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Abstract
Siek and Garcia (2012) have explored the dynamic semantics of
the gradually-typed lambda calculus by means of definitional in-
terpreters and abstract machines. The correspondence between the
calculus’s mathematically described small-step reduction seman-
tics and the implemented big-step definitional interpreters was left
as a conjecture. We prove and generalise Siek and Garcia’s con-
jectures using program transformation. We establish the correspon-
dence between the definitional interpreters and the reduction se-
mantics of a closure-converted gradually-typed lambda calculus
that unifies and amends various versions of the calculus. We use
a layered approach and two-level continuation-passing style so that
the correspondence is parametric on the subsidiary coercion calcu-
lus. We have implemented the whole derivation for the eager error-
detection policy and the downcast blame-tracking strategy. The cor-
respondence can be established for other choices of error-detection
policies and blame-tracking strategies, by plugging in the appropri-
ate artefacts for the particular subsidiary coercion calculus.

Categories and Subject Descriptors D.3.1 [Software]: Program-
ming Languages—Formal Definitions and Theory

General Terms Languages, Theory

Keywords program transformation, gradual types, layered seman-
tics, 2-level continuation-passing style, closures

1. Introduction
Since the publication of [1] a decade ago there has been substantial
research on inter-derivation by program transformation of imple-
mentations of ‘semantic artefacts’, i.e., implementations of oper-
ational semantics, denotational semantics, and abstract machines.
The research has established a semantics framework and has con-
tributed to the repertoire of program transformation techniques.
Unfortunately, inter-derivation remains underused. Languages and
calculi constantly spring up but their semantics are specified on pa-
per and their correspondences are either obviated, conjectured, or
proven mathematically.
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We think inter-derivation is underused for various reasons. First,
for readers unfamiliar with the technicalities, proving correspon-
dences by program transformation provides the same assurance as
proving them on paper. Formal verification must be brought into
the process. This brings us to the second related criticism: the lack
of tools. Inter-derivation may become more popular when tech-
niques and folklore are collected, their requirements for program
verification formally studied, and a tool developed, preferably inte-
grated within a popular freely-available tool framework. An often
suggested possibility is a Coq library for inter-derivation.

Reusability in the form of parametricity and modularity will be
an important requirement for this endeavour, in particular, the sup-
port for derivation of parametric semantic artefacts. We think two
important ingredients in this regard are hybrid or layered calculi
[16, 17], and two-level continuation-passing style [12]. On the one
hand hybrid or layered calculi depend on subsidiary sub-calculi,
which ought to be turned into a parameter. On the other hand two-
level continuation-passing style can be used to separate the hybrid
and subsidiary continuation spaces and help parametrise on the sub-
sidiary. In this paper we showcase the marriage of layered seman-
tics and two-level CPS.

Our case study is the recently popular gradually-typed lambda
calculus [15, 20–22]. Gradual typing is about giving programmers
the freedom to move from dynamic typing to static typing by let-
ting them add type annotations gradually to their programs. The
gradually-typed lambda calculus λ?

→ is a simply-typed lambda cal-
culus with a dynamic type Dyn that is assigned by the type system
to expressions whose type is statically unknown. The expressions
of λ?

→ are translated to the expressions of an intermediate lan-
guage λ〈·〉→ with explicit casts that carry blame labels. A cast failure
delivers a blame label that indicates the location of the failing
cast. The dynamic semantics of λ〈·〉→ depends on two design deci-
sions (lazy or eager error-detection, downcast or upcast-downcast
blame-tracking) which give rise to a design space with four differ-
ent points: eager-downcast (ED), eager-upcast-downcast (EUD),
lazy-downcast (LD), and lazy-upcast-downcast (LUD). These
points are captured by different coercion sub-calculi.

In [20] we find several implemented denotational semantics
(definitional interpreters using meta-level functions) that illustrate
the implementation of the variants of λ〈·〉→ . The small-step reduc-
tion semantics are defined mathematically [20, 22] and the corre-
spondences with the denotational semantics are left as conjectures.
We prove and generalise the conjectures using program derivation,
parametrising the λ〈·〉→ artefact on the coercion artefact to permit
derivations for the whole design space. The inter-derivation dia-
gram of Figure 1 describes the derivation of the semantic artefacts
in the paper. Here is our detailed list of contributions:
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Figure 1. Inter-derivation diagram.

• We present a coercion-based version of λ〈·〉→ (Section 2) and
an eager-downcast coercion calculus ED (Section 3). These
calculi unify and slightly amend and emend the versions in
[20, 22] so as to have an implementable reduction semantics
satisfying unique-decomposition [13].
• In Section 4 we translate the definitional interpreter [20] to ML

and derive an instantiation for ED dynamic semantics (eager-
downcast, named L∪D∪E in [22]) which is the more appealing
for ‘it provides thorough error detection and intuitive blame
assignment’ [22, p.13]. In Section 5 we disentangle translation
and normalisation to obtain a purely coercion-based interpreter
for expressions that uses a self-contained subsidiary coercion
interpreter. In Section 6 we finally produce a 2CPS-normaliser
that implements the corresponding big-step natural semantics.
These steps belong to the right-hand-side of Figure 1.
• We extend λ〈·〉→ to λρ〈·〉→ , the simply-typed lambda calculus of

closures with explicit casts (Section 8) whose implementable
reduction semantics is the starting point of the syntactic corre-
spondence [6, 7, 9] on the left-hand-side of Figure 1. We state
the theorems generalising the conjectures in [20] (Section 8.1),
and prove them via program transformation by linking the two
sides of the diagram at the 2CPS-normaliser (Section 10, etc).
• The small-step and big-step artefacts for expressions with co-

ercion casts are parametric on the artefacts for coercions. We
have presented a full derivation for ED dynamic semantics, but
thanks to layering and 2CPS the artefacts for coercions can be
replaced by other artefacts implementing different dynamic se-
mantics. This technique provides the basis for modular deriva-
tions of any layered semantics, not limited to the definitional
interpreters of the gradually-typed lambda calculus.

This paper makes contributions for ‘program-derivationists’ as well
as for ‘gradual-type-theorists’. To celebrate the union of the two
lines of research, we have summarised in the main sections the
important points for each readership, so they can understand the
contributions at a glance. In particular, the program-derivationist
need not know all details of, and our contributions to, λ〈·〉→ . The
gradual-type-theorist will find the semantic artefacts in the paper
written in traditional mathematical notation. We strongly encourage
the program-derivationist to read the derivation parts of the paper
alongside the code,1 which is the main star of the film. The code
is written in Standard ML and organised around the sectioning
structure of the paper. Thus, ‘Section 1.2’ refers to a section of the
paper whereas ‘Code 3.1’ refers to a section of the code.

2. λ〈·〉→ with implementable reduction semantics
Figure 2 shows the syntax, contraction rules, and implementable
reduction semantics of a coercion-based version of λ〈·〉→ . The fore-
most point for the program-derivationist is the boxed rule STEPCST
specifying that the contraction of a cast 〈c〉s that applies a coercion
c to a simple value s depends on the single-step reduction of c to c′

1 http://babel.ls.fi.upm.es/~agarcia/papers/Gradual

Syntax: e ∈ λ〈·〉→

base types B = {Int, Bool}
types T ::= B | Dyn | T → T
constants k ::= n ∈ N | t | f
operators op ::= inc | dec | zero?
expressions e ::= k | op e | if e e e | x | λx : T.e |

e e | 〈S ⇐ T 〉`e | 〈c〉e | Blame `

simple values s ::= k | λx : T.e
values v ::= s | 〈c〉s
results r ::= v | Blame `

Contraction: e −→ e

(λx : T.e)v −→ [x/v]e (β)

op n−→ δ(op, n) (δ)

if k e1 e2 −→
{

e1 if k = t
e2 if k = f

(IF)

〈c〉s−→ 〈c′〉s if c 7−→X c′ (STEPCST)

〈ι〉s−→ s (IDCST)

〈d〉〈c〉s−→ 〈c ; d〉s (CMPCST)

〈c̃→ d̃〉s v −→ 〈d̃〉(s 〈c̃〉v) (APPCST)

〈Fail`〉s−→ Blame ` (FAILCST)

〈(c̃→ d̃) ; Fail`〉s−→ Blame ` (FAILFC)

Reduction semantics: e 7−→ e

E[ ] ::= [ ] | (E[ ]) e | v (E[ ]) | 〈c〉(E[ ])

e −→ e′

E[e] 7−→ E[e′] E[Blame `] 7−→ Blame `

Figure 2. Syntax, contraction rules, and implementable reduction
semantics of λ〈·〉→ .

in a coercion sub-calculus X. Thus, λ〈·〉→ is a hybrid or layered cal-
culus whose syntax, contraction rules and, by extension, reduction
semantics, depend on a subsidiary coercion calculus. Fortunately,
the dependency on the syntax is not such: coercion expressions are
the same across coercion calculi, and what varies is the syntax of
‘normal coercions’ (normalised coercion expressions) which natu-
rally depends on the reduction semantics. However, the syntax of
normal coercions always includes the ones in the contraction rules
of λ〈·〉→ . Such rules have to be part of λ〈·〉→ for reasons explained be-
low. Thus, the real dependency is on ‘ 7−→X’, the reduction seman-
tics for coercions. Observe that λ〈·〉→ admits type cast expressions
〈S ⇐ T 〉`e which are present in [20, p.2] and in [22, Fig.1]. In
particular, the interpreters in [20] work with them. However, type
casts are translated off to coercion casts 〈c〉e. The translation func-
tion depends on the reduction semantics for coercions.

A point of interest to the program-derivationist and to the
gradual-type-theorist is that in Figure 2 blames are expressions,
and reduction lifts blames in any reduction context to a result. Con-
sequently, the figure shows a reduction semantics proper that can
be implemented (more details below). Blames are results but not
expressions in [20, 22]. The other contents of the section explain
whence our version of the calculus which is of interest mainly to
the gradual-type-theorist.



The syntax of types, constants, and primitive operators is the
same as in [20] and is unmysterious.2 The syntax of expressions in-
cludes the expressions of [22, Fig.7], namely, variables, constants,
type-annotated abstractions, expression applications e e, and coer-
cion casts 〈c〉e. The unannotated abstractions λx.e of [20] can be
represented by λx :Dyn.e. The syntax of expressions also includes
applications of primitive operators to expressions, and conditional
expressions, both present in [20]. Finally, expressions also include
Blame ` expressions because they can be the result of a contraction,
and must thus be a particular kind of expression. The type system
for λ〈·〉→ can be found in Appendix A.

Now to operational semantics. Results r are now expressions:
either values v or blames. Values v are simple values s or a coercion
expression that applies a wrapper coercion c to a simple value.
Wrapper coercions are a subset of normal coercions ĉ, those that
may be applied to simple values. A definition of wrapper and
normal coercion for the eager coercion calculus with downcast
blame-tracking is given in Section 3. In the definitional interpreters
of [20], simple values include meta-level functions because the
interpreters implement denotational semantics (Section 4).

The contraction rules are straightforward. The first three spec-
ify the contraction of β-, δ-, and conditional redices. (Function δ
can be found in Appendix A.) Rule STEPCST has already been
discussed. The remaining rules, except CMPCST, deal with casts
containing normal coercions. Rule CMPCST contracts nested casts
(expressions of λ〈·〉→ ) to coercion sequences. Rule IDCST contracts
a cast with an identity coercion. Rule APPCST contracts the appli-
cation of an arrow coercion 〈c̃→ d̃〉 to a simple value s (an ab-
straction if well-typed) when the application is in turn applied to
an operand v. The cast is performed against the operand and the re-
sult of the application. This is the standard solution for higher-order
casts (arrow coercions) [22]. Rules FAILCST and FAILFC contract
fail coercions to blames. Rule FAILFC is given in λ〈·〉→ to preserve
confluence in the coercion calculus (Section 3).3

The reduction semantics at the bottom of the figure consists
of reduction contexts and single-step contraction rules for redices
within context holes. Observe that blames are short-circuited to re-
sults by lifting a blame in an arbitrary reduction context to the top
level. The reduction contexts specify call-by-value reduction. The
reduction of casts would consist of reducing the expression to a
simple value, then reducing the coercion within the subsidiary co-
ercion calculus, and the appropriate contraction rule in λ〈·〉→ would
take it from there.

3. The ED coercion calculus
Figure 3 shows the syntax, contraction rules, and implementable
reduction semantics of ED, our version of the eager coercion cal-
culus with downcast blame-tracking, which unifies and slightly
amends and emends the versions in [20, 22]. The foremost point
for both the program-derivationist and the gradual-type-theorist
is that the reduction semantics in the figure satisfies the unique-
decomposition property [13] required for implementation, i.e., ev-
ery coercion expression is uniquely-decomposable into a coercion
reduction context with a redex within the whole. The reduction se-
mantics in [22, Fig.4] does not have that property (more details
below), and [20] is about big-step definitional interpreters so, nat-
urally, it is unconcerned with reduction semantics. The rest of the

2 For the thorough reader: in [20] some expressions carry labels, but in
the coercion-based versions only coercions and blames carry labels. Our
version is coercion-based and therefore only coercions and blames carry
labels, together with type cast expressions which will be later removed.
3 For the thorough reader: in [20] rule FAILFC is implemented in different
places for different semantics. In the lazy artefacts the rule is implemented
by seq_lazy, and in the eager artefacts by mk_cast_eager.

Syntax: c ∈ ED

injectable types I ::= B | T → T
coercions c, d ::= ι | I! | I?` | c→ c | c ; c | Fail`

wrappers c ::= c̃ where c̃ 6= (c̃→ d̃ ; Fail`)
and c̃ 6= ι

normal parts c̃ ::= ĉ where ĉ 6= Fail`

normal coercions ĉ ::= c if 6 ∃c′.c 7−→ED c′

Contraction: c −→ED c

I1! ; I2?` −→ED 〈〈I2 ⇐ I1〉〉` (INOUT)

(c̃1 → c̃2) ; (d̃1 → d̃2)−→ED ((d̃1 ; c̃1)→ (c̃2 ; d̃2)) (ARR)

ι ; ĉ−→ED ĉ (IDL)

ĉ ; ι−→ED ĉ (IDR)

Fail` ; ĉ−→ED Fail` (FAILCO)

I! ; Fail` −→ED Fail` (INFAIL)

(Fail` → d̂)−→ED Fail` (FAILL)

(c̃→ Fail`)−→ED Fail` (FAILR)

Reduction semantics: c 7−→ED c

Cc[ ] ::= [ ] if c is a redex
| Cc1 [ ] ; c2 if c ≡ c1 ; c2
| ĉ1 ;Cc2 [ ] if c ≡ ĉ1 ; c2
| Cc1 [ ]→ c2 if c ≡ c1 → c2
| ĉ1 → Cc2 [ ] if c ≡ ĉ1 → c2
| ĉ11 ;C(ĉ12 ;ĉ2)[ ] if c ≡ (ĉ11 ; ĉ12) ; ĉ2
| C(ĉ1 ;ĉ12)[ ] ; ĉ22 if c ≡ ĉ1 ; (ĉ21 ; ĉ22)

c −→ED c′

c1 ≡ Cc1 [c] 7−→ED Cc2 [c′] ≡ c2

Figure 3. Syntax, contraction rules, and reduction semantics of
ED.

discussion about our version of the calculus is of interest mainly to
the gradual-type-theorist.

First, we discuss coercion expressions. Injectable types to Dyn
are those types other than Dyn because injecting or projecting Dyn
to Dyn is equivalent to the identity coercion. Coercion expressions
consist of the identity coercion ι, an injection I! of an injectable
type I to Dyn, a projection from the dynamic type I?` to injectable
type I decorated with a blame label `, arrow coercions c → d, se-
quences c ; d (diagrammatic composition) and fail coercions Fail`

decorated with a blame label. So far, no differences with [20, 22]
other than notational. The type system of ED can be found in Ap-
pendix B.

The differences arise in the reduction semantics. The reduction
semantics at the bottom of Figure 3 satisfies unique-decomposition
and is therefore implementable. The one in [22, Fig.4] is defined
modulo a congruence on sequences (c1 ; c2) ; c3 ∼= c1 ; (c2 ; c3)
that permits the definition of simpler reduction contexts:

C[ ] ::= [ ] | C[ ] ; c | ĉ ;C[ ] | C[ ]→ c | c̃→ C[ ]

c ∼= C[c1] c1 −→ED c2 C[c2] ∼= c′

c 7−→ED c′

To resolve the ambiguity introduced by congruence we fix the
association by defining reduction contexts Cc[ ] which are indexed
by the input coercion c, so that decomposition is guided by the
shape of c. (Note the difference between syntactic identity ‘≡’ in



Figure 3 and congruence ‘∼=’ in the original reduction semantics.)
Unique-decomposition is proven by structural induction on c.

The difficulties in implementing a deterministic semantics for
coercions have already been acknowledged by Garcia [15]. He in-
troduces a composition-free representation for coercions, named
supercoercions, and a new set of contraction rules. His approach
solves the challenge of being ‘complete in the face of inert compo-
sitions and associativity’ [15], superseding the ‘ad hoc reassocia-
tion scheme’ in [20]. Here we stick to the ad hoc scheme, since we
aim to prove the conjectures relative to [20].

The rest of this section is addressed to the gradual-type-theorist.
Recall from Section 2 that wrapper coercions c are normal coer-
cions ĉ that may be applied to simple values. Normal coercions are
those that cannot be further reduced, and normal parts are coer-
cions other than the fail coercion. The notion of wrapper is induced
by the treatment of ι, Fail`, and c̃ → d̃ ; Fail`. Wrappers can
only coerce constants and abstractions. We add the required side-
condition c̃ 6= (c̃ → d̃ ; Fail`) to wrappers which is missing in
[22, Fig.7]. The side-condition is required because the contraction
rule for 〈(c̃→ d̃ ; Fail`)〉s in Figure 2 delivers a blame. In [20]
an extensional definition of normal coercions is provided that rules
out the ill-typed ones according to the type system of λ〈·〉→ and ED.

The contraction rule INOUT coalesces an injection followed
by a projection using a translation function 〈〈I2 ⇐ I1〉〉` (Ap-
pendix B). This function translates a type cast to a normal coer-
cion. If the projection is illegal the translation function delivers a
fail coercion decorated with the projection’s blame label. The con-
traction rules ARR to FAILR are those in [20, Sec.6.1] but with
normal coercions ĉ substituted for arbitrary coercions c in order
to have a reduction semantics with unique-decomposition and pre-
serve confluence: arbitrarily long sequences ending in Fail` must
be allowed to fail due to previous coercions early in the sequence.
(This is also the reason why FAILFC is specified in λ〈·〉→ and not in
ED, see [22] for details.)

Like [20] but unlike [22] we omit rule ι → ι −→ ι because
it is superfluous: according to ARR, IDL, and IDR, sequencing the
ι → ι arrow to any other arrow has the same effect as sequencing
the identity ι.

4. Interpretations of the gradually-typed lambda
calculus

In [20] a definitional interpreter interp for a type-cast-based
λ〈·〉→ is given that is parametric on functions cast and apply.
The choice and name of parameters do much more than reflect
the dependency on the coercion sub-calculus X. Among other
things they also accommodate the translation to coercion casts,
and apportion the implementation of contraction rules. Broadly,
the cast parameter is instantiated to apply_cast_X which given
a type cast and a value, it first invokes the translation function
mk_coerce_X to the type cast to obtain a normal coercion, and
then invokes apply_coercion_X that applies that normal coer-
cion to the value. The apply parameter is instantiated to apply_X
which, broadly, realises rule APPCST in Figure 2. The cast pa-
rameter realises the other rules in the figure dealing with coercions.

The definitional interpreter is environment-based and imple-
ments a denotational semantics. It delivers meta-level-function re-
sults, nicknamed ‘procedures’ in [20]. Figure 4 defines in mathe-
matical notation the environments and the hierarchy of results used
by the definitional interpreter. An environment is a colon-separated
list of bindings x 7→ v, where x is a variable and v is a value.
Values are either simple values or coercion expressions applying a
wrapper over a simple value. A simple value is either a constant or
a procedure fn y => ry (with fresh formal parameter y), that takes

Syntax:

environments ρ ::= ε | (x 7→ v) : ρ
procedures proc ∈ V→ R ::= fn y => ry
simple values s ::= k | proc
values v ∈ V ::= s | 〈c〉s
results r ∈ R ::= v | Blame `

Figure 4. Environments and values for the interpreter in [20].

a value and returns a result that depends on this value. Finally, a
result is a value or a blame label.

4.1 Translating the original interpreter to ML
We have translated to Standard ML the original definitional inter-
preter in [20] which is written in Scheme. We are more comfort-
able with ML, which is used in many papers in program deriva-
tion. The ML translation can be found in Code 1.1. In the code, we
use a nameless representation with de Bruijn indices, but we keep
the traditional nameful representation in the mathematical notation.
For readability, and to avoid the (un)packing of data constructors,
we have embedded the whole hierarchy of normal coercions in one
datatype coercion. For the hierarchy of values and results we use
the mutually dependent datatypes value and result, with proce-
dures represented by clause VPROC of value -> result.

In the ML translation, we have replaced the monadic macro for
let-expressions letB in [20] by case expressions that short-circuit
the blames to results.

4.2 Instantiating the definitional interpreter
We have to ‘instantiate’ the parametric definitional interpreter to a
particular dynamic semantics in order to establish the correspon-
dence with an implementation of a reduction semantics that al-
legedly realises exactly that dynamic semantics. We choose the ED
semantics (Section 1). To obtain an instantiation we inline the func-
tion calls and produce functions mk_arrow, translate_cast,
compose_coercion, mk_cast, apply_coercion, apply_cast,
apply, and eval (our name for interp_ED) all found in Code 1.2.
Function compose_coercion corresponds to seq_eager in [20].
Function translate_cast is the instantiation of mk_coerce_d
with parameter mk_arrow_eager. Function translate_cast im-
plements 〈〈S ⇐ T 〉〉` defined in Appendix B.

Figure 5 shows in mathematical notation the denotational se-
mantics implemented by Code 1.2. We have written e[ρ] =〈·〉 r
for the evaluation of expression e in an environment ρ with result
r. The notation e[ρ] stands for an unfolded representation of a clo-
sure. This denotational semantics is the one on the top right corner
of the inter-derivation diagram (Figure 1). The mathematical se-
mantics can be checked by both the gradual-type-theorist and the
program-derivationist against the Scheme or ML versions of the
instantiated definitional interpreter. Function eval in Code 1.2 is
specified by the evaluation section of the figure. Function apply
by the application section, apply_cast by the cast application
section, apply_coercion by the coercion application section, and
compose_coercion by the coercion composition section.

The evaluation rule EVPROC specifies the evaluation of an
abstraction in an environment. The evaluation results in a procedure
with fresh meta-variable y. The value v stands for the one passed
to the procedure in rule APPROC.

4.3 The correctness conjectures
In [20] several correspondences between some instantiations of
the definitional interpreter and the relevant reduction semantics are
conjectured, which we quote:



Evaluation: e[ρ] =〈·〉 r

k[ρ] =〈·〉 k
(EVCONST)

e[ρ] =〈·〉 k

(op e)[ρ] =〈·〉 δ(op, k)
(EVOPER)

e[ρ] =〈·〉 Blame `

(op e)[ρ] =〈·〉 Blame `
(EVOPERB)

e1[ρ] =〈·〉 t e2[ρ] =〈·〉 r

(if e1 e2 e3)[ρ] =〈·〉 r
(EVIFL)

e1[ρ] =〈·〉 f e3[ρ] =〈·〉 r

(if e1 e2 e3)[ρ] =〈·〉 r
(EVIFR)

e1[ρ] =〈·〉 Blame `

(if e1 e2 e3)[ρ] =〈·〉 Blame `
(EVIFB)

ρ !x =〈·〉 r

x[ρ] =〈·〉 r
(EVVAR)

(y fresh) [v/y](e[(x 7→ y) : ρ]) =〈·〉 r

(λx : T.e)[ρ] =〈·〉 (fn y => ry)
(EVPROC)

e1[ρ] =〈·〉 Blame `

(e1 e2)[ρ] =〈·〉 Blame `
(EVAPPBL)

e1[ρ] =〈·〉 v1 e2[ρ] =〈·〉 Blame `

(e1 e2)[ρ] =〈·〉 Blame `
(EVAPPBR)

e1[ρ] =〈·〉 v1 e2[ρ] =〈·〉 v2 v1 v2 ⇓co
ap v3

(e1 e2)[ρ] =〈·〉 v3
(EVAPP)

e[ρ] =〈·〉 v 〈S ⇐ T 〉`v ⇓co
cs r

(〈S ⇐ T 〉`e)[ρ] =〈·〉 r
(EVCAST)

e[ρ] =〈·〉 Blame `

(〈S ⇐ T 〉`e)[ρ] =〈·〉 Blame `
(EVCASTB)

(Blame `)[ρ] =〈·〉 Blame `
(EVBLAME)

Application: v v ⇓co
ap r

proc v ⇓co
ap proc(v)

(APPROC)
〈c̃〉v ⇓co

cr v1 proc v1 ⇓co
ap v2 〈d̃〉v2 ⇓co

cr r

(〈c̃→ d̃〉proc)v ⇓co
ap r

(APARR)

〈c̃〉v ⇓co
cr Blame `

(〈c̃→ d̃〉proc)v ⇓co
ap Blame `

(APARRBL)
〈c̃〉v ⇓co

cr v1 proc v1 ⇓co
ap Blame `

(〈c̃→ d̃〉proc)v ⇓co
ap Blame `

(APARRBR)

Cast application: 〈S ⇐ T 〉`v ⇓co
cs r

〈 〈〈S ⇐ T 〉〉` 〉v ⇓co
cr r

〈S ⇐ T 〉`v ⇓co
cs r

(CST)

Coercion application: 〈ĉ〉v ⇓co
cr r

c ; d̂ ⇓co
ED ĉ1

〈d̂〉(〈c〉s) ⇓co
cr mkCast(ĉ1, s)

(COECOMP)
〈ĉ〉s ⇓co

cr mkCast(ĉ, s)
(COENORM)

Coercion composition: ĉ ; ĉ ⇓co
ED ĉ

I! ; J?` ⇓co
ED 〈〈J ⇐ I〉〉`

(COMINOUT)
ĉ1 ; ĉ2 ∈ NC

ĉ1 ; ĉ2 ⇓co
ED ĉ

(COMNORM)
c̃21 ; c̃11 ⇓co

ED ĉ3 c̃22 ; c̃12 ⇓co
ED ĉ4

(c̃11 → c̃12) ; (c̃21 → c̃22) ⇓co
ED mkArr(ĉ3, ĉ4)

(COMARR)

ĉ12 ; ĉ2 ⇓co
ED ĉ3 ĉ11 ; ĉ3 ⇓co

ED ĉ4

(ĉ11 ; ĉ12) ; ĉ2 ⇓co
ED ĉ4

(COMASSL)
ĉ1 ; ĉ21 ⇓co

ED ĉ3 ĉ3 ; ĉ22 ⇓co
ED ĉ4

ĉ1 ; (ĉ21 ; ĉ22) ⇓co
ED ĉ4

(COMASSR)

ι ; ĉ ⇓co
ED ĉ

(COMIDL)
ĉ ; ι ⇓co

ED ĉ
(COMIDR)

Fail
` ; ĉ ⇓co

ED Fail
`

(COMFAILL)
I! ; Fail` ⇓co

ED Fail
`

(COMFAILR)

Figure 5. Denotational semantics in mathematical notation implemented by equivalent definitional interpreters interp_ed ([20] and
Code 1.1) and eval (Code 1.2). Auxiliary functions ρ !x, 〈〈S ⇐ T 〉〉`, mkCast , and mkArr are defined in Appendix C.

Conjecture 1. If the unique cast labelled with ` in program
e respects subtyping, then eval_ld(e) 6= Blame `.

Conjecture 2. For any well-typed program e, eval_ld(e) =
o if and only if 〈〈e〉〉 7−→∗LD r and observe(r) = o.

Conjecture 9.1. Given two well-typed coercions in nor-
mal form, c1 and c2, we have seq_ed(c1,c2) = ĉ3 and
(c1 ; c2) 7−→∗ED ĉ3.

Conjectures 1 and 2 state the correctness of the instantiated in-
terpreter relative to the LD semantics. Conjecture 1 states subtyp-
ing soundness (by the way, eval_ld type-checks expressions and
invokes interp_ld). Conjecture 2 states the correspondence be-
tween the instantiated definitional interpreter and the LD reduction
semantics. Function observe is a reflect function as in normali-

sation by evaluation: it produces denotational (meta-level) results
from results produced by reduction. Expressions with type casts
are translated by 〈〈·〉〉 to expressions with coercion casts. There are
analogous Conjectures 3 and 4 in [20] for the LUD semantics.
However, no conjectures are stated for the ED and the EUD se-
mantics. Conjecture 9.1 states the correctness relative to the ED
semantics of the composition of two normal coercions.

As discussed in the introduction, we generalise and prove these
conjectures for the ED semantics (Section 5.2 and 8) by inter-
deriving the reduction semantics and the instantiated definitional
interpreter. The other conjectures can be proven similarly by plug-
ging a different reduction semantics for coercions (Section 11.2).

5. Prelude: from casts to coercions
The denotational semantics in Figure 5 is defined for a type-cast-
based λ〈·〉→ . In this section we discuss how we have turned it (ac-



tually, its implementation eval) into a purely coercion-based se-
mantics by applying two program transformation steps. The bulk
of this section will be of interest to the program-derivationist who
is advised to read Code 2 alongside this section.

5.1 Fissioning evaluator and translation function
Function apply_cast (Section 4.2, Code 1.2) first translates
type casts to coercion casts and then invokes apply_coercion.
We want to get rid of the translation and obtain a coercion-
based normaliser. We inline apply_cast in eval to get rid of
apply_cast, and then perform lightweight fission by fix point
promotion to separate translate_expression from eval1, the
obtained translation-free evaluation function. The fission transfor-
mation (a.k.a. trampoline transformation) is the inverse of the fu-
sion transformation described in [19]. Function apply_cast is no
longer used. The resulting coercion-based interpreter eval1 and
the translate_expression are found in Code 2.1. The latter
implements 〈〈·〉〉 in Conjecture 2. It fires on type casts, is an iden-
tity on variables, constants, and blame expressions, and recursively
proceeds over other expressions. Hereafter we can forget about
type casts.

5.2 Deriving a self-contained coercion normaliser
As a result of the previous inlining, the coercion-based interpreter
for expressions eval1 invokes compose_coercion (⇓co

ED in Fig-
ure 5) to normalise sequences of normal coercions. In order to
prove the correspondence with the reduction semantics we need a
self-contained coercion normaliser. We have produced such nor-
maliser normalise_coercion_nor in Code 2.2.3, which imple-
ments the natural semantics ⇓ED shown in Figure 6. To obtain
this normaliser we first write a coercion normaliser (Code 2.2)
that normalises sequences and arrows left-to-right, invoking re-
spectively compose_coercion or mk_arrow afterwards, and
is an identity on the other normal coercions. We replace the
calls to compose_coercion by recursive calls to the normaliser
on a sequence (Code 2.2.1), inline sequencing within normal-
isation (Code 2.2.2) and defer the normalisation of sequences
of arrows by constructing intermediate arrows with sequences
(Code 2.2.3). All these steps are equivalence-preserving, and
normalise_coercion_nor behaves like compose_coercion for
sequences of normal coercions. Function eval_nor in Code 2.2.3
is the instantiated definitional interpreter that employs the self-
contained normalise_coercion_nor.

6. From denotational semantics to
2CPS-normaliser

In this section, we apply closure conversion [8] to defunctionalise
the meta-level procedures of the definitional interpreter. We obtain
a natural semantics (a big-step normaliser) that is the starting point
of the functional correspondence [1, 7, 11] (the derivation of an
abstract machine from a natural semantics).

6.1 Closure conversion
Closure-conversion consists of defunctionalising the procedures
in eval_nor (Code 2.2.3) by enumerating the inhabitants of the
function space and by introducing a datatype constructor (defunc-
tionalised continuation) for each of the inhabitants. An auxiliary
function will apply such constructors to the intermediate results
of computation. There is only one inhabitant, namely, the func-
tion packed within the VPROC constructor, which takes an operand
and invokes eval_nor on the procedure body, passing an environ-
ment enlarged with the operand. We defunctionalise and introduce
constructor VPROC1 in datatype value_clos (Code 3.1). The con-
structor stores the body and the environment of the lambda expres-

sion representing the procedure, which together make up a closure
[18]. The auxiliary function that applies the defunctionalised con-
tinuation is inlined in function apply_clos. The resulting natural
semantics is shown in Figure 7 and corresponds to the bottom right
corner of the inter-derivation diagram (Figure 1).

In mathematical notation VPROC1 will be represented by sym-
bol λλ to suggest the relationship with the meta-level. The symbol
will also help us discriminate between the result λλ.e[ρ′] of eval-
uating an abstraction closure (λx : T.e)[ρ], and an input closure
e[ρ′]. The closure-converted result hierarchy is morally the same as
the original result hierarchy (Figure 4) except that procedures are
represented at the object-level by λλ.e[ρ′].

In rule NSFUN, the type-annotated formal parameter (x : T )
is stored directly in the environment instead than attached to λλ for
lexical scoping reasons explained in Section 8. The definition of
environment and look-up is duly adapted (Appendix C).

Datatypes item_clos and environment_clos in Code 3.1
implement the closure-converted environments in Appendix C.
Function mk_cast_clos is the closure-converted cast combinator,
with values and results in the closure-converted results hierarchy.
Functions apply_coercion_clos, apply_clos, and eval_clos
in Code 3.1 implement the natural semantics in Figure 7.

Recall from Section 4.2 that the code uses an unfolded repre-
sentation of closures. A datatype for closures will be introduced in
Section 10 for the reduction semantics.

6.2 2-Level continuation-passing-style transformation
The layered nature of the semantic artefacts require specific CPS
transformation techniques to keep coercion and expression se-
mantics apart. We use 2-level continuation-passing style (2CPS)
[12] to introduce two function spaces for the rest of the computa-
tion: an inner space of continuations for coercion normalisation,
and an outer space of meta-continuations for expression normali-
sation. We 2CPS-transform eval_clos by naming intermediate
results of computation, respectively for coercion normalisation
and for expression normalisation, and by turning all the calls into
tail calls. Functions normalise_coercion_cps, mk_cast_cps,
apply_coercion_cps, apply_cps, and eval_cps in Code 3.2
implement the 2CPS-normaliser (a refunctionalised abstract ma-
chine) in the bottom middle of Figure 1.

After 2CPS transformation, the functional correspondence
would have continued by defunctionalising the 2CPS-normaliser.
However, we halt the functional correspondence at this point and
move on to the reduction semantics (top left corner of Figure 1). In
Section 8, we introduce the calculus of closures λρ〈·〉→ , which allows
to define the closure-converted small-step reduction semantics.

7. Tackling the other side of the diagram
Section 4 to Section 6 have dealt with the right-hand side of the
inter-derivation diagram (Figure 1). We now move to the other side.
The 2CPS-normaliser is an artefact with closures, but the reduction
semantics given in Sections 2 and 3 are for plain expressions. In
Section 8 we extend λ〈·〉→ to λρ〈·〉→ , a simply-typed lambda calculus
of closures with explicit casts, whose reduction semantics is the
starting point of the syntactic correspondence that will arrive at the
2CPS-normaliser.

8. The calculus of closures
Figure 8 shows the syntax, contraction rules, and implementable
reduction semantics of λρ〈·〉→ . This section is also of interest to
the gradual-type-theorist. Observe that boxed rule STEPCSTρ is
present.

Closures cl consist of proper closures e[ρ] and some additional
ephemeral closures, in the spirit of [2], that lift expression scopes



Coercion normalisation: c ⇓ED ĉ

c1 ⇓ED I! c2 ⇓ED J?`

c1 ; c2 ⇓ED 〈〈J ⇐ I〉〉`
(COEINOUT)

c1 ⇓ED ĉ1 c2 ⇓ED ι

c1 ; c2 ⇓ED ĉ1
(COEIDL)

c1 ⇓ED ι c2 ⇓ED ĉ2

c1 ; c2 ⇓ED ĉ2
(COEIDR)

c1 ⇓ED (c̃11 → c̃12) c2 ⇓ED (c̃21 → c̃22) ((c̃21 ; c̃11)→ (c̃12 ; c̃22)) ⇓ED ĉ3

c1 ; c2 ⇓ED ĉ3
(COESEQARR)

c1 ⇓ED (ĉ11 ; ĉ12) c2 ⇓ED ĉ2 ĉ12 ; ĉ2 ⇓ED ĉ3 ĉ11 ; ĉ3 ⇓ED ĉ4

c1 ; c2 ⇓ED ĉ4
(COEASSL)

c ⇓ED ĉ d ⇓ED d̂

(c→ d) ⇓ED mkArr(ĉ, d̂)
(COEARR)

c1 ⇓ED ĉ1 c2 ⇓ED (ĉ21 ; ĉ22) ĉ1 ; ĉ21 ⇓ED ĉ3 ĉ3 ; ĉ22 ⇓ED ĉ4

c1 ; c2 ⇓ED ĉ4
(COEASSR)

ĉ ⇓ED ĉ
(COETRIV)

c1 ⇓ED Fail
` c2 ⇓ED ĉ2

c1 ; c2 ⇓ED Fail
`

(COEFAILL)
c1 ⇓ED I! c2 ⇓ED Fail

`

c1 ; c2 ⇓ED Fail
`

(COEFAILR)

Figure 6. Natural semantics for coercion normalisation.

Evaluation: e[ρ] ⇓ r

k[ρ] ⇓ k (NSCONST)
e[ρ] ⇓ n

(op e)[ρ] ⇓ δ(op, n)
(NSOPER)

e[ρ] ⇓ Blame `

(op e)[ρ] ⇓ Blame `
(NSOPERB)

e1[ρ] ⇓ t e2[ρ] ⇓ r
(if e1 e2 e3)[ρ] ⇓ r (NSIFL)

e1[ρ] ⇓ f e3[ρ] ⇓ r
(if e1 e2 e3)[ρ] ⇓ r (NSIFR)

e1[ρ] ⇓ Blame `

(if e1 e2 e3)[ρ] ⇓ Blame `
(NSIFB)

ρ !x ⇓ r
x[ρ1] ⇓ r (NSVAR)

(λx : T.e)[ρ] ⇓ (λλ.e[(x : T ) : ρ])
(NSFUN)

e1[ρ] ⇓ Blame `

(e1 e2)[ρ] ⇓ Blame `
(NSAPPBL)

e1[ρ] ⇓ e[(x : T ) : ρ′] e2[ρ] ⇓ Blame `

(e1 e2)[ρ] ⇓ Blame `
(NSAPPBR)

e1[ρ] ⇓ v1 e2[ρ] ⇓ v v1 v2 ⇓ap r

(e1 e2)[ρ] ⇓ r (NSAPP)

e[ρ] ⇓ v 〈c〉v ⇓cr r

(〈c〉e)[ρ] ⇓ r (NSCOE)
e[ρ] ⇓ Blame `

(〈c〉e)[ρ] ⇓ Blame `
(NSCOEB)

(Blame `)[ρ] ⇓ Blame `
(NSBLA)

Coercion application: 〈ĉ〉v ⇓cr r

c ; d̂ ⇓ED ĉ1

〈d̂〉(〈c〉s) ⇓cr mkCast(ĉ1, s)
(NSCOMP)

〈ĉ〉s ⇓cr mkCast(ĉ, s)
(NSNORM)

Application: v v ⇓ap r

e[(x 7→ v) : ρ] ⇓ r
(λλ.e[(x : T ) : ρ])v ⇓ap r

(NSPROC)
〈c̃〉v ⇓cr v1 (e[(x : T ) : ρ])v1 ⇓ap v2 〈d̃〉v2 ⇓cr r

(〈c̃→ d̃〉(λλ.e[(x : T ) : ρ]))v ⇓ap r
(NSARR)

〈c̃〉v ⇓cr Blame `

(〈c̃→ d̃〉(λλ.cl))v ⇓ap Blame `
(NSARRBL)

〈c̃〉v ⇓cr v1 (λλ.cl) v1 ⇓ap Blame `

(〈c̃→ d̃〉(λλ.cl))v ⇓ap Blame `
(NSARRBR)

Figure 7. Natural semantics for closure normalisation.

to closure scopes, and are needed to define the reduction contexts
Cl[ ] in the bottom of the figure. Ephemeral constructors consist of
closure constants con k, closure primitive application prim op cl,
closure conditionals if cl cl cl, closure applications cl · cl, closure
abstractions λλ.cl, closure coercion casts 〈〈〈c〉〉〉cl, and closure blames
Blame `. The type system for closures is a straightforward exten-

sion of the type-system for expressions (Appendix A) and we omit
it for lack of space. The hierarchy of results is the one for expres-
sions but lifted to ephemeral closures. Observe that closure blames
are closure results.

The contraction rules are separated in three groups. The first
seven rules induce ephemeral expansion, i.e., a relation that lifts



proper closures to their corresponding ephemeral constructors, and
distributes the outermost environment over the closure scopes.
Ephemeral expansion is needed in small-step artefacts, but will
be shortcut [2] when deriving the big-step semantics by applying
compression of corridor transitions in Section 10.4.

Observe that in rule LAMρ lambda abstractions are ephemer-
ally expanded although reduction will not ‘go under lambda’. We
have introduced the ephemeral closure abstraction λλ.cl to match
the procedure representations in the closure-converted natural se-
mantics of Figure 7. The λλ symbol helps discriminate between an
input closure and the result of reducing an abstraction closure (re-
call the similar discussion in Section 6.1). Rule LAMρ also pushes
a type annotation (x : T ) on the environment, similar to rule NS-
FUN in Figure 7. The purpose of this is to close the scope of the
abstraction body e such that every variable points to some element
in the environment, preventing dangling variables in e.4

The second group of rules consists of rule VARρ alone, which
performs substitution on demand by looking up the binding of a
variable. The lookup function always returns a closure cl because
the reduction semantics never goes under lambda and the type
system enforces that all the variables are bound.

The third and last group are the closure versions of the contrac-
tion rules in λ〈·〉→ . These rules induce reduction proper. Notice that
(βρ) discards the λλ in the operator and replaces the formal param-
eter’s type annotation by the actual binding.

The reduction contexts Cl[ ] and the reduction semantics 7−→ρ

for closures are simply the closure version of the reduction con-
texts and reduction semantics of λ〈·〉→ . The reduction semantics of
λρ〈·〉→ simulates step-by-step-wise the reduction semantics in λ〈·〉→
by means of substitution function σ that flattens all the delayed
substitutions in a closure (see Appendix D for details).

8.1 The correctness theorems
We are now in a position to state the correspondence between the
instantiated definitional interpreter and the reduction semantics for
closures with respect to ED:

Theorem 8.1. Given a well-typed coercion c1 we have c1 ⇓ED ĉ2
iff c1 7−→∗ED ĉ2.

Proof. By establishing the correspondence between the func-
tions normalise_coercion_nor (Code 2.2.3, Section 5.2) and
normalise_coercion (Code 5.3.2, Section 9).

Theorem 8.2. If every coercion labelled with ` in program e
respects subtyping, then e[ε] 67−→∗ρ Blame `.

Proof. The proof is straightforward by induction on 7−→ρ.

Theorem 8.3. Given a well-typed expression e, we have e[ε] ⇓
r iff e[ε] 7−→∗ρ r.

Proof. By establishing the correspondence between eval_clos
(Code 3.1, Section 6.1) and normalise (Code 5.3.2, Section 9).

Different from the conjectures in Section 4.3, we do not need
a separate theorem stating soundness of subtyping for the natural
semantics ⇓ because Theorem 8.3 proves it equivalent to reduction
semantics 7−→ρ.

4 This feature is reminiscent of the dummy bindings standing for formal
parameters in Cregut’s full-reducing Krivine machine [3, 4], and in the
equivalent semantic artefacts inter-derived in [16].

Syntax: cl ∈ λρ〈·〉→

environments ρ ::= ε | (x 7→ v) : ρ | (x : T ) : ρ
closures cl ::= e[ρ] | con k | prim op cl |

if cl cl cl | λλ.cl | cl · cl |
〈〈〈c〉〉〉cl | Blame `

closure simple values s ::= con k | (λλ.e[(x : T ) : ρ])
closure values v ::= s | 〈〈〈c〉〉〉s
closure results r ::= v | Blame `

Contraction: cl −→ρ cl

k[ρ]−→ρ con k (CONρ)

(op e)[ρ]−→ρ prim op (e[ρ]) (PRIMρ)

(if e1 e2 e3)[ρ]−→ρ if (e1[ρ]) (e2[ρ]) (e3[ρ]) (IFTEρ)
(λx : T.e)[ρ]−→ρ (λλ.e[(x : T ) : ρ]) (LAMρ)

(e1 e2)[ρ]−→ρ (e1[ρ]) · (e2[ρ]) (APPρ)

(〈c〉e)[ρ]−→ρ 〈〈〈c〉〉〉(e[ρ]) (COERρ)

(Blame `)[ρ]−→ρ Blame ` (BLAρ)

x[ρ]−→ρ cl where ρ !x = cl (VARρ)

(λλ.e[(x : T ) : ρ]) · v−→ρ e[(x 7→ v) : ρ] (βρ)

prim op (n[ρ])−→ρ con (δ(op, n)) (δρ)

if (con k) cl1 cl2 −→ρ

{
cl1 if k = t
cl2 if k = f

(IFρ)

〈〈〈c1〉〉〉s−→ρ 〈〈〈c2〉〉〉s if c1 7−→X c2 (STEPCSTρ)

〈〈〈ι〉〉〉s−→ρ s (IDCSTρ)

〈〈〈d〉〉〉〈〈〈c〉〉〉s−→ρ 〈〈〈c ; d〉〉〉s (CMPCSTρ)

(〈〈〈c̃→ d̃〉〉〉s) · v−→ρ 〈〈〈d̃〉〉〉(s · 〈〈〈c̃〉〉〉v) (APPCSTρ)

〈〈〈Fail`〉〉〉s−→ρ Blame ` (FAILCASTρ)

〈〈〈(c̃→ d̃) ; Fail`〉〉〉s−→ρ Blame ` (FAILFCρ)

Reduction semantics: cl 7−→ρ cl

Cl[ ] ::= [ ] | prim op (Cl[ ]) | (Cl[ ]) · cl | v · (Cl[ ]) |
if (Cl[ ]) cl cl | 〈c〉(Cl[ ])

cl −→ρ cl′

Cl[cl] 7−→ρ Cl[cl′] Cl[Blame `] 7−→ρ Blame `

Figure 8. Syntax, contraction rules, and implementable reduction
semantics of λρ〈·〉→ .

9. Implementing the reduction semantics
We turn to the implementation of 7−→ρ in Figure 8. Similarly to
the 2CPS discussion of Section 6.2 we use continuations for 7−→X

(the reduction semantics of coercions) and meta-continuations for
7−→ρ (the reduction semantics of closures). In Code 5 we describe
a transformation step which is uninteresting to the gradual-type-
theorist and for lack of space we merely outline it. We start with
layered search functions that implement a structural operational se-
mantics. We then derive the reduction semantics form the search
functions, by CPS transformation, simplification, and defunction-
alisation. This standard practice [2, 7, 8, 10, 11] is not essential
to establish a syntactic correspondence, but it reveals better the
correspondence between reduction contexts and defunctionalised
continuations. Moreover, the transformation step clarifies two im-



portant points and justifies the accompanying design decisions.
We elaborate on this two points in the following paragraphs. We
strongly advise the program-derivationist to read Code 5 alongside
this section.

The first point: the simplification step prescribes that the search
functions discard the current continuation when a redex is found.
However, a tail-recursive implementation of our layered seman-
tics would require to keep the closure meta-continuation in order
to throw into it the found coercion redex. Since the closure meta-
continuation will be dropped by the simplified coercion semantics,
the closure semantics needs to invoke the coercion semantics in
non-tail-recursive fashion, by delimiting its invocation by passing
the initial continuation.5 Thus, the implementation of the small-
step semantics is not a 2CPS program anymore, but two 1-level
CPS programs which are glued together by the closure semantics
delimiting the invocations of the coercion semantics. All this is un-
avoidable. Dropping the meta-continuation in the inner simplified
semantics is essential for the separated transformation of closure
and coercion semantics. For the coercions, the tail calls to iterate
need to happen immediately after decompose, enabling to light-
weight fuse them in Code 6.3.

The second point: decomposition (to have a term and its con-
text) is fundamental to implement a trampolined style reduction
semantics [14] (a driver loop iterating decomposition, contraction,
and recomposition). We have a layered reduction semantics involv-
ing closures and coercions. The following rule (implicitly entailed
by STEPCSTρ in Figure 8) illustrates the inclusion of the inner se-
mantics in the outer one:

C[c] 7−→X C[c′]

Cl[〈〈〈C[c]〉〉〉s] 7−→ρ Cl[〈〈〈C[c′]〉〉〉s]

In order to implement the subsidiary coercion semantics 7−→X in
trampolined style, we have to modify the datatype representing the
outer redices Cl[〈〈〈C[c]〉〉〉s] to include the inner decomposition C[c],
rather than just a plain coercion c1 ≡ C[c]. This is implemented
by clause ESTEPCST1 of decomposition * simple_value of
datatype redex1 in Code 5.3.1.

Code 5.3 implements the reduction semantics 7−→ρ in Figure 8,
which corresponds to the top left corner in Figure 1. In the follow-
ing sections, we apply the syntactic correspondence and arrive at
an abstract machine which will be refunctionalised into the 2CPS-
normaliser in Section 6.2 and Code 3.2, thus closing the gap and
completing the inter-derivation.

10. The syntactic correspondence
In Section 9, we implemented the reduction semantics 7−→ρ, which
is the starting point of the syntactic correspondence arriving at the
abstract machine on the bottom left corner of Figure 1. The syntac-
tic correspondence [6, 7, 9] consists of refocusing, inlining of con-
traction function, lightweight-fusion by fix point promotion [19],
and compression of corridor transitions. These steps are standard
and hence merely outlined in the paper, except for the specific de-
tails concerning our layered semantics. In the fourth step, we elab-
orate on two different classes of corridor transitions found in the
literature [9] (Section 10.4).

On occasion, we generically refer to both the coercion and
closure artefacts by naming the entry function, e.g., normalise1
in Code 6.1.

5 The sceptical program-derivationist is invited to attempt the simplification
step in a true 2CPS program implementing a semantics with layered redices,
like the ones entailed by rule STEPCSTρ in Figure 8.

10.1 Refocusing
The refocus function maps a pair (contractum, context) to the de-
composition for the next redex in the reduction sequence. Exten-
sional refocus consist of (respectively on coercions and closures)
recomposition followed by decomposition. The refocusing step de-
forests this detour, turning the extensional refocus function into an
intensional refocus function which is an alias for the decompose
function [6].

Since our semantics is layered, we apply refocusing to the
coercion and the closure artefacts in succession. First, we turn
the extensional refocus_coercion in Code 5.3.2 into the in-
tensional refocus1_coercion in Code 6.1 which is an alias
for decompose_coercion. Functions iterate1_coercion and
normalise1_coercion follow from that. Before performing
the same operation in the closure artefact, we coalesce all the
STEPCSTρ steps in the closure reduction semantics. The modified
inclusion-of-semantics rule now reads:

c 7−→∗X ĉ

Cl[〈〈〈c〉〉〉s] 7−→ρ Cl[〈〈〈ĉ〉〉〉s]
This transformation trivially preserves equivalence. To implement
the rule above, we modify the decomposition of closures accord-
ingly. In Code 6.1, the clause for meta-continuation MC5 in function
decompose1_meta_cont now invokes normalise1_coercion.
In the same program clause, there is no case returning a ESTEPCST1
redex, since the coercion found nc (on which the program is
pattern-matching after normalise1_coercion) is trivially a nor-
mal coercion.

We turn the extensional refocus_closure in Code 5.3.2 into
the intensional refocus1_closure in Code 6.1 which is an alias
for decompose1_closure.

10.2 Inlining the contraction function
We inline the contraction functions in the corresponding iterate
functions [9], obtaining normalise2 in Code 6.2. Due to the
modified rule in Section 10.1, the case for ESTEPCST1 redices in
contract_closure is no longer considered.

10.3 Lightweight-fusing decompose and iterate
There are several invocations of decomposition followed by it-
eration in the iterate and normalise functions. We fuse them to-
gether in a single normalise function by applying lightweight fu-
sion. As in Section 10.1, we proceed in succession for the coercion
and the closure artefacts. The resulting reduction-free normaliser
normalise3 is in Code 6.3.

10.4 Compressing static and dynamic corridor transitions
Some of the transitions in normalise3 are to configurations where
there is only one possible further transition. These are called cor-
ridor transitions, and by hereditarily compressing them, the iterate
functions will become unused and could be safely removed.

The conventional corridor transitions (for which we use the
epithet static) are those detected by looking at the code of the
normalising functions, i.e., the program clauses where the right-
hand side consists of a single tail call, or of a selection statement
having a unique case [7, 9]. These transitions are compressed by
successively unfolding the right-hand side of the program clauses
involved. The shortcut operation coalescing ephemeral expansion
[2] belongs to this category of corridor transitions. By compressing
the static corridor transitions we obtain the big-step normaliser
normalise4 in Code 6.4.

The not-so-conventional corridor transitions (for which we use
the epithet dynamic), are those starting at a configuration where
the input term is irreducible, i.e., a normal coercion or a value [9,
p.140-141]. For coercions, remember from Section 4 that we use a



single coercion datatype both for arbitrary coercions and for the
hierarchy of normal coercions. For the closures, in Code 4 we intro-
duced datatype value_clos and function embed_clos, the latter
implementing the embedding function ↓v in Appendix C.6 Since
the programs are in defunctionalised CPS, all the calls are tail calls
(respectively to the coercion or closure semantics). The computa-
tion will eventually throw the irreducible input term into the current
continuation (meta-continuation respectively). Thus, these admin-
istrative transitions can be coalesced until that point, i.e., a call
to normalise4_cont or normalise4_meta_cont respectively.
Compressing dynamic corridor transitions reveals more opportu-
nities to compress static corridor transitions. By compressing them
all we obtain normalise5 in Code 6.5, which implements the ab-
stract machine at the bottom left corner of Figure 1.

Let us show one of such dynamic corridor transitions:

normalise4_closure
(embed_clos f1, MC3 (CCOER (c1, embed_clos v),

MC5 (c2, mk)))
= normalise4_meta_cont
(MC3 (CCOER (c1, embed_clos v), MC5 (c2, mk)), f1)

= normalise4_closure
(CCOER (c1, embed_clos v), MC4 (f1, MC5 (c2, mk)))

= normalise4_closure
(embed_clos v, MC5 (c1, MC4 (f1, MC5 (c2, mk))))

= normalise4_meta_cont
(MC5 (c1, MC4 (f1, MC5 (c2, mk))), v)

The normaliser specifies a control-flow invariant for the cases
matching the initial clause of the corridor transition. The invari-
ant allows the meta-continuation stack to be loaded with a fixed
sequence of defunctionalised meta-continuations, which will help
us refunctionalise the abstract machine into several mutually recur-
sive functions in Section 11.1.

11. Closing the gap
In this section we close the gap between the right- and left-hand
sides of the inter-derivation diagram (Figure 1). We defunctionalise
the abstract machine into a 2CPS program with several mutually re-
cursive functions which is almost the 2CPS-normaliser in Figure 1.
Then, we apply some cosmetic transformations to remove minor
differences between the refunctionalised abstract machine and the
2CPS-normaliser, thus concluding the derivation.

11.1 Refunctionalising the abstract machine
We observe two facts about function normalise5_meta_cont:

1. In the clause for MC5, the program either invokes the clause it-
self (normalise5_meta_cont passing MC5), or makes a delim-
ited non-tail call to normalise5_coercion and then returns a
blame or throws some intermediate result into the current meta-
continuation. This clause can be refunctionalised into a stand-
alone recursive function, which we name apply6_coercion
(Code 7.1).

2. In the clause for MC4, the program either calls the function
normalise5_closure, or invokes normalise5_meta_cont
passing MC5 (c1, MC4 (f1, MC5 (c2, mk))). This clause
can be refunctionalised into a stand alone recursive function
which unwinds the defunctionalised continuation, and invokes
apply6_coercion and itself according to the occurrences of
MC4 and MC5 in the defunctionalised continuation. We name the
function apply6 (Code 7.1).

6 The embedding function is used in contract_closure in Code 5.3.2.
Embed only considers closure values because closure blames are short-
circuited to closure results and do not appear in redices. Observe that embed
followed by normalise is the identity.

Although the clause for MC4 invokes normalise5_closure,
equivalence is preserved because the latter never invokes di-
rectly normalise5_meta_cont passing MC4.

The rest of the clauses and functions are straightforwardly defunc-
tionalised.

We also undelimit the inner continuations, turning the non-
tail calls into tail calls. This is only possible at a reduction-free
artefact, since the program does not need to consider the individual
redices in the reduction sequence, in particular the coercion redices
(recall the discussion in Section 9). We have decided to do this
transformation after refunctionalisation to save us from introducing
a new datatype for defunctionalised continuations. The result is the
2CPS refunctionalised abstract machine normalise6 in Code 7.1.

11.2 Cosmetic transformations
We remove some minor differences between the refunctionalised
abstract machine normalise6 in Code 7.1 and the 2CPS-normaliser
eval_cps in Code 3.2.

We inline apply6_coercion in Code 7.1 into itself (notice that
the value sv passed in the recursive call is a simple value), dupli-
cating the selection statement in the second clause. This selection
statement is, in turn, protruded (i.e., inversely inlined) into com-
binator mk_cast7 (Code 7.2). We unfold datatype closure into
a pair (expression, environment_clos) and protrude combina-
tor mk_arrow7 (Code 7.2). The result is normalise7 in Code 7.2,
which is exactly the same as the 2CPS-normaliser eval_clos in
Code 3.2.

This establishes the correspondence between =〈·〉 and 7−→,
and between ⇓ED and 7−→ED, constituting a proof by program
transformation of Theorems 8.1 and 8.3.

Theorems 8.1 and 8.3 can be generalised for other choices
of dynamic semantics by applying the correspondence described
through the paper starting with a different set of coercion artefacts.
Layering and 2CPS allows us to reuse the off-the-shelf infrastruc-
ture, in particular the closure artefacts.

12. Conclusions and related work
We have shown the inter-derivation of semantic artefacts for λ〈·〉→ .
Our choice of the 2CPS is motivated by the need for a modular
coercion semantics that can be plugged into the λ〈·〉→ layered se-
mantics. This allows us to generalise the theorems for a family of
dynamic semantics reusing most of the inter-derivation for λ〈·〉→ .

We have presented the calculus λρ〈·〉→ , which is an important
ingredient to inter-derive the closure-converted version of the defi-
nitional interpreters in [20]. The semantics in λρ〈·〉→ simulates step-
by-step-wise the semantics in λ〈·〉→ .

In [12] the 2CPS is applied to inter-derive a full-reducing eval-
readback machine of Curien [5] that normalises pure untyped
lambda calculus terms. The machine relies on a hybrid, or layered,
reduction strategy with two separated stages for eval and readback.
We have independently investigated in [16] a different approach for
single-stage (as opposed to eval-readback) hybrid artefacts, show-
casing the derivation of the full-reducing Krivine machine [3] from
the operational semantics of normal order. In [12] the subsidiary
strategy is modular, but this introduces a conceptual overhead in the
2CPS transformations. In [16] we show how to use plain CPS when
the target strategy is single-staged, but this requires reasoning on
the shape of the continuation stack. Both approaches differ in their
weaknesses and strengths, as well as in their range of applicability.

The semantic artefacts in this paper are qualitatively different
from those in [12] and [16]. The semantics ⇓ here is single-stage
(there is only one pass of the big-step definitional interpreter) but its
implementation is 2-levelled. In the big-step artefacts we use 2CPS.
In the small-step artefacts we disentangle the inner continuation



space by delimiting the continuations in the non-tail calls to the
coercion semantics. This way, we keep the semantics in [20], but
arrive at a solution which is modular with respect to the coercion
semantics.

Garcia [15] has tackled and solved the challenge of defining a
reduction semantics for coercions which is ‘complete in the face
of inert compositions and associativity’. We have rather followed
the ‘ad hoc reassociation scheme’ in [20], proving the correctness
conjectures there. Garcia also introduces threesome-based vari-
ants of the Blame Calculus. We believe that the semantics for the
threesome-based gradually-typed lambda calculi are good candi-
dates for applying the techniques in this paper. Thanks to layering
and 2CPS, modularity with respect to the blame calculi would be
straightforward.

Acknowledgements We are thankful to Olivier Danvy for intro-
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A. Subsystems of λ〈·〉→
Complements of Figure 2 on page 2.
δ-rules δ(op, n) = k

δ(inc, n) = n+ 1
δ(dec, n) = n− 1

δ(zero?, 0) = t
δ(zero?, n) = f (n 6= 0)

Type system for expressions of λ〈·〉→ Γ ` e : T

Γ ` k : typeC (k) Γ ` op : typeO(op) Γ ` x : Γ(x)

Γ ` e1 : Bool Γ ` e2 : T Γ ` e3 : T

Γ ` if e1 e2 e3 : T

Γ, x 7→ T ` e : S

Γ ` (λx : T.e) : T → S

Γ ` e1 : T → S Γ ` e2 : T

Γ ` e1 e2 : S

Γ ` e : T

Γ ` 〈S ⇐ T 〉`e : S

` c : S ⇐ T Γ ` e : T

Γ ` 〈c〉e : S

Γ ` Blame ` : T

Type of constants: typeC (k) = B

typeC (n) = Int
typeC (t) = Bool
typeC (f) = Bool

Type of operators: typeO(op) = B → B

typeO(inc) = Int→ Int
typeO(dec) = Int→ Int

typeO(zero?) = Int→ Bool

B. Subsystems of ED

Complements of Figure 3 on page 3.



Translation function for casts 〈〈T ⇐ T 〉〉` = ĉ

〈〈B ⇐ B〉〉` = ι
〈〈B2 ⇐ B1〉〉` = Fail` if B1 6= B2

〈〈Dyn⇐ Dyn〉〉` = ι
〈〈Dyn⇐ B〉〉` = B!
〈〈B ⇐ Dyn〉〉` = B?`

〈〈T1 → T2 ⇐ B〉〉` = Fail`

〈〈B ⇐ S1 → S2〉〉` = Fail`

〈〈T1 → T2 ⇐ S1 → S2〉〉` = mkArr(〈〈S1 ⇐ T1〉〉`,
〈〈T2 ⇐ S2〉〉`)

〈〈Dyn⇐ S1 → S2〉〉` = S1 → S2!
〈〈T1 → T2 ⇐ Dyn〉〉` = T1 → T2?`

Arrow combinator mkArr(ĉ, ĉ) = ĉ

mkArr(Fail`, ĉ2) = Fail`

mkArr(ĉ1, Fail
`) = Fail`

mkArr(ĉ1, ĉ2) = ĉ1 → ĉ2 otherwise

Type system for coercions ` c : T ⇐ T

` ι : T ⇐ T ` T ! : Dyn⇐ T ` T?` : T ⇐ Dyn

` c : S1 ⇐ T1 ` d : T2 ⇐ S2

` (c→ d) : (T1 → T2)⇐ (S1 → S2)

` c : T1 ⇐ T2 ` d : T2 ⇐ T3

` (c ; d) : T1 ⇐ T3 ` Fail
` : T ⇐ S

C. Auxiliary functions and combinators
Look-up function for the original interpreter: ρ !x = cl

ρ !x = cl where (x 7→ cl) contains the first occurrence of x in ρ

Cast combinator mkCast(ĉ, s) = r

mkCast(ι, s) = s
mkCast(Fail`, s) = Blame `

mkCast((c̃→ d̃ ; Fail`), s) = Blame `
mkCast(c, s) = 〈c〉s

Environments for the closure-converted interpreter:

ρ ::= ε | (x 7→ v) : ρ | (x : T ) : ρ

Closure-converted look-up function: ρ !x = {cl|T}

ρ !x =

{
cl if bind = (x 7→ cl)
T if bind = (x : T )

where bind contains the first occurrence of x in ρ

Embed function for closure values: ↓ v = e[ρ]

↓ (con k) = k[ε]
↓ (λλ.e[(x : T ) : ρ]) = (λx : T.e)[ρ]

↓ (〈〈〈c〉〉〉v) = (〈c〉e)[ρ] where ↓ v = e[ρ]

D. Step-by-step simulation
The substitution function σ in Figure 9 flattens a closure by per-
forming all the delayed substitutions in its environment. Function
σ simulates capture-avoiding substitution in λ〈·〉→ , that is,

σ(e1[(x 7→ e2[ρ]) : ρ′]) ≡ σ(([σ(e2[ρ])/x]e1)[ρ′])

Flattening delayed substitutions: σ(cl) = e

σ(k[ρ]) = σ(con k)
σ((op e)[ρ]) = σ(prim op (e[ρ]))

σ((if e1 e2 e3)[ρ]) = σ(if (e1[ρ]) (e2[ρ]) (e3[ρ]))

σ(x[ρ]) =

{
σ(cl) if ρ !x = cl
x if ρ !x = T

σ((λx : T.e)[ρ]) = σ(λλ.e[(x : T ) : ρ])
σ((e1 e2)[ρ]) = (σ(e1[ρ]))(σ(e2[ρ]))
σ((〈c〉e)[ρ]) = σ(〈〈〈c〉〉〉(e[ρ])

σ((Blame `)[ρ]) = σ(Blame `)
σ(con k) = k

σ(prim op cl) = op (σ(cl))
σ(if cl1 cl2 cl3) = if (σ(cl1)) (σ(cl2)) (σ(cl3))

σ(λλ.e[(x : T ) : ρ]) = λx : T.σ(e[ρ])
σ(cl1 · cl2) = (σ(cl1))(σ(cl2))

〈〈〈c〉〉〉cl = 〈c〉(σ(cl))
σ(Blame `) = Blame `

Height of a proper closure: h(cl) = n

h(k[ρ]) = h(con k)
h((op e)[ρ]) = h(prim op (e[ρ]))

h((if e1 e2 e3)[ρ]) = h(if (e1[ρ]) (e2[ρ]) (e3[ρ]))

h(x[ρ]) =

{
h(cl) if ρ !x = cl
0 if ρ !x = T

h((λx : T.e)[ρ]) = h(λλ.e[(x : T ) : ρ])
h((e1 e2)[ρ]) = h(cl1 · cl2)
h((〈c〉e)[ρ]) = h(〈〈〈c〉〉〉e[ρ])

h((Blame `)[ρ]) = h(Blame `)
h(con k) = 0

h(prim op cl) = h(cl)
h(if cl1 cl2 cl3) = max{h(cl1), h(cl2), h(cl3)}

h(λλ.e[(x : T ) : ρ]) = 1 + h(e[(x : T ) : ρ])
h(cl1 · cl2) = max{h(cl1), h(cl2)}
h(〈〈〈c〉〉〉cl) = h(cl)

h(Blame `) = 0

Figure 9. Substitution function and height of a closure.

This simulation property is proven by induction on the height of
e1[(x 7→ e2[ρ]) : ρ′], which is calculated by function h shown in
Figure 9. The function σ connects 7−→ρ in λρ〈·〉→ with 7−→ in λ〈·〉→
at a step-by-step level. The following diagram illustrates:

cl cl′ cl1 cl′1 cl2

e e1 e2

ρ

∗
ρ ρ

∗
ρ

σ σ

The input expression e is injected into the closure e[ε], abbreviated
cl. The closures cli map via σ to expressions ei which are the re-
sult of step-by-step reduction relation in λ〈·〉→ . In the upper row of
the diagram, the dashed arrow denotes the union of ephemeral ex-
pansion with on-demand substitution, and the solid arrow denotes
reduction proper. Due to the reduction contexts Cl[ ], which are ex-
actly E[ ] from λ〈·〉→ but lifted to the closure level, the dashed arrow
will ephemerally expand and substitute cl until finding the redex
corresponding to the next 7−→ step. The step-by-step connection
rests on the property that σ simulates capture-avoiding substitu-
tion. The σ commutes with 7−→ρ, i.e., given e1[ρ1] 7−→ρ e2[ρ2]
and e3[ρ3] 7−→ρ e4[ρ4], it is the case that

σ(e1[ρ1]) ≡ σ(e3[ρ3]) iff σ(e2[ρ2]) ≡ σ(e4[ρ4])


