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Abstract. Network creation games have been studied in many different
settings recently. These games are motivated by social networks in which
selfish agents want to construct a connection graph among themselves.
Each node wants to minimize its average or maximum distance to the
others, without paying much to construct the network. Many general-
izations have been considered, including non-uniform interests between
nodes, general graphs of allowable edges, bounded budget agents, etc. In
all of these settings, there is no known constant bound on the price of
anarchy. In fact, in many cases, the price of anarchy can be very large,
namely, a constant power of the number of agents. This means that we
have no control on the behavior of network when agents act selfishly.
On the other hand, the price of stability in all these models is constant,
which means that there is chance that agents act selfishly and we end
up with a reasonable social cost.
In this paper, we show how to use an advertising campaign (as intro-
duced in SODA 2009 [2]) to find such efficient equilibria in (n, k)-uniform
bounded budget connection game [10]; our result holds for k = ω(log(n)).
More formally, we present advertising strategies such that, if an α frac-
tion of the agents agree to cooperate in the campaign, the social cost
would be at most O(1/α) times the optimum cost. This is the first con-
stant bound on the price of anarchy that interestingly can be adapted to
different settings. We also generalize our method to work in cases that
α is not known in advance. Also, we do not need to assume that the
cooperating agents spend all their budget in the campaign; even a small
fraction (β fraction) of their budget is sufficient to obtain a constant
price of anarchy.
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1 Introduction

In network creation games, nodes construct an underlying graph in order to
have short routing paths among themselves. So each node incurs two types of
costs, network design cost which is the amount of the contribution of the node



in constructing the network, and network usage cost which is the sum of the
distances to all other nodes. Nodes act selfishly, and everyone wants to minimize
its own cost, i.e. the network design cost plus the usage cost. The social cost in
these games is equal to sum of the costs of all nodes.

To study the behavior of social networks, we try to understand how large
the social cost can be in presence of selfish agents. Formally, we have a set of
selfish agents N = {1, 2, · · · , n}. Agent i chooses some strategy si ∈ Si from
its set of possible strategies (actions) Si. Combining these strategies of players,
we get the strategy profile s = (s1, s2, · · · , sn) among the set of all strategy
profiles ×ni=1Si. For each 1 ≤ i ≤ n, player i has value function vi that maps
each strategy profile s to some value vi(s) for player i. Since agents are acting
selfishly, they try to maximize their own values. In particular, we are interested in
Nash Equilibriums which are the stable strategy profiles of this game. A strategy
profile s = (s1, s2, · · · , sn) is a Nash equilibrium if and only if for each player i,
strategy si is argmaxs′

i
∈Si

vi(s1, s2, · · · , si−1, s′i, si+1, · · · , sn).
Nash Equilibria are the stable networks in which every agent is acting self-

ishly. Intuitively, in a Nash Equilibrium every agent has no incentive to change
her strategy assuming all other agents keep the same strategies. In this setting,
the price of anarchy is the worst ratio of the social cost of Nash Equilibria and
the optimal social cost of the network which can be designed by a central au-
thority. In our setting, the social cost of a strategy profile s is the sum of players’
values for s, i.e.

∑n
i=1 vi(s).

The price of anarchy is introduced by Koutsoupias and Papadimitriou in
[9, 11], and is used to measure the behavior of the games and networks with
selfish agents. The small values of price anarchy shows that allowing agents to
be selfish does not increase the social cost a lot. On the other hand, large values
of price of anarchy means that the selfish behavior of agents can lead the whole
game (network) to stable situations with large social cost in comparison with
the optimal cases.

Model In a network creation game, there is a set of selfish nodes. Every node can
construct an undirected1 edge to any other node at a fixed given cost. So the
strategy set of each node is a subset of other nodes (as its neighbors). Each node
also incurs a usage cost related to its distance to the other nodes. So the usage
cost of a node is the sum of its distances to all other nodes. Clearly every node is
trying to minimize its own total cost, i.e. usage cost plus the construction cost.
So every player’s value is negative its cost.

In another variant of network creation games, called (n, k)-uniform bounded
budget connection game, we have n nodes in the graph, and each node can
construct up to k edges to other nodes. So every node only have the usage cost,
but its budget to build edges is limited. The strategy set of each node is a subset
of size at most k of other nodes. In both directed and undirected settings, an
edge is built if both of its endpoints have the edge in their strategy sets. Edge

1 One can get the same results using the same techniques and maintaining two ingoing
and outgoing trees from the root for directed graphs as well.



(i, j) is constructed if and only if j ∈ si and i ∈ sj . For undirected graphs, every
node can have k edges in its strategy, and for directed graphs every node can
have k incoming and k outgoing edges in its strategy.

The advertising campaign scenario can be applied to different game theoretic
situations. In these scenarios, we can encourage people using a public service
advertising to follow a specific strategy. We can design the strategy to improve
the social cost.

In our model, we find an advertising strategy to reduce the price of anarchy,
and control the behavior of selfish nodes. We do not need everyone to help us to
achieve a small price of anarchy. We assume that α fraction of people are willing
to follow our strategy, and each of them agrees to spend β fraction of its budget
in the campaign. Formally, we assume that every node accepts to contribute in
the campaign with probability α. We call these users receptive users as used in
the literature [2]. Every receptive person is willing to use βk of its edges for the
campaign. At first we assume that α and β are some known parameters, and we
present an strategy that leads the network to an equilibrium with small price
of anarchy. Then we adapt our strategies to work in cases that α and β are not
known in advance, but some lower bounds on these two parameters are given.
To get constant bounds on the price of anarchy, we assume that k is greater than
c logn
αβ for some sufficiently large constant c.

Previous Work Fabrikant et al. introduced the network creation games [6]. They
studied the price of anarchy in these games, and achieved the first non-trivial
bounds on it. They studied the structure of Nash Equilibria, and conjectured
that only trees can be stable graphs in this model. Later, Abers et al. came
up with an interesting class of stable graphs, and disproved the tree conjecture
[1]. They also presented better upper bounds on the price of anarchy. They
proved that the price of anarchy can not be more than O(n1/3) in general, and
in some cases they gained a constant upper bound on the price of anarchy. Corbo
and Parkes in [3] considered a slightly different model called bilateral network
formation games, and studied the price of anarchy in this model. They were able
to prove a O(

√
c) upper bound on the price of anarchy where c is the cost of

constructing one edge in their model. Since c can be as large as n, this bound is
also as large as n to the power of a constant.

Demaine et al. studied the sizes of neighborhood sets in the stable graphs,
and with a recursive technique, they presented the first sub-polynomial bounds
on the price of anarchy [5]. They also studied a variant of these games called
cooperative network creation games, and they were able to achieve the first
poly-logarithmic upper bounds on the price of anarchy [4]. This result actually
shows that the diameter of stable graphs is poly-logarithmic which implies the
small-world phenomenon in these games. For more details about the small world
phenomenon, we refer to Kleinberg’s works [7, 8].

Laoutaris et al. studied the network creation games in the bounded budget
model [10]. They claimed that in many practical settings a selfish agent can not
build an arbitrary number of edges to other nodes even if there is an incentive
for the node in building the edge. In this model, every node has a limited amount



of budget, and according to the limit, each node can build up to a given number
of edges. They call these games uniform bounded budget connection games,
they achieve both sub-linear upper and lower bounds on the price of anarchy

in these games. They prove that the price of anarchy is between Ω(
√

n/k
logk (n) ),

and O(
√

n
logk (n) ) where n and k are respectively the number of nodes, and the

maximum number of edges that each node can have in these games. Although
this is an interesting model in the sense that each node has a limited number of
edges, the price of anarchy can be very large in these games.

In many games including network creation, selfish routing, fair cost sharing,
etc, the cost of a stable graph can vary in a large range. In other words, we have
both low cost and high cost Nash Equilibria. Balcan et al. claim that in such
games one can hope to lead the game to low cost Equilibria using a public service
advertising service [2]. They study the price of anarchy using some advertising
strategies. In some cases like fair cost sharing, they present advertising strategies
that reduce the price of anarchy to a constant number, and in some other games
like scheduling games, they show that there exists no useful advertising strategy.

Our Results Since the uniform games have a very large price of anarchy [10],
we try to find advertising strategies to reduce the price of anarchy to a constant
number in uniform bounded budget games. This way we can be sure that the
degree of each node is bounded, so no one is overwhelmed in the network. On
the other hand, we also know that the price of anarchy is small, so the behavior
of these games is under control.

Formally, we present an advertising strategy that leads the game to Equilibria
with price of anarchy at most O(1/α) where α is the fraction of nodes that
follow our strategy. We do not assume that everyone is willing to contribute in
our strategy, and even if α is very small, we still get small price of anarchy. We
also do not assume that every node that contributes in our strategy is willing to
spend all its k edges as we say. We just use βk edges of a player that contributes
in the advertising strategy where 0 < β < 1 can be a small constant.

In Section 2, we present an advertising strategy that knows the values of α
and β in advance. Then in Section 3, we adapt our strategy to work in cases
that these two parameters are not given in the input. However we assume that
two lower bounds on values of α and β are given in Section 3.

2 How the Public Service Advertising affects the price of
anarchy

In this section we present strategies that lead the network to stable graphs with
low social costs in both undirected and directed graphs settings. At first, we
present our strategy and its analysis for undirected setting which is simpler.
We assume that every node follows our strategy with probability α. We call
these follower nodes receptive nodes because of their interest in the advertised
strategy. We also do not ask a person to spend all its budget in our strategy.



A receptive node just has to spend βk edges in our strategy (0 < β < 1), and
can use the rest of its edges arbitrarily. At first we assume that α and β are
some given parameters in advance. In Section 3, we change our strategies to be
adaptive and work when these parameters are not revealed in advance.

2.1 Advertising Strategy for Undirected Setting

In this part, assume that the edges are undirected and every node wants to
minimize its total distance to all other nodes. The main idea is to make a low
diameter subgraph using the receptive nodes, and use this low diameter sungraph
as a global hub to route other nodes’ traffic as well. Every receptive node is willing
to spend βk of its budget for the advertising campaign. We ask every receptive
node to use βk/2 of its budget to form a low diameter subgraph between receptive
nodes, and the other half of its budget for non-receptive nodes. We explain in our
strategy how the receptive nodes should manage the β fraction of their budget
in our campaign. The other 1 − β fraction of budgets of receptive nodes, and
the whole budget of non-receptive nodes is managed selfishly like all other game
theoretic settings.

The advertising strategy is as follows. Define k′ to be αβ
c log (n)k for a sufficiently

large constant c, i.e. c ≥ 5 would work. We assume that k′ > 1, i.e. k is greater

than c log (n)
αβ . We partition the nodes into l ≤ logk′ (n) sets S1, S2, · · · , Sl such

that |S1| = βk/6, and |Si+1|
|Si| = k′ for each 1 ≤ i < l. Note that the only

important properties of these sets are their sizes. For example, we can set S1 to
be the nodes 1, 2, · · · , |S1|, set S2 to be the nodes |S1|+ 1, · · · , |S1|+ |S2|, and so
on.

We ask nodes in the first set S1 to construct edges to all other nodes in
set S1. So every receptive node in set S1 uses βk/6 − 1 edges to get directly
connected to all other nodes in S1. For i > 1, we ask each node in set Si to pick
c log (n)/6α nodes randomly from set Si−1 and construct edges to them. Note

that c log (n)/6α is at most βk/6 because k is greater than c log (n)
αβ .

On the other hand nodes in set Si−1 receive some edges from set Si. We ask
all receptive nodes to accept up to βk/3 edges coming from their lower sets. So
if a receptive node u ∈ Si wants to make an edge to a receptive node v ∈ Si−1
which also has not exceeded its βk/3 budget in our strategy, this edge (u, v) will
be accepted.

So we can not assume that every proposed edge in our strategy is accepted.
For example if a non-receptive node receives an edge, the node might delete the
edge, e.g. the node is not interested in our strategy.

Even if the node in set Si−1 is receptive, the edge is not necessarily accepted.
Assume that the node v ∈ Si−1 receives more than βk/3 edges from set Si, node
v deletes some of this proposed edges. So a receptive node might get overwhelmed
by the nodes in the lower set. So we have to take into account these overwhelmed
receptive nodes in our analysis. So we can assume that if a receptive node receives
at most βk/3 edges from the nodes of the lower set, it will accept these proposed
edges.



Lemma 1. The edges built in the above strategy form a hierarchical tree shaped
subgraph with logk′ (n) levels. The diameter of this subgraph is at most 2 logk′ n+
1, and every receptive node is contained in this subgraph with high probability2.
Every receptive node spends at most βk/2 of its budget in this part of the adver-
tising campaign.

Proof. We just need to prove that every receptive node v in set Si gets connected
to a receptive node v′ in set Si−1, and node v′ does not delete the edge (v, v′), i.e.
node v′ does not get overwhelmed. Node v picks c log (n)/6α random nodes in
set Si−1. There are c log (n)/6 receptive nodes among these nodes in expectation
because every node is receptive with probability α. Using Chernoff bound, we
can say that there are at least 2 log (n) receptive nodes among them with high
probability (note that c is sufficiently large).

So every receptive vertex v in level i is connected to at least log (n) receptive
nodes in set i−1 unless they delete their incoming edges because they have been
overwhelmed. Now we prove that every node is overwhelmed in this structure
with probability at most 1/2.

Each node in set Si is receptive with probability α. Each receptive node makes
c log (n)/6α edges to the nodes in set Si−1 randomly. So the expected number

of incoming edges from set Si to a node in set Si−1 is equal to α|Si|(c log (n)/6α)
|Si−1| .

We also know that |Si|
|Si−1| is equal to k′ = αβ

c log (n)k. We conclude that every node

u in set Si−1 receives αβk/6 edges in expectation. Using Markov inequality, we
can say that a node can be overwhelmed with probability at most α/2 < 1/2
because a receptive node is overwhelmed when it receives more than βk/3 edges.

So every node v ∈ Si is connected to at least log (n) receptive nodes in
set Si−1. Each of them is overwhelmed with probability at most 1/2. Since the
overwhelming events for different nodes are negatively correlated, we can say
that with high probability node v is connected to at least one receptive node
in set Si−1 that is not overwhelmed. This is sufficient to see that with high
probability, each receptive node has a path of length at most l to some receptive
node in set S1, where l is the number of levels. Since receptive nodes in set S1

makes direct edges to all other nodes in set S1 (and to themselves as well), they
form a complete graph. We conclude that the diameter of all receptive nodes is
at most 2l + 1 = 2 logk′ (n) + 1 with high probability.

We also know that each receptive node spends at most βk/6 + βk/3 = βk/2
of its budget at this stage to make a low diameter subgraph between receptive
nodes.

Up to now, we showed how receptive nodes should use βk/2 edges to make
a low diameter subgraph between themselves. Now we show how they should
use the other half in the campaign to help other nodes get close to them. If a
non-receptive node v wants to make an edge to a receptive node u, this edge will
be accepted by u as one of its βk/2 extra edges if node u has distance greater
than 2 logk′ n+ 2 from v in the current graph, and node u has not exceeded its

2 probability 1− 1/nc′ for some large constant c′



quota of βk/2 edges. Note that every receptive node has (1 − β)k other edges
to use selfishly. One useful implication of this strategy is that a receptive node
u does not use one of its βk/2 edges to accept an edge from a node v which has
already had an edge to one of the receptive node. Because if v has an edge to a
receptive node u′, the distance between v and u will be at most 2 logk′ n+ 1 + 1
which is a contradiction. The expected number of receptive nodes is αn, and
with high probability this number is not less than αn/2. So there are at least
(αn/2) · (βk/2) > n budget for the edges from non-receptive nodes to receptive
ones. We also proved that a non-receptive node v can not consume two of these
edges. So there is always a free spot. We can formalize this discussion with the
following lemma:

Lemma 2. If a non-receptive node v has distance greater than 2 logk′ n+2 from
all receptive nodes, there exists always a receptive node u that has not used its
βk/2 budget completely for accepting incoming edges from far receptive nodes,
so node v can make a link to node u, and be sure that this edge will be accepted.

Now we can bound the diameter of the whole graph (not only the subgraph
of receptive nodes).

Lemma 3. The diameter of a stable graph after running the advertisement
strategy is at most O(logk′ (n)/α).

Proof. Using Lemma 1, we know that with high probability the diameter of
receptive nodes is at most 2l + 1 = O(logk′ (n)). There are αn receptive nodes
in expectation, and with high probability the number of them is not less than
αn/2.

Consider a non receptive vertex v. We prove that v has distance at most
O(l+logk (n)/α) to some receptive node. Delete all edges in G that are contained
in some cycle of length at most l′ = l + 2 logk (n) + 1. We prove that if one of
the k edges of v is in a cycle of length at most l′, the distance from v to some
receptive node is at most 5l′/α. Let e be an edge owned by v which is in a cycle
of length at most l′. Let u be the receptive node in lemma 2 that has a free spot.
If the distance between v and u is at most 5l′/α the claim is proved, otherwise
v can delete edge e, and make an edge to node u. This edge will be accepted by
u because 5l′/α is greater than 2 logk′ n + 2, and node u has some free spot as
well. We also show that v has incentive to switch these two edges.

If node v deletes edge e, its distance to other nodes increases by at most l′×n.
On the other hand, if v makes an edge to node u, its distance to all receptive
nodes decreases by at least 5l′/α−(2 logk′ n+2) ≥ 3l′/α (before adding the edge
its distances to receptive nodes were at least 5l′/α, and after that the distances
are at most 2 logk′ n+ 2). So the total decrease in the cost of u would be at least
(αn/2) · (3l′/α) = 3l′n/2 because there are at least αn

2 receptive nodes with
high probability. Therefore node v has incentive to switch these two edges which
contradicts the fact that we are in the stable graph. So node v has distance at
most 5l′/α to some receptive node.



We call a vertex incomplete if at least one of its edges is deleted (in the process
of removing edges in short cycles). As proved above, each incomplete vertex is
in distance at most O(l′/α) from some receptive node. We also note that the
remaining graph does not have a cycle of length at most l′. We claim that each
vertex is either incomplete or has distance at most l′ from one of the incomplete
vertices. So the distances of all vertices from v is at most l′+O(l′/α) = O(l′/α).

Consider a vertex v′, and all walks of length l′/2 starting from v′ in the
remaining graph. If one of these walks passes over an incomplete vertex, the
claim is proved. Otherwise we have kl

′/2 walks starting from the same vertex
u. The endpoints of these walks are also different, otherwise we find a cycle of
length at most l′ in the remaining graph. So there are at least kl

′/2 > n different
vertices in the graph which is a contradiction because l′ is greater than 2 logk (n).

So every vertex in the graph has distance at most O(l′/α) from some receptive
node. Note that O(l′/α) = O((l+logk (n))/α), and l is equal to logk′ (n), and k′

is at most k. So the diameter of the whole graph is simply at most O(logk′ (n)/α).

Theorem 1. The price of anarchy is at most O( logk′ (n)
α logk (n) ) = O( logk′ (k)

α ) using

our advertising strategy where k′ is αβ
c log (n)k for a constant c.

Proof. Using Lemma 3, the diameter of a stable graph is at most O(logk′ (n)/α).
Since each vertex has degree at most k, the average distance in the optimal graph
is at least Ω(logk (n)). Combining these two facts completes the proof of this
lemma.

Corollary 1. For k = Ω(log1+ε (n)), the price of anarchy is O(1/αε).

Proof. Note that α and β are some constant parameters. So k/k′ is O(log (n)).
Since k is at least Ω(log1+ε (n)), we can say that k is at most O(k′1/ε). This
shows that logk′ (k) is O(1/ε) which completes the proof.

Corollary 2. For k = Ω(log (n)), the price of anarchy is at most O(log log (k)/α).

Proof. One just need to set k′ to an appropriate constant. The rest is similar to
above.

2.2 Advertising Strategy for Directed Setting

In this setting, all edges are directed, and the cost of a node v is the sum of
distances from v to all other nodes plus the sum of distances from all other
nodes to v. Every node can have k incoming edges and k outgoing edges, i.e.
a budget of k for incoming edges, and another k for outgoing ones. An edge is
constructed from node u to node v if and only if they are both willing to have
this edge. Note that this edge costs both u and v. It is clear that the average
distance from any node and to any node is Ω(logk n) because of the degree
(budget) limitations. Here we show how to achieve average distance O(logk n)
and therefore a constant price of anarchy using an advertising campaign.

The advertising strategy is very similar to the undirected strategy. In the
undirected setting, we had two main goals:



1: Construct a low-diameter subgraph on receptive nodes
2: Make sure that edges coming from non-receptive nodes far from the receptive

nodes will be accepted.

Our directed strategy is as follows. At the first part, receptive nodes make
edges in both directions like the undirected part. A receptive node v in set Si
chooses c log n/6α nodes in set Si−1, and make edges from itself (v) to these
nodes, and edge from these selected nodes to itself (v). Since we make edges in
both directions, these edges work as undirected edges. Therefore we can say that
the receptive nodes form a low-diameter subgraph, and they don’t spend more
than βk/2 of their incoming edges budget, and their outgoing budget. In other
words, the proof of Lemma 1 works for the following lemma as well.

Lemma 4. The edges built in the above directed strategy form a hierarchical tree
shaped subgraph with logk′ (n) levels. The (directed) diameter of this subgraph is
at most 2 logk′ n + 1, and every receptive node is contained in this subgraph
with high probability3. Every receptive node spends at most βk/2 of its incoming
budget and at most βk/2 of its outgoing budget in this part of the advertising
campaign.

So we can build a low diameter subgraph on receptive nodes successfully. The
second part of the strategy is to make sure that if a non-receptive node v wants to
make an edge to some receptive node, and the distance of v to receptive nodes is
more than a threshold, there exists a receptive node u that has free spot to accept
an edge from v to u, (the same is true for the other direction (incoming edges
to non-receptive nodes)). We ask every receptive node u to save βk/2 incoming
edges, and βk/2 outgoing edges for far non-receptive nodes. The strategy is that
if a non-receptive node v wants to make an edge to a receptive node u, this edge
will be accepted by node u, if u has not exceeded its βk/2 incoming budget, and
the distance from v to u in the current graph is more than 1 + 2 logk′ n+ 1, the
same is true for the other direction. Note than with high probability, there are
αn/2 receptive nodes, and each of them has βk/2 budget for incoming and βk/2
budget for outgoing edges from/to far non-receptive nodes. In total, there is at
least αβkn/4 > n budget for each direction. We make sure that no vertex can
use more than one edge from each direction, so there is always some free spot,
if a far receptive node wants to make an edge from/to some receptive node. In
particular, the following lemma can be proved similarly to the proof of Lemma 2.

Lemma 5. If a non-receptive node v has distance greater than 2 logk′ n + 2
from/to all receptive nodes, there exists always a receptive node u that has not
used its βk/2 budget completely for accepting outgoing/incoming edges to/from
far receptive nodes, so node v can make a link from/to node u, and be sure that
this edge will be accepted.

The only left thing is to prove that the all non-receptive nodes are close
from/to some receptive node, otherwise something contradicts the stability of

3 probability 1− 1/nc′ for some large constant c′



the Equilibria graph. Here we want to prove a lemma similar to Lemma 3,
but proof of Lemma 3 can not be turned into the directed setting. Because in
that proof we are somehow using the fact that undirected graphs without short
cycles (large girth) are sparse. This is not necessarily true for directed graphs.
In particular, the endpoints of the walks of length l′/2 starting from v′ in that
proof are not necessarily different. Because unlike the undirected setting, two
different walks of length l′/2 from a vertex to another one in a directed graph
does not provide a cycle of length at most 2 · l′/2 = l′. So we have to cope
with this problem in another way. We use the following lemma which has been
proved as Lemma 1 in [10]. Although the directed setting of [10] and in particular
cost function of players is slightly different from our setting, the same proof for
following lemma works in our setting as well.

Lemma 6. In any stable graph, the outgoing (incoming) cost of any node is at
most n+nblogk nc more than the cost of any other node. The outgoing/incoming
cost of a node is the sum of distances to/from all other nodes.

Now we can prove the main lemma which can help us to obtain constant
bounds on the price of anarchy in the directed setting.

Lemma 7. The diameter of a stable graph after running the directed advertise-
ment strategy is at most O(logk′ (n)/α).

Proof. Using Lemma 4, we know that with high probability the diameter of
receptive nodes is at most 2l + 1 = O(logk′ (n)), remember l is the number of
levels in the tree construction of receptive nodes. There are αn receptive nodes
in expectation, and with high probability the number of them is not less than
αn/2.

Let d be the diameter of the stable graph G. We want to prove that d is
O(logk′ (n)/α). Fix a receptive node vr as a center. We know that either the
distance of some non-receptive node to vr or the distance of vr to some non-
receptive node is at least d/2. Otherwise the distances between all non-receptive
nodes will be also less than d, the diameter d will be at most the diameter between
receptive nodes which is O(logk′ (n)) so the claim is proved in that case. Without
loss of generality we can assume that the distance from a non-receptive v to the
receptive node vr is at least d/2.

Using lemma 5, we know that there exists a receptive node u that has free
spot for incoming edges. So if node v (or any other node like v) is willing to make
an edge to u, and the distance from v to u is greater than 2 + 2 logk′ n which is
the case here, the edge (v, u) will be accepted by u. Consider the arborescence
tree T rooted at u that contains shortests paths of u to all vertices, i.e. we can
find a directed tree T in the stable graph in which every vertex has incoming
degree 1 except u (that has incoming degree zero in T ), and the shortest paths
of u to all other vertices is contained in T .

Now, we call a vertex x half-complete if and only if x has not used more than
k/2 outgoing edges in this tree T , i.e. the outgoing degree of x in T is at most
k/2. It is not hard to prove that there exists an incomplete vertex v′ such that



the distance from v to v′ is at most logk/2 n+ 1. Because if we start at v in tree
T and go down for 1+logk/2 n levels, we will see an incomplete vertex, otherwise

there will be at least (k/2)1+logk/2 n > n vertices in T which is a contradiction.
We consider this half-complete vertex v′ which has at least k/2 outgoing edges
e1, e2, · · · , ek/2 that are not present in tree T . We make k/2 disjoint groups of
vertices as follows. For every vertex x, consider one of the shortest paths from v′

to x arbitrarily, and if this shortest path is using edge ei for some 1 ≤ i ≤ k/2,
put vertex x in set Si. Since at most one of these k/2 edges is used in each
shortest paths, these sets are disjoint. So one of these sets like Si has size at
most n/(k/2) = 2n/k. We know that vertex u has shortest paths to vertices in
Si in tree T and therefore u does not need edge ei to reach the vertices of set
Si. On the other hand, the distance of u to these vertices is not more than the
diameter of the graph d. Now if vertex v′ chooses to remove edge ei, and make a
directed edge to u instead, its cost incoming cost will be increased because ei is
an outgoing edge for v′. The distances of v′ to vertices in V (G) \ Si are also not
increased. Remember ei is used only in some shortest paths from v′ to set Si.
So the total cost of v′ might be increased by at most |Si| · (d+ 1) ≤ n(d+ 1)/k.

Delete all edges in G that are contained in some cycle of length at most
l′ = l + 2 logk (n) + 1. We prove that if one of the k edges of v is in a cycle of
length at most l′, the distance from v to some receptive node is at most 5l′/α.
Let e be an edge owned by v which is in a cycle of length at most l′. Let u be the
receptive node in lemma 2 that has a free spot. If the distance between v and u
is at most 5l′/α the claim is proved, otherwise v can delete edge e, and make an
edge to node u. This edge will be accepted by u because 5l′/α is greater than
2 logk′ n + 2, and node u has some free spot as well. We also show that v has
incentive to switch these two edges.

If node v deletes edge e, its distance to other nodes increases by at most l′×n.
On the other hand, if v makes an edge to node u, its distance to all receptive
nodes decreases by at least 5l′/α−(2 logk′ n+2) ≥ 3l′/α (before adding the edge
its distances to receptive nodes were at least 5l′/α, and after that the distances
are at most 2 logk′ n+ 2). So the total decrease in the cost of u would be at least
(αn/2) · (3l′/α) = 3l′n/2 because there are at least αn

2 receptive nodes with
high probability. Therefore node v has incentive to switch these two edges which
contradicts the fact that we are in the stable graph. So node v has distance at
most 5l′/α to some receptive node.

We call a vertex incomplete if at least one of its edges is deleted (in the process
of removing edges in short cycles). As proved above, each incomplete vertex is
in distance at most O(l′/α) from some receptive node. We also note that the
remaining graph does not have a cycle of length at most l′. We claim that each
vertex is either incomplete or has distance at most l′ from one of the incomplete
vertices. So the distances of all vertices from v is at most l′+O(l′/α) = O(l′/α).

Consider a vertex v′, and all walks of length l′/2 starting from v′ in the
remaining graph. If one of these walks passes over an incomplete vertex, the
claim is proved. Otherwise we have kl

′/2 walks starting from the same vertex
u. The endpoints of these walks are also different, otherwise we find a cycle of



length at most l′ in the remaining graph. So there are at least kl
′/2 > n different

vertices in the graph which is a contradiction because l′ is greater than 2 logk (n).
So every vertex in the graph has distance at most O(l′/α) from some receptive

node. Note that O(l′/α) = O((l+logk (n))/α), and l is equal to logk′ (n), and k′

is at most k. So the diameter of the whole graph is simply at most O(logk′ (n)/α).

3 How to deal with unknown α and β

In Section 2, we presented an advertising strategy that lead the network to some
equilibria with small price of anarchy given two parameters α and β. Here we try
to make our strategy adaptive for the cases that the parameters are not known
in advance, i.e. some times a lot of agents contribute in the campaign, and
sometimes a small fraction of them participate. So in these cases, we know that
α > ε fraction of agents are willing to spend β > ε′ fraction of their budget in the
campaign where ε and ε′ are two given lower bounds on these two parameters.
We note that these two lower bounds are two constants that can be very small.

Define m and m′ to be the two smallest integers such that ε > 1/2m and
ε′ > 1/2m

′
. So there exists two integers i and j such that 1/2i ≤ α ≤ 1/2i−1,

and 1/2j ≤ β ≤ 1/2j−1 where 1 ≤ i ≤ m, and 1 ≤ j ≤ m′.
Note that we do not need to know the exact values of parameters α and β

in the advertising strategy, just an estimation would work. For example, if we
know two integers i and j such that 1/2i ≤ α ≤ 1/2i−1, and 1/2j ≤ β ≤ 1/2j−1,
we can run the above strategy with parameters 1/2i and 1/2j instead of α and
β. The same probabilistic bounds would work in the same way, and we can
prove the same claims as proved in Section 2. But we do not even have good
estimations of these two parameters. The only thing we know is that they are in
range [ε, 1] and [ε′, 1] respectively.

But we know that α is in one of these m ranges: [1/2, 1], [1/4, 1/2], · · ·,
[1/2m, 1/2m−1], and the same for β. We should run the strategy for different
estimations of α and β in a parallel manner. So there are m × m′ different
pairs of estimations for our parameters. But a receptive agent contributes in the
campaign with only βk edges. We can ask a receptive node to spend βk

m×m′ in
each of these runs. Note that in order to run a strategy we need to set four
parameters α, β, k, and n. Here we want to use the strategy for m×m′ parallel
runs. So for each pair (i, j), we run the strategy with parameters 1/2i, 1/2j ,
k

m×m′ , and n (instead of α, β, k, and n) for each 1 ≤ i ≤ m, and 1 ≤ j ≤ m′.
Each receptive nodes spends at most βk edges in all the runs. The only thing
that changes our upper bounds on the price of anarchy, is the new value of k in
each run. In fact we are using k

m×m′ edges to reduce the price of anarchy. So we
have the following theorem for cases that parameters are not known in advance.

Theorem 2. When the parameters α > ε and β > ε′ are not known in advance,

the price of anarchy is at most O( logk′ (n)
α logk (n) ) = O( logk′ (k)

α ) using the above ad-

vertising strategy (updated version) where k′ is αβ
c log (n) ×

k
m×m′ for a constant c.

Integers m and m′ are dlog (1/ε)e and dlog (1/ε′)e respectively.



Proof. When we run the original strategy for different pairs of (i, j), one of
these pairs is a good estimation for α and β. Using the constructed edges by the
receptive nodes in this specific run of the strategy and Theorem 1, we can have
this bound. The only different thing is that we can use k

m×m′ in each run, and
that is why the value of k′ is divided by a factor of m×m′.

Since ε and ε′ are two constant (and probably very small) constants, we can
say that m and m′ are also some constant (and probably large) numbers. We
conclude that the Corollaries 1 and 2 are also true in this case (unknown α and
β).
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