3, section 16, for a related
problem. The present example 7.9, is not based on such assumptions of set theory.
The discussions in [Pa] and [Bi] show that statements such as in theorem 7.8, quickly
turn into problems of set theory.
The following theorem generalises theorem 7 in [Pa].

Theorem 7.10. Let v be a convex game defined on (Ω,F , P). Suppose that v is
continuous from above and absolutely continuous with respect to P. Then for every
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finite chain of elements of F , say A1 ⊃ A2 · · · ⊃ An, there is an element f ∈ Cσ(v)
such that for all k ≤ n we have

∫
Ak

f dP = v(Ak)

Proof. Without loss of generality we may suppose that for k ≤ n − 1 we have
that P[Ak] > P[Ak+1] > 0. Also we suppose that v(Ω) = 1. Let g be defined as
g =

∑
1≤k≤n 1Ak

. The σ–core Cσ(v) is a closed convex bounded set of L1(P). Take
now 1/4 > ε > 0, but otherwise arbitrary. By the Bishop–Phelps theorem, [Di] and
[BP], there is a function h ∈ L∞ such that ‖g − h‖∞ < ε and such that

∫
hf dP

attains its minimum on the σ–core. Let f be such that the minimum is attained.
Since the minimum is attained and since the σ–core is weak∗ dense in the core (by
theorem 7.8), we have that

∫
hf dP =

∫ ∞

0

v(h > x) dx.

Also since f is in the σ–core and hence in the core, we therefore have that for
almost every x,

∫
{h>x} f dP = v(h > x). By the choice of ε, we have that for

k − 3/8 ≤ x ≤ k − 1/4 the sets {h > x} and Ak coincide and this implies that for
every k,

∫
Ak

f dP = v(Ak). �

Corollary. If g is F measurable and if g takes only a finite number of values, then
there is f ∈ Cσ(v) such that

∫
gf dP = min

µ∈C(v)
µ[g].

Remark. The above theorem generalises theorem 7 in [Pa] since it does not use
topological regularity of the game v. However there is no hope to generalise the
result to infinite chains, compare theorem 5 in [Pa] and lemma 2, corollary 3 of
section 2 in [D1]. Indeed such a generalisation would then imply, by the James’
characterisation of weakly compact sets, see [Di], that the σ–core is weakly compact.
This is true if and only if v is also continuous from below at Ω (and therefore also
at every set in F).

8. Some explicit examples

We conclude this paper with some explicit examples that show how different the
risk measures can be. Since only the order of convergence is important we do
not bother about the fact that distorted probability measures do not satisfy the
relations of theorem 5.4. The reader can easily adapt the analysis.

Example 8.1 The one sided normal distribution:. In this case we suppose that X =

−f , where P[f ≥ x] =
√

2
π

∫ +∞
x

e−u2/2 du for x ≥ 0. For x0 > 0 given and big
enough, we have that E[f | f ≥ x0] is approximately equal to x0. It follows that
if x0 = V aRα, the quantities Value at Risk and the WCMα almost coincide. See
[EKM] for the details of the calculation. The risk measures of the form ρβ(X) =∫ ∞
0

P[f ≥ x]β dx behave differently. A quick calculation shows that ρβ(X) is of the
order 1√

β
. Of course, since normal variables are unbounded, we must have that

limβ→0 ρβ(X) → ‖X‖∞ = ∞. But the order of convergence is only a square root.
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Example 8.2 The case of the exponential distribution. Here we assume that P[f ≥
x] = e−x for x ≥ 0. Since in this case we have that E[f | f ≥ x0] = x0 + 1, it turns
out that the Value at Risk and the WCM measures differ by just one unit. The
distorted measures ρβ(X) = 1/β tend (of course) to ∞ but this time faster than in
the case of a normal distribution.

Example 8.3 The case of Pareto like distributions. Here we assume that for x ≥ 0
we have P[f ≥ x] = 1

(x+1)α for some fixed α > 0. Calculus shows us that E[f | f ≥
x0] = α+1

α−1x0 if α > 1 and equals ∞ in case α ≤ 1. This means that WCM is α+1
α−1

as big as V aR. For the distorted measures of example 4.5 we find ρβ(X) = 1
αβ−1 if

β > 1/α and ∞ if not. This means that for β small, the risk measure ρβ gives us ∞
as a result. This coincides with the intuition that for small α the risk involved in
Pareto distributions is too high to find an insurance. What small means is subject
to personal risk aversion.
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