
Technical Note
Operating Systems

R. Stockton Gaines*
Editor

Timestamps in Key
Distribution Protocols
Dorothy E. Denning and Giovanni Maria Sacco
Purdue University

The distribution of keys in a computer network using
single key or public key encryption is discussed. We
consider the possibility that communication keys may be
compromised, and show that key distribution protocols
with timestamps prevent replays of compromised keys.
The timestamps have the additional benefit of replacing
a two-step handshake.

Key Words and Phrases: encryption, encryption keys,
key distribution, communications, security, timestamps.

CR Categories: 3.81, 4.39

I. Introduction

Secure communication between two users on a com-
puter network is possible using either single key (con-
ventional) encryption or public key encryption. In both
systems, key distribution protocols are needed so the
users can acquire keys to establish a secure channel. In
single key systems, the users must acquire a shared
communication key; in public-key systems [2], the users
must acquire each others' public keys.

Needham and Schroeder propose key distribution
protocols for both single key and public key systems
based on a centralized key distribution facility called an
Authentication Server (AS) [6]. Their protocol for a
single key system assumes that the AS is responsible for
generating and distributing all communication keys, and
that each user has registered a private (secret) key with
the AS. The AS uses the private keys to protect (b y
encryption) the communication keys transmitted to the
users. I f communication keys and private keys are never
compromised (as Needham and Schroeder assume), the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

* Former editor of Operating Systems department, of which Anita
K. Jones is the current editor.

This research was supported in part by NSF Grant MCS77-04835.
Authors' present address: Computer Sciences Dept., Purdue Univ.,

W. Lafayette, IN 47907.
© 1981 ACM 0001-0782/81/0800-0533 $00.75

533

protocol is secure (i.e., can be used to establish a secure
channel).

We will show that the protocol is not secure when
communication keys are compromised, and propose a
solution Using timestamps. Although the likelihood of
such a compromise may be small, the timestamps are
useful for another reason: they can replace a two-step
handshake designed to prevent replays of (noncomprom-
ised) keys.

We also show that timestamps can replace the hand-
shake in the Needham and Schroeder protocol for public
key systems. Here the AS is responsible for distributing
users' public keys; it does not require access to their
private keys. Because there are no secret communication
keys, their compromise is not an issue. However, time-
stamps are valuable in public key systems to ensure the
integrity of keys.

Public key systems also provide an alternate method
of exchanging communication keys for single-key data
encryption. As before, timestamps protect against replays
of previously compromised communication keys.

No protocol is secure if users' private keys are com-
promised. We conclude with a brief discussion of the
threats to private keys in both types of systems.

II. Single Key Systems

A. Distribution of Communication Keys
Needham and Schroeder assume that each user A

has a private (secret) key KA which is known only to A
and AS. I f two users wish secure communication, one of
them obtains a secret communication key CK from AS
and gives a copy to the other. If a new key is obtained
for each conversation, a user need not keep a list of
secret communication keys for all his correspondents.

The key distribution protocol is as follows. Let (x} r
denote the message x enciphered under key K. For a
user A to acquire a key CK to share with another user B,
these steps are taken:

A ~ AS: A, B, IA (1)

AS ~ A : {Ia, B, CK, Y} KA (2)

where Ia is an identifier chosen by A and used only once,
and Y = {CK, A} KR. Because Ia is returned by AS,
enciphered under A's secret key, A can be sure that the
response (2) is not a replay of a previous response. A
then sends to B the message Y, which contains a copy of
CK enciphered under B's private key:

A ~ B: Y. (3)

B. The Handshake
After step (3), A can be sure that the key CK is safe

to use. However, B cannot be sure that the enciphered
message Y and subsequent messages supposedly sent
from A are not replays of previous messages. To protect
against replays, a handshake between B and A follows:

Communications August.
of Volume 24
the ACM Number 8

B --* A: {IB} cr (4)

.4 .- , B: (f (IB)) c r (5)

where In is an identifier chosen by B. A signals his
intention to use CK by returning an agreed func t ionf of
IB; f could be something simple like f (I) = I - 1. The
complete sequence of steps 0)-(5) establishes a secure
channel between A and B as long as previous commu-
nication keys and private keys have not been compro-
mised.

C. Compromises of Communication Keys
If the encryption algorithms are strong and keys

random, it is unlikely that communication keys will be
compromised by cryptanalysis. We are more concerned
with the communication key's direct exposure due to
negligence or a design flaw in the system, i.e., an intruder
may be able to break into the AS or into A's or B's
computer and steal a key.

Let us suppose that a third party C has intercepted
and recorded all the messages between A and B in steps
(3)-(5), and that C has obtained a copy of the commu-
nication key CK. C can then later trick B into using the
CK as follows: First C replays the message Y to B:

C - * B: (CK, A} KB.

Thinking that A has initiated a new conversation, B
requests a handshake from A :

B-.-* A: {I'n) oK.

C intercepts the message, deciphers it, and impersonates
A's response:

A .-~ B: (f(I'n)} cK.

Thereafter, C can send bogus messages to B that appear
to be from A, intercepting and deciphering B's replies.
Note, however, that A can still communicate safely with
B by initiating a new conversation (assuming A's at-
tempts are not blocked by C), and that B can commu-
nicate safely with other users.

Of course, C cannot impersonate A's response to B
in the handshake without knowing the handshake func-
tion f . But the problem of securing secret handshake
functions is as difficult as the problem of securing com-
munication keys. Users must either privately exchange
and remember permanent handshake functions, or they
must obtain them from the AS. If the former approach
is taken, then users may as well exchange directly their
communication keys and dispense with the handshake
functions. If the latter approach is taken, the problem of
distributing handshake functions is identical to the prob-
lem of distributing keys.

D. Timestamps
If private keys are secure, we can solve the above

problem and eliminate the handshake by adding a time-
stamp T to steps (2) and (3). The new protocol is thus:

A ~ AS: A, B (1)

AS ~ A : { B, CK, T, Y) K~ (2)

A ~ B: Y (3)

where Y = {,4, CK, T)r~.
A and B can verify that their messages are not replays
by checking that

IClock - TI < Atl + At2

where Clock gives the local time, Atl is an interval
representing the normal discrepancy between the server's
clock and the local clock, and A t2 is an interval repre-
senting the expected network delay time. If each node
sets its clock manually by reference to a standard source,
a value of about one or two minutes for A tl would
suffice. As long as A t I + A t2 is less than the interval
since the last use of the protocol, this method will protect
against replays. Since the timestamp T is enciphered
under the private keys KA and KB, impersonation of the
AS is impossible.

Needham and Schroeder suggested caching old com-
munication keys to reduce the number of steps required
to initiate a conversation. Caching is not recommended
here, because the timestamps would become obsolete.

Needham and Schroeder suggested timestamps as a
way to validate the time integrity of one way communi-
cations such as computer mail. They rejected timestamps
in their key distribution protocol because there might
not be a network-wide reliable source of time. As we
have argued, timestamps can be used reliably even if the
settings of local clocks are not completely reliable. How-
ever, this approach may not be suitable for all types of
connections--e.g., connections to terminals without local
day-date clocks.

III. Public Key Systems

A. Distribution of Public Keys
Timestamps can also be added to Needham's and

Schroeder's protocols for public key systems. Here the
AS stores and distributes users' public keys; it does not
necessarily have access to their private (secret) keys. As
in single key systems, the handshake is no longer needed.
Furthermore, if the AS distributes public keys inside
"certificates" [3], the entire protocol can be reduced to
three steps (from the original seven). Letting PA and SA
denote A's public key and secret (signature) key, respec-
tively, the complete protocol is

A ~AS:A,B (I)

AS --* A : CA, CB (2)

A -..* B: CA, CB (3)

where

CA = (A, Pa, T) SAs and CB = (B, PB, T} Sas

are certificates containing, respectively, A's and B's pub-

534 Communications August
of Volume 24
the ACM Number 8

lic keys. The certificates are signed by the AS using its
secret key SAs to prevent forgery. Both A and B are
given copies of their own certificates, so they can validate
their own public keys.

Because public keys are readily available to all users,
their exposure is not an issue. However, their integrity is
essential, so they still require a high level of protection.
The use of timestamps as well as signed certificates helps
protect against replays of old keys or substitution of
bogus keys. Popek and Kline included both in their
public key distribution protocols [7].

B. Distribution of Communication Keys
Public key distribution protocols can also be used to

distribute communication keys for single-key data en-
cryption [2, 5]. The above protocol becomes

A ---* AS: A, B (1)

AS ~ A: CA, CB (2)

A ~ B: CA, CB, {{CK, T} sA} PA (3)

The key CK is then used for encrypting messages trans-
mitted between A and B. Because the CK is chosen and
encrypted by A, there is no risk of its exposure by the
AS; however, it is still vulnerable to compromise in A's
or B's computer. Here again, timestamps protect against
replays of compromised keys.

IV. Compromises of Private Keys

The exposure of users' private keys poses a much
more serious threat which is not eliminated by the time-
stamp protocols. In a single key system, private keys are
used by the AS to encipher all communication keys
transmitted to the user. (Private keys may be used for
other purposes as well, but this is not pertinent to the
present discussion.) If an intruder compromises a user's
private key, he can decipher any communication key
sent to the user; he can also impersonate the AS and
trick the user into accepting and using a false commu-
nication key. All information transmitted to or from the
user is thus vulnerable to attack. Indeed, the intruder can
even impersonate the user.

There are several methods by which a user's private
key may be compromised:

(a) An intruder may record messages enciphered with
the key and compromise it by cryptanalysis.

(b) The AS may be untrustworthy and leak the key.
(c) An intruder may exploit a design flaw in the system

and steal the key.

As with communication keys, the first method is unlikely
to succeed if the encryption algorithm is strong and keys
are random--especially if the private keys are used only
to encipher random communication keys. The second
method is also unlikely to succeed if the AS is verified
for correctness and security. We are primarily concerned

about the third method of attack. An intruder, for ex-
ample, might be able to break into the AS, or discover
the user's password and log directly onto his computer.
In this sense, private keys are more vulnerable than
communication keys, because the AS must keep a list of
all private keys, and they have a longer lifetime than
communication keys. Although the keys can be en-
crypted under a master key at the AS and stored in
special hardware (e.g., see [4]), they are never absolutely
safe. Because of these vulnerabilities, a mechanism is
needed to generate and distribute new private keys.

Exposure of private keys in public key systems poses
an equally serious threat. There are two possibilities:
exposure of user's private keys, and exposure of the
private key used by the AS to sign certificates.

If a user's private key is exposed, all messages sent to
him enciphered under his corresponding public key may
be compromised, and his signature may be forged on
other messages. Moreover, he may be able to disavow
his signature on a previously signed message, claiming
that his private key was lost or stolen before the message
was signed [8]. (Merkle solves the problems with digital
signatures by having a timekeeper affLX a timestamp and
its own signature to a signed message [5].) If compromises
are reported to the AS and public keys are obtained
from the AS immediately prior to use, timestamps are
useful for validating the time integrity of keys.

Because the AS does not have access to users' private
keys, these keys cannot be leaked or stolen from the AS,
eliminating one of the threats of single key systems.
Moreover, users' private keys need not be stored in the
system at all; they could be recorded in ROM or mag-
netic stripe cards, and inserted into a special reader
attached to the users terminal, greatly reducing the threat
of any type of attack on the system[l]. The only remain-
ing threats are cryptanalysis and intentional leaks on the
part of the user.

There is still the problem of protecting the AS's
private signature key, which may be leaked or stolen
from the AS. Again, this key need not be stored inside
an accessible location of the system. Merkle has sug-
gested a method for producing certificates that does not
require a digital signature from the AS[5].

V. Conclusions

We have shown that key distribution protocols with
timestamps prevent replays of previously compromised
communication keys. Even if the likelihood of compro-
mise is small, the timestamps have the benefit of replac-
ing a two=step handshake. We recommended their inclu-
sion in all key distribution protocols.

Acknowledgments. We wish to thank P. Denning,
A. Jones, S. Kent, C. Kline, G. Popek, and the referees
for many helpful suggestions, and J. Gray, R. Needham,
and M. Schroeder for helpful discussions.

535 Communications August
of Volume 24
the ACM Number 8

Received 11/79; revised 1/81; accepted 3/81

References
i. Denning, D. E. Secure personal computing in an insecure
network. Comm. ACM 22, 8 (Aug. 1979) 476-482.
2. Diffie, W., and Hellman, M., New directions in cryptography.
IEEE Trans. on Info. Theory IT-22, 6 (Nov. 1976) 644--654.
3. Konfelder, L. M., A method for certification. Lab. for Computer
Science, MIT, Cambridge, Mass. (May 1978).
4. Matyas, S. M., and Meyer, C. H. Generation, distribution, and
installation of cryptographic keys. I B M Syst. J. 17, 2 (1978) 126-137.

5. Merkle, R. C. Protocols for public key cryptosystems. Proc. 1980
Syrup. on Security and Privacy, IEEE Catalog No. 80 CH 1522-2
(April 1980) 122-133.
6. Needham, R. M., and Schroeder, M. Using encryption for
authentication in large networks of computers. Comm. A CM 21, 12
(Dec. 1978) 993-999.
7. Popek, G. J., and Kline, C. S. Encryption and secure computer
networks. Com put. Surv. 11, 4 (Dec. 1979) 331-356.
8. Saltzer, J. On digital signatures Oper. Syst. Rev. 12, 2 (April
1978) 12-14.

technica l .
c o r r e s p o n a e n c e
File Updating-Still Once More

[] I r ead wi th grea t interest Bar ry
D w y e r ' s ar t ic le on how to upda t e a
mas te r file in the J a n u a r y issue o f
C o m m u n i c a t i o n s [1]. M y interest was
based on some work I have done in
the past . A l t h o u g h I have not been
ab le to see a l l the re fe renced l i tera-
ture (I do not have ava i l ab le Mc-
Cracken ' s [2] or Jackson ' s [3] work),
D i jks t r a ' s [4] examp le stresses tha t
the key to a nea t so lu t ion is the
b u i l d u p o f " the m e r g e d sequence" o f
al l the d i f ferent records wi th the
same key. The process ing o f the se-
quence, once a l r eady buil t , d epends
on the specific case: types o f records,
thei r or ig in and mean ing , and the
answer to special cases a n d se-
quences. Y o u can th ink o f a r ecord
in the o ld file as equ iva len t to an
a d d i t i o n record in the t ransac t ions
file.

So, apa r t f rom the requ i red prec-
edence for those records, the to ta l
" m e r g e d sequence" is the basis for
the answer: how to bu i ld it and how
to process it.

The work I re fer red to ini t ia l ly ,
" N o t a s sobre la p r o g r a m a c i 6 n es-
t r u c t u r a d a y la t a r r a co t id iana: Ac-
tua l i zac i6n de a rch ivos" [5], (which
I a s sume a lmos t n o b o d y has r ead
ab road) , h a d a d idac t ic o b j e c t i v e - -
to in t roduce S t ruc tu red P r o g r a m -
ming in e v e r y d a y activities. In it, I
showed how a p r o b l e m which was
faced every d a y a n d which usua l ly
led to in t r ica te answers cou ld be seen
in fresh new ways a n d be nea t ly
solved. I also gave i m p o r t a n c e to the

536

synch ron i za t i on o f the (sequent ia l)
files invo lved bu t cons ide red the
p r o b l e m f rom di f ferent v iewpoints :

the o ld file, the t r ansac t ions file, o r
even the u p d a t e d file. A n y o f t h e m
cou ld be pr iv i leged.

PROCEDURE DIVISION.
UPDATE-SEQUENTIAL-FILES.
OPEN INPUT OLD-FILE, TRANSACTION-FILE,

OUTPUT MASTER-FILE.

PERFORM READ-OLD-RECORD.
PERFORM READ-A-TRANSACTION.
PERFORM CLEAR-MASTER-RECORD.
PERFORM CHOOSE-NEXT-FILE-KEY
PERFORM PROCESS-ONE-FILE-KEY

UNTIL CURRENT-KEY=SENTINEL.
CLOSE OLD-FILE, TRANSACTION-FILE, MASTER-FILE.
STOP RUN.

PROCESS-ONE-FILE-KEY.
IF OLD-KEY=CURRENT-KEY

PERFORM INITIAL-STATUS
PERFORM READ-OLD-RECORD

ELSE IF TRANSACTION-KEY=CURRENT-KEY
PERFORM APPLY-TRANSACTION-TO-MASTER
PERFORM READ-A-TRANSACTION

ELSE IF MASTER-KEY=CURRENT-KEY
WRITE MASTER
PERFORM CLEAR-MASTER-RECORD.

PERFORM CHOOSE-NEXT-FILE-KEY

INITIAL-STATUS.
MOVE OLD TO MASTER
MOVE CURRENT-KEY TO MASTER-KEY.

CLEAR-MASTER-RECORD
MOVE ZEROS TO MASTER
MOVE SENTINEL TO MASTER-KEY.

READ-OLD-RECORD.
READ OLD-FILE

AT END MOVE SENTINEL TO TRANSACTION-KEY.

READ-A-TRANSACTION.
READ TRANSACTION-FILE

AT END MOVE SENTINEL TO TRANSACTION-KEY.

CHOOSE-NEXT-FILE-KEY.
IF TRANSACTION-KEY<OLD-KEY MOVE TRANSACTION-KEY TO CUR-

RENT-KEY
ELSE MOVE OLD-KEY TO CURRENT-KEY.

IF MASTER-KEY<CURRENT-KEY MOVE MASTER-KEY TO CURRENT-KEY

Communications August 1981
of Volume 24
the ACM Number 8

