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Abstract

Ž .The aim of this paper is to analyze the sensitivity of Value at Risk VaR with respect to
portfolio allocation. We derive analytical expressions for the first and second derivatives of
the VaR, and explain how they can be used to simplify statistical inference and to perform a
local analysis of the VaR. An empirical illustration of such an analysis is given for a
portfolio of French stocks. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž .Value at Risk VaR has become a key tool for risk management of financial
institutions. The regulatory environment and the need for controlling risk in the
financial community have provided incentives for banks to develop proprietary
risk measurement models. Among other advantages, VaR provide quantitative and
synthetic measures of risk, that allow to take into account various kinds of
cross-dependence between asset returns, fat-tail and non-normality effects, arising
from the presence of financial options or default risk, for example.
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There is also growing interest on the economic foundations of VaR. For a long
time, economists have considered empirical behavioural models of banks or
insurance companies, where these institutions maximise some utility criteria under

Ža solvency constraint of VaR type see Gollier et al., 1996; Santomero and Babbel,
.1996 and the references therein . Similarly, other researchers have studied optimal

portfolio selection under limited downside risk as an alternative to traditional
Žmean-variance efficient frontiers see Roy, 1952; Levy and Sarnat, 1972; Arzac

.and Bawa, 1977; Jansen et al., 1998 . Finally, internal use of VaR by financial
institutions has been addressed in a delegated risk management framework in

Žorder to mitigate agency problems Kimball, 1997; Froot and Stein, 1998;
.Stoughton and Zechner, 1999 . Indeed, risk management practitioners determine

VaR levels for every business unit and perform incremental VaR computations for
management of risk limits within trading books. Since the number of such
subportfolios is usually quite large, this involves huge calculations that preclude
online risk management. One of the aims of this paper is to derive the sensitivity
of VaR with respect to a modification of the portfolio allocation. Such a sensitivity
has already been derived under a Gaussian and zero mean assumption by Garman
Ž .1996, 1997 .

Despite the intensive use of VaR, there is a limited literature dealing with the
theoretical properties of these risk measures and their consequences on risk

Ž . Žmanagement. Following an axiomatic approach, Artzner et al. 1996, 1997 see
.also Albanese, 1997 for alternative axioms have proved that VaR lacks the

subadditivity property for some distributions of asset returns. This may induce an
incentive to disagregate the portfolios in order to circumvent VaR constraints.
Similarly, VaR is not necessarily convex in the portfolio allocation, which may
lead to difficulties when computing optimal portfolios under VaR constraints.
Beside global properties of risk measures, it is thus also important to study their
local second-order behavior.

Apart from the previous economic issues, it is also interesting to discuss the
estimation of the risk measure, which is related to quantile estimation and tail

Žanalysis. Fully parametric approaches are widely used by practitioners see, e.g. JP
.Morgan Riskmetrics documentation , and most often based on the assumption of

Ž .joint normality of asset or factor returns. These parametric approaches are rather
stringent. They generally imply misspecification of the tails and VaR underestima-
tion. Fully non-parametric approaches have also been proposed and consist in

Ž .determining the empirical quantile the historical VaR or a smoothed version of it
Ž .Harrel and Davis, 1982; Falk, 1984, 1985; Jorion, 1996; Ridder, 1997 . Recently,
semi-parametric approaches have been developed. They are based on either

Žextreme value approximation for the tails Bassi et al., 1997; Embrechts et al.,
. Ž .1998 , or local likelihood methods Gourieroux and Jasiak, 1999a .´

However, up to now the statistical literature has focused on the estimation of
VaR levels, while, in a number of cases, the knowledge of partial derivatives of
VaR with respect to portfolio allocation is more useful. For instance, partial
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derivatives are required to check the convexity of VaR, to conduct marginal
analysis of portfolios or compute optimal portfolios under VaR constraints. Such
derivatives are easy to derive for multivariate Gaussian distributions, but, in most
practical applications, the joint conditional p.d.f. of asset returns is not Gaussian

Ž .and involves complex tail dependence Embrechts et al., 1999 . The goal here is to
derive analytical forms for these derivatives in a very general framework. These
expressions can be used to ease statistical inference and to perform local risk
analysis.

The paper is organized as follows. In Section 2, we consider the first and
second-order expansions of VaR with respect to portfolio allocation. We get
explicit expressions for the first and second-order derivatives, which are character-
ized in terms of conditional moments of asset returns given the portfolio return.
This allows to discuss the convexity properties of VaR. In Section 3, we introduce
the notion of VaR efficient portfolio. It extends the standard notion of mean-vari-
ance efficient portfolio by taking VaR as underlying risk measure. First-order
conditions for efficiency are derived and interpreted. Section 4 is concerned with
statistical inference. We introduce kernel-based approaches for estimating the
VaR, checking its convexity and determining VaR efficient portfolios. In Section
5, these approaches are implemented on real data, namely returns on two highly
traded stocks on the Paris Bourse. Section 6 gathers some concluding remarks.

2. The sensitivity and convexity of VaR

2.1. Definition of the VaR

We consider n financial assets whose prices at time t are denoted by p ,isi, t

1, . . . ,n. The value at t of a portfolio with allocations a , is1, . . . ,n is then:i
Ž . n XW a sÝ a p sa p . If the portfolio structure is held fixed between thef is1 i i, t t

current date t and the future date tq1, the change in the market value is given
Ž . Ž . XŽ .by: W a yW a sa p q1yp .tq1 t t t

The purpose of VaR analysis is to provide quantitative guidelines for setting
Ž .reserve amounts or capital requirements in phase with potential adverse changes

Žin prices see, e.g. Morgan, 1996; Wilson, 1996; Jorion, 1997; Duffie and Pan,
1997; Dowd, 1998; Stulz, 1998 for a detailed analysis of the concept of VaR and

.applications in risk management . For a loss probability level a the Value at Risk,
Ž .VaR a, a is defined by:t

P W a yW a qVaR a,a -0 sa , 2.1Ž . Ž . Ž . Ž .t tq1 t t

where P is the conditional distribution of future asset prices given the informationt

available at time t. Such a definition assumes a continuous conditional distribution
of returns. Typical values for the loss probability range from 1% to 5%, depending
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on the time horizon. Hence, the VaR is the reserve amount such that the global
Ž .position portfolio plus reserve only suffers a loss for a given small probability a

over a fixed period of time, here normalized to one. The VaR can be considered as
an upper quantile at level 1ya , since:

XP ya y )VaR a,a sa , 2.2Ž . Ž .t tq1 t

where y sp yp .tq1 tq1 t

At date t, the VaR is a function of past information, of the portfolio structure a
and of the loss probability level a .

2.2. Gaussian case

In practice, VaR is often computed under the normality assumption for price
Ž .changes or returns , denoted as y . Let us introduce m and V , the conditionaltq1 t t

Ž .mean and covariance matrix of this Gaussian distribution. Then from Eq. 2.2 and
the properties of the Gaussian distribution, we deduce the expression of the VaR:

1r2X XVaR a,a syam q aV a z , 2.3Ž . Ž . Ž .t t t 1ya

where z is the quantile of level 1ya of the standard normal distribution. This1ya

expression shows the decomposition of the VaR into two components, which
compensate for expected negative returns and risk, respectively.

Let us compute the first and second-order derivatives of the VaR with respect
to the portfolio allocation. We get:

EVaR a,a V aŽ .t t
sym q zt 1ya1r2XEa aV aŽ .t

V at Xsym q VaR a,a qamŽ .Ž .Xt t taV at

XsyE y Na y syVaR a,a , 2.4Ž . Ž .t tq1 tq1 t

X2E VaR a,a z V aaVŽ .t 1ya t t
s V yX Xt1r2XEaEa aV aaV aŽ . tt

z1ya Xs V y Na y syVaR a,a . 2.5Ž . Ž .t tq1 tq1 t1r2XaV aŽ .t

In particular, we note that these first and second-order derivatives are affine
functions of the VaR with coefficients depending on the portfolio allocation, but
independent of a . In Section 2.3, we extend these interpretations of the first and
second-order derivatives of the VaR in terms of first and second-order conditional
moments given the portfolio value.
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2.3. General case

The general expressions for the first and second-order derivatives of the VaR
are given in the property below. They are valid as soon as y has a continuoustq1

conditional distribution with positive density and admits second-order moments.

Property 1.

Ž .i The first-order derivative of the VaR with respect to the portfolio allocation
is:

EVaR a,aŽ .t XsyE y Na y syVaR a,a .Ž .t tq1 tq1 t
Ea

Ž .ii The second-order derivative of the VaR with respect to the portfolio
allocation is:

E2 VaR a,aŽ .t
X

EaEa
Elog ga , t Xs yVaR a,a V y Na y syVaR a,aŽ . Ž .Ž .t t tq1 tq1 t

Ez
E

Xw xy V y Na y syz ,t tq1 tq1½ 5Ez Ž .zsVaR a ,at

where g denotes the conditional p.d.f of aX y .a, t tq1

Ž .Proof. i The condition defining the VaR can be written as:

P Xqa Y)VaR a,a sa ,Ž .t 1 t

where XsyÝn a y , Ysyy . The expression of the first-order deriva-is2 i i, tq1 1, tq1

tive directly follows from Lemma 1 in Appendix A.
Ž .ii The second-order derivative can be deduced from the first-order expansion of
the first-order derivative around a benchmark allocation a . Let us set asa qo o

´ e , where ´ is a small real number and e is the canonical vector, with allj j

components equal to zero but the jth equal to one. We deduce:

EVaR a,aŽ .t
<w xsE X Zq´ Ys0 qo ´ ,Ž .t

Eai

where:

Xsyy ,ZsyaX y yVaR a ,a ,Ž .i , tq1 o tq1 t o

Ysyy qE y NZs0 .j , tq1 t j , tq1

The result follows from Lemma 3 in Appendix B.Q.E.D
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2.4. ConÕexity of the VaR

It may be convenient for a risk measure to be a convex function of the portfolio
allocation thus inducing incentive for portfolio diversification. From the expres-
sion of the second-order derivative of the VaR, we can discuss conditions, which
ensure convexity. Let us consider the two terms of the decomposition given in
Property 1. The first term is positive definite as soon as the p.d.f. of the portfolio

Ž .price change or return is increasing in its left tail. This condition is satisfied if
this distribution is unimodal, but can be violated in the case of several modes in
the tail. The second term involves the conditional heteroscedasticity of changes in
asset prices given the change in the portfolio value. It is non-negative if this
conditional heteroscedasticity increases with the negative level yz of change in
the portfolio value. This expresses the idea of increasing multivariate risk in the
left tail of portfolio return. To illustrate these two components, we further discuss
particular examples.

2.4.1. Gaussian distribution
In the Gaussian case considered in Section 2.2, we get:

Elog g z yzqaX
mŽ .a , t t

s .X
Ez aV at

Therefore:

Elog g VaR a,a qaX
mŽ .a , t t t

yVaR a,a sŽ .Ž . Xt
Ez aV at

z1ya
s ,1r2XaV aŽ .t

Ž .from Eq. 2.3 .
Ž .This positive coefficient as soon as a-0.5 corresponds to the multiplicative

Ž .factor observed in Eq. 2.5 . Besides, the second term of the decomposition is zero
due to the conditional homoscedasticity of y given aX y .t t

2.4.2. Gaussian model with unobserÕed heterogeneity
The previous example can be extended by allowing for unobserved heterogene-

ity. More precisely, let us introduce an heterogeneity factor u and assume that the
conditional distribution of asset price changes given the information held at time t

Ž . Ž .has mean m u and variance V u . The various terms of the decomposition cant t

easily be computed and admit explicit forms. For instance, we get:

g z s g zNu P u du ,Ž . Ž . Ž .Ha , t a , t

Ž .where g zNu is the Gaussian distribution of the portfolio price changes givena, t

the heterogeneity factor, and P denotes the heterogeneity distribution.
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We deduce that:

EEg zŽ .a , t
g zNu P u duŽ . Ž .H a , tElog g zŽ .a , t EzEzs s

Ez g zŽ .a , t g zNu P u duŽ . Ž .H a , t

E log g zNuŽ .a , t
sE ,P̃

Ez

˜where the expectation is taken with respect to the modified frobability P defined
by:

P̃ u sg zNu P u g zNu P u du .Ž . Ž . Ž . Ž . Ž .Ha , t a , t

Due to conditional normality, we obtain:

X
Elog g VaR a,a qam uŽ . Ž .a , t t t

yVaR a,a sE . 2.6Ž . Ž .Ž . ˜ Xt P
Ez aV u aŽ .t

Let us proceed with the second term of the decomposition. We get:

w X x w X xV y Na y syz sE V y Na y syz ,ut tq1 tq1 P t tq1 tq1

w X xqV E y Na y syz ,u .P t tq1 tq1

w X xThe conditional homoscedasticity given u, implies that V y Na y syz,ut tq1 tq1

does not depend on the level z and we deduce that:

E
XV y Na y syzt tq1 tq1

Ez

E
Xs V E y Na y syz ,uP t tq1 tq1

Ez

E V u aŽ .t Xs V m u q yzyam u . 2.7Ž . Ž . Ž .Ž .XP t t
Ez aV u aŽ .t

Ž . Ž . Ž .Let us detail formulas 2.6 and 2.7 , when m u s0, ;u, i.e. for at
Ž .conditional Gaussian random walk with stochastic volatility. From Eq. 2.6 , we

deduce that:

Elog g 1a , t
yVaR a,a sVaR a,a E )0.Ž . Ž .Ž . ˜ Xt t P

Ez aV a aŽ .t
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Ž .From Eq. 2.7 , we get:

E E V u aŽ .tXy V y Na y syz sy V yz Xt tq1 tq1 P
Ez Ez aV u aŽ .t

E V u aŽ .t2sy z V XP
Ez aV u aŽ .t zsyz

V u aŽ .t
sq2 zV ,XP aV u aŽ .t

Ž .which is non-negative for zsVaR a,a . Therefore, the VaR is convex whent

price changes follow a Gaussian random walk with stochastic volatility.

3. VaR efficient portfolio

Portfolio selection is based on a trade-off between expected return and risk, and
requires a choice for the risk measure to be implemented. Usually, the risk is
evaluated by the conditional second-order moment, i.e. volatility. This leads to the
determination of the mean-variance efficient portfolio introduced by Markowitz
Ž . Ž .1952 . It can also be based on a safety first criterion probability of failure ,

Ž . Žinitially proposed by Roy 1952 see Levy and Sarnat, 1972; Arzac and Bawa,
.1977; Jansen et al., 1998 for applications . In this section, we extend the theory of

efficient portfolios, when VaR is adopted as risk measure instead of variance.

3.1. Definition

We consider a given budget w to be allocated at time t among n risky assets
and a risk-free asset. The price at t of the risky assets are p , whereas the price oft

the risk-free asset is one and the risk-free interest rate is r. The budget constraint
at date t is:

wsa qaX p ,o t

where a is the amount invested in the risk-free asset and a the allocation in theo

risky assets. The portfolio value at the following date is:
X XW sa 1qr qa p sw 1qr qa p y 1qr pŽ . Ž . Ž .tq1 o tq1 tq1 t

sw 1qr qaX y say .Ž . Ž .tq1

The VaR of this portfolio is defined by:

P W -yVaR a ,a; a sa , 3.1Ž . Ž .t tq1 t o

and can be written in terms of the quantile of the risky part of the portfolio.

VaR a ,a,a sw 1qr qVaR a,a , 3.2Ž . Ž . Ž . Ž .t o t
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Ž .where VaR a,a satisfies:t

XP a y -yVaR a,a sa . 3.3Ž . Ž .t tq1 t

We define a VaR efficient portfolio as a portfolio with allocation solving the
constrained optimization problem:

max E Wa t tq1
3.4Ž .½s.t. VaR a ,a;a FVaR ,Ž .t o o

where VaR is a benchmark VaR level.o

This problem is equivalent to:

max aXE ya t tq1
& 3.5Ž .½s.t. VaR a;a FVaR yw 1qr sVaR .Ž . Ž .t o o

The VaR efficient allocation depends on the loss probability a , on the bound
ŽVaR limiting the authorized risk in the context of capital adequacy requiremento

of the Basle Committee on Banking Supervision, usually one third or one quarter
.of the budget allocated to trading activities and on the initial budget w. It is

&
) ) )w xdenoted by a sa a ,VaR . The constraint is binding at the optimum and at t o t

solves the first-order conditions:

EVaR° t
) )E y syl a ,a ,Ž .t tq1 t t~ Ea 3.6Ž .
&

)¢VaR a ,a sVaR ,Ž .t t o

where l) is a Lagrange multiplier. In particular, it implies proportionality at thet

optimum between the global and local expectations of the net gains:
&

X
) )E y sl E y Na y syVaR . 3.7Ž .t tq1 t t tq1 t tq1 o

4. Statistical inference

Estimation methods can be developed from stationary observations of variables
Ž .of interest. Hence, it is preferable to consider the sequence of returns p yp rptq1 t t

instead of the price modifications p yp , and accordingly the allocationstq1 t
Ž .measured in values instead of shares. In this section, y s p yp rptq1 tq1 t t

denotes the return and a the allocation in value.
Moreover, we consider the case of i.i.d. returns, which allows to avoid the

dependence on past information.
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4.1. Estimation of the VaR

Since the portfolio value remains the same whether allocations are measured in
shares or values, the VaR is still defined by:

XP ya y )VaR a,a sa ,Ž .t tq1 t

and, since the returns are i.i.d. it does not depend on the past:
XP ya y )VaR a,a sa .Ž .tq1

It can be consistently estimated from T observations by replacing the unknown
distribution of the portfolio value by a smoothed approximation. For this purpose,

ˆwe introduce a Gaussian kernel and define the estimated VaR, denoted by VaR,
as:

T X ˆ1 ya y yVaRt
F sa , 4.1Ž .Ý ž /T hts1

where F is the c.d.f. of the standard normal distribution and h is the selected
Ž .bandwidth. In practice, Eq. 4.1 is solved numerically by a Gauss–Newton

algorithm. If var Ž p. denotes the approximation at the pth step of the algorithm, the
updating is given by the recursive formula:

X Ž .pT1 ya y yvart
F yaÝ ž /T hts1Ž pq1. Ž p.var svar q , 4.2Ž .X Ž .pT1 a y qvart

wÝ ž /Th hts1

where w is the p.d.f. of the standard normal distribution.
The starting values for the algorithm can be set equal to the VaR obtained

Ž .under a Gaussian assumption or the historical VaR empirical quantile .
Other choices than the Gaussian kernel may also be made without affecting the

procedure substantially. The Gaussian kernel has the advantage of being easy to
integrate and differentiate from an analytical point of view, and to implement from
a computerized point of view.

Ž .Finally, let us remark that, due to the small kernel dimension one , we do not
face the standard curse of dimensionality often encountered in kernel methods.
Hence, our approach is also feasible in the presence of a large number of assets.

4.2. ConÕexity of the VaR

From the expression of the second-order derivative of the VaR provided in
Ž 2 Ž .. Ž X.Property 1, we know that the Hessian E VaR a,a r EaEa is positive semi-defi-

Ž Ž . Ž . Ž w X x. Ž .nite if Elog g z r Ez )0, and EV y Na y sz r Ez 40, for negativea, t tq1 tq1

z values. These sufficient conditions can easily be checked without having to
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estimate the VaR. Indeed, consistent estimators of the p.d.f. of the portfolio value
and of the conditional variance are:

T X1 a y yzt
g z s w , 4.3Ž . Ž .ˆ Ýa ž /Th hts1

T Xa y yztXy y wÝ t t ž /hts1Xˆ w xV y Na y sz s Xtq1 tq1 T a y yzt
wÝ ž /hts1

T X T Xa y yz a y yzt tXy w y wÝ Ýt tž / ž /h hts1 ts1y . 4.4Ž .2XT a y yzt
wÝ ž /hts1

4.3. Estimation of a VaR efficient portfolio

Due to the rather simple forms of the first and second-order derivatives of the
VaR, it is convenient to apply a Gauss–Newton algorithm when determining the
VaR efficient portfolio. More precisely, let us look for a solution to the optimiza-

Ž Ž .. Ž p.tion problem Eq. 3.5 in a neighbourhood of the allocation a . The optimiza-
tion problem becomes equivalent to:

max a
X
Eya tq1

EVaR
Ž p. Ž p. Ž p.w xs.t. VaR a ,a q a ,a ayaŽ . Ž .X

Ea
21 E VaR &XŽ p. Ž p. Ž p.w x w xq aya a ,a aya FVaR .Ž . oX2 EaEa

This problem admits the solution:
y12E VaR EVaR

Ž .Ž pq1. Ž p. p Ž p.a sa y a ,a a ,aŽ . Ž .X
EaEa Ea

1r2
&

p pŽ . Ž .2 VaR yVaR a ,a qQ a ,aŽ . Ž .Ž .o
q y12E VaR

X pŽ .Ey a ,a EyŽ .Xtq1 tq1
EaEa

y12E VaR
Ž .p= a ,a Ey ,Ž .X tq1

EaEa
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with:

y12EVaR E VaR EVaR
Ž .Ž p. Ž p. p Ž p.Q a ,a s a ,a a ,a a ,a .Ž . Ž . Ž . Ž .X X

Ea EaEa Ea

To get the estimate, the theoretical recursion is replaced by its empirical
Ž . Tcounterpart, in which the expectation Ey is replaced by ms 1rT Ý y ,ˆtq1 ts1 t

while the VaR and its derivatives are replaced by their corresponding kernel
estimates given in the two previous subsections.

5. An empirical illustration

This section illustrates the implementation of the estimation procedures de-
scribed in Section 4.1 We analyze two companies listed on the Paris Bourse:

Ž . Ž .Thomson-CSF electronic devices and L’Oreal cosmetics . Both stocks belong to´
the French stock index CAC 40. The data are daily returns recorded from
04r01r1997 to 05r04r1999, i.e. 546 observations. The return mean and standard
deviation are 0.0049% and 1.262% for the first stock, 0.0586% and 1.330% for the
second stock. Minimum returns are y4.524% and y4.341%, while maximum
values are 3.985% and 4.013%, respectively. We have for skewness y0.2387 and
0.0610, and for kurtosis 4.099 and 4.295. This indicates that the data cannot be

Žconsidered as normally distributed it is confirmed by the values 387.5 and 420.0
.taken by the Jarque and Bera, 1980 test statistic . The correlation is 0.003%. We

have checked the absence of dynamics by examining the autocorrelograms, partial
autocorrelograms and Ljung-Box statistics.

Fig. 1 shows the estimated VaR of a portfolio including these two stocks with
Ž . Ž .different allocations. The allocations range from 0 1 to 1 0 in Thomson-CSF

Ž .L’Oreal stock. The loss probability level is 1%. The dashed line provides the´
Ž Ž ..estimated VaR based on the kernel estimator Eq. 4.1 . We have selected the

Ž .1r5 y1r5bandwidth according to the classical proportionality rule: hs 4r3 s T ,a

where s is the standard deviation of the portfolio return with allocation a. Wea
Ž .also provide the estimates given by Eq. 2.3 based on the normality assumption

Ž . Ž .solid line and the estimates using the empirical first percentile dashed line . The
standard VaR based on the normality assumption are far below the other estimated
values as it could have been expected from the skewness and kurtosis exhibited by
the individual stock returns. This standard VaR leads to an underestimation of the
reserve amount aimed to cover potential losses. We note that the kernel based

1 Gauss programs developed for this section are available on request.
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Fig. 1. Estimated VaR.

Fig. 2. Estimated sensitivity.
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Fig. 3. First condition for convexity.

Fig. 4. Second condition for convexity.
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estimator and percentile based estimator lead to similar results with a smoother
pattern for the first one.

Let us now examine the sensitivities. Estimated first partial derivatives of the
portfolio VaR are given in Fig. 2. The solid line provides the estimate of the
partial derivative for the first stock Thomson-CSF based on a kernel approach. The
dotted line conveys its Gaussian counterpart and does not reflect the non-mono-
tonicity of the first derivative. The two other dashed lines give the analogous
curves for the second stock L’Oreal. At the portfolio corresponding to the´
minimum VaR in Fig. 1, the first derivatives w.r.t. each portfolio allocation are
equal as seen on Fig. 2, and coincide with the Lagrange multiplier associated with
the constraint a qa s1.1 2

What could be said about VaR convexity when a particular allocation a is
Ž Ž .. Ž . Ž w X x. Ž .adopted? Both conditions Elog g z r Ez )0 and EV y Na y sz r Eza, t tq1 tq1

40 for negative z values can be verified in order to check VaR convexity. We

Fig. 5. IsoVaR curves by Gaussian approach.
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Ž . Ž .can use the estimators based on Eqs. 4.3 and 4.4 for such a verification. Let us
Ž .Xtake a diversified portfolio with allocation as 0.5,0.5 . Fig. 3 gives the esti-

Ž Ž ..mated log derivative of the p.d.f. of the portfolio returns see Eq. 4.3 and shows
that the first condition is not empirically satisfied.

Moreover, the second condition is also not empirically met. Indeed, we can
observe in Fig. 4 that the solid and dashed lines representing the two eigenvalues

Ž Ž ..of the estimated conditional variance see Eq. 4.4 are not strictly positive for
negative z values. Hence, we conclude to the local non-convexity of the VaR for
a portfolio evenly invested in Thomson-CSF and L’Oreal. Such a finding is not´
necessarily valid for other allocation structures.

We end this section by discussing the shapes of the estimated VaR. We
compare the Gaussian and kernel approaches in Figs. 5 and 6. The asset alloca-
tions range from y1 to 1 in both assets. The contour plot corresponds to
increments in the estimated VaR by 0.5%. Hence, the contour lines correspond to

Fig. 6. IsoVaR curves by kernel approach.
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successive isoVaR curves with levels 0.5%, 1%, 1.5%, . . . , starting from 0
Ž Ž .X.allocation as 0,0 . Under a Gaussian assumption, the isoVaR corresponds to

Ž .an elliptical surface see Fig. 5 . The isoVaR obtained by the kernel approach are
provided in Fig. 6. We observe that the corresponding VaR are always higher than
the Gaussian ones, and that symmetry with respect to the origin is lost. In

Žparticular, without the Gaussian assumption, the directions of steepest resp.
.flattest ascent are no more straight lines. However, under both computations of

Ž .isoVaR the portfolios with steepest resp. flattest ascent are obtained for alloca-
Ž .tion of the same resp. opposite signs.

Finally, the isoVaR curves can be used to characterize the VaR efficient
&

portfolios. The estimated efficient portfolio for a given authorized level VaR iso&

given by the tangency point between the isoVaR curve of level VaR and the seto

of lines with equation: a m qa m sconstant, where m , m denote the esti-ˆ ˆ ˆ ˆ1 1 2 2 1 2

mated means. Since the isoVaR curves do not differ substantially on our empirical
example, the efficient portfolios are not very much affected by the use of the
Gaussian or the kernel approach. This finding would be challenged if assets with
non-linear payoffs, such as options, were introduced in the portfolio.

6. Concluding remarks

We have considered the local properties of the VaR. In particular, we have
derived explicit expressions for the sensitivities of the risk measures with respect
to the portfolio allocation and applied the results to the determination of VaR
efficient portfolios. The empirical application points out the difference between a
VaR analysis based on a Gaussian assumption for asset returns and a direct
non-parametric approach.

This analysis has been performed under two restrictive conditions, namely i.i.d.
returns and constant portfolio allocations. These conditions can be weakened. For
instance, we can introduce non-parametric Markov models for returns, allowing
for non-linear dynamics, and compute the corresponding conditional VaR together
with their derivatives. Such an extension is under current development. The
assumption of constant holdings until the benchmark horizon can also be ques-
tioned. Indeed in practice, the portfolio can be frequently updated and a major part
of the risk can be due to inappropriate updating. The effect of a dynamic strategy

Žon the VaR can only be evaluated by Monte Carlo methods see for instance the
.impulse response analysis in Gourieroux and Jasiak, 1999b . It has also to be taken´

Žinto account when determining a dynamic VaR efficient hedging strategy see
.Foellmer and Leukert, 1998 . Finally, let us remark that our kernel-based approach

can be used to analyse the sensitivity of the expected shortfall, i.e. the expected
loss knowing that the loss is larger that a given loss quantile. This is also under
current development.
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Appendix A. Expansion of a quantile

( )Lemma 1. Let us consider a biÕariate continuous Õector X,Y and the quantile
( )Q ´ ,a defined by:

P Xq´ Y)Q ´ ,a sa .Ž .
Then:

E
Q ´ ,a sE YNXq´ YsQ ´ ,a .Ž . Ž .

E´

Ž . Ž .Proof. Let us denote by f x, y the joint p.d.f. of the pair X ,Y . We get:

P Xq´ Y)Q ´ ,a saŽ .

m f x , y d x d ysa .Ž .H H
Ž .Q ´ ,a y´ y

The differentiation with respect to ´ provides.

EQ ´ ,aŽ .
yy f Q ´ ,a y´ , y d ys0,Ž .Ž .H

E´

which leads to:

yf Q ´ ,a y´ y , y d yŽ .Ž .HEQ ´ ,aŽ .
s sE YNXq´ YsQ ´ ,a .Ž .

E´
f Q ´ ,a y´ y , y d yŽ .Ž .H

Q.E.D.
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Appendix B. Expansion of the conditional expectation

( )Lemma 2. Let us consider a continuous three dimensional Õector X,Y,Z , then:
Elog g zŽ .

w x w xE XNZq´ Ys0 sE XNZs0 y´ Cov X ,YNZs0
Ez

zs0

E
xy´ Cov X ,YNZs z zs0

Ez
E

xq´ E YNZs0 E XNZs z qo ´ ,Ž .zs0
Ez

where g is the marginal p.d.f. of Z.

Ž . Ž .Proof. Let us denote by f x, y, z the joint p.d.f. of the triple X ,Y,Z and by
Ž . Ž Ž .. Ž Ž ..f x, yNz s f x, y, z r g z the conditional p.d.f. of X ,Y given Zsz. The

conditional expectation is given by:

xf x , y ,y´ y d xd yŽ .HH
w xE XNZq´ Ys0 s

f x , y ,y´ y d xd yŽ .HH
E

xf x , y ,0 d xd yy´ xy f x , y ,0 d xd yŽ . Ž .HH HH
Ezs
E

f x , y ,0 d xd yy´ y f x , y ,0 d xd yŽ . Ž .HH HH
Ez

qo ´Ž .
E log f

w xsE XNZs0 y´ E XY X,Y ,0 NZs0Ž .
E z

E log f
w xq´ E XNZs0 E Y X,Y ,0 NZs0Ž .

E z

qo ´Ž .
E log f

w xsE XNZs0 y´ Cov X,Y , X,Y ,0 NZs0Ž .
E z

qo ´Ž .
Elog g zŽ .

w x w xsE XNZs0 y´ Cov X,YNZs0
Ez

zs0

Elog f
y´ Cov X,Y X,YN0 NZs0 qo ´ .Ž . Ž .

Ez

A.1Ž .
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Let us now consider the derivative of the conditional covariance. We get:

E
Cov X,YNZs z

Ez

E
s E XYNZs z yE XNZs z E YNZs z

Ez

Elog f
sE XY X,YNz NZs zŽ .

Ez

Elog f
yE XNZs z E Y X,YNz NZs zŽ .

Ez

E
y E XNZs z E YNZs z

Ez

Elog f E
sCov X,Y X,YNz NZs z y E XNZs z E YNZs z .Ž .

Ez Ez

Ž .The expansion of Lemma 2 directly follows after substitution in Eq. A1 .Q.E.D

[ ]Lemma 3. When E YNZs0 s0, the expansion reduces to:

Elog g zŽ .
E XNZq´ Ys0 sE XNZs0 y´ Cov X,YNZs0

Ez
zs0

E
w xxy´ Cov X,YNZsz qo ´ .Ž .zs0

Ez

w x w xLemma 4. When E YNZs0 s0, and Cov X ,YNZsz is independent of z
Ž .conditional homoscedasticity , the expansion reduces to:

Elog zŽ .
E XNZq´ Ys0 sE XNZs0 y´ Cov X,YNZs0

Ez
zs0

qo ´ .Ž .
Ž .Let us remark that Lemma 4 is in particular valid for a Gaussian vector X ,Y,Z .

In this specific case, we get:

21 1 1 zyEZŽ .
log g z sy log2py logVZy ,Ž .

2 2 2 VZ

Elog g z EZŽ .
s .

Ez VZ
zs0
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