
Dynamic Spyware Analysis

Manuel Egele, Christopher Kruegel, Engin Kirda
Secure Systems Lab

Technical University Vienna
{pizzaman,chris,ek }@seclab.tuwien.ac.at

Heng Yin
Carnegie Mellon University and College of William and Mary

hyin@ece.cmu.edu

Dawn Song
Carnegie Mellon University

dawnsong@cmu.edu

Abstract
Spyware is a class of malicious code that is surrep-

titiously installed on victims’ machines. Once active,
it silently monitors the behavior of users, records their
web surfing habits, and steals their passwords. Current
anti-spyware tools operate in a way similar to traditional
virus scanners. That is, they check unknown programs
against signatures associated with known spyware in-
stances. Unfortunately, these techniques cannot iden-
tify novel spyware, require frequent updates to signature
databases, and are easy to evade by code obfuscation.

In this paper, we present a novel dynamic analysis ap-
proach that precisely tracks the flow of sensitive informa-
tion as it is processed by the web browser and any loaded
browser helper objects. Using the results of our analysis,
we can identify unknown components as spyware and
provide comprehensive reports on their behavior. The
techniques presented in this paper address limitations of
our previous work on spyware detection and significantly
improve the quality and richness of our analysis. In par-
ticular, our approach allows a human analyst to observe
the actual flows of sensitive data in the system. Based
on this information, it is possible to precisely determine
which sensitive data is accessed and where this data is
sent to. To demonstrate the effectiveness of the detection
and the comprehensiveness of the generated reports, we
evaluated our system on a substantial body of spyware
and benign samples.

1 Introduction

An important security threat that affects many Internet
users today is spyware [24, 25]. Spyware is malicious
software that attempts to silently monitor the behavior of
users, record their web surfing habits, or steal their sen-
sitive data such as passwords. Typically, the collected in-
formation is sent back to the spyware distributor, where it
is (ab)used for targeted advertisement or marketing stud-
ies. This is different from other types of malware, such

as viruses and worms, which generally aim to propagate
to other systems and cause damage.

As the spyware problem has intensified, a number of
commercial solutions have been introduced that aim to
identify and remove undesired spyware. These tools
are similar to anti-virus products in that they identify
known instances of spyware by comparing the binary
image of unknown samples to a database of signatures.
Often, these signatures are generated manually by ana-
lyzing known spyware samples (which is a tedious task
when one considers that hundreds of new samples have
to be analyzed every day). Unfortunately, spyware detec-
tion tools suffer from the known drawbacks of signature-
based detectors, such as the continuous need for updates
of the signature database and the inability to identify pre-
viously unknown samples. Note that a major drawback
of signature-based techniques is that they are also often
not able to deal with simple obfuscation techniques [3].

Because signature-based detection techniques have
significant shortcomings, we previously presented a
behavior-based spyware detection technique that used a
combination of static and dynamic analysis to identify
malicious behavior of Internet Explorer browser helper
objects (BHOs) [14]. Using our previous tool, we could
classify unknown components as malicious or benign.
Unfortunately, our approach also has a number of lim-
itations. First, we could only assert thepossibility that
sensitive information is leaked, but we were unable to es-
tablishexactly what data is collected by a spyware com-
ponent. This information is required by human spyware
analysts that need to understand and estimate the damage
caused by a specific spyware program. Second, because
of our substantial reliance on static analysis of potentially
hostile code, a spyware author who is aware of our tech-
nique can use code obfuscation to attempt to evade de-
tection (or to make detection more difficult and costly).

In this paper, we present a novel dynamic analysis ap-
proach that precisely tracks the flow of sensitive infor-
mation as it is processed by the web browser and any

loaded BHOs. Based on the results of our analysis, we
can classify unknown components as benign programs
or spyware and provide comprehensive reports on their
behavior. To identify information flows, we make use
of dynamic taint analysis, which tags sensitive data el-
ements and tracks their use as they are processed. Our
taint analysis combines the traditional whole system ap-
proach (in which data is tainted at a physical level) with
the ability to monitor activity within individual Windows
operating system processes. This is necessary to distin-
guish between the use of sensitive information by the In-
ternet Explorer and the abuse of the same data by mali-
cious browser objects. The techniques presented in this
paper address limitations with our previous approach and
significantly improve the quality of our analysis reports.
By tracking actual information flows, we can more pre-
cisely understand and characterize the behavior of spy-
ware. In particular, we can determinewhich sensitive
data is leaked andwhere it is sent.

The main contributions of this paper are the following:

• We introduce a dynamic analysis technique to pre-
cisely monitor the flow of sensitive data as it is pro-
cessed by the web browser and browser helper ob-
jects. By tracking the actual information flow us-
ing taint analysis, we canprecisely determine which
sensitive data is collected by a spyware component.
Unlike previous approaches that use dynamic taint
analysis, our system not only considers data depen-
dencies, but also control dependencies.

• We present a tool that can be used to automatically
analyze the behavior of unknown BHO samples and
provide comprehensive reports on their activities.

• We present experimental results on a substantial
body of 21 spyware samples and 14 benign BHO
samples that demonstrate the effectiveness of our
approach.

2 Spyware Analysis Approach

In general, spyware refers to a category of malicious
software that monitors a user’s operations without her
consent, typically to the benefit of a third party. Spy-
ware exists in many forms and performs actions of dif-
ferent levels of maliciousness. In this paper (as well as
in our previous work), we explicitly focus on spyware
that exploits the hooks provided by Microsoft’s Internet
Explorer to monitor the actions of a user. This is done
by using the browser helper object (BHO) interface. In
a nutshell, browser helper objects are Windows dynamic
linked libraries that are automatically loaded by the In-
ternet Explorer when it is launched. BHOs are mostly
used to extend the Internet Explorer with small, custom

add-ons or utilities. Examples include helpers that block
pop-ups, implement support for mouse gestures, or pro-
vide embellishments (images) for web pages. Although
possible, they rarely implement more complex function-
ality such as multi-media extensions or Java interpreters,
which are realized as Internet Explorer plug-ins. Most
browser helper objects do not contain any user inter-
face elements and work in the background, responding
to browser events and user input. However, they run in
the same address space as the browser and have full con-
trol over the browser’s functionality.

The focus on spyware that is implemented as BHOs is
justified by the fact that the large majority of spyware has
a component based on this technology. This is confirmed
by a recent study [26], which found that out of 120 dis-
tinct spyware programs, just under 90 used BHOs as an
entry point to monitor user activity. In addition, a US
CERT report [10] names BHOs as one of the most fre-
quently used techniques employed by spyware.

In previous work, we proposed the following behav-
ioral characterization to classify a BHO as spyware:

“A distinctive characteristic of spyware is that
a spyware component (or process) collects data
about user behavior and forwards this informa-
tion to a third party. Thus, a BHO is classified
as spyware when it(i) monitors user behavior
(ii) then leaks the gathered data to the attacker.”

To determine whether an unknown component ex-
hibits malicious behavior, we used a combination of dy-
namic and static code analysis techniques. The dynamic
analysis identified whether a BHO calls browser func-
tions that could be used to gather sensitive user data. The
static analysis then determined whether the component
contained calls that could leak this information.

Experimental evaluation demonstrated that our previ-
ous system yielded good detection results with low false
positives. However, there are two significant limitations
with our previous approach. One is that our approach
can only identify thepossibility that information could
be leaked. We were not able to record any actual infor-
mation flow. Thus, it is not possible to determine pre-
cisely which sensitive data is accessed or leaked. Also,
it is not possible to identify preciselywhere the data is
sent. Obviously, such knowledge is invaluable for a hu-
man analyst who has to manually analyze a large body
of new samples every day. The second limitation is our
significant dependency on static analysis, which can be
exploited by a spyware author who uses code obfusca-
tion to make it difficult to disassemble the binary [20] or
hide the presence of certain function calls [5, 27]. Unfor-
tunately, when our analysis fails to identify those func-
tion calls that are associated with malicious behavior, a
spyware component is incorrectly labeled as benign. At

the same time, if a more conservative approach is used,
the false positive rate increases and benign samples are
falsely labeled as being malicious.

2.1 Novel Analysis Approach

To address the aforementioned shortcomings, this paper
introduces a novel dynamic analysis approach. The goal
of our analysis is to precisely track the flow of sensitive
data as it is processed by the web browser and any loaded
BHOs. By monitoring the actual information flow, we
can answer the question of which sensitive data is col-
lected by a spyware component. For example, we can
determine whether the spyware only records the URLs
that a user navigates to, or whether parts of the visited
web pages are read as well. In addition, we can deter-
mine how this information is eventually leaked. For ex-
ample, data could be sent directly over the network, or
first stored in a file that is later retrieved by an indepen-
dent spyware process. Moreover, some spyware compo-
nents are equipped with a list of URLs. Whenever the
user enters a URL, it is compared to all entries in this
list. When the URL matches, the BHO triggers certain
actions (e.g., display an advertisement in a pop-up win-
dow). By monitoring how sensitive information is pro-
cessed, such checks can be identified. In some cases, it
is even possible to reconstruct the static URL list.

Dynamic Taint Analysis. Our dynamic analysis uses
tainting to track the flow of sensitive information as it
propagates through the system. Tainting refers to a pro-
cess in which data of interest is first labeled and then
tracked as it is processed by the system. With our dy-
namic analysis, sensitive data such as URL and web page
information is tainted. Then, we track the use of this data
by the Internet Explorer and its loaded BHOs. When a
BHO attempts to leak any sensitive data outside of the
address space of the browser (e.g., by writing data to disk
or sending it over the network), this action is recorded
and the component is classified as spyware. This is be-
cause according to our definition of spyware, the leaking
of sensitive information is considered malicious.

Our taint analysis takes into account both data depen-
dencies and control dependencies. A data dependency
captures the fact that the result of an operation (or assign-
ment) depends on its source operands. However, infor-
mation flows can also be introduced when the execution
of an operation depends on the condition of a particu-
lar variable. In this case, there is a dependency between
the result of this operation and the variable that controls
whether it is executed or not. Current spyware programs
can be detected by only taking into account data flow de-
pendencies. However, it is easy to develop a spyware
BHO that uses control flow dependencies to propagate
tainted values in a way that is not captured by data flow

dependencies (an example is shown in Section 3.2). In
this fashion, tainted values can be laundered and detec-
tion is evaded. To address this threat, we believe that it is
necessary to stay ahead of spyware authors and already
consider control dependencies.

In addition to the precise tracking of sensitive data
within the Internet Explorer, we are also interested in
following this data once it has left the browser’s address
space. The fact that tainted information was leaked is
sufficient to classify a component as spyware, but it is
usually helpful for an analyst to be able to further track
the information flow. For example, when data is written
into the memory image of a spyware helper process, the
additional information that this process later sends the
data to a remote server would be valuable. To track such
inter-process communication and data flows, we perform
whole system analysis.

Operating System Awareness. One problem for our
analysis is that it needs to distinguish between actions
that are performed by the Internet Explorer and those
that are performed by its browser helper objects; a prob-
lem that is complicated by the fact that the browser and
its components are executing in the same process. The
distinction is necessary to correctly attribute sensitivein-
formation flows either to normal browser operation or to
malicious activity of a spyware component. Otherwise,
it would not be possible to differentiate between the In-
ternet Explorer writing a page to its temporary cache di-
rectory or a spyware saving the same information to a
hidden log. A similar problem arises when a URL is
written to the browser’s history file, a normal operation
performed by the Internet Explorer. To summarize, the
mere fact that sensitive information is written out of the
address space of the Internet Explorer isnot sufficient to
characterize a BHO as spyware. The BHO is spyware
only when it initiates the sensitive information flow. To
distinguish between sensitive data processed by the In-
ternet Explorer and sensitive data processed by a BHO,
our analysis requires a view that is aware of operating
system processes and their loaded components.

Browser Session Recording and Replaying. A funda-
mental challenge faced by dynamic analysis approaches
is test coverage. When exposing a component to a set
of test cases, one cannot be certain that these tests cover
the complete functionality. As a result, it is possible that
some interesting behavior is not observed. In our context,
this could lead to false negatives. To increase the cover-
age of our analysis, we have to ensure that we expose a
BHO to realistic and sufficient user interaction. To this
end, we developed a test system that records the actions
of a user who is surfing the web. These actions include
navigation to web pages and filling in form fields. Later,
during our analysis, a recorded browser session can be

replayed to the BHO. The goal is to have the Internet Ex-
plorer visit a large number of pages with different content
such that a spyware component will eventually trigger
and reveal its malicious behavior. This allows us to test
and classify samples without manual intervention.

3 System Design & Implementation

3.1 System Overview

Our dynamic taint analysis is built on top of Qemu [1], a
generic and open source system emulator. Using Qemu’s
emulation of an Intel x86 system, we installed Windows
2000 as guest operating system (with no service packs).
The choice of Windows and the Intel x86 architecture is
motivated by the fact that our analysis focuses on spy-
ware components that are implemented as BHOs for the
Internet Explorer. An overview of the system and the
analysis process is shown in Figure 1.

When an unknown BHO is analyzed, it is first in-
stalled on the guest OS. Then, the Internet Explorer is
launched, loading the BHO component on startup. Also,
the test generator is started. The task of the test genera-
tor is to simulate a surfing user by replaying a previously
recorded browsing session. When sensitive data (such
as a URL that the test generator navigates to) enters the
Internet Explorer process, it is marked as tainted. From
this point on, the taint engine tracks how the information
is processed by the browser and the BHO. To be able
to distinguish between actions by the Internet Explorer
and those by the BHO, the taint engine differentiates be-
tween code that is executed by the Internet Explorer and
code run on behalf of the BHO. The taint engine also
monitors when (and where) tainted data exits the address
space of the browser. When the Internet Explorer writes
out tainted data because of regular browser activity, the
flow is recorded as benign. When tainted information
leaks because of activity on behalf of the BHO, the in-
formation flow is recorded as malicious. In this case, the
analysis engine classifies the BHO as spyware.

To keep track of the taint status of data processed
by the system, we introduced a shadow memory. This
shadow memory holds one byte for each byte of emu-
lated physical memory, and also covers the eight general
purpose registers of the Intel x86 CPU. The decision to
use one byte for each byte of the main memory and the
registers allows us to not only record whether a certain
location is tainted or not, but also to assign different taint
labels to each location. This assignment is helpful in tag-
ging data elements with different taint labels depending
on their origin, or to distinguish between data that is pro-
cessed by the Internet Explorer and data that was touched
by the BHO. To propagate taint information, we had to
extend Qemu’s micro instructions accordingly.

3.2 Dynamic Taint Propagation

Data Dependencies. Tainting allows to tag data ele-
ments of interest and track their propagation throughout
the system. Similar to a number of previous systems that
use taint propagation [2, 6, 7, 22, 23], our taint analy-
sis is capable of trackingdata dependencies. To this
end, the taint engine marks all bytes of the output of
an operation as tainted whenever any byte of any input
operand is tainted. This correctly propagates taint infor-
mation in those cases in which a tainted value is used
as source operand in an arithmetic or logic operation,
or on the right-hand side of an assignment. Note that
operand values can be either taken from processor regis-
ters or fetched from memory. Unfortunately, the propa-
gation rule outline above does not take into account the
taint status of a value that is used to calculate theaddress
of an operand, as only the taint status of the operand it-
self is relevant. This can lead to problems when tainted
input is used as an index into a table (or an array). In
such cases, the result of a table lookup is not labeled as
tainted, and its relationship with the input value is lost.
Interestingly, such lookup operations are frequently used
for converting user input (for example, to convert ASCII
to Unicode characters in Windows, or to map keyboard
scan codes to keystrokes in Linux). Thus, we also taint
the output of an operation whenever a tainted value is
involved in the address computation of a source mem-
ory operand (regardless of the taint status of the memory
operand that is referenced).

Control Dependencies. A system that can handle only
data flow dependencies provides a spyware author with
a simple opportunity to evade detection. Figure 2 pro-
vides an example that illustrates the problem. On the left
side of this figure, a code fragment is shown where two
conditional branches are used to “assign” the value of the
tainted variablet to the variableclean , assuming that
t only takes on the values ’a’, ’b’, or ’c’. Because there
is no direct data dependency betweent andclean , the
variableclean will hold the same value ast after the
execution of the code fragment, but it is not tainted.1

Clearly, this approach can be generalized to launder ar-
bitrary information. To mitigate this weakness, our taint
analysis also considersdirect control dependencies. To
correctly handle control dependencies, the result of an
operation has to be tainted whenever the execution of this
operation depends on the value of a tainted variable (e.g.,
when an operation is guarded by anif -branch that tests
a tainted variable, or when an operation is executed in
a case branch when the corresponding switch statement
used a tainted argument). Note that the result of any such

1Note that this example is shown in C code, although our system
operates directly on x86 binaries.

T a i n t E n g i n eQ e m ux 8 6 S y s t e mE m u l a t o r

W i n d o w s 2 0 0 0 G u e s t S y s t e mT e s tC a s eG e n e r a t o r I n t e r n e t E x p l o r e rS p y w a r e(B H O)S e n s i t i v eD a t a B e n i g nD a t a F l o w
M a l i c i o u sD a t a F l o w A n a l y s i sE n g i n e

S h a d o w M e m o r yO S) A w a r eV i e w
Figure 1: System Overview.

operation is tainted independently of the taint status of
the source operands. Revisiting the example shown in
Figure 2, and using a system that can track direct control
dependencies, we observe that variableclean will be
tainted whenevert is tainted. This is because the exe-
cution of any assignment operation depends on the value
of t , and thus, there are control dependencies betweent
and the results of these assignments.

To handle control dependencies, the taint engine ex-
amines all conditional branch instructions that are en-
countered during execution. When such an instruction
has at least one tainted operand, the taint engine has to
identify all instructions whose execution is conditionally
dependent on the result of the branch.2 Using an anal-
ogy from imperative programming languages, the task is
to determine the scope of a conditional branch such that
this scope encloses all instructions that depend on the
outcome of the branch. The results of all operations that
are then executed within this scope need to be tainted.

To find all instructions that belong to the scope of a
branch, static analysis is necessary. The reason is that we
have to find the first instruction in the control flow graph
that is executed independent of whether the conditional
branch is taken or not. More formally, this instruction
is the immediate post-dominator of the branch operation
in the program’s control flow graph. Intuitively, it is the
point where the two possible execution paths after the
branch operation merge. At this instruction, the scope of
the branch statement ends, and it is no longer necessary
to taint the results of all operations. To find this instruc-

2Actually, the situation is a little more complicated with the x86 in-
struction set. The reason is that conditional jumps do not have operands
themselves, but use the processor flags set by a previous compare op-
eration to decide which branch to take. Thus, our system links the
execution of an instruction that compares (or tests) tainted data with a
subsequent conditional jump to identify those branches that operate on
tainted data.

tion, two (or more) possible execution paths need to be
explored. This can only be done statically, because there
is only a single path executed dynamically. As an exam-
ple of a branch instruction with its corresponding scope
and post-dominator node, consider the right side of Fig-
ure 2. The graph represents the control flow of the code
fragment on the left. It can be seen that the last node
(where 0 is assigned tox) is the point where the two
branches of the firstif -statement merge.

The first step in finding the instruction that ends a
scope is to build a (partial) control flow graph (CFG) of
the program. The control flow graph starts at the branch
instruction and needs to cover all paths until the merg-
ing point. Of course, this merging point is not knowna
priori. Thus, we extend the control flow graph until we
reach instructions where the disassembly process cannot
continue (typically, these are function return instructions,
but also indirect jumps whose target cannot be resolved
statically). To build the CFG, our system uses a recur-
sive disassembler [17]. Because we do not continue the
disassembly process after instructions whose targets we
cannot determine with certainty, we obtain a control flow
graph that contains only instructions that are reachable
during runtime. This assumes that the code is not self-
modifying. Fortunately, our dynamic analysis can eas-
ily identify attempts of a BHO to modify its own code
by monitoring the target of memory write operations and
ensuring that no code regions are altered. Any attempt of
a BHO to modify its own code is flagged as malicious.

The fact that our partial control graph is guaranteed
to contain only instructions that are reachable during
runtime is important, as there are a number of ways in
which the attacker could attempt to thwart static analysis
and the disassembly process using code obfuscation [20].
Because we use a simple analysis approach that explores
paths only as long as successor instructions can be iden-

i f (t = = ' a ')i f (t = = ' a ')c l e a n = ' a ' ;e l s e {i f (t = = ' b ')c l e a n = ' b ' ;e l s ec l e a n = ' c ' ;}x = 0 ; c l e a n = ' a '
x = 0c l e a n = ' b ' i f (t = = ' b ') c l e a n = ' c '

S c o p e
P o s t D o m i n a t o r

Figure 2: Control Dependency and Scope.

tified with certainty, our static analysis step is immune to
these obfuscation techniques. This is a major improve-
ment over the significantly more complex static analy-
sis described in our previous work [14], where the com-
plete binary is disassembled and analyzed. Of course,
the control flow graph that we extract is not necessar-
ily complete. This is typically due to the problem of
indirect jump or call instructions whose targets cannot
be resolved statically (e.g., in the presence of function
pointers or jump tables). We recognize and handle this
problem in the following step.

When the disassembler finishes, it has extracted a con-
trol flow graph that contains all instructions that are defi-
nitely reachable starting from the branch instruction. We
then apply the well-known Lengauer Tarjan [19] algo-
rithm to compute a dominator tree for this graph. This
dominator tree allows us to the find the node that imme-
diately post-dominates the branch instruction, and thus,
represents the instruction that ends the scope. However,
as mentioned before, the control flow graph might be
incomplete. In this case, it is possible that there are
multiple nodes that post-dominate the branch instruction.
Hence, whenever this situation occurs, we take a safe ap-
proach and assume that the BHO contains code to thwart
analysis, and label the BHO as malicious.

Note that our technique to track control dependencies
is conservative, as it taints the results of all operations ex-
ecuted within a tainted scope. Thus, it is possible that our
system introduces incorrect dependencies between vari-
ables and raises false positives. To address this issue,
we only track control flow dependencies when executing
code inside the BHO. The rationale is that the attacker
can only control the BHO, and we assume that the In-
ternet Explorer itself does not contain code that deliber-
ately attempts to hide data dependencies via the control
flow. Also, observe that our static analysis is only in-

voked when the dynamic analysis actually encounters a
conditional branch instruction with tainted operands.

Previous systems that use data tainting were not able
to take into account control dependencies because this
conservative propagation policy typically resulted in too
many tainted values (a phenomenon often referred to as
taint label explosion). The fact that we only track control
flow dependencies when executing code inside the BHO
is very helpful to ensure that our system does not suffer
from this problem. In addition, we observed in our exper-
iments that tainted data is only used very rarely in control
flow decisions, further mitigating the problem of label
explosion. However, there could be cases in which BHOs
process tainted data such that many more control flow de-
cisions are based on tainted input. An example would be
a Java interpreter that executes Java code loaded by the
browser. In such cases, it is likely that we also suffer
from memory regions that are incorrectly tainted, lead-
ing to false positives. Fortunately, such functionality is
typically not realized in BHOs.

Untainting. In addition to a mechanism that flags reg-
isters and memory locations as tainted, there must also
be a way to clear their taint status. In the simplest case, a
register or a memory location loses its taint status when
it is overwritten with an untainted value. Immediate in-
struction operands (constant values) are always consid-
ered untainted. In addition, one has also to take into ac-
count constant functions, which denote code sequences
that always produce the same output regardless of their
input. For example, the following operation is used fre-
quently on the Intel i386 architecture to set a register to
zero.3

xor %eax, %eax; // %eax = %eaxˆ%eax

3RISC chips, in contrast, typically provide a register that is hard-
wired to 0.

Because this instruction always sets the register to
zero, the output should not be tainted, even when the
input %eax is tainted. Note that another variant of the
same function uses asub instruction instead of thexor .
We support simple constant functions that consist of a
singlexor or sub instruction. However, one needs to
be aware that more complex versions of constant func-
tions may exist that are not detected. In these cases, the
system could incorrectly label certain data elements as
tainted, which might result in false positives. In our ex-
periments, however, we did not observe any problems
stemming from this limitation.

3.3 Bridging the Semantic Gap

A whole system emulator, such as Qemu, only provides a
hardware-level view of the guest system, including phys-
ical memory, CPU registers, and I/O device status. How-
ever, for the purpose of meaningful analysis, a view at the
operating system level is necessary. In other words, we
have to bridge the semantic gap between these two views.
In particular, we need to address two problems: (1) iden-
tifying operating system processes, so we know when the
Internet Explorer is executing; (2) distinguishing what
actions are performed in the context of the BHO. These
problems are not entirely trivial, especially for a closed
source operating system such as Microsoft Windows.

Identifying Operating System Processes. To identify
operating system processes, we leverage the mechanism
that Windows uses for virtual memory management (on
the x86 architecture). In particular, we make use of the
fact that for the current process, theCR3processor reg-
ister stores the physical address of its page table direc-
tory. This address is unique for all running processes.
To obtain the page directory address that belongs to a
process, we exploit the facts that Windows stores this
address as an attribute of theEPROCESSstructure, and
that a pointer to this is always mapped to the same, well-
known virtual address.

Of course, our analysis has to determine theCR3value
for the Internet Explorer before it can execute any user
mode instructions. We decided to hook the Windows
system call that is responsible for creating new processes
(called NtCreateProcess). Hooking is performed
by checking the processor’s instruction pointer at the be-
ginning of each operation and comparing it to the address
of theNtCreateProcess function. This address can
be obtained from the kernel symbol table that comes with
each Windows distribution, usually for debugging kernel
device drivers. Whenever a new process is created by in-
voking NtCreateProcess , we check the process list
for the new entry and compare its name to the program(s)

that we wish to monitor.4 When the names match, the
CR3value is extracted and the process is monitored.

Identifying Actions in the Context of the BHO. The
ability to identify Windows operating system processes
allows us to distinguish the operations that are performed
by the Internet Explorer from those of other processes.
Unfortunately, this is not sufficient. The reason is that
we also need to determine which codewithin the Internet
Explorer process is run because of regular browser activ-
ity, and which code is executed on behalf of a BHO. As
discussed in Section 2, this is important to correctly at-
tribute monitored behavior either to the Internet Explorer
or to one of the loaded components.

Obviously, all instructions that are located directly in
the code segment of the BHO are considered to run on its
behalf. However, we also wish to cover the case in which
the BHO code calls another function that is located else-
where (in the Internet Explorer or any other loaded li-
brary). To correctly identify all instructions that are exe-
cutedin the context of the BHO, the following algorithm
is used:

1. Whenever execution is transferred from the Internet
Explorer to the code of the BHO, record the value
of the current stack pointer. This transition is rec-
ognized by observing the execution of an instruc-
tion that is located in the code segment of the BHO.
Then, goto Step 2.

2. For every further instruction, check if the current
value of the stack pointer is below the value stored
in Step 1. If so, the instruction is executed in the
context of the BHO; else it is not, and we restart
with Step 1.

The rationale behind this technique is as follows:
Whenever code in the BHO is called, we record the lo-
cation of the current stack frame on the stack. When
the BHO itself calls other functions, additional stack
frames are pushed onto the stack. Because the stack
grows towards smaller addresses on the x86 architecture,
the stack pointer remains below the stored stack pointer.
Only when all functions have returned and the BHO in-
vokes a return operation, the stack frame of the BHO is
popped from the stack and the value of the stack pointer
exceeds the one stored. One problem that complicates
our approach is the presence of threads. The reason is
that, for each thread, the operating system allocates a dif-
ferent stack region in the process’ virtual address space.
Thus, the value of the stack pointer is only meaningful
in the context of a certain thread, and switches between

4To be precise, we check the process list when
NtCreateProcess returns, because at the time the function
is called, theEPROCESSstructure does not exists yet.

threads have to be identified. To do so, we examine the
current identifier of the executing thread (which is lo-
cated at a well-known address in theKTHREADstructure)
whenever execution returns from the kernel.

Based on the knowledge of which code is executed in
the context of the BHO, we now have the means to dif-
ferentiate between data that is written by the Internet Ex-
plorer and data that is leaked on behalf of the BHO. To
this end, we extend our taint propagation policy: When-
ever an instruction that is executed in the context of the
BHO writes tainted data, the label of this data receives a
suspicious flag. From now on, this data is clearly iden-
tified as sensitive data that has been processed by the
BHO. Whenever tainted data with a suspicious flag is
later processed by other instructions, even when these
instructions are not run on behalf of the browser compo-
nent, they retain their flag. Also, whenever any operand
of an instruction has the suspicious flag, the output is
labeled suspicious as well. Data labeled with the suspi-
cious flag must no longer leak from the Internet Explorer
process. Otherwise, the BHO is considered spyware.

Evasion. A spyware author who is aware of our tech-
nique to identify actions on behalf of the BHO might at-
tempt to evade detection. The goal for the attacker is
to leak sensitive information, but let it appear as regular
browser activity. One possibility is to modify the code of
the Internet Explorer such that malicious actions are per-
formed when regular browser code is executed. Another
possibility is to inject new code into the address space
that our analysis does not associate with the BHO. Then,
some code pointer in the Internet Explorer must be redi-
rected to point to this injected code region. Both threats
can be countered by using the fact that our analysis en-
gine has complete control of the execution of the browser
and the BHO. This allows us to ensure that only those
instructions are executed that are in known code regions.
To prevent a malicious component from altering the con-
tents of legitimate code regions, we can ensure that the
BHO cannot remove their memory write protection (by
hooking the appropriate system call). Moreover, note
that evasion is not possible for the attacker by executing a
statement in the BHO that pushes the stack pointer above
the limit stored in Step 1. The reason is that, in this case,
the instruction following the stack pointer modification is
again recognized as belonging to the code segment of the
BHO. Thus, the new value of the stack pointer is saved
and execution continues on behalf of the BHO.

3.4 Detection & Analysis

In this section, we discuss when information is tainted
and then explain when and where the use of tainted data
is suspicious.

Taint Sources. A taint source can be any part in the sys-
tem that precisely defines a portion of data that we wish
to track. On one hand, this can be memory locations
where the hardware stores information (such as buffers
that hold network packets or keyboard scan codes). On
the other hand, we can taint the arguments of certain
functions. Currently, we use two taint sources. One taint
source is used to taint all URL strings of the pages that
a users visits. This can either happen by typing the URL
directly into the browser’s address bar or by clicking a
link on a page. The other taint source taints the infor-
mation that the Internet Explorer receives in response to
its requests. This includes both HTTP pages and files
that are downloaded. The reason for selecting these taint
sources is that we consider both the URL and the content
of the page as sensitive information. Whenever this in-
formation is leaked on behalf of a browser component,
this component is classified as spyware. Note that it
would also be interesting to taint the data that a user
enters into web forms. This would allow us to identify
BHOs that attempt to steal user passwords (and other
private information). Including additional taint sources
is quite straightforward, and as part of our future work,
we are planning to taint user input as well. To taint the
URLs, we hook theNavigate function of the Internet
explorer and taint the string argument that represents the
URL. Note that the hooking of an Internet Explorer func-
tion works similar to the hooking of a system call.

To taint the data that is retrieved by the Internet Ex-
plorer, we mark the return data buffer of the Windows
equivalent of the Unixreceive system call, which is
called NtDeviceIoControlFile . Whenever this
function is invoked, we first wait until it returns and then
consult the return code. When data was successfully re-
ceived, the appropriate buffer is tainted. We assign dif-
ferent taint labels to the URL and the page data to be able
to distinguish between them.

Taint Sinks. When input data becomes tainted, taint
information is automatically propagated by our system.
The goal is to determine whether this data is eventually
used in a fashion that would reveal spyware-like behav-
ior of a browser component. According to our definition
of spyware, such behavior is present in situations where
tainted data is leaked by the BHO. Recall that we are not
interested in writes of tainted data in general. Only a
flow of information that is explicitly labeled suspicious
leads to the classification of a component as spyware
To detect such flows, our system monitors the interfaces
that can be used to write information out of a process
for the presence of suspicious information. Currently,
we monitor communication over the network, writes to
the file system, accesses to the registry, and communica-
tion with other processes via shared memory. While we
believe that our set of sensitive sinks is comprehensive,

it is possible that we have missed a vector that a BHO
could use to leak sensitive information. However, adding
additional vectors to our system is straightforward, and
merely a matter of monitoring the appropriate arguments
of the relevant system calls.

To monitor whether information is leaked over the net-
work, we monitor the data buffer argument to the system
call NtDeviceIoControlFile . This system call
acts as a funnel for higher-level network calls and is re-
sponsible for receiving and sending data over both UDP
and TCP. To differentiate between the different roles of
NtDeviceIoControlFile , its first parameter must
be evaluated. To check for writes to files, we moni-
tor theNtWriteFile system call. Also, we hook the
NtCreateFile function to be able to later associate
the file name with the file handle that is used for file ac-
cess calls. Similar hooks are inserted to monitor the sys-
tem calls that are responsible for writing keys and values
to the registry. Note that it is typically not sufficient to
check the arguments of theNtWriteFile system call
to cover all file accesses. The reason is that files can also
be memory mapped. In this case, (parts of) the contents
of a file are mapped into the virtual address space of a
process. Then, the file can be accessed by regular mem-
ory read and write operations. To detect tainted data that
is written into memory mapped files, the system call that
performs the mapping is intercepted. Whenever a moni-
tored process maps a file into its address space, the cor-
responding memory regions are recorded. On any subse-
quent write to these monitored ranges, our analysis can
derive that a file was written. For this, it is necessary to
check the target addresses of every write operation. This
check is performed as part of the taint propagation logic.

Note that it might be overly conservative to consider
as suspicious the fact that a BHO saves data to disk. Al-
though we have not encountered legitimate BHOs in our
experiments that write URLs or web page data to a file, it
is conceivable that certain legitimate applications might
do so (e.g., bookmark managers). In this case, the system
could be extended so that it does not immediately report
a BHO as spyware that writes to disk, but instead contin-
ues to monitor what happens to the sensitive data. When,
at one point, another process accesses the file, reads the
sensitive information, and sends it over the network, the
BHO would be classified as spyware. Otherwise, the
write would be considered benign. While this extension
has not been implemented, our system already supports
this kind of analysis in principle (i.e., the tainting en-
gine can track tainted data in multiple processes, and we
record which bytes are tainted in a file when sensitive
data is saved).

Detailed Analysis. To improve the quality of our anal-
ysis reports, we also record in more detail how code
that is executed in the context of a BHO handles tainted

data. One piece of information that we are interested in
is whether the BHO reads tainted data at all. If a BHO
never touches any sensitive information, our confidence
increases that the component is not spyware. On the
other hand, if tainted data is accessed, we are particu-
larly interested in those reads where subsequent bytes of
the input are accessed. This could indicate that parts of
the sensitive data are copied for further processing.

Another interesting indicator to better understand the
behavior of spyware is whether the monitored com-
ponent performs compare operations where one of the
operands is tainted. For example, when spyware com-
pares the current URL with its own list of interesting
URLs, or when the page is scanned for the presence of
certain keywords, we would expect to see a number of
consecutive compare instructions with tainted operands
that are executed in the context of the BHO. By recording
which values are compared, it is even possible for a hu-
man analyst to derive which keywords or URLs the spy-
ware is searching for. Deriving more information about
the values that the BHO is looking for can be done espe-
cially well when an x86 string compare instruction such
ascmps is used. In this case, the operands of the instruc-
tion point to the two complete strings that are compared.
Also, we check for sequences of compare operations that
refer to consecutive memory locations. This allows us
to identify (some) string matching routines that perform
byte-by-byte comparisons.

Automated Browser Testing. When using dynamic
approaches, it is very difficult to be certain that the com-
plete range of functionality of a component is analyzed.
Thus, the number of web pages visited and the interac-
tion during the browsing phase is an important factor for
the quality of the results. Clearly, requiring the human
analyst to manually visit pages and fill out forms is te-
dious for large test sets and also prevents the system from
being integrated into an automated tool-chain for spy-
ware analysis. To address this problem, we developed a
browser testing tool that allows us to automate our anal-
ysis by mimicking the surfing behavior of users. The
tool can record the web interactions of a user and later
“replay” them to make the Internet Explorer visit a large
number of web pages without manual intervention. It
also supports user input that is inserted into form fields.

The browser automation tool consists of two compo-
nents: The first component is a Mozilla Firefox extension
(i.e., plug-in) that records the pages a user has visited
and the input she has entered into forms. The captured
data is dumped into a file so that it can be later replayed.
The second component is a Microsoft Windows appli-
cation that first reads the information from the capture
file and then replays the surfing session to the Internet
Explorer. To this end, the tool first obtains a handle to
the browser. Then, it repeatedly invokes theNavigate

method of the browser’sIWebBrowser2 interface to
visit the list of stored URLs. For every web page that is
visited, the tool uses theIHTMLDocument2 Document
Object Model (DOM) interface to locate all its form ele-
ments. This allows us to automatically fill out form fields
that were filled out during the recorded session (using the
names of the form elements). When a form is completed,
it is automatically submitted.

4 Evaluation

The goal of our system evaluation is twofold. On one
hand, we wish to verify the ability of our system to clas-
sify unknown browser helper objects. To this end, we an-
alyzed a collection of spyware and benign samples and
determined the fraction of samples that were correctly
identified. On the other hand, we wish to demonstrate
that our system provides comprehensive reports that al-
low a human analyst to quickly and in detail understand
the behavior exhibited by a spyware component. To this
end, we selected a few samples and provide a more de-
tailed description of our findings.

4.1 Batch Analysis

To verify the ability of our system to distinguish be-
tween spyware and benign components, we compiled a
test set that contained 21 spyware and 14 benign browser
helper object samples. All spyware samples were pro-
vided by an anti-virus vendor. For the benign samples,
we downloaded a number of different browser helper ob-
jects from various shareware sites. Of course, we made
sure that these components were indeed benign by care-
fully checking both anti-spyware vendor and software re-
view web sites. The benign samples were chosen from
a variety of application areas. Tables 4 and 5 in the Ap-
pendix list and describe the samples that we used dur-
ing our experiments. It is often difficult to determine the
name of a malware sample as these names are not unique
and may vary between anti-spyware and anti-virus ven-
dors. When naming the malware samples, we used the
information we were given by the anti-virus vendor.

Using our test set, we performed a batch analysis. That
is, for each sample in the set, the following steps were
carried out: First, the sample is loaded into the anal-
ysis environment. Then, it is installed using the Win-
dows regsvr32 utility. During this installation pro-
cess, BHOs register themselves with the Internet Ex-
plorer so that they are automatically loaded when the
browser is launched. After that, the Internet Explorer is
started and the automated test generator replays a previ-
ously recorded browsing session. For this test session,
we surfed to 50 web pages. The pages were chosen
from different web site categories (such as adult, news,

or wall paper) to provide variety. For these categories,
we decided to use the ones presented in [21], a paper
in which the authors analyzed different sites for the pres-
ence of spyware. The browsing session also contains typ-
ical user interactions on the sites that might be of interest
for spyware, such as Google searches for free pornog-
raphy, news browsing, and visits to music sites. At the
end of the test, the browser is closed, and the analysis
engine analyzes the log file. If the log contains any indi-
cation that sensitive information was leaked on behalf of
the component under analysis, it is classified as spyware.

The sample set we used does not contain toolbar-
based spyware. This is because our automated testing
infrastructure currently does not support toolbars. Tool-
bars introduce additional GUI elements into the web
browser that are not present when the initial test session
is recorded. Thus, our testing tool cannot invoke any
toolbar functions that require to click on GUI elements
installed by this toolbar.

Table 1 shows the results for the batch analysis of our
test set. The results demonstrate that all spyware compo-
nents were correctly identified. In our experiments, none
of the spyware samples made use of control flow evasion
techniques. Thus, all malicious BHOs can be correctly
detected taking into account data dependency informa-
tion only. However, writing malicious code that makes
use of control flow evasion is quite simple. To demon-
strate that, we developed a proof-of-concept BHO that
uses a sequence ofif -statements (similar to the code
shown in Figure 2) to leak sensitive information. Using
only data dependencies, this BHO is classified as benign.
When control dependencies are included, our system cor-
rectly identifies the malicious data transfer.

Also, most benign samples were correctly classified.
However, in accordance with the results reported in our
previous paper, we found two benign samples that actu-
ally do leak sensitive data and thus, exhibit spyware-like
behavior. In one case, closer analysis revealed that no
sensitive data was sent to a third party (false positive). In
the other case, however, sensitive data was indeed sent
to the distributor of the BHO, although very infrequently
(suspicious case). In Table 2, we show a breakdown of
the different mechanisms that the analyzed spyware sam-
ples used to leak sensitive information. These results un-
derline that spyware BHOs in the wild actually make use
of a variety of techniques to send collected information
back to the spyware distributor.

Performance. Even though Qemu is a fast system em-
ulator, the complete analysis of an unknown BHO with
the replaying of a browsing session can take several min-
utes. Thus, our system is mainly intended for analysts
that have to understand and classify unknown BHOs. In
addition, our tool could also be used as the analysis com-
ponent in an automated spyware collection system.

Spyware False Negative Benign Suspicious False Positive Total

Spyware 21 0 - - - 21
Benign - - 12 1 1 14

Table 1: Results for batch analysis.

Network File System Registry Shared Memory Total
11 1 3 6 21

Table 2: Different mechanisms used by spyware to leak sensitive data.

Min. Max. Average

Native Windows 0.6 2.9 1.9
Qemu 1.8 6.1 3.6
Modified Qemu 17.3 79.4 35.7

Table 3: Performance overhead.

For a more detailed overview of the incurred perfor-
mance penalty, refer to Table 3. This table presents the
times (in seconds) that were necessary to load web pages
on our test machine (Pentium IV, 2.4 GHz with 1 GB
RAM); for Windows running natively, on an unmodified
Qemu emulator, and on Qemu with our modifications.
These numbers show the average, minimum, and max-
imum load times for the web pages used in our exper-
iments. The time required to load each page increased
almost linearly with the size of the page, and the result-
ing work necessary for rendering. It can be seen that
our system incurs an average slowdown of about a fac-
tor of ten when compared to an unmodified Qemu, with
an additional factor of two when compared to native ex-
ecution. In a worst-case scenario, when all memory is
tainted, the slowdown could significantly increase. The
reason is that all conditional branches would operate on
tainted data, thus triggering the static analysis step. For-
tunately, as shown by our experiments, only a small frac-
tion of memory is typically tainted, and BHOs rarely
used tainted data in control flow decisions.

Although the focus of this work was not on perfor-
mance, note that this overhead could probably be im-
proved. For example, about 30% of the overhead of
our system is caused by checking, for each basic block,
whether the first address corresponds to a function that
represents a sensitive source or a sensitive sink. Instead
of checking the instruction pointer for each basic block,
the interesting code parts could be memory-protected.
Whenever these code regions are later accessed, a fault is
raised that can be used by our system to determine that an

interesting function was called. The remaining overhead
of 70% is a result of the logic that propagates the taint la-
bels. Again, this number could be significantly reduced,
for example, by selectively switching between emulation
and virtualization, as discussed in [11]. The memory
overhead of our system is basically constant, and dom-
inated by the size of the shadow memory, which requires
one byte for each byte of emulated physical memory. Be-
cause we reserved 128 MB of memory for Qemu, the size
of the shadow memory was 128 MB as well.

4.2 Detailed Analysis

The following paragraphs describe briefly the informa-
tion that is contained in our analysis reports. In addition,
we discuss in more detail the false positive, the suspi-
cious sample, and three representative spyware BHOs.
This discussion underlines the richness and the level of
detail of the reports that are automatically generated by
our dynamic analysis.

Reports After our system has analyzed a BHO, a report
is generated that describes how this BHO has handled
sensitive data. For every byte of sensitive input that is
accessed by the BHO, we show the value and the origin
(i.e., sensitive source) of this byte. Consecutive labels
are combined so that accesses to strings appear as such in
the output. Of course, multiple reads of the same data are
suppressed and the access is shown only once. Whenever
sensitive data is used in comparison operations, we show
the values and labels of those bytes involved in the com-
parisons, as well as the values that the input is compared
to. Again, compares of multiple, consecutive labels are
shown in a combined form (as discussed in Section 3.4).
Finally, whenever a tainted byte is leaked via a sensitive
sink, the type of the sink and the leaked bytes are dis-
played. In all cases, information is only displayed when
the tainted data has been processed by the BHO under
analysis.

In general, these reports present a significant improve-
ment compared to our previous system [14], which could

only label a BHO as spyware or benign. Previously, a te-
dious and time-intensive manual process was necessary
to understand why an alert was raised, for example, in
case of a false positive. Furthermore, the important in-
formation about the type of data that was leaked (such as
the URL, or part of the page) was not available.

False Positive. The false positive listed in Table 1
is caused by thePrivacyBird BHO. This compo-
nent implements the client side of a privacy management
standard defined by the Platform for Privacy Preferences
Project (P3P). The P3P standard specifies a mechanism
for users to control the disclosure of their personal infor-
mation on web pages. To this end, thePrivacyBird
BHO has to retrieve a privacy policy file (which is lo-
cated at w3c/p3p.xml) for every web page. To deter-
mine the server that hosts the privacy file for the cur-
rent page, the BHO reads the URL and extracts the do-
main name. Then, the domain name is combined with
the static path to the privacy file. The resulting URL is
then used to fetch the privacy file. Because this contains
a part that is tainted (the domain string), we detect a mali-
cious information flow. Our analysis shows that the BHO
reads the URL of every page that is visited. In addition,
we can quickly confirm that for every “malicious” re-
quest, the server that is contacted is equivalent to the do-
main string that is tainted in this request. This informa-
tion allows a human analyst to gain confidence that the
PrivacyBird component is indeed not sending any
sensitive information to a third party. Note that it would
also be possible to specify a policy that classifies as be-
nign all information flows in which information about a
URL or a page is transferred back to the host from which
they are loaded. The reason is that in such cases, no sen-
sitive information is revealed to a third party. When this
policy were in effect, thePrivacyBird BHO would
not have raised a false positive.

Suspicious Sample. The suspicious sample was the
LostGoggles BHO, a component that embellishes
Google search results by adding pictures to the search
hits. To this end, the BHO downloads a piece of
JavaScript code from the author’s web server when a
search request is sent to Google for the first time. Sub-
sequently, this JavaScript snippet is inserted into every
result page returned by Google. When the script is down-
loaded, the BHO sets the referrer header in the HTTP re-
quest that fetches the JavaScript file. This referrer header
contains the URL of the Google search that was issued
before. Thus,LostGoggles does leak possibly sensi-
tive user information, although the data is probably sent
inadvertently and only once when the script is obtained.

Interestingly, both the web pages ofPrivacyBird
andLostGoggles emphasize that the components are
not spyware, even though they do send information over

the network (which is behavior typically associated with
spyware). Using our tool, a detailed analysis can help to
provide more evidence to decide whether a component is
using data as described.

Spyware Samples. Zango advertises its products
(such as games or screen savers) as ad-supported free-
ware. During our analysis, we determined that the
zangohook.dll BHO, which is shipped with the
company’s instant messaging client, is spyware. More
precisely, our system detects that whenever a web page
is visited, the BHO reads the current URL and copies it to
a previously opened shared memory section. From this
shared memory section, the data is later read by the spy-
ware helper processzango.exe . TheZango example
underlines the importance of monitoring shared memory
areas that can be used by a BHO to write out data to other
processes. Also, it demonstrates the usefulness of whole
system analysis, which allows us to follow the sensitive
data to the spyware helper process.

The e2give BHO reads the URL of every site that
is visited and compares it to a list of URLs stored in
the BHO. This check is implemented by consecutively
matching the current URL against every item in the
BHO’s URL list. As our analysis checks for compare
instructions that involve tainted operands, the log file
contains the complete list of URLs that the BHO checks
against. If any of the requested sites is found in the list,
the BHO redirects this request to a different server. In
this case, the original URL is passed as an argument to
the redirected GET request. This constitutes a flow of
sensitive data that is correctly identified by our system.
Thee2give BHO is interesting for two reasons. First,
it demonstrates the ability of our tool to extract lists of
URLs that a spyware monitors. Second, it underlines the
importance of test coverage. When none of the URLs in
the BHO list were visited, the sample would be misclas-
sified as benign (as sensitive data is only leaked in case
of a match).

Finally, our analysis detected that thestdup.dll
BHO (i.e., Borlan) submits the URLs of all visited pages
to a remote server. Thus, the sample was classified as
spyware. This BHO is interesting because a scan with the
latest versions (at the time of writing) of the commercial
anti-spyware tools AdAware [18] and SpyBot [15] yields
no detection. This demonstrates that our analysis is ca-
pable of detecting previously unknown spyware samples.

5 Related Work

Malware Detection. To combat the increasing spread
of spyware, a number of commercial solutions have been
developed. For example, both AdAware [18] and Spy-
Bot [15] are popular tools that are able to remove a large

number of spyware programs. The problem with exist-
ing spyware detection tools is that they use signatures
to detect known spyware instances. Thus, they require
frequent updates to their signature database and cannot
identify previously unseen samples.

To address the limitations of signature-based malware
detection, researchers have recently proposed behavior-
based techniques. These techniques attempt to charac-
terize a program’s behavior in a way that is independent
of its binary representation. By doing this, it is possible
to detect entire classes of malware. An example of us-
ing behavior characterization to detect malicious code is
Microsoft’s Strider Gatekeeper [26]. This tool monitors
auto-start extensibility points (ASEPs) to determine if
software that will be executed automatically at startup is
being surreptitiously installed on a system. In [4], the au-
thors characterize different variations of worms by iden-
tifying semantically equivalent operations in the malware
variants. A similar approach is followed in [16], where
the behavior of kernel-level rootkits is modeled.

In a previous paper [14], we introduced a behavioral
approach to detect spyware. For that paper, we used
the same underlying characterization of spyware as in
this work (that is, a BHO is considered spyware when it
leaks sensitive information). However, the analysis tech-
niques are completely different. For the former paper, we
mainly relied on binary, static analysis to identify code
paths in the BHO that can leak information. A small dy-
namic component was used to find the entry points for
the static analyzer. In this paper, we developed (from
scratch) a dynamic taint analysis system that supports
data and control dependencies and is operating-system
aware. Using our new system, we can automatically gen-
erate rich reports that precisely identify which sensitive
information a BHO touches and where it is eventually
stored. This was not possible with our previous system.
Also, we removed our reliance on complex binary static
analysis, which is vulnerable to code obfuscation and
evasion.

Virtual Machines and Taint Analysis. For this pa-
per, we use a virtual machine (Qemu) to monitor the
behavior of unknown browser helper objects. This has
the benefit that our analysis runs in complete isolation
from the samples that are examined, making it much
harder for spyware to detect the presence of our system.
Other researchers made similar use of virtual machines
to detect and prevent intrusions [9, 12] and to analyze
attacks [8, 13]. Also, virtual machines have been used
to implement whole system analysis based on dynamic
tainting. For example, a system was proposed in [2] to
use taint information to track the lifetime of data. The
goal was to determine the use of sensitive information
by the operating system and large applications. Other
researchers used taint analysis to monitor program exe-

cution for the use of tainted data as arguments to con-
trol flow instructions or systems calls [6, 7, 22, 23] (a
system to perform taint propagation particularly efficient
was presented in [11]). The aim of these systems is to
identify exploits at runtime, and, in some cases, to cre-
ate signatures for detected attacks. There are a number
of differences to our work. First, we analyze malicious
code that can be deliberately designed to thwart detec-
tion. Thus, it was necessary to extend our taint analysis
with the capability to handle control dependencies in ad-
dition to data dependencies. Second, previous systems
focus on whole system emulation only and can neither
distinguish between operations performed by different
operating system processes (and individual components
of these processes) nor keep track of which component
has accessed sensitive data. Finally, the aim of previous
systems is to detect exploits, while the goal of our system
is to identify spyware components and comprehensively
analyze and document their behavior.

6 Conclusions

In this paper, we presented a novel dynamic analysis ap-
proach to classify unknown browser helper objects and
capture their behavior. The goal of our system is to au-
tomatically identify spyware that is installed in the form
of browser helper objects for the Microsoft Internet Ex-
plorer. To this end, we monitor the way that the Inter-
net Explorer and installed browser helper components
handle sensitive user information (such as the URL that
a user visits or the content of the web pages that are
loaded). A BHO is classified as spyware when it leaks
sensitive information outside of the browser process. In
addition to classification, the analysis also provides a rich
and comprehensive description of the actions performed
by BHOs. The experimental results on a substantial body
of spyware and benign samples demonstrate the effec-
tiveness of our approach.

Acknowledgments

We would like to thank our shepherd Andrew Warfield
and the anonymous referees for their valuable feedback.
This work was supported by the Austrian Science Foun-
dation (FWF) under grant P18157, the FIT-IT project
Pathfinder, and the Secure Business Austria competence
center.

References
[1] BELLARD , F. QEMU, a Fast and Portable Dynamic Translator.

In Usenix Annual Technical Conference, Freenix Track (2005).

[2] CHOW, J., PFAFF, B., GARFINKEL , T., CHRISTOPHER, K.,
AND ROSENBLUM, M. Understanding Data Lifetime via Whole
System Simulation. InUsenix Security Symposium (2004).

[3] CHRISTODORESCU, M., AND JHA , S. Testing Malware Detec-
tors. InACM International Symposium on Software Testing and
Analysis (ISSTA) (2004).

[4] CHRISTODORESCU, M., JHA , S., SESHIA, S., SONG, D., AND

BRYANT, R. Semantics-Aware Malware Detection. InIEEE Sym-
posium on Security and Privacy (Oakland) (2005).

[5] COLLBERG, C., THOMBORSON, C.,AND LOW, D. Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs. InConfer-
ence on Principles of Programming Languages (POPL) (1998).

[6] COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.,
ZHOU, L., ZHANG, L., AND BARHAM , P. Vigilante: End-to-
End Containment of Internet Worms. In20th ACM Symposium
on Operating Systems Principles (SOSP) (2005).

[7] CRANDALL , J., AND CHONG, F. Minos: Control Data Attack
Prevention Orthogonal to Memory Model. In37th International
Symposium on Microarchitecture (MICRO) (2004).

[8] DUNLAP, G., KING, S., CINAR , S., BASRAI, M., AND CHEN,
P. ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay. InSymposium on Operating Systems Design
and Implementation (OSDI) (2002).

[9] GARFINKEL , T., AND ROSENBLUM, M. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection. In Net-
work and Distributed Systems Security Symposium (2003).

[10] HACKWORTH, A. Spyware. US CERT Publications, 2005.

[11] HO, A., FETTERMAN, M., CLARK , C., WARFIELD, A., AND

HAND , S. Practical Taint-based Protection using Demand Emu-
lation. InEuroSys Conference (2006).

[12] JOSHI, A., K ING, S., DUNLAP, G., AND CHEN, P. Detecting
past and present intrusions through vulnerability-specific predi-
cates. InSymposium on Operating Systems Principles (2005).

[13] K ING, S.,AND CHEN, P. Backtracking Intrusions. InSymposium
on Operating Systems Principles (SOSP) (2003).

[14] K IRDA , E., KRUEGEL, C., BANKS, G., VIGNA , G.,AND KEM-
MERER, R. Behavior-Based Spyware Detection. InUsenix Secu-
rity Symposium (2006).

[15] KOLLA , P. Spybot Search & Destroy. http://www.
safer-networking.org/ , 2006.

[16] KRUEGEL, C., ROBERTSON, W., AND V IGNA , G. Detecting
Kernel-Level Rootkits Through Binary Analysis. InAnnual Com-
puter Security Applications Conference (ACSAC) (2004).

[17] KRUEGEL, C., VALEUR, F., ROBERTSON, W., AND V IGNA ,
G. Static Analysis of Obfuscated Binaries. InUsenix Security
Symposium (2004).

[18] LAVASOFT. Ad-Aware.http://www.lavasoftusa.com/
software/adaware/ , 2006.

[19] LENGAUER, T., AND TARJAN, R. A fast algorithm for finding
dominators in a flowgraph.ACM Transactions on Programming
Languages and Systems (TOPLAS) 1, 1 (1979).

[20] L INN , C., AND DEBRAY, S. Obfuscation of Executable Code to
Improve Resistance to Static Disassembly. InACM Conference
on Computer and Communications Security (CCS) (2003).

[21] MOSHCHUK, A., BRAGIN, T., GRIBBLE, S.,AND LEVY, H. A
Crawler-based Study of Spyware on the Web. InNetwork and
Distributed Systems Security Symposium (NDSS) (2006).

[22] NEWSOME, J., AND SONG, D. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. InNetwork and Distributed Sys-
tem Security Symposium (NDSS) (2005).

[23] PORTOKALIDIS, G., SLOWINSKA , A., AND BOS, H. Argos: an
Emulator for Fingerprinting Zero-Day Attacks. InACM SIGOPS
EUROSYS (2006).

[24] SAROIU, S., GRIBBLE, S., AND LEVY, H. Measurement and
Analysis of Spyware in a University Environment. InUsenix
NSDI (2004).

[25] THOMPSON, R. Why Spyware Poses Multiple Threats to Secu-
rity. Communications of the ACM 48, 8 (2005).

[26] WANG, Y., ROUSSEV, R., VERBOWSKI, C., JOHNSON, A.,
WU, M., HUANG, Y., AND KUO, S. Gatekeeper: Monitoring
Auto-Start Extensibility Points (ASEPs) for Spyware Manage-
ment. InUsenix Large Installation System Administration Con-
ference (LISA) (2004).

[27] WROBLEWSKI, G. General Method of Program Code Obfusca-
tion. PhD thesis, Wroclaw University of Technology, 2002.

Appendix

Sample Name Description

McAfeeAntiPhishingFilter Antiphishing solution
AT&T P3PClient Privacy utility
LostGoggles Search enhancing utility
Earthlink Toolbar Scam blocker
PopUpBlocker Utility to block popups
CookiePal Cookie management
SpywareGuard Spyware protection utility
ezSaveFlash Utility to save flash files
keepit File management utility
KillaFing3 Utility to block popups
Super Popup Blocker Utility to block popups
SAPplayer Plays music/video files
BookmarkBuddy Bookmark management
Plug-In for blind users Render page for blind users

Table 4: Benign samples.

Sample Name Description

ZangoIM Universal instant messaging
BargainBuddy Bundled Spyware
RAX Search Helper Search tool
Sitestep Travel price comparison
Borlan (stdup.dll) Targeted ads
HtmlEdit Module Targeted ads
Clear Search Search tool
IEHelper Module Installs third-party components
Generic BHO module Targeted ads
eUniverse Targetede ads
eZula URL collector
W01 URL collector
Adware.MediaPlaceTV Targeted ads and url collector
msnetwrk URL collector
hopster URL collector
Replace module URL collector
e2Give URL collector
Generic data miner URL collector
Adware-Click Targeted ads
CWSMeup-B Search string collector
HuntBar BHO URL collector

Table 5: Spyware samples.

