
A HEURISTIC PROGRAM TO SOLVE
GEOMETRIC-ANALOGY PROBLEMS

Thomas G. Evans
Air Force Cambridge Research, Laboratories (OAR)

Bedford, Massachusetts

INTRODUCTION

The purpose of this paper is to describe a
program now in existence which is capable of
solving a wide class of the so-called 'geometric-
analogy' problems frequently encountered on
intelligence tests. Each member of this class of
problems consists of a set of labeled line draw
ings. The task to be performed can be concisely
described by the question: 'figure A is to figure
B as figure C is to which of the given answer
figures?' For example, given the problem illus-

A B

A A
c

©
i

®
2

•

3 4

o
5

A
Figure 1.

trated as Fig. 1, the geometric-analogy program
(which we shall subsequently call ANALOGY,
for brevity) selected the problem figure labeled
4 as its answer. It seems safe to say that most
people would agree with ANALOGY'S answer
to this problem (which, incidentally, is taken
from the 1942 edition of the Psychological Test

for College Freshmen of the American Council
on Education). Furthermore, if one were re
quired to make explicit the reasoning by which
he arrived at his answer, prospects are good
that the results would correspond closely to the
description of its 'reasoning' produced by

ANALOGY.

At this point, a large number of questions
might reasonably be asked by the reader. Four,
in particular, are:

(i) Why were problems of this type chosen
as subject matter?

(ii) How does ANALOGY go about solving
these problems?

(iii) How competent is ANALOGY at its sub
ject matter, especially in comparison to human
performance ?

(iv) What has been learned in the construc
tion of ANALOGY and what implications might
this study have for the further development of
problem-solving programs in general ?

The remainder of this paper constitutes an
attempt to answer these questions in some de
tail. We first deal with a variety of motivations
for this investigation and attempt to place it in
the context of other work in related areas. Next
we turn to detailed consideration of the problem
type and of the mechanism of the ANALOGY
program. Finally, we present some answers to

327

328 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1964

the remaining two questions raised above. (A
more detailed discussion of all these issues can
be found in Ref. 1).

Motivations and Background

In our opinion ample general justification for
the development and study of large heuristic
problem-solving programs has been provided
(both through argument and through example)
by previous workers in this area. We shall not
attempt to add to it. Given that one is inter
ested in the construction of such programs, a
number of reasons can be advanced for the
choice of geometric-analogy problems as a suit
able subject matter. Some of these are:

(i) Problems of this type require elaborate
processing of complex line drawings: in par
ticular, they require an analysis of each picture
into parts and the determination and use of
various relationships among these parts. This
is an interesting problem per se and one which
can reasonably be expected to be of great prac
tical importance in the near future.

(ii) The form of the problems requires one to
find a transformation that takes figure A into
figure B and takes figure C into exactly one of
the answer figures. This situation provides a
natural opportunity for trying out certain ideas
about the use of explicit internal 'descriptions'
(here, of both figures and transformations) in
a problem-solving program. Furthermore, more
speculatively, it presents an interesting para
digm of 'reasoning by analogy,' a capacity
which may play a large role in far more sophis
ticated problem-solving programs in the future.
(In Section 5 we discuss the possible relevance
of ANALOGY to the introduction into problem-
solving programs of more powerful learning
mechanisms than have yet been achieved.)

(iii) Problems of this type are widely re
garded as requiring a considerable degree of
intelligence for their solution and in fact are
used as a touchstone of intelligence in various
general intelligence tests used for college ad
mission and other purposes. This suggests a
non-trivial aspect of any attempt to mechanize
their solution.

We shall now attempt very briefly to place
ANALOGY in the context of earlier work in re

lated areas. Two aspects of ANALOGY must
be considered:

(i) ANALOGY contains a substantial amount
of machinery for the processing of representa
tions of line drawings, including decomposition
into subfigures, calculation of relations between
figures, and 'pattern-matching' computations.
Thus we must relate it to other work in picture
processing and pattern recognition.

(ii) ANALOGY is a complex heuristic prob
lem-solving program, containing an elaborate
mechanism for finding and 'generalizing' trans
formation rules. Thus we must relate it to other
work on the development of problem-solving
programs.

We turn first to the picture-processing aspect.
The essential feature of the treatment of line
drawings by ANALOGY is the construction,
from relatively primitive input descriptions, of
more 'abstract' descriptions of the problem fig
ures in a form suitable for input to the rule-
finding program. The fundamental program
ming technique underlying this method is the
use of a list-processing language, in this case
LISP,2-3 to represent and process the figures in
question. Work in picture processing, for pat
tern-recognition purposes, involving some ele
ments of description, is found in Grimsdale et
al.,4 Marill et al.f

a and Sherman,0 among others.
Sutherland7 and Roberts8 have used, for quite
different purposes, internal representations of
line drawings similar in some respects to those
used in ANALOGY. Kirsch9 has worked with
complex line drawings primarily as a vehicle
for programs involving the analysis of English-
language sentences pertaining to such pictures.
Hodes10 and Canaday11 have used LISP expres
sions for figure description in much the same
way that we have, though the development of
machinery for manipulating such descriptions
was, of necessity, carried much further in
ANALOGY. Evidently the first advocacy of
'scene description' ideas (for use in pattern
recognition) occurs in Minsky.1-

To place ANALOGY with respect to other
work with problem-solving programs, we shall
simply list a number of developments in the con
struction of problem-solving programs which
have influenced, in a general way, our approach
to the design of ANALOGY. These include LT

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 329

(the Logic Theorist) ,3 and, more recently, GPS
(the General Problem Solver)14 of Newell,
Simon, and Shaw, the plane-geometry theorem-
pro ver15 of Gelernter and Rochester, and
SAINT, the formal integration program of
Slagle.10

Summary of the Solution Process,
with Example

To exhibit as clearly as possible the entire
process carried out by ANALOGY, we now
sketch this process, then examine its operation
on an example. The sample problem we shall be
considering is shown as Fig. 2 (where the Pi's
are not part of the problem figures but labels
keying the corresponding parts of the figures to

Figure 3a.

cases, including the example to be discussed be
low, was quite simple. It merely separated a
problem figure into its connected subfigures;
e.g., figure A of the above example consists of
the three objects labeled PI, P2, and P3. It
later became desirable to have a more sophisti-

iA

fr> Z _
PI2 ~""PB
S <̂ >

4

V P 8

• PI7

H6

5

PI8

z

Figure 2.

expressions we shall give below). Before treat
ing the example, we shall summarize the entire
solution process. Given a problem such as that
above, ANALOGY proceeds as follows: First,
the input descriptions of the figures are read.
Currently these descriptions, given as LISP ex
pressions in a format to be illustrated below,
are hand-made; however, they could well be
mechanically generated from scanner or light-
pen input by a relatively straightforward, quite
'unintelligent' program embodying line-tracing
techniques already described in the literature.
The descriptions represent the figures in terms
of straight line segments and arcs of circles tto
any desired accuracy, at the cost of longer and
longer expressions). Examples of the descrip
tions are given below.

The first step taken by ANALOGY is to de
compose each problem figure into 'objects' (sub-
figures) . The decomposition program originally
written, which was sufficient to handle many

Figure 3b.

cated decomposition program with, in particu
lar, the capability of separating overlapped
objects on appropriate cues. For example, sup
pose problem figure A is as in Fig. 3a and figure
B is as in Fig. 3b. The decomposition program
should be able to separate the single object of
figure A into the triangle and rectangle on the
basis that they appear in figure B, from which
point the remaining mechanism of parts I and
II could proceed with the problem. While a de
composition program of the full generality de
sirable has not yet been constructed, the most
recent version of the program is capable, in par
ticular, of finding all occurrences of an arbi
trary simple closed figure x in an arbitrary
connected figure y; for each such occurrence the
program can, if required, separate y into two
objects: that occurrence of x and the rest of y
(described in the standard figure format—note
that this 'editing' can be rather complex: con
nected figures can be split into non-connected
parts, etc.).

330 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1964

The type of decomposition illustrated above
might be called 'environmental,' in that, e.g.,
figure A is separated into subfigures on the in
formation that these subfigures are present,
already separated, in figure B. An interesting
extension to the present part I of ANALOGY
might be to incorporate some form of 'intrinsic'

h
Figure 4a.

decomposition in which 'most plausible' decom
positions are generated according to Gestalt-
like criteria of 'good figure.' Such an extension
could widen the problem-solving scope of
ANALOGY considerably to include many cases
where the appropriate subfigures do not appear
already 'decomposed' among the problem fig
ures. For example, suppose problem figures A
and B are as shown in Figs. 4a and 4b, respec-

o
Figure 4b.

tively. A decomposition into the square, trian
gle, and circle seems necessary to state a rea
sonable transformation rule. This example, in
cidentally, illustrates one potentially useful
'intrinsic' decomposition heuristic: roughly,
choose decompositions into subfigures which
have as much internal symmetry (in some pre
cise sense) as possible.

Next, the 'objects' generated from the decom
position process are given to a routine which
calculates a specified set of properties of these
objects and relations among them. The program
is designed so that this set can be changed
easily. As a sample of a relation-calculating
subroutine, we cite one that calculates, for fig
ure A of our example, that the object labeled
P2 lies inside that labeled P3 and generates a
corresponding expression (INSIDE P2 P3) to
be added to the part I output description of fig
ure A. The method used involves calculating all
intersections with P3 of a line segment drawn
from a point on P2 to the edge of the field (all
figures are considered as drawn on a unit
square). In this case P2 lies inside P3 since the
number of such intersections is odd, namely one
(and P3 is known to be a simple closed curve—
if it were not, the calculation just described
would be performed for each closed curve con
tained in P3). To do this, a substantial reper
toire of 'analytic geometry' routines is required
for part I, to determine, for example, intersec
tions of straight line segments and arcs of
circles in all cases and combinations. Other re
lation routines available in part I calculate, for
example, that in figure A of our example PI
is above P2 and P3 and in figure B that P4 is to
the left of P5.

The principal business of part I, aside from
decomposition and the property and relation
calculations, is a set of 'similarity' calculations.
Here, part I determines, for each appropriate
pair of objects, all members from a certain class
T of transformations which carry one object of
the pair into the other. The elements of T are
compositions of Euclidean similarity transfor
mations (rotation and uniform scale change)
with horizontal and vertical reflections. Given
descriptions of virtually any pair of arbitrary
line-drawings x and y, the routines of part I
will calculate the parameters of all instances of
transformations from T that 'map' x into y.

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 331

More precisely, an acceptable 'map' is a member
of T for which T(x) is congruent to y up to
certain metric tolerances which are parameters
in the corresponding programs.

This routine is, in effect, a pattern-recogni
tion program with built-in invariance under
scale changes, rotations, and certain types of
reflections. It consists essentially of a topologi
cal matching process, with metric comparisons
being made between pairs of lines selected by
the topological process. In Ref. 6 Sherman in
troduced some topological classification into a
sequential decision tree program for the recog
nition of hand-printed letters, but the notfon of
systematically using the topological informa
tion to determine which metric comparisons are
to be made seems to be new. This type of organ
ization for pattern recognition has its own ad
vantages (e.g., flexibility—the metric parts can
be changed easily with no effect on the overall
structure) and difficulties (e.g., sensitivity to
metrically small changes in a figure which affect
the connectivity—but this sensitivity can be
largely removed by suitable pre-processing).
Incidentally, it may be worth noting that if we
suppress the metric comparisons entirely we
get a general, and reasonably efficient, topo
logical equivalence algorithm for graphs (net
works) .

The set of techniques we have just been
describing, based on the use of a list-processing
language to perform processing of line drawings
by manipulating their list-structured descrip
tions, is by no means limited in applicability to
the uses to which we have put it in part I of
ANALOGY. To the contrary, it is our view that
the representation of line drawings used here
and the corresponding processing routines form
a suitable basis for the development of a quite
powerful 'line-drawing-manipulation language'
with potential usefulness in a wide variety of
applications. Regardless of whether the present
investigation turns out to have a measurable
influence on the art of designing problem-solv
ing programs, it seems probable that the prin
cipal short-range contribution of ANALOGY
is in the picture-processing by-products just
described. (Incidentally, these techniques were
discussed briefly from an ANALOGY-independ-
ent point of view in Ref. 17.)

After the similarity information is computed
for every required pair of objects, both within
a problem figure and between figures, this in
formation, together with the decomposition and
property and relation information, is punched
out on cards in a standard format for input to
part II. (For a typical set of figures, the total
output of part I, punched at up to 72 columns/
card, might come to 15 to 20 cards.)

Part II is given these cards as input. Its
final output is either the number of the solution
figure or a statement that it failed to find an
answer. Its first step is to generate a rule (or,
more frequently, a number of alternate rules)
transforming figure A into figure B. Such a
rule specifies how the objects of figure A are
removed, added to, or altered in their properties
and their relations to other objects to generate
figure B. Once this set of rule possibilities has
been generated, the next task is to 'generalize'
each rule just enough so that the resulting rules
still take figure A into figure B and now take
figure C into exactly one of the answer figures.
More precisely, for each 'figure A -» figure B'
rule and for each answer figure, part II at
tempts to construct a 'common generalization'
rule which both takes figure A into figure B and
figure C into the answer figure in question. This
process may produce a number of rules, some
very weak in that virtually all the distinguish
ing detail has been 'washed out' by 'generaliza
tion.' Hence it is necessary at this point to pick
the 'strongest' rule by some means. This entire
process requires a complex mechanism for ma
nipulating and testing the rules and deciding
which of the several rule candidates, the results
of different initial rules or of different 'general
izations,' is to be chosen.

The principal method embodied in part II at
present is able to deal quite generally with prob
lems in which the numbers of parts added, re
moved, and matched in taking figure A into
figure B are the same as the numbers of parts
added, removed, and matched, respectively, in
taking figure C into the answer figure. A sub
stantial majority of the questions on the tests
we have used are of this type, as is our present
example; virtually all would be under a suffi
ciently elaborate decomposition process in part
I ; this restriction still permits a wide variety o^
transformation rules. It should be mentioned

332 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1964

that the methods of part II have been kept
subject-matter free; no use is made of any geo
metric meaning of the properties and relations
appearing in the input to part II.

The more detailed workings of both parts I
and II are best introduced through examining
the process sketched above at work on our ex
ample. To convey some further feeling for the
nature of the input to part I, we exhibit part of
it, namely, the input description of figure A.
The LISP expressions look like:

(
(DOT (0.4 . 0.8))

(SCC ((0.3 . 0.2) 0.0 (0.7 . 0.2) 0.0 (0.5 .
0.7)0.0(0.3.0.2)))

(SCC ((0.4 . 0.3) 0.0 (0.6 . 0.3) 0.0 (0.6 .
0.4) 0.0 (0.4 . 0.4) 0.0 (0.4 . 0.3)))

)

The first line above corresponds to the dot (at
coordinates x = 0.4 and y = 0.8 on the unit
square; the coordinate pairs in the other ex
pressions are interpreted analogously). The
next two lines correspond to the triangle (SCC
stands for simple closed curve. All connected
figures are divided into three classes—dots
(DOT), simple closed curves (SCC), and all
the rest (REG). This is solely for reasons of
programming convenience; no other use is made
of this three-way classification). Each non-
connected figure is represented simply by a list
of descriptions of its connected parts.

A curve (which may consist of an arbitrary
sequence of elements chosen from straight line
segments and arcs of circles) is represented by
a list in which coordinate pairs alternate with
the curvatures of the line elements between (all
curvatures are zero here since the lines in ques
tion are all straight). Similarly, the next two
lines above correspond to the rectangle; the en
tire description of figure A is then a list of the
descriptions of these three parts. The format
corresponding to the non-SCC figures like the
Z-shaped subfigure of figure C is similar though
somewhat more complex; it looks like:

(REG ((VI V2 (0.0 (0.55 . 0.5) 0.0 (0,45 .
0.3) 0.0))

(V2 VI (0.0 (0.45 . 0.3) 0.0 (0.55 . 0.5)
0.0))))

where VI and V2 are the two vertices (here,
endpoints) of the figure. The coordinates of VI
and V2 are given to part I in a separate list.
They are VI = (0.45 . 0.5), V2 = (0.55 . 0.3).
Here, the top-level list describes the connectiv
ity by stating which vertices are connected to
which and how often—sublists describe in de
tail the curves making these connections. (By
vertex we mean either an endpoint of a curve
or a point at which three or more curves come
together.) The complete details of the input
format are given in Ref. 1, along with many
examples.

When the input shown above corresponding
to problem figure A and the corresponding
inputs for the other seven figures are processed,
the output from part I is, in its entirety, the ten
LISP expressions shown below. For brevity,
all similarity information concerning non-null
reflections has been deleted. Also, we have re
placed the actual arbitrary symbols generated
internally by ANALOGY as names for the parts
found by the decomposition program by the
names PI, P2, etc., which appear as labels on
our example figures above. The ten output ex
pressions are:

(1) ((PI P2 P3) . ((INSIDE P2 P3)

(ABOVE PI P3) (ABOVE PI P2)))

(2) ((P4 P5) . ((LEFT P4 P5)))

(3) ((P6 P7 P8) . ((INSIDE P7 P6)
(ABOVE P8 P6) (ABOVE P8
P7)))

(4) ((P2 P4 (((1.0 . 0.0) . (N.N)) ((1.0 .
3.14) . (N.N)))) (P3 P5 (((1.0 .
0.0) . (N.N)))))

(5) ((PI P8 (((1.0 . 0.0) . (N.N)))))

(6) NIL

(7) ((P9 P10 P l l) (P12 P13) (P14 P15)
(P16 P17) (P18))

(8) (((INSIDE P10 P9) ABOVE P l l P9)
(ABOVE P l l P10)) ((LEFT P12
P13)) ((INSIDE P15 P14))
((ABOVE P17 P16)) NIL)

(9) (((P 6 P 9 (((1 .0 .0 .0) . (N.N)))) (P7
P10 (((1.0 . 0.0) . (N.N)) ((1.0 .
—3.14) . (N.N)))) (P8P11 (((1.0
.0.0) . (N.N)))))

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 333

((P6 P13 (((1.0 . 0.0) . (N.N))))
(P7 P12 (((1.0 . 0.0) . (N.N))
((1.0 .—3.14) . (N.N)))))

((P6 P14 (((1.0 . 0.0) . (N.N))))
(P7 P15 (((1.0 . 0.0) . (N.N))
((1.0 .—3.14) . (N.N)))))

((P6 P16 (((1.0 . 0.0) . (N.N))))
(P8 P17 (((1.0 . 0.0) . (N.N)))))

((P7 P18 (((1.0 . 0.0) . (N.N)) ((1.0 .
—3.14) . (N.N.))))))

(10) ((((P1P11 (((1 .0 .0 .0) . (N.N)))))
NIL NIL

((PI P17 (((1.0 . 0.0) . (N.N)))))
NIL) . (NIL NIL NIL NIL NIL))

To explain some of this: The first expression
corresponds to figure A. It says figure A has
been decomposed into three parts, which have
been given the names PI, P2, and P3. Then we
have a list of properties and relations and simi
larity information internal to figure A, namely,
here, that P2 is inside P3, PI is above P2, and
PI is above P3. The next two expressions give
the corresponding information for figures B
nns l (~* TH-./-* -P<-»i•!•»•+Vi o v n v f i o o i n n rriiTQo lTi-fAJMnatinn ClllKX \j. x l i e I U U I i/ii C A p i r a o i u i i g u v o nixvyA m u n u n

about Euclidean similarities between figure A
a n u n g u r e x>. r u r eAampie, JTO gues IIILO r u
under a 'scale factor = 1, rotation angle = 0,
and both reflections null' transformation. The
next two expressions contain the corresponding
information between figure A and figure C and
between figure B and figure C, respectively. The
seventh list is a five-element list of lists of the
parts of the five answer figures; the eighth a
five-element list of lists, one for each answer
figure, giving their property, relation, and simi
larity information. The ninth is again a five-
element list, each a 'similarity' list from fig
ure C to one of the answer figures. The tenth,
and last, expression is a dotted pair of expres
sions, the first again a five-element list, a 'simi
larity' list from figure A to each of the answer
figures, the second the same from figure B to
each of the answer figures. This brief descrip
tion leaves certain loose ends, but it should pro
vide a reasonably adequate notion of what is
done by part I in processing our sample prob
lem.

The ten expressions above are given as argu
ments to the top-level function of part II

(optimistically called solve). The basic method
employed by solve, which suffices to do this
problem, begins by matching the parts of fig
ure A and those of figure B in all possible ways
compatible with the similarity information.
From this process, it concludes, in the case in
question, that P2 -» P4, P3 -» P5, and PI is
removed in going from A to B. (The machinery
provided can also handle far more complicated
cases, in which alternate matchings are possible
and parts are both added and removed.) On
the basis of this matching, a statement of a
rule taking figure A into figure B is generated.
It looks like:

(

(REMOVE Al ((ABOVE Al A3) (ABOVE
Al A2) (SIM OB3 Al (((1.0 . 0.0) .
(N.N))))))

(MATCH A2 (((INSIDE A2 A3) (ABOVE
Al A2) (SIM OB2 A2 (((1.0 . 0.0) .
(N.N))))) . ((LEFT A2 A3) (SIM
OB2 A2 (((1.0 . 0.0) . (N.N)) ((1.0 .
3.14) . (N.N)))) (SIMTRAN (((1.0 .
0.0) . (N.N)) ((1.0 . 3.14) . (N.N)
))))))

(MATCH A3 (((INSIDE A2 A3) (ABOVE
Al A3) (SIM OBI A3 (((1.0 . 0.0) .
(N.N))))) . ((LEFT A2 A3) (SIM
OBI A3 (((1.0 . 0.0) . (N.N))))
(SIMTRAN (((1.0 . 0.0) . (N.N)
))))))

)

The A's are used as 'variables' representing
objects. The format is rather simple. For each
object added, removed, or matched, there is a
list of the properties, relations and similarity
information pertaining to it. (In the case of a
matched object, there are two such lists, one
pertaining to its occurrence in figure A and the
other to its occurrence in figure B.) There are
two special devices; the (SIM OBI . . .) — form
expressions give a means of comparing types of
objects between, say, figure A and figure C; the
other device is the use of the SIMTRAN expres
sions in the figure-B list for each matched ob
ject. This enables us to handle conveniently
some additional situations which we shall omit
from consideration, for brevity. They are
treated in detail in Ref. 1.

334 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1964

The above rule expresses everything about
figures A and B and their relationship that is
used in the rest of the process. (The reader
may verify that the rule does, in some sense,
describe the transformation of figure A into
figure B of our example.)

Next, a similarity matching is carried out be
tween figure C and each of the five answer fig
ures. Matchings which do not correspond to the
ones between figure A and figure B in numbers
of parts added, removed, and matched, are dis
carded. If all are rejected this method has
failed and solve goes on to try a further method.
In the present case, figures 1 and 5 are rejected
on this basis. However, figures 2, 3, and 4 pass
this test and are examined further, as follows.
Choose an answer figure. For a given matching
of figure C to the answer figure in question
(and solve goes through all possible matchings
compatible with similarity) we take each 'fig
ure A -> figure B' rule and attempt to fit it to
the new case, making all matchings between the
A's of the rule statement and the objects of
figure C and the answer figures which are com
patible with preserving add, remove, and match
categories, then testing to see which informa
tion is preserved, thus getting a new, 'general
ized' rule which fits both 'figure A -> figure B'
and 'figure C -*• the answer figure in question.'
In our case, for each of the three possible an
swer figures we get two reduced rules in this
way (since there are two possible pairings be
tween A and C, namely, PI <—* P8, P2<—»P6,
and P3 <—» P7, or PI <—» P8, P2 «—» P7, and
P3 «—> P6).

In some sense, each of these rules provides an
answer. However, as pointed out earlier, we
want a 'best' or 'strongest' rule, that is, the one
that says the most or is the least alteration in
the original 'figure A -» figure B' rule and that
still maps C onto exactly one answer figure. A
simple device seems to approximate human
opinion on this question rather well; we define
a rather crude 'strength' function on the rules
and sort them by this. If a rule is a clear winner
in this test, the corresponding answer figure
is chosen; if the test results in a tie, the entire
method has failed and solve goes on to try
something else. In our case, when the values
for the six rules are computed, the winner is one

of the rules corresponding to figure 2, so the
program, like all humans so far consulted,
chooses it as the answer. The rule chosen looks
like this:

(

(REMOVE Al ((ABOVE Al A3) (ABOVE
Al A2) (SIM OB3 Al (((1.0 . 0.0) .
(N.N))))))

(MATCH A2 (((INSIDE A2 A3) (ABOVE
A1A2)) . ((LEFTA2A3) (SIMTRAN
(((1.0 . 0.0) . (N.N)) ((1.0 . 3.14) .
(N . N)))))))

(MATCH A3 (((INSIDE A2 A3) (ABOVE
Al A3)) . ((LEFTA2A3) (SIMTRAN
(((1.0 . 0.0) . (N . N)))))))

)

Again, it is easy to check that this rule both
takes figure A into figure B and figure C into
figure 2, but not into any of the other answer
figures.

Further Examples and Comments

(a) Examples
We first exhibit several additional examples

of problems given to ANALOGY:

(i) (See Fig. 5)

A

@
•

B

0

©

C

/fi\
o

1

/fi \
o

2

A°
o

3

•
/ ^ \

4 5

A0

Figure 5.

Here the rule involves changes in the rela
tions of the three parts. ANALOGY chose an
swer figure 3.

(ii) (See Fig. 6)
This case involves both addition and removal

of objects. ANALOGY chose answer figure 2.

(iii) (See Fig. 7)

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS

1

lot

©
2

©

©
1

/

A

2

X

\

+

+
3 4

^ *

Figure 6. Figure 8.

A

A

B

A

c

C3>

i

0
2

o
3 4 5 i

o

A

2

a

A

TO

OT

T T
O

r Igure /. .Figure 9.

Note that this case required the more power
ful decomposition program. Here ANALOGY
chose figure 3.

(iv) (See Fig. 8)
The rule here simply involved a rotation.

ANALOGY chose figure 2.

(v) (See Fig. 9)

Here ANALOGY chose figure 3, using an
extension of the part II techniques discussed
above. This extension, employed after failure
of the basic process, involves systematic substi
tution of certain specified relations (e.g., LEFT
for ABOVE) for others in the part II input
descriptions, thus making it possible for
ANALOGY to relate the 'vertical' transforma
tion taking A into B to the 'horizontal' trans
formation of C into 3.

(vi) In the problem of Fig. 1, the large circle
of answer figure 4 was replaced by a large
square and the problem rerun. Again figure 4
was chosen but by a different rule. Now, in
stead of the inner object being removed, as be

fore, the outer object is removed and the inner
one enlarged. This illustrates some of the flexi
bility of the procedure and the dependence of
the answer choice on the range of allowed an
swers as well as on A, B, and C.

(vii) (See Fig. 10)

Here is an example of a failure by ANAL
OGY to agree with the human consensus which
favors figure 5. ANALOGY chose figure 3.

((

3

D

2

•

•

O
3

Figure 1

*

4

0.

i
5

336 PROCEEDINGS—SPRING JOINT COMPUTER CONFERENCE, 1964

(b) Comparison with Human Performance
We can only roughly compare the perform

ance of ANALOGY with that of humans on
geometric-analogy problems, since ANALOGY
has not yet been given the complete set of such
problems from any test for which scores are
available. However, as some indication, we cite
scores on the ACE tests based on a period of
years including those editions of the test from
which most of the problems on which ANAL
OGY was tested were selected. These scores are
for a large population of college-preparatory
students; the median score, on a test consisting
of- 30 such questions, ranged from 17 for 9th
grade to 20 for 12th grade. Our estimate is that,
on the same tests, ANALOGY, as it currently
exists, could solve between 15 and 20 problems.
Given, in addition, certain changes (mostly in
part I, e.g., a more powerful decomposition
program and additional properties and rela
tions) for which we have reasonably well-
worked-out implementations in mind, ANAL
OGY should be capable of perhaps 25 successful
solutions.

(c) The Use of LISP
The use of a list-processing language to con

struct the ANALOGY program appears to have
been a suitable choice; most notably, its capa
bility at handling intermediate expressions of
unpredictable size and 'shape' (such as our
figure descriptions and transformation rules)
is of great value. We especially wish to praise
LISP as a convenient and elegant language in
which to write and debug complex programs.
The ease of composition of routines, the highly
mnemonic nature of the language, and the good
tracing facilities all contribute greatly to effec
tive program construction. In return for the
use of such a language one pays a certain price
in speed and storage space, which, in the case of
ANALOGY, at least, was a very acceptable
bargain, since the necessity of machine-lan
guage coding would have made the entire proj
ect unfeasible. Incidentally, the ANALOGY
program (apparently the largest program writ
ten in LISP to date) is so large that parts I
and II must occupy core separately. The conse
quent limited (and one-way) communication
between the parts was a serious design con
straint but proved to have some compensating
advantages in simplicity.

ANALOGY and Pattern-Recognition in
Problem-Solving Programs

In this section we shall consider certain
aspects of the design of problem-solving ma
chines. To aid this discussion we shall specify
(rather loosely) a subclass of problem-solving
machines and carry out our discussion in terms
of these though the ideas involved are by no
means limited in applicability to this class. The
machines we have in mind are typified by
GPS14 in that the problem to be solved by the
machine is to transform one specified 'object' or
'situation' (whatever this may mean in a par
ticular subject-matter context) into another by
applying an appropriate sequence of transfor
mations chosen from a class available to the
machine. A wide variety of problems may be
cast in this form (again see Ref. 14 or other dis
cussions of GPS by the same authors). As in
GPS, subgoals may be generated and attacked
by such a machine and elaborate schemes of
resource allocation may be required. However,
these aspects do not concern us here. Our inter
est lies in the basic task of the machine; given a
pair of 'objects,' it must choose an 'appropriate'
transformation, i.e., one contributing to the goal
of transforming one of the given 'objects' into
the other.

It is a widely-held view, with which we agree
completely, that for a machine to be capable of
highly intelligent behavior on a task of this
kind, in a rich environment of objects and
transformations (and, in particular, to be capa
ble of learning at a level more advanced than
that of present machines), the critical factor is
that it have a good internal representation of
both its subject matter ('objects') and its meth
ods ('transformations'), as well as an elaborate
set of 'pattern-recognition' techniques for
matching transformations to object pairs.
Probably this means a quite 'verbal' represen
tation of both objects and transformations as
expressions in suitable 'description languages.'
Furthermore, these matching techniques must
be represented in a form in which they them
selves are capable of being improved as the ma
chine gains experience. The central role which
'pattern-recognition' techniques must play in
sophisticated problem-solving programs and the
corresponding importance for effective learning
of autonomous improvement in the perform-

A HEURISTIC PROGRAM TO SOLVE GEOMETRIC-ANALOGY PROBLEMS 337

ance of these techniques are well expressed in
Minsky.12 There we find:

In order not to try all possibilities a re
sourceful program must classify problem situa
tions into categories associated with the do
mains of effectiveness of the machine's different
methods. These pattern-recognition methods
must extract the heuristically significant fea
tures of the objects in question. Again from
Ref. 12 we have:

Again from 12 we have:
In order to solve a new problem one uses

what might be called the basic learning heuris
tic—first try using methods similar to those
which have worked, in the past, on similar
problems.

Here, the problem is, of course, to have pat
tern-recognition techniques possessing, or able
themselves to learn, criteria of 'similarity' ap
propriate to the subject matter in question.

The 'fixed-length property-list' schemes (see
Ref. 12) which characteristically have been used
to perform this pattern-recognition task in cur
rent problem-solving programs have two prin
cipal defects which limit their extension to
harder problems:

(i) While, in principle, given enough suffi
ciently elaborate properties, one can make arbi
trarily fine discriminations, in practice a given
set of properties will begin to fail rapidly as
situations become more complex. In particular,
for 'situations' which must be treated as con
sisting of interrelated parts, the 'global' nature
of the scheme in question leaves it helpless.

(ii) Such a scheme is very limited in its learn
ing capabilities, since it has access to very little
information about its component properties; in
particular, it is incapable of "knowledgeably'
modifying its tests or adding new ones—it can
only modify the weightings given to the results
of these tests in its 'decisions.'

In view of the limitations of the 'property-
list' pattern-recognition scheme just mentioned,
we can formulate some requirements for a pat
tern-recognition scheme suitable tc replace it
as a 'transformation-selecting' mechanism.
First, the scheme must have access to a repre
sentation of each 'object' in terms of a 'descrip
tive framework' for the subject matter in

question which is suitable in that useful rela
tionships between 'objects' can be extracted
relatively simply from the corresponding rep
resentations. Furthermore, the transformation-
selecting rules of the pattern-recognition appa
ratus should themselves be expressed in a
representation suitable for a 'learning mecha
nism' to revise the set of rules (i) by adding
new rules and deleting those old ones which
prove least useful as experience associates cer
tain object pairs with certain transformations
and (ii) by replacing a set of particular rules
by a 'common generalization' rule again repre
sented in the same language. Such facilities
could go far toward removing the limitations
of which we have spoken and providing both a
powerful rule language (the rules can be stated
in terms of the 'descriptive framework' we have
postulated for the 'objects') and a learning
mode more sophisticated than any yet incorpo
rated in such a general problem-solving pro
gram.

So far we have been enumerating desirable
features in a 'pattern-recognition' mechanism
to be used as a transformation-selection device
within a large problem-solver. What has all
this to do with ANALOGY, which is not even a
problem-solving program of the class we have
been considering? We suggest that ANALOGY
can, under a suitable (rather drastic) reinter-
pretation, be to some extent viewed as a pattern-
recognition program having, to the limited de
gree appropriate for its particular environment,
all the features we have listed. First, the
'objects' are the problem figures of ANALOGY
and the suitable 'descriptive framework' ap
propriate to these objects is the 'subfigure and
relation' representation used as the input part I
generates for part II of ANALOGY. (Thus
part I of ANALOGY corresponds to the appa
ratus that generates this representation for
each object; that is, it goes from a representa
tion of the 'problem objects' which is convenient
for input to the problem-solver to one which is
in a form suitable for internal use.) The gen
eration in ANALOGY of a transformation rule
taking one answer figure into another can be
thought of as corresponding to the first kind of
learning we listed above, namely, the adding of
rules as, with experience, the machine associates
certain object pairs with certain simple or com-

338 PROCEEDINGS-^SPRING JOINT COMPUTER CONFERENCE, 1964

posite transformations. Finally, the common
generalization of two rules in ANALOGY cor
responds to the second kind of learning we
mentioned, namely, the generation of a common
generalization of several rules associating 'ob
jects' and 'transformations.' Furthermore,
ANALOGY'S process of choosing between 'com
mon generalizations' of different rule pairs mir
rors a process of selectively incorporating only
those generalizations with the greatest dis
criminatory power. Under this interpretation,
ANALOGY appears as a model for a pattern-
recognition process with all the characteristics
mentioned. The potential value of ANALOGY,
viewed in this way, as a suggestive model for
the construction of such pattern-recognition
mechanisms for use within problem-solving pro
grams may prove to be the chief product of our
work with ANALOGY and the best justification
for having carried it out.

References

1. T. G. EVANS, P H . D . Thesis, Department of
Mathematics, MIT, June, 1963 (soon to be
available as an AFCRL Technical Report).

2. J. MCCARTHY, "Recursive functions of
symbolic expressions," Comm. ACM, Vol.
3, April, 1960.

3. J. MCCARTHY et al., LISP 1.5 Program
mer's Manual, MIT, revised edition, Au
gust, 1962.

4. R. L. GRIMSDALE, F. H. SUMNER, C. J.
TUNIS, and T. KILBURN et al, "A system
for the automatic recognition of patterns,"
Proc. IEE, March, 1959, Vol. 106, pt. B,
pp. 210-221.

5. T. MARILL, A. K. HARTLEY, T. G. EVANS,
B. H. BLOOM, D. M. R. PARK, T. P. HART,
and D. L. DARLEY, "CYCLOPS-1: a second-
generation recognition system," FJCC, Las
Vegas, Nevada, November, 1963.

6. H. SHERMAN, "A quasi-topological method
for the recognition of line patterns," Proc.
ICIP, Paris, France, June, 1959, pp. 232-
238.

7. I. SUTHERLAND, "Sketchpad: a man-ma
chine graphical communication system,"
SJCC, Detroit, Michigan, May, 1963.

8. L. ROBERTS, P H . D . Thesis, Department of
Electrical Engineering, MIT, June, 1963.

9. R. KIRSCH, personal communication.

10. L. HODES, "Machine processing of line
drawings," Lincoln Laboratory Technical
Memorandum, March, 1961.

11. R. CANADAY, M.S. Thesis, Department of
Electrical Engineering, MIT, February,
1962.

12. M. L. MINSKY, "Steps toward artificial in
telligence," Proc. IRE, January, 1961, pp.
8-30.

13. A. NEWELL and H. A. SIMON, "The logic
theory machine," IRE Trans, on Informa
tion Theory, Vol. IT-2, #3, September, 1956,
pp. 61-79.

14. A. NEWELL, J. C. SHAW, and H. A. SIMON,
"Report on a general problem-solving pro
gram," Proc. ICIP, Paris, France, June,
1959, pp. 256-264.

15. H. GELERNTER and N. ROCHESTER, "Intel
ligent behavior in problem-solving ma
chines," IBM J. Res. and Dev., Vol. 2, #4 ,
October, 1958, pp. 336-345.

16. J. SLAGLE, P H . D . Thesis, Department of
Mathematics, MIT, June, 1961.

17. T. G. EVANS, "The use of list-structured
descriptions for programming manipula
tions on line drawings," ACM National
Conference, Denver, Colorado, August,
1963.

Acknowledgements

The assistance of the Cooperative Test Divi
sion of the Educational Testing Service, Prince
ton, New Jersey, in providing a large set of
geometric-analogy questions from its files is
gratefully acknowledged.

Thanks are also due to the Educational Rec
ords Bureau, New York, N.Y., for the statistics
on human performance on geometrical-anal
ogy questions cited in Sec. 4b.

Most of the computation associated with the
development and testing of ANALOGY was
performed at the MIT Computation Center.

