

Comparative study of the Pros and Cons of Programming

languages

Java, Scala, C++, Haskell, VB .NET, AspectJ, Perl, Ruby,

PHP & Scheme

Revision 1.0

Venkatreddy Dwarampudi Shahbaz Singh Dhillon

 Concordia University Concordia University,

 Montreal, Quebec, Canada Montreal, Quebec, Canada

 v_dwaram@yahoo.in dhillonshahbaz1@gmail.com

 Jivitesh Shah Nikhil Joseph Sebastian

 Concordia University, Concordia University,

 Montreal Quebec, Canada Montreal Quebec, Canada

 ji_shah@cse.concordia.ca n_sebas@encs.concordia.ca

Nitin Satyanarayan Kanigicharla

Concordia University,

Montreal, Quebec, Canada

kanigicharla.nitin@gmail.com

Abstract

With the advent of numerous languages it is difficult to realize the edge of one

language in a particular scope over another one. We are making an effort, realizing

these few issues and comparing some main stream languages like Java, Scala, C++,

Haskell, VB .NET, AspectJ, Perl, Ruby, PHP and Scheme keeping in mind some

core issues in program development.

General terms languages

Keywords comparing, languages, program development

1. Introduction

1.1 Related Work
We were influenced by the study and related work regarding various programming languages and

the general discussions, literature provided [1,2,3,4,5,6,7], which lead to the consolidated and

precise comparative study of various popular and widely used programming languages by us.

mailto:v_dwaram@yahoo.in
mailto:dhillonshahbaz1@gmail.com
mailto:ji_shah@cse.concordia.ca
mailto:n_sebas@encs.concordia.ca

1.2 Overview
We give a brief introduction to the languages Java, Scala, Haskell, VB .NET, C++, AspectJ, Perl,

Ruby, PHP and Scheme in the section from 1.3 to 1.12. In the next section we provide a

consolidated analysis of a pair of languages considering a selected few criteria. The section

following this has a concise table of the analysis made in the previous section based on the

criterias. Section 4 explains which of the languages are better considering the constraints and

purpose of the problem. All the analysis and inferences are followed by supporting references.

The later sections consist of Acknowledgement, Abbreviations and some compilable code

snippets.

1.3 Java
A high-level programming language developed by Sun Microsystems. Java was originally called

OAK, and was designed for handheld devices and set-top boxes. Oak was unsuccessful so in

1995 Sun changed the name to Java and modified the language to take advantage of the

burgeoning World Wide Web. Java is an object-oriented language similar to C++, but simplified

to eliminate language features that cause common programming errors. Java source code files

(files with a .java extension) are compiled into a format called bytecode (files with a .class

extension), which can then be executed by a Java interpreter. Compiled Java code can run on

most computers because Java interpreters and runtime environments, known as Java Virtual

Machines (VMs), exist for most operating systems, including UNIX, the Macintosh OS, and

Windows. Bytecode can also be converted directly into machine language instructions by a justin-

time compiler (JIT). Java is a general purpose programming language with a number of features

that make the language well suited for use on the World Wide Web. Small Java applications are

called Java applets and can be downloaded from a Web server and run on your computer by a

Java-compatible Web browser, such as Netscape Navigator or Microsoft Internet Explorer.

1.4 Scala
Scala is a language that addresses the major needs of the modern developer. It is a statically

typed, mixed-paradigm, JVM language with a succinct, elegant, and flexible syntax, a

sophisticated type system, and idioms that promote scalability from small, interpreted scripts to

large, sophisticated applications.[8] Scala is used because of it advantages like conciseness,

elegance and type-safety.Object-oriented and functional programming are both integrated well

thus helping java developers also to be productive with Scala. Talking about conciseness, it

actually reduces a code by two to three times as compared to it counter-part Java. So what

different about Scala? It helps to integrate functional and Object oriented programming without

any restrictions unlike Java. The second--and current--step is Scala, which took some of the ideas

of Funnel and put them into a more pragmatic language with special focus on interoperability

with standard platforms. Scala and Java are related only by the fact that they are compiled to a

bytecode and use the JVM. Scala is completely interoperable with Java. Scala translates to Java

bytecodes, and the efficiency of its compiled programs usually equivalent to Java. A .NET

version of Scala is also available. A first public release was done in of 2003. [9]

1.5 C++
C++ is a statically typed, free-form, multi-paradigm, compiled, general-purpose programming

language. It is regarded as a "middle-level" language, as it comprises a combination of both high-

level and low-level language features. It was developed by Bjarne Stroustrup starting in 1979 at

Bell Labs as an enhancement to the C programming language and originally named C with

Classes. It was renamed C++ in 1983.

1.6 Haskell
Haskell is a very high-level language which provides a unique "bird's-eye view" on many

programming problems. Like other modern functional languages, Haskell derives its power from

higher-order functions, parametric polymorphism and pattern-matching over algebraic data types.

Haskell also offers the security of strong, static typing and the flexibility of polymorphism, a

combination which helps forestall programming errors without a heavy syntactic overhead. In

fact, Haskell's sparse syntax has been specifically designed to be reminiscent of mathematical

notation and thus will be familiar to most people. Finally, Haskell features a "pure" mathematical

semantics which supports equational reasoning, thus simplifying and streamlining the process of

program development. [10]

1.7 VB .NET
Visual basic .Net is an object oriented paradigm. Visual Basic .NET is Microsoft's Visual Basic

on their .NET framework. Visual Basic .NET is Microsoft's Visual Basic on their .NET

framework. Any programmer can develop applications quickly with Visual Basic. It is a very

user-friendly language. All you have to do is arrange components using visual tools and then

write code for the components. Most programmers of Visual Basic use Visual Studio for their

development needs. Moving forward, Microsoft's .NET framework is composed of pre-

programmed code that users can access anytime. This pre-programmed code is referred to as the

class library. The programs in the class library can be combined or modified in order to suit the

needs of programmers. Programs in .NET run on the CLR or the Common Language Runtime

environment. Regardless of computer, as long as this environment is present, programs developed

in a .NET language will run.

1.8 AspectJ
AspectJ is an aspect-oriented programming paradigm .AspectJ is the realization that there are

issues or concerns that are not well captured by traditional programming methodologies. Consider

the problem of enforcing a security policy in some application. By its nature, security cuts across

many of the natural units of modularity of the application. Moreover, the security policy must be

uniformly applied to any additions as the application evolves. And the security policy that is

being applied might itself evolve. Capturing concerns like a security policy in a disciplined way is

difficult and error-prone in a traditional programming language.

1.9 Perl
Perl is a high level, general purpose, dynamic programming language. It was designed to be easy

for humans, rather than, easy for computers to understand. The syntax of the language is lot more

like human language than strict structures. It is very portable as is available for huge variety of

operating systems and computers. [11] Perl became popular for two major reasons: First, most of

what is being done on the Web happens with text, and is best done with a language that's

designed for text processing. More importantly, Perl was appreciably better than the alternatives

at the time when people needed something to use. [12]

1.10 Ruby
Ruby is a dynamic, reflective, general purpose object-oriented programming language that

combines syntax inspired by Perl`s pragmatism with Smalltalk`s conceptual elegance,

Python`s ease of learning like features. Ruby supports multiple programming paradigms,

including functional, object oriented, imperative and reflective. It also has a dynamic type

system and automatic memory management.

Ruby on Rails
Rails is an open source frame work for developing database – backed web application. We

can develop a web application that is ten times faster than typical java frame work, without

compromising in quality of your application because of Ruby programming language many

things that are too simple in Ruby are not even possible in most other languages .The guiding

principles are less software and convention over configuration. Less Software means fewer

lines of code, to implement, code is small means for faster development and fewer bugs

makes code easier to understand, maintain and supports enhancements. Convention over

configuration means to verbose XML configuration files, there aren‘t any in Rails. Instead of

configuration they are few simple programming conventions that allow it to figure out

everything through reflection and discovery. Your application code and your running

database already contain everything that Rails need to know.

1.11 PHP
PHP: Hypertext Preprocessor is one of the most common web/general purpose scripting

languages that produce dynamic web pages. HTML code allows PHP to be embedded within it

and interpreted by a web server with a PHP processor module. As a general-purpose

programming language, PHP code is processed by an interpreter application in command-line

mode performing desired operating system operations and producing program output on its

standard output channel. Most modern web servers have PHP processors and most of the

operating system have a standalone interpreter. PHP was originally created by Rasmus Lerdorf in

1995. The main implementation of PHP is now produced by the PHP Group and serves as the de

facto standard for PHP as there is no formal specification. PHP is a free software.[13]

1.12 Scheme
Scheme is a statically scoped and properly tail-recursive dialect of the Lisp programming

language invented by Guy Lewis Steele Jr. and Gerald Jay Sussman. It was designed to have an

exceptionally clear and simple semantics and few different ways to form expressions. A wide

variety of programming paradigms, including imperative, functional, and message passing styles,

find convenient expression in Scheme. Scheme was one of the first programming languages to

incorporate first class procedures as in the lambda calculus, thereby proving the usefulness of

static scope rules and block structure in a dynamically typed language. Scheme was the first

major dialect of Lisp to distinguish procedures from lambda expressions and symbols, to use a

single lexical environment for all variables, and to evaluate the operator position of a procedure

call in the same way as an operand position. By relying entirely on procedure calls to express

iteration, Scheme emphasized the fact that tail recursive procedure calls are essentially goto's that

pass arguments. Scheme was the first widely used programming language to embrace first class

escape procedures, from which all previously known sequential control structures can be

synthesized. More recently, building upon the design of generic arithmetic in Common Lisp,

Scheme introduced the concept of exact and inexact numbers. Scheme is also the first

programming language to support hygienic macros, which permit the syntax of a block-structured

language to be extended reliably.

2. Analysis

 Java vs Scheme
Default more secure programming practices

 Java provides more secure programming practices as compared to Scheme.

Web applications development

 Developing web applications in Scheme compares favourably to developing with Java

language.

 We have to spend much effort developing libraries and fixing errors that would not have

been an issue with a more mature platform, but we can use a range of language features

not available elsewhere. After an initial one-off ‗startup‘ cost this tradeoff works.

Web services design and composition

 Web services depend on the ability of enterprises using different computing platforms to

communicate with each other. This requirement makes the Java platform, which makes

code portable, the natural choice for developing Web services. This choice is even more

attractive as the new Java APIs for XML become available, making it easier and easier to

use XML from the Java programming language.In addition to data portability and code

portability, Web services need to be scalable, secure,and efficient, especially as they

grow. The Java 2 Platform, Enterprise Edition (J2EE), is specifically designed to fill just

such needs. It facilitates the really hard part of developing Web services, which is

programming the infrastructure, or "plumbing." This infrastructure includes features such

as security, distributed transaction management, and connection pool management, all of

which are essential for industrial strength Web services. And because components are

reusable, development time is substantially reduced.

OO-based abstraction

 The Scheme code is a bit verbose, with obvious redundancy between the internal

function definitions and the dispatch methods. This could be reduced fairly easily with

some simple macros to define methods as used in Java.

Reflection

 The reflection mechanism in Scheme is not as powerful as Java. Java supplies a rich set

of operations for using metadata and just a few important intercession capabilities. In

addition, Java avoids many complications by not allowing direct metaobject

modification. These features give reflection the power to make your software flexible.

The software marketplace is increasing its demand for flexibility. Knowing how to

produce flexible code increases your value in the marketplace. Java is so well crafted and

its reflection API so carefully constrained that security is controlled simply.

Aspect Orientation

 This three step process of mimicking the operators of AspectJ but implementing them in

the context of the Scheme programming language requires significant amount of design

effort. On the other hand AspectJ is a complete implementation of an AOP language for

Java. It consists of weavers that take various forms such as a compiler and a linker. A

weaver produces byte code that conforms to the Java byte-code specification, allowing

any compliant JVM to execute those class files. It is easy to learn and use. To simplify

building and debugging applications, the language implementation also offers support for

IDEs. AspectJ enables Java developers to better manage the problems in large program

systems and to reap the benefits of modularity.

Functional programming

 Java has no functions; however, using interfaces and inner classes it is possible to mimic

some but not all the features of functional programming. But Scheme is primarily a

functional programming language. Unlike most other functional languages, Scheme

supports multiple coding paradigms, and functional programming is a subset of its

capabilities. However, its functional capabilities are complete -it's not lacking anything

that a functional language needs to be considered functional. It also has many useful

built-in functions (arithmetic, list operations, etc). The Scheme functional programming

style meshes well with both multi-threading and transactional based systems. If you can

get the logic correct, functional programming in Scheme requires orders of magnitude

less code. That means fewer points of failure, less code to test, and a more productive

programming life.

Declarative programming

 You can embed some of the declarative programming features in Java using libraries like

JSetL and JSolver. But Scheme is a general purpose language which offers a powerful

and flexible declarative programming model because it is in clear correspondence to

mathematical logic and lacks side effects. The programs in Scheme are concise; this

makes it easy even for nonprogrammers to obtain solutions.

Batch scripting

 Scheme Shell is a system with several faces. From one perspective, it is not much more

than a system-call library and a few macros. Yet, there is power in this minimalist

description—it points up the utility of embedding systems in languages such as Scheme.

A Scheme shell wins because it is broad-spectrum. A functional language is an excellent

tool for systems programming.

UI prototype design

The Scheme code is a better choice because of the following reasons:

 There‘s less preamble (#lang scheme/gui vs multiple imports).

 The syntax is consistent with what has come before in the student‘s experience. Hence it

is not very difficult for a stakeholder to understand.

 Less number of lines of code.

 There aren‘t any mystery calls (frame.pack()?).

 new is analogous to make-, which students have seen many times before.

 Callback functions follow naturally from previous work; event handlers are confusing.

 Scala vs. PHP

Default more secure programming practices

 Traditionally PHP is weakly typed vs. Scala which is Strongly typed preventing

unexpected invalid input behavior.[15]

 Input validation and input filtering not directly possible in traditional PHP

application.[15]

 Scala is a type safe programming language.[14]

Web applications development

 PHP integrates HTML code effortlessly; this helps web servers to process the web pages

before they are actually displayed on the web browser. Scala can possess this feature but

not effortlessly, since it is not full-fledged web development programming language.[16]

 PHP is dynamic web development language whereas in Scala need frameworks to

perform web development.[16]

 PHP since is versatile server-side web development program and is supported on most of

the web servers and runs on all operating systems. Scala needs the JVM installed and

other add-on to support web development.

 Since PHP is faster it helps in faster page loading[16]

 There is huge repository of documentation available for web development in PHP[16]

Web services design and composition

 PHP is reasonably high performing implementations while providing users with high

software productivity.PHP is a viable option for publishing SOAP/WS-* based web

services in addition to the currently popular REST-style web services.[17]

 Scala‘s have an edge over PHP in categories like Security, maintainability while PHP has

better performance due to dynamic compilation of code. PHP has high flexibility and

excellent documentation providing a broader view about the web services it can offer.

 PHP has a wider support for mostly all web service designs while Scala being a relatively

new language is trying to make a mark in the web development and service world

OO-based abstraction

 Lines of Code: For Scala, the lines of codes is less than that of PHP

 Readability: The readability for PHP is better but the preciseness and conciseness is

obtained in Scala.

 Program load time: For Scala there is a new and unique feature provided by the compiler

called the FSC (Fast Scala compiler) [18] which does not compile the repeated code and

does the compilation in almost no latency, unlike PHP which has to be compiled every

time it is executed.

 Instruction Path Length: In scala, this feature is highlighted the most with the instruction

path length being very less as compared to PHP just like all other object oriented

programming languages.

Reflection

 Using Reflective API in PHP is expensive and dents the performance. Scala implements

Reflection with some memory foot print which can be dealt with manually.[19]

 Scala allow implementation of Reflection API sharing the same interface using global

factory.

 Reflection in PHP is easier to implement than in Scala.

Aspect-orientation

 A major difference and a strong point of Scala over PHP is for Aspect oriented

programming in Scala, it has a complete Type Safety which the later lacks.

 Earlier versions of PHP were inadequate to satisfy the core reasons of implementing

Aspect Oriented programming. Later versions have tried to do the same with some

performance penalties.

Functional programming

 Scala implements functional programming effortlessly. It is a built-in feature of the Scala

language unlike PHP which has it as an extension, besides it‘s functional calls are

verbose.

 PHP lacks certain primitive functional programming features

Declarative programming

 Scala Declarative programming has a structure. PHP has the flexibility of creating

its own annotations

 Scala can handle declarative programming to a higher extent that declarative

programming implemented in PHP since it is equipped with a interpreter

Batch scripting

 Scala Has access to the COMPLETE JDK and can put other Java/Scala-Libraries into my

Classpath to use in a script[20]

 Scala can do all file operations on a high and object oriented level

 With Scala , it is Small and readable scripts.

 Scala can also include in future Wrapper to create a GUI for the script

 PHP provides very limited security and scripting options as compared to the vast Scala

language functionality.[21]

UI prototype design

 In Scala, its ―everything is an object‖ philosophy makes it possible to inherit the main

method of a GUI application. [20]. PHP does not apply this concept entirely. PHP passes

parameter by value and reference and not always objects.

 In Scala, the method can be hidden from user applications, including the boilerplate

code for setting things up that comes with it. PHP provides very less security and hiding

of method from user application but it can be performed by explicitly mentioning the

expose_php value in php.ini which reduces information available to users.[22]

 Scala‘s first-class functions and pattern matching make it possible to formulate event

handling as the reactions component property, which greatly simplifies life for the

application developer.[20]

 VB .NET vs. AspectJ

Default more secure programming practices

 VB.NET supports exception handling programmatically and implicitly.

 Some errors in VB.NET cannot handle implicitly but handled programmatically.

 .NET Framework by default provides security such as internal security, data security and

external security.

 AspectJ supports exception handling by extracting error handling code from normal

code.[23]

 AspectJ can plug and Unplug error handling code automatically.

 AspectJ limited supported of security but enable programmer to write secure code.

Example for default secure entity‘s are returns and returned pointcuts.

Web Application development

 VB.NET support web applications.

 VB.NET support dynamically by accessing database.

 AspecJ support web applications such as JSP and Spring Framework but it cannot do by

itself.

 AspectJ increases modularity in web application development and security.

Web services design & Composition

 VB.NET can implement by default using .NET Remoting.

 VB.NET also support different web services such as HTTP, WSDL, SOAP and

UDDI.[24]

 AspectJ can deploy an Axis web service.

 AspectJ provides dynamic switching between different technologies.

OO-based Abstraction

 VB.NET was an object oriented programming language.

 VB.NET can implement Abstraction.

 AspectJ can implement Abstraction but violates object oriented feature encapsulation by

accessing private members outside the class.

 Readability of VB.NET programming is good for basic programmer as compared with

AspectJ

 Lines of code in AspectJ are more.

Reflection

 AspectJ can implement static and dynamic behavior of reflective programming but

supports dynamic behavior partially.

 VB.NET completely supports dynamic and static behavior of reflective programming.

 VB.NET supports dynamic behavior can save memory but slows down speed as

compared with AspectJ.

Aspect Oriented Programming

 AspectJ was an implementation of aspect oriented programming.

 AspectJ can implement both static and dynamic weaving.

 VB.NET can implement aspect oriented programming using AOP Engine [25].

 VB.NET can implement only dynamic weaving only.

Functional Programming

 VB.NET supports functional programming partially because can implement lambda

calculus but not lazy evaluation.

 AspectJ doesn`t support functional programming.

Declarative Programming

 VB.NET can support declarative programming by depending on different

technologies such as XAML,LINQ [26]

 AspectJ support declarative programming by annotations[27]

Batch Scripting

 VB.net uses “System.Diagnostics.Process‖ package to call bat file.

 Macros can be written by using VB.NET

 AspectJ doesn‘t support batch scripting itself but it can use java libraries to execute.

UI prototype design

 VB.NET by default support UI prototype

 VB.NET gives rich look to UI and provides drag and drop facility to the programmer.

 AspectJ increases performance and enable security to the UI.

 C++ vs. Ruby

Default more secure programming practices

 Ruby has better advantages like garbage collection, no pointers, indicates buffer

overflow.

 Integer.MAX_value+1 equals Integer. Min_Value in C++, But in ruby it expands

the integer as needed.

Web applications development

 C++ is very high performance language, but writing scalable, threaded

infrastructure code can be very complicated and time consuming but it is done

well in ruby.[29]. Since C++ is a compile time language it is difficult to map it

with dynamic systems.[29].

 Querying and string manipulations are main causes in web development are good

to do in dynamic language than in C++.[28]

Web services design and composition

Advantages of WSO2 WSF/C++.[31]

 Convenient and speedy development with built-in tools

 Complete WS-* stack for C++

 Lightweight

 Support for protocols

 Integration with existing environment

 Handle REST and SOAP message formats.[31].

Advantages of WSO2 WSF Ruby.[30]

 Better Performance

 Easy to use Object Oriented API

 Extensible

 Wider Support(SOAP 1.1/SOAP 1.2/SOAP MTOM)

 Built by Web Services Experts

 Industrial Strength

OO-based abstraction

 In both C++ and Ruby, public methods can be called by anyone, and protected

methods can be called only by objects of the same class or objects that inherit

from the defining class. The semantics of private differ between C++ and Ruby,

however. In C++, methods are private to the class, while in Ruby they are private

to the instance. In other words, you can never explicitly specify the receiver for a

private method call in Ruby.[32]

 Ruby, unlike C++, does not support multiple inheritance but does support mixins.

You can't create an instance of Module; you can only include it into class

definitions. In this case, Module Comparable defines the comparison operators

(<, >, ==) in terms of the <=> operator. So by defining <=> and including Module

Comparable, you get the other comparison operators for free.

 In C++, you sometimes rely on inheritance combined with virtual functions to

enable polymorphism. A pointer x of type T * can point to an object of type T or

any object with a type below T in the class hierarchy. A virtual method invoked

through x is resolved by walking up the class hierarchy, starting from the type of

the object pointed to by x.

 Ruby on the other hand uses duck typing—if something looks like a duck, swims

like a duck, and quacks like a duck, then it's a duck.

 For Ruby, it doesn't matter what type x is. If the object x has a

method print_hello, the code will work. So unlike C++, which would require the

objects to inherit from a common base type, you can pass objects of unrelated

types to my_method, as long as they all implement print_hello.[32]

Reflection

There are two types of reflection

 Inspection by iterating over members of a type, enumerating its method and so on.

This type is not possible in C++ but possible in Ruby , as its meta programming

tool kit supports all types of meta data. For achieving this in C++ there is no

direct way but using a meta compiler like qt meta object compiler which

translates code by adding additional meta information and even high level

inspection is not possible.[33].

 Inspection by checking whether a class type (class,struct,unions) has a method or

nested type, is derived from another particular type. This is possible in C++ using

template tricks like use of boost::type_traits for many things. For checking whether

a certain nested type exists use plain SFINAE. [33]. Ruby supports even this type

of reflection.

Aspect Orientation

 AspectR is a little different, as it doesn‘t introduce any new syntax into the

language and implements AOP using it‘s standard OO programming unlike

AspectC++. This is possible due to Ruby‘s dynamic nature.

 AspectC++ uses preprocessing to weave the advice, this means a pass through the

code is required before passing it to the standard C++ toolchain. AspectR does all

it‘s work at runtime and doesn‘t modify the language in any way. In Ruby there

isn‘t any difference between compile time and run time so this makes sense.

AspectR‘s approach clearly adds runtime overhead but might offer greater

flexibility.

 The example shows how to use AOP to weave advice that is run before and after a

method call. There are three methods in our test class, TestClass: method1,

method2 and method3. All methods take a string as argument and return another.

In method1 AOP is used to weave advice that runs before the method and prints

the argument passed to it. In method2 advice is weaved to run after the method,

printing the value that was returned by the method. In method 3 advice is added

around the method, changing it‘s arguments and return values.[34].

Functional programming

 Both the languages do not support pure functional programming. But it can be

achieved in an extreme extent in C++ using FC++, but when comparing only

C++ and Ruby, Ruby is the better functional language than C++.Both of the

languages do not force to write pure functions but certainly they help to do. But

we can expect more help from Ruby as they are mentioned above.

Declarative programming

 As C++ is an imperative programming and it will not support declarative style by

default. But efforts are made to implement declarative programming in

C++.These are some of the ways to implement declarative programming in

C++.[31]Pure logic programming is entirely declarative in nature. The primitives

used to support logic programming are provided by the caster, an open source

C++ library work. Castor is small , pure C++ header library. It seamless integrates

logic programming paradigms supported by C++ such as object oriented

programming, imperative, generic etc. Blending logic programming techniques

enables new designs and programming techniques that are not available to purely

logic programming approaches or pure object oriented approaches, but only

feasible with multi paradigm blend. A key goal of caster is to smooth and efficient

blend into rest of C++ with minimal syntactic over head.[35].

 COP(C++ or Prolog), some efforts made by Charles- Ant oine Brunet, Ruben

Gonzalez Rubio to integrate C++ and Prolog for declarative type of programming

possible in C++. Integration of C++ and Prolog into one named as COP(C++ or

Prolog). The approach has been made to add some features in C++ to achieve

Prolog goals. This approach is clumsy because a programmer must make some

extra manipulations. The great disadvantages are that the bugs in programs can be

hard to discover and the code depends on the platforms. The proposal is to merge

two different languages into one language keeping the characteristics of the two.

Goals of proposed language are

-not to change syntax and semantics of both languages.

-to link between new concepts that link between C++ and Prolog

-to handle errors

-to reduce over head

Batch scripting

 Undoubtedly Ruby holds upper hand than C++ in scripting. Ruby is inbuilt with

number of files for scripting purposes i.e to execute external programs, command

line options and arguments, shell library, accessing environment variables. C++ is

preferred for the criteria performance is the factor but loading some library files is

suppressing it.

UI prototype design

 We can use the frame works provided by the Qt/GTK+ etc for graphical user

interface design for platform independent applications either in C++ or in Ruby.

But the complexity of syntax in C++ will generally make it difficult to use. We

even can build a window without these libraries but it is a difficult work to be

done. As the example mentioned above will give the same output for but one can

observe the difference in complexity and amount of issues to be handled while

creating a simple window, all these will be done by default. So, Ruby is preferred

for user interface design where complexity can be minimized but in the

applications that are to be differently behaved should prefer C++.

 Haskell vs. Perl

Default more secure programming practices
 Garbage collection

Both Haskell and Perl have their own Garbage collection mechanism. However, the

garbage collection mechanism in Perl might break down when one has a circle of

reference values. On the other hand, garbage collection for Haskell has no such

drawbacks and has a better garbage collection mechanism than Perl.

 Pointers

Both Haskell and Perl does not have pointers, this means that a programmer is not

allowed to play with pointers and avoiding memory mismanagement.

 Type System

As mentioned above, Haskell has a strong Type System security. Whereas, in Perl one

cannot safely code without numerous checks. A drawback of Perl‘s Type System.

Web applications development
 As mentioned above both Haskell and Perl are a good choice for web development. The

code sample shows that there is not much of a difference in the code size as well.

However, when it comes to web development for large applications, Perl is a better

choice than Haskell.

Web services design and composition
 Both Haskell and Perl can be used for web service. However, Perl is a better choice as it

provides more services than Haskell, such as WSDL and UDDI. Also, as mentioned

above, full support to WSDL to Haskell is still under development.

OO-based abstraction

 Object-Oriented Concepts are not supported by Haskell. It requires an extension

OOHaskell to implement these concepts. However, in Perl, there is a straight forward

implementation of these concepts.

Reflection

 Apparently, Perl has a better reflection mechanism than Haskell. Haskell do have

libraries for dynamics, but they still do not support complete reflection.Perl on the other

hand, has good reflection mechanisms.

Aspect-orientation

 Both Haskell and Perl support Aspect Orientation. However, as mentioned above, Perl

uses an easier AO implementation mechanism than Haskell. This is because Haskell has

to use an extension called AOP Haskell whereas in Perl there is an in build package

Aspect. Hence, Perl is a better choice. Also, from the code sample above, we can

notice that Perl has an easier AO implementation than Haskell.

Functional programming

 Though Perl has some support for Functional style of Programming with the help of

References and Closures, Haskell is built as a Functional Language and is better for

functional style of programming than Perl.

Declarative programming

 Perl has many limitations when it comes to Declarative / Logic programming as

mentioned above. However, with Haskell, one can use Monards to implement

Declarative/ Logic programming. Therefore, Haskell is well suited for Declarative style

of Programming.

Batch scripting

 Shell Scripting is possible with Haskell using HSH that was released in 2007. However,

Perl is a Scripting language and is more suited for shell scripts than Haskell.

UI prototype design

 As mentioned, both Haskell and Perl have rich set of libraries to build a GUI application.

I have just shown the description of one library each for Perl and Haskell, however, there

are many more that each programming languages support.

3. Consolidated Analysis and Synthesis of the Results

Criteria/PL Java Scala C++ Haskell VB .NET

Default more secure

programming practices

Good secure programming

features with GC, no

pointers, packages and

threads.

Good Default Security with

features like GC, Exception

handling & works on JVM

so uses its Security Manager

not a secure

programming language,

buffer overflow is not

detected.

Good secure programming

features with a GC, no

pointers and good type

system.

Built-in secure features

provided by .net and

programming itself can

implement secure features

Web Applications

Quite popular for web

applications. Abundant

libraries and servlets serve

this cause.

Can develop flexible, highly

scalable,secure applications

with help of web

development frameworks

Used for standalone

applications, difficult to

create by default.

Can develop we

applications with rich set

libraries.

Vb.net supports web

applications

Web Services Design

 and Composition

Good for web services

because of portability and

large number of APIs for

XML available.

RESTful services provided

with help of frameworks.

Provision of other services

still under construction.

XML processing simple

Supports REST,XML,

WSO2 frame work

Provides services like

SOAP and REST but is

still immature in terms of

WSDL and UDDI.

Vb.net can implement web

services such as HTTP,SOAP,

XML , WSDL , UDDI and .Net

remoting service can implement

it self

Object-Oriented based

Abstraction

Primarily an object oriented

language with powerful

features.

Supports 2 types of

abstraction .Alternative to

functional abstraction.

Mainly used for modeling

families that vary

covariantly

Supports Object

Oriented principles but

not as a default.

Object-Oriented Concepts

are not supported by

Haskell. It requires an

extension called

OOHaskell.

Vb.net is an object oriented

language .It supports OO

abstraction.

Reflection

Powerful reflection mechanism.

Supplies a rich set of operations

for using metadata and avoids

complications.

Its a subsystem, Reflection

API..Limited

scope.Modular, hence

reduce foot-print & be

efficient

Limited reflection

capabilities.

Haskell do have libraries

for dynamics, but they still

do not support complete

reflection.

Vb.net supports reflection

using built-in called

―system.reflection‖

Aspect-Oriented

Programming

AspectJ, an extension to Java

treats AOP concepts as first-

class elements of the language.

Provides 2 different

types.Mainly, Mixin

composition stacks

With static type of

language it is difficult ,

AspectC++ supports it

Does not directly support.

Has an extension called

AOP Haskell.

Aop Engine in .NET to

implement AOP programming

but it supports only at run time

Functional

 Programming

No functionsInstead, using

interfaces & inner classes it is

fairly easy to mimic some

features of FP.

Powerful Support and well

suited. Light-weight syntax.

Supports High-order, nested

functions, and currying

Doesn‘t support to fuller

extent but can be done

using FC++

This is a functional

programming langage.

Vb.net is not a pure functional

programming but it supports

Lambda calculus

Declarative

 Programming

Libraries like JSetL and

JSolver offer a number of

facilities to support DP.

Uses a Prolog interpreter called

ScalaLogic. Emphasises on

Simplicity and not performance

By default not possible

but merging prolog is an

alternative.

Haskell, one can use Monards

to implement Declarative/

Logic programming.

Dosen‘t implement declarative

programming by itself

Batch Scripting

Easy; involves the use of two

Java classes, the Runtime

class and the Process class.

Supports Batch/Bash/Perl

scripting. Used as real

scripting language

Including libraries

allows to do so. But

decreases performance.

Shell Scripting is possible

with Haskell using HSH.

Vb.net supports batch

scripting and macros

UI prototype design

Rich set of libraries for UI

applications but the code is

verbose and can be

mysterious for stakeholders.

Supports UI with basis on

Java swing framework but

hides much of its complexity

Difficult to implement

by default but supports

some libraries.

Has rich set of libraries for

GUI applications.

vb.net supports rich UI

interfaces and IDE give good

support to programmer.

Criteria/PL AspectJ PHP Ruby Perl Scheme

Default more secure

programming practices

It capture the returned values

of methods in both the

execution and method

invocation. It implements

execution handling itself.

Insecure, weakly typed

language. No input

validation, etc Security

provided with help of few

frameworks. currently.

secure, dynamic and

has GC. No pointers,

Exception handling.

Has no proper GC

mechanism, has no

pointers but references

and no type system

hence, one cannot safely

code.

Less pros and more cons.

Problems with types,

records, threads, etc.

Web Applications

It supports web applications

by proving secure features

during transactions

Excellent features. Dynamic

easy less code required. Can

be embedded into HTML

Using Rails , supports

for fast and secure

applications

Has excellent features

for web application

development.

Powerful features for web

development but fewer

libraries than mainstream.

Web Services Design

and Composition

AspectJ supports web

services such as AXIS but

doesn‘t support all features

by itself.

Good choice for web

services Provides SOAP

support inbuilt in

PHP5.Supports REST,WS-*

Supports many frame

works as it is a

flexible language.

Is indeed a good choice

for this as it has almost

all the features.

PLT Scheme has good web

services support.

Object-Oriented based

Abstraction

It supports OO Abstraction Not ideal for OO-based

abstraction, but has a clear

and simple implementation

By default it is object

oriented language and

supports abstraction.

Has a straight forward

implementation.

Closures can be used to capture

object state. But the code is

verbose with obvious

redundancy.

Reflection

It can implement Reflection

using ―

―org.aspectj.lang.reflect.*‖

Implemented using standard

included Reflection API
Supports reflection

programming.

has good reflection

mechanisms.
Homoiconic language; can

meta program during

runtime.

Aspect-Oriented

Programming

AspectJ itself is an AOP

programming. It can support

at static and dynamic time.

Supported using Libraries.

Aspects are statically

weaved. Dynamics weaving

is possible using extensions

 Supports AOP and

can be done with

Aspect Ruby

Has a straight

implementation with a

built in package called

Aspect.

Continuation marks and

language-defining macros

help in implementing AOP

in Scheme.

Functional

Programming

AspectJ implement a

profiler that records

statistics concerning the

number of calls to each

method.

Supports but its functional

calls are verbose. Few FP

primitives introduced to

improve

Supports but doesn‘t

force to do it.

Some support with the

help of References and

Closures.

Primarily a functional

programming language.

Declarative Programming

It supports declarative

programming using

Annotations

Do not support by default.

Uses lesser known technique

of Annotations and has

considerable limitations

By default not

possible merging

prolog is an alternative

Perl has many

limitations when it

comes to Declarative /

Logic programming.

Capable of doing declarative

programming. Schelog and

Kanren serve this cause.

Batch Scripting

It doesn‘t support itself Supports but with limited

advantage. Must be

compiled as a CGI binary

Supports scripting . It is a scripting language

and is well suited for

this.

Some Schemes allow to

define Unix-style scripts

containing Scheme code

UI prototype design

It increases UI performance

such as fast response of UI

Basic version does not

support. Implemented using

supporting frameworks

Very easy to

implement.

Has rich set of libraries

for GUI applications.
Good for UI applications.

Syntax is consistent and

easy for stakeholders.

3.1 Criteria 1: Default Secure Programming Language

After careful study regarding the language mentioned, we came to the conclusion that Default security

was best provided by Java, Scala, VB .NET and Haskell. All the three languages have an automated

garbage collector. Scala provides implicit exception handling and since it run on the JVM, it work in

collaboration with the Java security manager, this is one of the many strong points Scala has over Java‘s

default security features. Threads(Actors in Scala), packages, Buffer overflow exceptions are some other

default security provided by Java, VB .NET and Scala. Haskell has no pointers and has a good type

system. As for other languages like Scheme, Perl, Ruby provides security but lacks few more secure

features .

3.2 Criteria 2: Web Applications Development

With Respect to Web application development PHP and Ruby(with ROR) are the best preferred

languages. Ruby is most preferred in cases where security, performance, readability and flexibility is

concerned. PHP is very widely used due to its simplicity, huge repository of documentations and light

weight syntax, but by default it lacks security. Java, Scala(eg. Twitter, LinkedIN) and Ruby is preferred

for cases where the Web application demands security and robustness without compensating largely on

the performance of the application. C++ develops standalone application which can be used where

performance is the main criteria.

3.3 Criteria 3: Web Services Design and Composition

Turning our attention to Web Services Design and Composition, PHP and Perl are the preferred choices.

PHP supports an extensive set of Web services and still adding. SOAP is an inbuilt web services in PHP

version 5..As for Perl, Web services are provided using wide rich set of libraries. Java, Ruby and C++

provide web services and excellent XML support with libraries, API‘s and many frameworks. As for

Scala and Haskell Web services are provided but are immature.

3.4 Criteria 4: Object Oriented based abstraction

Ruby is a pure object oriented language and is best suited for this purpose. Scala, Java, C++ and VB .NET

can be considered as substitutes for this purpose. Scala‘s advantage over Java are based on the

compactness, easy scalability and efficiency. Java provides macros that help improve efficiency to a

considerable extent. Haskell provides support for OO-based programming in it extension OOHaskell.

Scheme is long, verbose and redundant whereas AspectJ has dependencies, hence does not suffice the

purpose of OO- based abstraction.

3.5 Criteria 5: Reflection

VB.NET completely supports reflective programming such as access to the static and dynamic

information but AspectJ supports dynamic crosscutting concern partially.java and Scala very well crafted

that it provides excellent security inspite of reflection. Both scheme and Perl support reflective

programming using Homo iconic language but they are not considered among the best.PHP dents the

performance and uses lot of memory. Ruby uses rich set of libraries for the support of reflective

programming. Haskell has limited reflective programming support.

3.6 Criteria 6: Aspect Oriented Programming
AspectJ was an implementation of aspect-oriented programming .VB.NET supports AOP using AOP

Engine.java, scala .Perl, Ruby and Haskell provides aspect oriented programming using extensions.

Scheme requires design effort. C++ has a static nature due to that AOP is difficult.

3.7 Criteria 7: Functional Programming

 Haskell, Scala and Scheme are implementations of functional programming. Both Ruby and c++

doesn‘t force you to write in pure functional programming but it supports functional programming and

C++ doesn‘t support higher order functions.VB.NET supports functional programming partially such as

lambda calculus but doesn‘t support lazy evaluation.

3.8 Criteria 8: Declarative Programming

Declarative programming in mentioned programming languages cannot be done without frameworks,

interpreters or extensions.. Scheme does this using Schelog and Kanren whereas Scala has a prolog

interpreter called ScalaLogic, Haskell uses Monards, C++ uses COP, Ruby uses RubyProlog and so on.

PHP and Perl are not good options for this kind of programming. Declarative programming in PHP and

Perl have a very limited scope.

3.9 Criteria 9: Batch Scripting

Perl is a scripting language and best suited for this purpose. It is easy, small and portable. Java, Ruby

,Scala and VB .NET are also good considering its ability to perform automation, macros and shell

scripting on different platforms. C++ is mainly performance oriented language as it requires some

libraries for scripting and which degrades its performance.

3.10 Criteria 10: UI prototype design

Haskell, VB.net, Perl, Ruby has good repository set of libraries for GUI design at a faster way. Both java

and Scala use swing framework, GUI design. Scheme is also one of the subtly preferable UI language due

to preamble, small syntax consistent and has no mystery calls. PHP also supports comparatively decent

UI using mature extensions/frameworks. C++ is a tedious way for creating an UI design but C++ with

framework provides better support. AspectJ cannot provide UI design because of it uniqueness to

perform aspect oriented programming. For cases where it is required it depends on Java & its libraries.

4. Conclusion

After carefully analyzing the languages, we have come to the conclusion that every languages has it‘s

own ups and downs. Every particular language has a purpose but can be extended or revised to

accommodate the current needs of programming. Inspite of all this, every language has it own speciality

and considerably better programming practices which has made it popular and revolutionized the

computing world. In the days to come, languages like Scala are expected to introduce some new and

challenging perspective to the programming practices which started it journey from procedural to Object

oriented, Declarative, Reflective, functional to a combination of these features. As for now many

languages are at the advent of change and introducing new features and competing with each other.

Keeping this in mind, we conclude that each language has a specialized task and have to analyzed and

gauged for implementation.

4.1 Acknowledgements

I would like to acknowledge the contribution of the following entities that made this presentation

possible

 Professor Serguei A. Mokhov, for the advise, topics, the help in understanding the

concepts, the direction of research for the criteria‘s and immense support.

 Faculty of Engineering and Computer Science, Concordia University, Montreal, Canada

 Concordia University Libraries for access to the invaluable digital libraries ACM, IEEE,

Springer and for the books.

 POD, Yi Ji for introduction into AspectJ[36] and Java Reflection[37]

 Wikipedia, contributors of a wealth of information

 Martin Odersky for innumerable papers, books, suggestions for the Scala Language

research.

Abbreviations
VB Visual Basic

PHP Preprocessor

JVM Java Virtual machine

VM Virtual Machine

XML Extensible Markup Language

HTML HyperText Markup Language

API Application Programming Interface

IDE Integrated Development Environment

AOP Aspect Oriented Programming

SOAP Simple Object Access Protocol

REST Representational State Transfer

WSDL Web Service Definition Language

HTTP HyperText Transfer Protocol

UDDI Universal Description Discovery and Integration

GUI/UI Graphic User Interface/User Interface

XAML Extensible Application Markup Language

LINQ Language-integrated query

JDK Java Development Kit

WSO2 Web Services Oxygen

WSF WorkStation Functions

SOAP MTOM Simple Object Access Protocol Message Transmission Optimization

Mechanism

HSH Haskell Shell

FP Functional Programming

References
[1] Robert G. Clark. Comparative Programming Languages. Addison-Wesley, 3 edition, November 2000.

ISBN: 978-0201710120.

[2] Ronald Garcia. A comparative study of language support for generic programming. ACM SIGPLAN

Notices. Volume 38 , Issue 11

[3] Prashant Kulkarni, Kailash H D, Vaibhav Shankar, Shashi Nagarajan, Goutham D L. Programming

Languages: A Comparative Study.

http://isea.nitk.ac.in/PMISprojects/reports/LanguagesReport.pdf

[4] Bryan Higman. A comparative study of programming languages. Macdonald and Jane's, 1977.

[5] Joseph Arnold Lee. A comparative study of programming languages: APL, BASIC, COBOL,

FORTRAN. Marquette University, 1974

[6] P. J. Landin. The next 700 programming languages. Communications of the ACM, 9(3):157{166,

1966.

[7] Lutz Prechelt. An Empirical Comparison of Seven Programming Languages. University of Karlsruhe.

http://portal.acm.org/author_page.cfm?id=81100378849&coll=GUIDE&dl=GUIDE&trk=0&CFID=101192595&CFTOKEN=19275747
http://isea.nitk.ac.in/PMISprojects/reports/LanguagesReport.pdf
http://www.google.ca/search?tbs=bks:1,bkv:a&tbo=p&q=+inauthor:%22Bryan+Higman%22
http://www.google.ca/search?tbs=bks:1,bkv:a&tbo=p&q=+inauthor:%22Joseph+Arnold+Lee%22

[8] Programming Scala, Dean Wampler & Alex Payne, 2009

[9] Wikipedia, Scala http://en.wikipedia.org/wiki/Scala_(programming_language)

[10] Fritz Ruehr. Functional programming in Haskell. Consortium for Computing Sciences in Colleges,

USA.

[11] Simon Cozens, Peter Wainwright. Beginning Perl. Wrox Press Ltd. Birmingham, UK.

[12] Doug Sheppard on October 16, 2000. Beginner's Introduction to Perl.

[13] PHP , http://en.wikipedia.org/wiki/PHP

[14] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos,Gilles Dubochet, Burak Emir, Sean

McDirmid, Stéphane Micheloud,Nikolay Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon, Matthias

Zenger , ―An Overview of the Scala Programming Language Second Edition ― Lausanne, Switzerland :

École Polytechnique Fédérale de Lausanne (EPFL), Technical Report LAMP-REPORT-2006-001

[15] Secure Programming with Zend Framework, Stefan Esser steffan.esser@sektioneins.de,

http://www.suspekt.org/downloads/DPC_Secure_Programming_With_The_Zend_Framework.pdf,

Amsterdam, 2009

[16] PHP web development and its various Benefits. http://hubpages.com/hub/phpdevelopment

[17] Toyotaro Suzumura, Scott Trent, Michiaki Tatsubori, Akihiko Tozawa and Tamiya Onodera

“Performance Comparison of Web Service Engines in PHP, Java, and C”, Tokyo Research Laboratory,

IBM Research,1623-14 Shimotsurusma, Yamato-shi, Kanagawa-ken 242-8502, Japan {toyo, trent, mich,

atozawa,tonodera}@jp.ibm.com

[18] The Fast Scala Compiler and the OS X Firewall, 2008-08-29. Updated: 2008-08-29,

http://www.scala-lang.org/node/294

[19] PHP 5 reflection API performance, http://stackoverflow.com/questions/294582/php-5-reflection-api-

performance

[20] Martin Odersky, Lex Spoon, Bill Venners, Programming in Scala -2008

[21]Using PHP as a Shell scripting Language

http://www.phpbuilder.com/columns/darrell20000319.php3?print_mode=1

[22] A Basic GUI, http://www.tuxradar.com/practicalphp/21/3/3

[23]Using AspectJ For Programming The Detection and Handling of Exceptions Cristina Lopes, Jim

Hugunin, Mik Kersten Xerox PARC, USA {lopes,hugunin,mkersten}@parc.xerox.com Martin Lippert

University of Hamburg, Germany lippert@acm.org Erik Hilsdale Indiana University, USA eh@acm.org

Gregor Kiczales University of British Columbia, Canada gregor@cs.ubc.ca

[24] http://www.codeguru.com/vb/vb_internet/webservices/article.php/c4813

http://en.wikipedia.org/wiki/Scala_(programming_language)
http://en.wikipedia.org/wiki/PHP
mailto:steffan.esser@sektioneins.de
http://www.suspekt.org/downloads/DPC_Secure_Programming_With_The_Zend_Framework.pdf
http://hubpages.com/hub/phpdevelopment
http://www.scala-lang.org/node/294
http://stackoverflow.com/questions/294582/php-5-reflection-api-performance
http://stackoverflow.com/questions/294582/php-5-reflection-api-performance
http://www.phpbuilder.com/columns/darrell20000319.php3?print_mode=1
http://www.tuxradar.com/practicalphp/21/3/3
mailto:gregor@cs.ubc.ca
http://www.codeguru.com/vb/vb_internet/webservices/article.php/c4813

[25] A Dynamic AOPEngine for .NET _ Andreas Frei, Patrick Grawehr, and Gustavo Alonso

Department of Computer Science Swiss Federal Institute of Technology Z¨ urich CH8092Z¨ urich,

Switzerland{frei,alonso}@inf.ethz.ch pgrawehr@student.ethz.ch

[26]Professional visual basic 2010 and .NET 2010 by Bill Sheldon, Billy HolKent Sharkeylis,Jonathan

Marbutt, Rob Windsor, Gastón C. Hillar.

[27]http://www.devx.com/Java/Article/29472/1954

[28] http://stackoverflow.com/questions/417816/how-popular-is-c-for-making-websites-web-pplications

[29] http://www.roguewave.com/downloads/white-papers/guide-to-creating-cpp-web-services.pdf

[30] http://wso2.com/wp-content/themes/wso2ng/images/wso2_wsf_ruby_product_data_sheet.pdf

[31] http://wso2.com/wp-content/themes/wso2ng/images/wso2_wsf_cpp_product_data_sheet.pdf

[32] http://www.devx.com/RubySpecialReport/Article/34497/1954

[33] http://stackoverflow.com/questions/41453/how-can-i-add-reflection-to-a-c-application

[34]http://paginas.fe.up.pt/~ei01036/artigos/aop.pdf

[35] http://www.mpprogramming.com/cpp/

[36] AspectJ Contributors. AspectJ: Crosscutting Objects for Better Modularity. eclipse.org, 2007.

http://www.eclipse.org/aspectj/.

[37] Dale Green. Java reection API. Sun Microsystems, Inc., 2001{2005}

http://java.sun.com/docs/books/tutorial/reflect/index.html

A. Source code for Object-Oriented Abstraction in a few languages.

 Scala

1. The following code was run on a Scala compiler from http://www.scala-lang.org/downloads.

2. Installing the Java JVM on the system

3. Opening the command prompt by opening ―scala.bat‖ in the unzipped folder of Scala downloaded

4. Run the code provided at the scala command prompt as scala> Objectname.main(null).

 Criteria : Object- Oriented based Abstraction

package polymorph

abstract class Shape(initx:Int, inity:Int){

 var x: Int = initx

mailto:pgrawehr@student.ethz.ch
http://stackoverflow.com/questions/417816/how-popular-is-c-for-making-websites-web-pplications
http://www.roguewave.com/downloads/white-papers/guide-to-creating-cpp-web-services.pdf
http://wso2.com/wp-content/themes/wso2ng/images/wso2_wsf_ruby_product_data_sheet.pdf
http://wso2.com/wp-content/themes/wso2ng/images/wso2_wsf_cpp_product_data_sheet.pdf
http://www.devx.com/RubySpecialReport/Article/34497/1954
http://stackoverflow.com/questions/41453/how-can-i-add-reflection-to-a-c-application
http://paginas.fe.up.pt/~ei01036/artigos/aop.pdf
http://www.mpprogramming.com/cpp/
http://www.eclipse.org/aspectj/
http://www.scala-lang.org/downloads

 var y: Int = inity

 def moveTo(newx: Int, newy: Int){

 x = newx

 y = newy

 }

 def rMoveTo(dx: Int, dy: Int){

 moveTo(x + dx, y+ dy)

 }

 def draw() = {}

}

class Rectangle(initx: Int, inity: Int, initwidth: Int, initheight:

Int) extends Shape(initx, inity){

 var width = initwidth

 var height = initheight

 override def draw() = println("Drawing a Rectangle at:(" + x + "," +

y + "), width " + width + ", height " + height)

}

class Circle(initx: Int, inity: Int, initradius: Int) extends

Shape(initx, inity){

 var radius = initradius

 override def draw() = println("Drawing a Circle at:(" + x + "," + y

+ "), radius " + radius)

}

object Polymorph {

 def main(args : Array[String]) : Unit = {

 // create a collection containing various shape instances

 val shapes = new Rectangle(10, 20, 5, 6) :: new Circle(15, 25,

8):: Nil

 shapes.foreach(ashape =>{

 ashape.draw()

 ashape.rMoveTo(100,100)

 ashape.draw()

 }

)

 // access a rectangle specific function

 val rectangle = new Rectangle(0, 0, 15, 15)

 rectangle.width_=(30)

 rectangle.draw()

 }}

PHP
1. Install the WAMP server software available for free online

http://www.wampserver.com/download.php

2. At the bottom taskbar, click on start all services

3. Paste the code in a notepad file and save it in the wamp folder /www.

4. Run the code on a Web browser by opening it.

 Criteria : Object oriented based abstraction

File: Shape.php

<?php

interface Shape {

 public function Draw();

 public function MoveTo($x, $y);

 public function RMoveTo($dx, $dy);

}

?>

File: Rectangle.php

<?php

class Rectangle implements Shape {

 // If a method can be static, declare it static. Speed

improvement is by a factor of 4. (http://vega.rd.no/article/php-

static-method-performance)

 private static $width;

 private static $height;

 private static $x;

 private static $y;

 function __construct ($x, $y, $width, $height) {

 self::$x = (float) $x;

 self::$y = (float) $y;

 self::$width = (float) $width;

 self::$height = (float) $height;

 }

 public function Draw () {

 echo sprintf("Drawing a Rectangle at %d, %d, width %d,

height %d
", self::$x, self::$y, self::$width, self::$height);

 }

 public function MoveTo ($x, $y) {

 self::$x = $x;

 self::$y = $y;

 }

 public function RMoveTo ($dx, $dy) {

http://www.wampserver.com/download.php

 self::$x += $dx;

 self::$y += $dy;

 }

 public static function __set ($var, $val) {

 self::$$var = (float) $val; // note the '$$'

 }

 public static function __get ($var) {

 return self::$$var; // note the '$$'

 }

}?>

File: Circle.php

<?php

class Circle implements Shape {

 // if a method can be static, declare it static. Speed

improvement is by a factor of 4. (http://vega.rd.no/article/php-

static-method-performance)

 private static $radius;

 private static $x;

 private static $y;

 function __construct($x, $y, $radius) {

 self::$x = (float) $x;

 self::$y = (float) $y;

 self::$radius = (float) $radius;

 }

 public function Draw () {

 echo sprintf("Drawing a Circle at %d, %d, radius %d
",

self::$x, self::$y, self::$radius);

 }

 public function MoveTo ($x, $y) {

 self::$x = $x;

 self::$y = $y;

 }

 public function RMoveTo ($dx, $dy) {

 self::$x += $dx;

 self::$y += $dy;

 }

 public static function __set ($var, $val) {

 self::$$var = (float) $val; // note the '$$'

 }

 public static function __get ($var) {

 return self::$$var; // note the '$$'

 }}

?>

File: main.php

<?php

 // load the Circle and Rectangle classes and Shape interface

 function __autoload ($className) {

 require $className . '.php';

 }

 // set up an array with some shape instances

 $shapes = array(new Rectangle(10, 20, 5, 6), new Circle(15, 25,

8));

 // iterate through the shapes

 for ($i = 0; $i < 2; $i++) {

 $shapes[$i]->Draw();

 $shapes[$i]->RMoveTo(100, 100);

 $shapes[$i]->Draw();

 }

 echo "

";

 // circle specific functions

 $circle = new Circle(10, 20, 30);

 $circle->Draw();

 $circle->radius = 100; // set new value with __set "magic

method"

 $circle->Draw();

 $circle->MoveTo(200, 200);

 $circle->Draw();

 echo "

";

 // rectangle specific functions

 $rectangle = new Rectangle(10, 20, 30, 40);

 $rectangle->Draw();

 $rectangle->width = 100; // set new value with __set "magic

method"

 $rectangle->height = 195; // set new value with __set "magic

method"

 $rectangle->Draw();

 $rectangle->RMoveTo(10, 10);

 $rectangle->Draw();

?>

AspectJ
 Download ―ajdt_2.0.2_for_eclipse_3.5.zip‖ from

http://download.eclipse.org/tools/ajdt/35/update/ajdt_2.0.2_for_eclipse_3.5.zip then

install it.

 Add ―aspectjrt.jar‖ and ―C:\\aspectjhome\\bin to class path

 Compile as ajc *.java

 Execute as java main function class name

 Criteria : Object oriented based abstraction

package abstraction;

public abstract aspect Parent

{

int i=0;

pointcut greeting() : execution(* Main.fun(..));

}

aspect BigWorld extends Parent

{

 after(): greeting()

{

System.out.println("I'm in child class");

 System.out.println("base class member i values is"+i);

}

}

package abstraction;

public class Main

{

public static void main(String args[])

{

Main abs=new Main();

abs.fun();

}

private void fun()

{

System.out.println("Main function");

}

}

http://download.eclipse.org/tools/ajdt/35/update/ajdt_2.0.2_for_eclipse_3.5.zip

VB .NET
 Visual studio is used to compile and execute vb.net programs

 Select new project then select console applications under visual basic, finally select ok

 Compilation done by visual studio automatically

 Execution done by pressing F5 key

 Criteria : Object oriented based abstraction

Imports System.Console

Module Module1

 Sub Main()

 Dim abs As New child()

 System.Console.WriteLine("I'm in main function")

 WriteLine(abs.fun())

 End Sub

End Module

Public Class parent

 Public i As Integer = 10

End Class

Public Class child

 Inherits parent

Public Function fun() As Integer

 System.Console.WriteLine("I'm in child class")

 System.Console.WriteLine("base class member i values is" & i)

 Return 0

 End Function

End Class

Output:

I'm in main function

I'm in child class

base class member i values is10

