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The distribution of keys in a computer network using 
single key or public key encryption is discussed. We 
consider the possibility that communication keys may be 
compromised, and show that key distribution protocols 
with timestamps prevent replays of compromised keys. 
The timestamps have the additional benefit of replacing 
a two-step handshake. 
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I. Introduction 

Secure communication between two users on a com- 
puter network is possible using either single key (con- 
ventional) encryption or public key encryption. In both 
systems, key distribution protocols are needed so the 
users can acquire keys to establish a secure channel. In 
single key systems, the users must acquire a shared 
communication key; in public-key systems [2], the users 
must acquire each others' public keys. 

Needham and Schroeder propose key distribution 
protocols for both single key and public key systems 
based on a centralized key distribution facility called an 
Authentication Server (AS) [6]. Their protocol for a 
single key system assumes that the AS is responsible for 
generating and distributing all communication keys, and 
that each user has registered a private (secret) key with 
the AS. The AS uses the private keys to protect ( b y  
encryption) the communication keys transmitted to the 
users. I f  communication keys and private keys are never 
compromised (as Needham and Schroeder assume), the 
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protocol is secure (i.e., can be used to establish a secure 
channel). 

We will show that the protocol is not secure when 
communication keys are compromised, and propose a 
solution Using timestamps. Although the likelihood of  
such a compromise may be small, the timestamps are 
useful for another reason: they can replace a two-step 
handshake designed to prevent replays of  (noncomprom- 
ised) keys. 

We also show that timestamps can replace the hand- 
shake in the Needham and Schroeder protocol for public 
key systems. Here the AS is responsible for distributing 
users' public keys; it does not require access to their 
private keys. Because there are no secret communication 
keys, their compromise is not an issue. However, time- 
stamps are valuable in public key systems to ensure the 
integrity of  keys. 

Public key systems also provide an alternate method 
of  exchanging communication keys for single-key data 
encryption. As before, timestamps protect against replays 
of  previously compromised communication keys. 

No protocol is secure if users' private keys are com- 
promised. We conclude with a brief discussion of  the 
threats to private keys in both types of  systems. 

II. Single Key Systems 

A. Distribution of Communication Keys 
Needham and Schroeder assume that each user A 

has a private (secret) key KA which is known only to A 
and AS. I f  two users wish secure communication, one of  
them obtains a secret communication key CK from AS 
and gives a copy to the other. If  a new key is obtained 
for each conversation, a user need not keep a list of  
secret communication keys for all his correspondents. 

The key distribution protocol is as follows. Let (x} r 
denote the message x enciphered under key K. For  a 
user A to acquire a key CK to share with another user B, 
these steps are taken: 

A ~ AS: A, B, IA (1) 

AS ~ A : {Ia, B, CK, Y} KA (2) 

where Ia is an identifier chosen by A and used only once, 
and Y = {CK, A} KR. Because Ia is returned by AS, 
enciphered under A's secret key, A can be sure that the 
response (2) is not a replay of  a previous response. A 
then sends to B the message Y, which contains a copy of  
CK enciphered under B's private key: 

A ~ B: Y. (3) 

B. The Handshake 
After step (3), A can be sure that the key CK is safe 

to use. However, B cannot be sure that the enciphered 
message Y and subsequent messages supposedly sent 
from A are not replays of  previous messages. To protect 
against replays, a handshake between B and A follows: 
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B --* A: {IB} cr (4) 

.4 .- ,  B: ( f ( IB ) )  c r  (5) 

where In is an identifier chosen by B. A signals his 
intention to use CK by returning an agreed func t ionf  of 
IB; f could be something simple like f ( I )  = I - 1. The 
complete sequence of  steps 0)-(5)  establishes a secure 
channel between A and B as long as previous commu- 
nication keys and private keys have not been compro- 
mised. 

C. Compromises of Communication Keys 
If  the encryption algorithms are strong and keys 

random, it is unlikely that communication keys will be 
compromised by cryptanalysis. We are more concerned 
with the communication key's direct exposure due to 
negligence or a design flaw in the system, i.e., an intruder 
may be able to break into the AS or into A's or B's 
computer and steal a key. 

Let us suppose that a third party C has intercepted 
and recorded all the messages between A and B in steps 
(3)-(5), and that C has obtained a copy of the commu- 
nication key CK. C can then later trick B into using the 
CK as follows: First C replays the message Y to B: 

C - *  B: (CK, A} KB. 

Thinking that A has initiated a new conversation, B 
requests a handshake from A : 

B-.-* A: {I'n) oK. 

C intercepts the message, deciphers it, and impersonates 
A's response: 

A .-~ B: (f(I'n)} cK. 

Thereafter, C can send bogus messages to B that appear 
to be from A, intercepting and deciphering B's replies. 
Note, however, that A can still communicate safely with 
B by initiating a new conversation (assuming A's at- 
tempts are not blocked by C), and that B can commu- 
nicate safely with other users. 

Of course, C cannot impersonate A's response to B 
in the handshake without knowing the handshake func- 
tion f .  But the problem of securing secret handshake 
functions is as difficult as the problem of securing com- 
munication keys. Users must either privately exchange 
and remember permanent handshake functions, or they 
must obtain them from the AS. If  the former approach 
is taken, then users may as well exchange directly their 
communication keys and dispense with the handshake 
functions. If  the latter approach is taken, the problem of  
distributing handshake functions is identical to the prob- 
lem of  distributing keys. 

D. Timestamps 
If  private keys are secure, we can solve the above 

problem and eliminate the handshake by adding a time- 
stamp T to steps (2) and (3). The new protocol is thus: 

A ~ AS: A, B (1) 

AS ~ A : { B, CK, T, Y) K~ (2) 

A ~ B: Y (3) 

where Y = {,4, CK, T)r~. 
A and B can verify that their messages are not replays 
by checking that 

IClock - TI < Atl  + At2 

where Clock gives the local time, Atl  is an interval 
representing the normal discrepancy between the server's 
clock and the local clock, and A t2 is an interval repre- 
senting the expected network delay time. If  each node 
sets its clock manually by reference to a standard source, 
a value of about one or two minutes for A tl  would 
suffice. As long as A t I + A t2 is less than the interval 
since the last use of  the protocol, this method will protect 
against replays. Since the timestamp T is enciphered 
under the private keys KA and KB, impersonation of  the 
AS is impossible. 

Needham and Schroeder suggested caching old com- 
munication keys to reduce the number of  steps required 
to initiate a conversation. Caching is not recommended 
here, because the timestamps would become obsolete. 

Needham and Schroeder suggested timestamps as a 
way to validate the time integrity of one way communi- 
cations such as computer mail. They rejected timestamps 
in their key distribution protocol because there might 
not be a network-wide reliable source of time. As we 
have argued, timestamps can be used reliably even if  the 
settings of local clocks are not completely reliable. How- 
ever, this approach may not be suitable for all types of  
connections--e.g., connections to terminals without local 
day-date clocks. 

III. Public Key Systems 

A. Distribution of Public Keys 
Timestamps can also be added to Needham's and 

Schroeder's protocols for public key systems. Here the 
AS stores and distributes users' public keys; it does not 
necessarily have access to their private (secret) keys. As 
in single key systems, the handshake is no longer needed. 
Furthermore, if the AS distributes public keys inside 
"certificates" [3], the entire protocol can be reduced to 
three steps (from the original seven). Letting PA and SA 
denote A's public key and secret (signature) key, respec- 
tively, the complete protocol is 

A ~AS:A,B (I) 

AS --* A : CA, CB (2) 

A -..* B: CA, CB (3) 

where 

CA = (A, Pa, T) SAs and CB = ( B, PB, T} Sas 

are certificates containing, respectively, A's and B's pub- 
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lic keys. The certificates are signed by the AS using its 
secret key SAs to prevent forgery. Both A and B are 
given copies of their own certificates, so they can validate 
their own public keys. 

Because public keys are readily available to all users, 
their exposure is not an issue. However, their integrity is 
essential, so they still require a high level of protection. 
The use of timestamps as well as signed certificates helps 
protect against replays of old keys or substitution of 
bogus keys. Popek and Kline included both in their 
public key distribution protocols [7]. 

B. Distribution of Communication Keys 
Public key distribution protocols can also be used to 

distribute communication keys for single-key data en- 
cryption [2, 5]. The above protocol becomes 

A ---* AS: A, B (1) 

AS ~ A: CA, CB (2) 

A ~ B: CA, CB, {{CK, T} sA} PA (3) 

The key CK is then used for encrypting messages trans- 
mitted between A and B. Because the CK is chosen and 
encrypted by A, there is no risk of its exposure by the 
AS; however, it is still vulnerable to compromise in A's 
or B's computer. Here again, timestamps protect against 
replays of compromised keys. 

IV. Compromises of Private Keys 

The exposure of users' private keys poses a much 
more serious threat which is not eliminated by the time- 
stamp protocols. In a single key system, private keys are 
used by the AS to encipher all communication keys 
transmitted to the user. (Private keys may be used for 
other purposes as well, but this is not pertinent to the 
present discussion.) If an intruder compromises a user's 
private key, he can decipher any communication key 
sent to the user; he can also impersonate the AS and 
trick the user into accepting and using a false commu- 
nication key. All information transmitted to or from the 
user is thus vulnerable to attack. Indeed, the intruder can 
even impersonate the user. 

There are several methods by which a user's private 
key may be compromised: 

(a) An intruder may record messages enciphered with 
the key and compromise it by cryptanalysis. 

(b) The AS may be untrustworthy and leak the key. 
(c) An intruder may exploit a design flaw in the system 

and steal the key. 

As with communication keys, the first method is unlikely 
to succeed if the encryption algorithm is strong and keys 
are random--especially if the private keys are used only 
to encipher random communication keys. The second 
method is also unlikely to succeed if the AS is verified 
for correctness and security. We are primarily concerned 

about the third method of attack. An intruder, for ex- 
ample, might be able to break into the AS, or discover 
the user's password and log directly onto his computer. 
In this sense, private keys are more vulnerable than 
communication keys, because the AS must keep a list of 
all private keys, and they have a longer lifetime than 
communication keys. Although the keys can be en- 
crypted under a master key at the AS and stored in 
special hardware (e.g., see [4]), they are never absolutely 
safe. Because of these vulnerabilities, a mechanism is 
needed to generate and distribute new private keys. 

Exposure of private keys in public key systems poses 
an equally serious threat. There are two possibilities: 
exposure of user's private keys, and exposure of the 
private key used by the AS to sign certificates. 

If a user's private key is exposed, all messages sent to 
him enciphered under his corresponding public key may 
be compromised, and his signature may be forged on 
other messages. Moreover, he may be able to disavow 
his signature on a previously signed message, claiming 
that his private key was lost or stolen before the message 
was signed [8]. (Merkle solves the problems with digital 
signatures by having a timekeeper affLX a timestamp and 
its own signature to a signed message [5].) If compromises 
are reported to the AS and public keys are obtained 
from the AS immediately prior to use, timestamps are 
useful for validating the time integrity of keys. 

Because the AS does not have access to users' private 
keys, these keys cannot be leaked or stolen from the AS, 
eliminating one of the threats of single key systems. 
Moreover, users' private keys need not be stored in the 
system at all; they could be recorded in ROM or mag- 
netic stripe cards, and inserted into a special reader 
attached to the users terminal, greatly reducing the threat 
of any type of attack on the system[l]. The only remain- 
ing threats are cryptanalysis and intentional leaks on the 
part of the user. 

There is still the problem of protecting the AS's 
private signature key, which may be leaked or stolen 
from the AS. Again, this key need not be stored inside 
an accessible location of the system. Merkle has sug- 
gested a method for producing certificates that does not 
require a digital signature from the AS[5]. 

V. Conclusions 

We have shown that key distribution protocols with 
timestamps prevent replays of previously compromised 
communication keys. Even if the likelihood of compro- 
mise is small, the timestamps have the benefit of replac- 
ing a two=step handshake. We recommended their inclu- 
sion in all key distribution protocols. 
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technica l  . 
c o r r e s p o n a e n c e  
File Updating-Still Once More 

[ ]  I r ead  wi th  grea t  interest  Bar ry  
D w y e r ' s  ar t ic le  on  how to upda t e  a 
mas te r  file in the  J a n u a r y  issue o f  
C o m m u n i c a t i o n s  [1]. M y  interest  was 
based  on  some work  I have  done  in 
the past .  A l t h o u g h  I have  not  been  
ab le  to see a l l  the  re fe renced  l i tera-  
ture  ( I do  not  have  ava i l ab le  Mc-  
Cracken ' s  [2] or  Jackson ' s  [3] work),  
D i jks t r a ' s  [4] examp le  stresses tha t  
the  key  to a nea t  so lu t ion  is the  
b u i l d u p  o f  " the  m e r g e d  sequence"  o f  
al l  the  d i f ferent  records  wi th  the  
same  key.  The  process ing  o f  the  se- 
quence,  once  a l r eady  buil t ,  d epends  
on  the specific case: types  o f  records,  
thei r  or ig in  and  mean ing ,  and  the 
answer  to special  cases a n d  se- 
quences.  Y o u  can  th ink  o f  a r ecord  
in the  o ld  file as equ iva len t  to an  
a d d i t i o n  record  in the  t ransac t ions  
file. 

So, apa r t  f rom the requ i red  prec-  
edence  for  those  records,  the  to ta l  
" m e r g e d  sequence"  is the  basis  for  
the answer:  how to bu i ld  it and  how 
to process  it. 

The  work  I re fer red  to ini t ia l ly ,  
" N o t a s  sobre  la p r o g r a m a c i 6 n  es- 
t r u c t u r a d a  y la t a r r a  co t id iana:  Ac-  
tua l i zac i6n  de  a rch ivos"  [5], (which  
I a s sume a lmos t  n o b o d y  has  r ead  
ab road) ,  h a d  a d idac t ic  o b j e c t i v e - -  
to in t roduce  S t ruc tu red  P r o g r a m -  
ming  in e v e r y d a y  activities.  In  it, I 
showed  how a p r o b l e m  which  was 
faced  every  d a y  a n d  which  usua l ly  
led to in t r ica te  answers  cou ld  be seen 
in fresh new ways  a n d  be  nea t ly  
solved.  I also gave i m p o r t a n c e  to the  

536 

synch ron i za t i on  o f  the  (sequent ia l )  
files invo lved  bu t  cons ide red  the 
p r o b l e m  f rom di f ferent  v iewpoints :  

the  o ld  file, the  t r ansac t ions  file, o r  
even the u p d a t e d  file. A n y  o f  t h e m  
cou ld  be pr iv i leged.  

PROCEDURE DIVISION. 
UPDATE-SEQUENTIAL-FILES. 
OPEN INPUT OLD-FILE, TRANSACTION-FILE, 

OUTPUT MASTER-FILE. 

PERFORM READ-OLD-RECORD. 
PERFORM READ-A-TRANSACTION. 
PERFORM CLEAR-MASTER-RECORD. 
PERFORM CHOOSE-NEXT-FILE-KEY 
PERFORM PROCESS-ONE-FILE-KEY 

UNTIL CURRENT-KEY=SENTINEL. 
CLOSE OLD-FILE, TRANSACTION-FILE, MASTER-FILE. 
STOP RUN. 

PROCESS-ONE-FILE-KEY. 
IF OLD-KEY=CURRENT-KEY 

PERFORM INITIAL-STATUS 
PERFORM READ-OLD-RECORD 

ELSE IF TRANSACTION-KEY=CURRENT-KEY 
PERFORM APPLY-TRANSACTION-TO-MASTER 
PERFORM READ-A-TRANSACTION 

ELSE IF MASTER-KEY=CURRENT-KEY 
WRITE MASTER 
PERFORM CLEAR-MASTER-RECORD. 

PERFORM CHOOSE-NEXT-FILE-KEY 

INITIAL-STATUS. 
MOVE OLD TO MASTER 
MOVE CURRENT-KEY TO MASTER-KEY. 

CLEAR-MASTER-RECORD 
MOVE ZEROS TO MASTER 
MOVE SENTINEL TO MASTER-KEY. 

READ-OLD-RECORD. 
READ OLD-FILE 

AT END MOVE SENTINEL TO TRANSACTION-KEY. 

READ-A-TRANSACTION. 
READ TRANSACTION-FILE 

AT END MOVE SENTINEL TO TRANSACTION-KEY. 

CHOOSE-NEXT-FILE-KEY. 
IF TRANSACTION-KEY<OLD-KEY MOVE TRANSACTION-KEY TO CUR- 

RENT-KEY 
ELSE MOVE OLD-KEY TO CURRENT-KEY. 

IF MASTER-KEY<CURRENT-KEY MOVE MASTER-KEY TO CURRENT-KEY 
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