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Abstract. Large graphs involving millions of vertices are common in many prac-
tical applications and are challenging to process. Practical-time implementations
using high-end computers are reported but are accessible only to a few. Graphics
Processing Units (GPUs) of today have high computation power and low price.
They have a restrictive programming model and are tricky to use. The G80 line
of Nvidia GPUs can be treated as a SIMD processor array using the CUDA pro-
gramming model. We present a few fundamental algorithms – including breadth
first search, single source shortest path, and all-pairs shortest path – using CUDA
on large graphs. We can compute the single source shortest path on a 10 million
vertex graph in 1.5 seconds using the Nvidia 8800GTX GPU costing $600. In
some cases optimal sequential algorithm is not the fastest on the GPU architec-
ture. GPUs have great potential as high-performance co-processors.

1 Introduction

Graph representations are common in many problem domains including scientific and
engineering applications. Fundamental graph operations like breadth-first search,
depth-first search, shortest path, etc., occur frequently in these domains. Some problems
map to very large graphs, often involving millions of vertices. For example, problems
like VLSI chip layout, phylogeny reconstruction, data mining, and network analysis can
require graphs with millions of vertices. While fast implementations of sequential fun-
damental graph algorithms exist [4,8] they are of the order of number of vertices and
edges. Such algorithms become impractical on very large graphs. Parallel algorithms
can achieve practical times on basic graph operations but at a high hardware cost [10].
Bader et al. [2,3] use CRAY supercomputer to perform BFS and single pair shortest
path on very large graphs. While such methods are fast, the hardware used in them is
very expensive.

Commodity graphics hardware has become a cost-effective parallel platform to solve
many general problems. Many problems in the fields of linear algebra [6], image pro-
cessing, computer vision, signal processing [13], etc., have benefited from its speed and
parallel processing capability. GPU implementations of various graph algorithms also
exist [9]. They are, however, severely limited by the memory capacity and architec-
ture of the existing GPUs. GPU clusters have also been used [5] to perform compute
intensive tasks, like finite element computations [14], gas dispersion simulation, heat
shimmering simulation [15], accurate nuclear explosion simulations, etc.
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GPUs are optimized for graphics operations and their programming model is highly
restrictive. All algorithms are disguised as graphics rendering passes with the pro-
grammable shaders interpreting the data. This was the situation until the latest model
of GPUs following the Shader Model 4.0 were released late in 2006. These GPUs fol-
low a unified architecture for all processors and can be used in more flexible ways
than their predecessors. The G80 series of GPUs from Nvidia also offers an alter-
nate programming model called Compute Unified Device Architecture (CUDA) to the
underlying parallel processor. CUDA is highly suited for general purpose program-
ming on the GPUs and provides a model close to the PRAM model. The interface
uses standard C code with parallel features. A similar programming model called Close
To Metal (CTM) is provided by ATI/AMD. Various products that transform the
GPU technology to massive parallel processors for desktops are to be released in
short time.

In this paper, we present the implementation of a few fundamental graph algo-
rithms on the Nvidia GPUs using the CUDA model. Specifically, we show results on
breadth-first search (BFS), single-source shortest path (SSSP), and all-pairs shortest
path (APSP) algorithms on the GPU. Our method is capable of handling large graphs,
unlike previous GPU implementations [9]. We can perform BFS on a 10 million vertex
random graph with an average degree of 6 in one second and SSSP on it in 1.5 sec-
onds. The times on a scale-free graph of same size is nearly double these. We also show
that the repeated application of SSSP outscores the standard APSP algorithms on the
memory restricted model of the GPUs. We are able to compute APSP on graphs with
30K vertices in about 2 minutes. Due to the restriction of memory on the CUDA de-
vice, graphs above 12 million vertices with 6 degree per vertex cannot be handled using
current GPUs.

The paper is organized as follows. An overview of the CUDA programming model is
given in Section 2. Section 3 presents the specific algorithms on the GPU using CUDA.
Section 4 presents results of our implementation on various types of graphs. Conclusion
and future work is discussed in Section 5.

2 CUDA Programming Model on the GPU

General purpose programming on graphics processing units (GPGPU) tries to solve a
problem by posing it as a graphics rendering problem, restricting the range of solutions
that can be ported to the GPU. A GPGPU solution is designed to follow the general
flow of the graphics pipeline (consisting of vertex, geometry and pixel processors), with
each iteration of the solution being one rendering pass. The GPU memory layout is also
optimized for graphics rendering. This restricts the GPGPU solutions as an optimal
data structure may not be available. The GPGPU model provides limited anatomy to
individual processors[11]. Creating efficient data structures using the GPU memory
model is a challenging problem in itself [7]. Memory size on GPU is another restricting
factor. A single data structure on the GPU cannot be larger than the maximum texture
size supported by it.
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2.1 Compute Unified Device Architecture

On an abstract level, the Nvidia 8800 GTX graphics processor follows the shader model
4.0 design and implements the 4-stage graphics pipeline. At the hardware level, how-
ever, it is not designed as 4 different processing units. All the 128 processors of the 8800
GTX are of same type with similar memory access speeds, which makes it a massive
parallel processor. CUDA is a programming interface to use this parallel architecture
for general purpose computing. This interface is a set of library functions which can
be coded as an extension of the C language. A compiler generates executable code for
the CUDA device. The CPU sees a CUDA device as a multi-core co-processor. The
CUDA design does not have memory restrictions of GPGPU. One can access all mem-
ory available on the device using CUDA with no restriction on its representation though
the access times vary for different types of memory. This enhancement in the memory
model allows programmers to better exploit the parallel power of the 8800 GTX pro-
cessor for general purpose computing.

Fig. 1. CUDA Hardware interface Fig. 2. CUDA programming model

CUDA Hardware Model. At the hardware level, the 8800 GTX processor is a collec-
tion of 16 multiprocessors, with 8 processors each (Figure 1). Each multiprocessor has
its own shared memory which is common to all the 8 processors inside it. It also has a
set of 32-bit registers, texture, and constant memory caches. At any given cycle, each
processor in the multiprocessor executes the same instruction on different data, which
makes each a SIMD processor. Communication between multiprocessors is through the
device memory, which is available to all the processors of the multiprocessors.

CUDA Programming Model. For the programmer the CUDA model is a collection
of threads running in parallel. A warp is a collection of threads that can run simultane-
ously on a multiprocessor. The warp size is fixed for a specific GPU. The programmer
decides the number of threads to be executed. If the number of threads is more than
the warp size, they are time-shared internally on the multiprocessor. A collection of
threads (called a block) runs on a multiprocessor at a given time. Multiple blocks can
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be assigned to a single multiprocessor and their execution is time-shared. A single exe-
cution on a device generates a number of blocks. A collection of all blocks in a single
execution is called a grid (Figure 2). All threads of all blocks executing on a single
multiprocessor divide its resources equally amongst themselves. Each thread and block
is given a unique ID that can be accessed within the thread during its execution. Each
thread executes a single instruction set called the kernel.

The kernel is the core code to be executed on each thread. Using the thread and block
IDs each thread can perform the kernel task on different set of data. Since the device
memory is available to all the threads, it can access any memory location. The CUDA
programming interface provides an almost Parallel Random Access Machine (PRAM)
architecture, if one uses the device memory alone. However, the multiprocessors follow
a SIMD model, the performance improves with the use of shared memory which can
be accessed faster than the device memory. The hardware architecture allows multiple
instruction sets to be executed on different multiprocessors. The current CUDA pro-
gramming model, however, cannot assign different kernels to different multiprocessors,
though this may be simulated using conditionals.

With CUDA, the GPU can be viewed as a massive parallel SIMD processor, limited
only by the amount of memory available on the graphics hardware. The 8800 GTX
graphics card has 768 MB memory. Large graphs can reside in this memory, given a
suitable representation. The problem needs to be partitioned appropriately into multiple
grids for handling even larger graphs.

3 Graph Algorithms and CUDA Implementation

As an extension of the C language, CUDA provides a high level interface to the pro-
grammer. Hence porting algorithms to the CUDA programming model is straight for-
ward. Breadth first search (Section 3.2) and single source shortest path (Section 3.3)
algorithms reported in this paper use one thread per vertex. All pairs shortest path imple-
mentations (Section 3.4) use V 2 threads for the Floyd Warshall algorithm and V threads
for other implementations. All threads in these implementations are multiplexed on 128
processors by the CUDA programming environment.

In our implementations of graph algorithms, we do not use the device shared mem-
ory, as the data required by each vertex can be present anywhere in the global edge array
(explained in the following section). Finding the locality of data to be collectively read
into the shared memory is as hard as the BFS problem itself.

Denser graphs with more degree per vertex will benefit more using the following al-
gorithms. Each iteration will expand the number of vertices being processed in parallel.
The worst case will be when the graph is linear which will result in one vertex being
processed every iteration.

3.1 Graph Representation on CUDA

A graph G(V,E) is commonly represented as an adjacency matrix. For sparse graphs
such a representation wastes a lot of space. Adjacency list is a more compact representa-
tion for graphs. Because of variable size of edge lists per vertex, its GPU representation
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may not be efficient under the GPGPU model. CUDA allows arrays of arbitrary sizes
to be created and hence can represent graph using adjacency lists.

We represent graphs in compact adjacency list form, with adjacency lists packed into
a single large array. Each vertex points to the starting position of its own adjacency list
in this large array of edges. Vertices of graph G(V,E) are represented as an array Va.
Another array Ea of adjacency lists stores the edges with edges of vertex i + 1 imme-
diately following the edges of vertex i for all i in V . Each entry in the vertex array Va

corresponds to the starting index of its adjacency list in the edge array Ea. Each entry
of the edge array Ea refers to a vertex in vertex array Va (Figure 3).

Fig. 3. Graph representation with vertex list pointing to a packed edge list

3.2 Breadth First Search

BFS finds use in state space searching, graph partitioning, automatic theorem proving,
etc., and is one of the most used graph operation in practical graph algorithms. The BFS
problem is, given an undirected, unweighted graph G(V,E) and a source vertex S, find
the minimum number of edges needed to reach every vertex V in G from source vertex
S. The optimal sequential solution for this problem takes O(V + E) time.

CUDA implementation of BFS. We solve the BFS problem using level synchroniza-
tion. BFS traverses the graph in levels; once a level is visited it is not visited again. The
BFS frontier corresponds to all the nodes being processed at the current level. We do
not maintain a queue for each vertex during our BFS execution because it will incur
additional overheads of maintaining new array indices and changing the grid configu-
ration at every level of kernel execution. This slows down the speed of execution on the
CUDA model.

For our implementation we give one thread to every vertex. Two boolean arrays,
frontier and visited, Fa and Xa respectively, of size |V | are created which store the BFS
frontier and the visited vertices. Another integer array, cost, Ca, stores the minimal
number of edges of each vertex from the source vertex S. In each iteration, each vertex
looks at its entry in the frontier array Fa. If true, it fetches its cost from the cost array
Ca and updates all the costs of its neighbors if more than its own cost plus one using
the edge list Ea. The vertex removes its own entry from the frontier array Fa and adds
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Algorithm 1. CUDA BFS (Graph G(V,E), Source Vertex S)
1: Create vertex array Va from all vertices and edge Array Ea from all edges in G(V,E),
2: Create frontier array Fa, visited array Xa and cost array Ca of size V .
3: Initialize Fa, Xa to false and Ca to ∞
4: Fa[S] ← true, Ca[S] ← 0
5: while Fa not Empty do
6: for each vertex V in parallel do
7: Invoke CUDA BFS KERNEL(Va,Ea,Fa,Xa,Ca) on the grid.
8: end for
9: end while

Algorithm 2. CUDA BFS KERNEL (Va,Ea,Fa,Xa,Ca)
1: tid ← getThreadID
2: if Fa[tid] then
3: Fa[tid] ← false, Xa[tid] ← true
4: for all neighbors nid of tid do
5: if NOT Xa[nid] then
6: Ca[nid] ← Ca[tid]+1
7: Fa[nid] ← true
8: end if
9: end for

10: end if

to the visited array Xa. It also adds its neighbors to the frontier array if the neighbor is
not already visited. This process is repeated until the frontier is empty. This algorithm
needs iterations of order of the diameter of the graph G(V,E) in the worst case.

Algorithm 1 runs on the CPU while algorithm 2 runs on the 8800 GTX GPU. The
while loop in line 5 of Algorithm 1 terminates when all the levels of the graph are tra-
versed and frontier array is empty. Results of this implementation are given in Figure 4.

3.3 Single Source Shortest Path

Single source shortest path (SSSP) problem is, given weighted graph G(V,E,W ) with
positive weights and a source vertex S, find the smallest combined weight of edges
that is required to reach every vertex V from source vertex S. Dijkstra’s algorithm is
an optimal sequential solution to SSSP problem with time complexity O(V logV + E).
Although parallel implementations of the Dijkstra’s SSSP algorithm are available [12],
an efficient PRAM algorithm does not exist.

CUDA implementation of SSSP. The SSSP problem does not traverse the graph in
levels. The cost of a visited vertex may change due to a low cost path being discovered
later. The termination is based on the change in cost.

In our implementation, we use a vertex array Va an edge array Ea, boolean mask Ma

of size |V |, and a weight array Wa of size |E|. In each iteration each vertex checks if it
is in the mask Ma. If yes, it fetches its current cost from the cost array Ca and its neigh-
bor’s weights from the weight array Wa. The cost of each neighbor is updated if greater
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Algorithm 3. CUDA SSSP (Graph G(V,E,W ), Source Vertex S)
1: Create vertex array Va, edge array Ea and weight array Wa from G(V,E,W )
2: Create mask array Ma, cost array Ca and Updating cost array Ua of size V
3: Initialize mask Ma to false, cost array Ca and Updating cost array Ua to ∞
4: Ma[S] ← true, Ca[S] ← 0, Ua[S] ← 0
5: while Ma not Empty do
6: for each vertex V in parallel do
7: Invoke CUDA SSSP KERNEL1(Va,Ea,Wa,Ma,Ca,Ua) on the grid
8: Invoke CUDA SSSP KERNEL2(Va,Ea,Wa,Ma,Ca,Ua) on the grid
9: end for

10: end while

Algorithm 4. CUDA SSSP KERNEL1 (Va,Ea,Wa,Ma,Ca,Ua)
1: tid ← getThreadID
2: if Ma[tid] then
3: Ma [tid] ← false
4: for all neighbors nid of tid do
5: if Ua[nid]> Ca[tid]+Wa[nid] then
6: Ua[nid] ← Ca[tid]+Wa[nid]
7: end if
8: end for
9: end if

than the cost of current vertex plus the edge weight to that neighbor. The new cost is
not reflected in the cost array but is updated in an alternate array Ua. At the end of the
execution of the kernel, a second kernel compares cost Ca with updating cost Ua. It up-
dates the cost Ca only if it is more than Ua and makes its own entry in the mask Ma. The
updating cost array reflects the cost array after each kernel execution for consistency.

The second stage of kernel execution is required as there is no synchronization be-
tween the CUDA multiprocessors. Updating the cost at the time of modification itself
can result in read after write inconsistencies. The second stage kernel also toggles a
flag if any mask is set. If this flag is not set the execution stops. Newer version of
CUDA hardware (ver 1.1) supports atomic read/write operations in the global memory
which can help resolve inconsistencies. 8800 GTX is CUDA version 1.0 GPU and does
not support such operations. Timings for SSSP CUDA implementations are given in
Figure 4.

Algorithm 5. CUDA SSSP KERNEL2 (Va,Ea,Wa,Ma,Ca,Ua)
1: tid ← getThreadID
2: if Ca[tid] > Ua[tid] then
3: Ca[tid] ← Ua[tid]
4: Ma[tid] ← true
5: end if
6: Ua[tid] ← Ca[tid]
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3.4 All Pairs Shortest Path

All pairs shortest path problem is, given weighted graph G(V,E,W ) with positive
weights, find the least weighted path from every vertex to every other vertex in the graph
G(V,E,W ). Floyd Warshall’s all pair shortest path algorithm requires O(V 3) time and
O(V 2) space. Since APSP requires O(V 2) space, it is impossible to go beyond a few
thousand vertices for a graph on the GPU, due to the limited memory size. We show re-
sults on smaller graphs for this implementation. An implementation of Floyd Warshall’s
algorithm on SM 3.0 GPU can be found in [9]. Another approach for all pair shortest
path is running SSSP from all vertices sequentially, this approach requires O(V ) space
as can be seen by SSSP implementation in section 3.3. For this approach, we show
results on larger graphs.

CUDA implementation of APSP. Since the output is of O(V 2), we use an adjacency
matrix for graphs rather than the representation given in section 3.1. We use V 2 threads,
each running the classic CREW PRAM parallelization of Floyd Warshall algorithm
(Algorithm 6). Floyd Warshall algorithm can also be implemented using O(V ) threads,
each running a loop of O(V ) inside it. We found this approach to be much slower
because of the sequential access of entire vertex array by each thread. For example on
a 1K graph it took around 9 seconds as compared to 1 second taken by Algorithm 6.

Algorithm 6. Parallel-Floyd-Warshall(G(V,E,W))
1: Create adjacency Matrix A from G(V,E,W )
2: for k from 1 to V do
3: for all Elements in the Adjacency Matrix A, where 1 ≤ i, j ≤ V in parallel do
4: A[i, j] ← min(A[i, j], A[i,k]+A[k, j])
5: end for
6: end for

The CUDA kernel code implements line 4 of Algorithm 6. The rest of the code is
executed on the CPU. Results on various graphs for all pair shortest path are given in
Figure 6.

Another alternative to find all pair shortest paths is to run SSSP algorithm from every
vertex in graph G(V,E,W ) (Algorithm 7). This will require only the final output size
to be of O(V 2), all intermediate calculations do not require this space. The final output
could be stored in the CPU memory. Each iteration of SSSP will output a vector of size
O(V ), which can be copied back to the CPU memory. This approach does not require
the graph to be represented as an adjacency matrix, hence the representation given in
section 3.1 can be used, which makes it suitable for large graphs. We implemented this
approach and the results are given in Figure 6. This runs faster than the parallel Floyd
Warshall algorithm because it is a single O(V ) operation looping over O(V ) threads. In
contrast, the Floyd Warshall algorithm requires a single O(V ) operation looping over
O(V 2) threads which creates extra overhead for context switching the threads on the
SIMD processors. Thus, due to the overhead for context switching of threads, the Floyd
Warshall algorithm exhibits a slow down.
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Algorithm 7. APSP USING SSSP(G(V,E,W ))
1: Create vertex array Va, edge array Ea, weight array Wa from G(V,E,W ),
2: Create mask array Ma, cost array Ca and updating cost array Ua of size V
3: for S from 1 to V do
4: Ma[S] ← true
5: Ca[S] ← 0
6: while Ma not Empty do
7: for each vertex V in parallel do
8: Invoke CUDA SSSP KERNEL1(Va,Ea,Wa,Ma,Ca,Ua) on the grid
9: Invoke CUDA SSSP KERNEL2(Va,Ea,Wa,Ma,Ca,Ua) on the grid

10: end for
11: end while
12: end for

4 Experimental Results

All CUDA experiments were conducted on a PC with 2 GB RAM, Intel Core 2 Duo
E6400 2.3GHz processor running Windows XP with one Nvidia GeForce 8800GTX.
The graphics card has 768 MB RAM on board. For the CPU implementation, a PC with
3 GB RAM and an AMD Athlon 64 3200+ running 64 bit version of Fedora Core 4 was
used. Applications were written in CUDA version 0.8.1 and C++ using Visual Studio
2005. Nvidia Graphics driver version 97.73 was used for CUDA compatibility. CPU
applications were written in C++ using standard template library.

The results for CUDA BFS implementation and SSSP implementations are sum-
marized in Figure 4 for random general graphs. As seen from the results, for graphs
with millions of vertices and edges the GPU is capable of performing BFS at high
speeds. Implementation of Bader et al. of BFS for a 400 million vertex, 2 billion
edges graph takes less than 5 seconds on a CRAY MTA-2, the 40 processor supercom-
puter [2], which costs 5–6 orders more than a CUDA hardware. We also implemented
BFS on CPU, using C++ and found BFS on GPU to be 20–50 times faster than its CPU
counterpart.

SSSP timings are comparable to that of BFS for random graphs given in Figure 4,
due to the randomness associated in these graphs. Since the degree per vertex is 6–7 and
the weights vary from 1–10 in magnitude it is highly unlikely to have a less weighted
edge coming back from a far away level. We compare our results with the SSSP CPU
implementation, our algorithm is 70 times faster than its CPU counterpart on an average.

Many real world networks fall under the category of scale free graphs. In such graphs
a few vertices are of high degree while the rest are of low degree. For these graphs we
kept the maximum degree of any vertex to be 1000 and average degree per vertex to be
6. A small fraction (0.1%) of the total number of vertices were given high degrees. The
results are summarized in Figure 5. As seen from the results, BFS and SSSP are slower
for scale free graphs as compared to random graphs. Because of the large degree at some
vertices, the loop inside the kernel (line 4 of Algorithm 2 and line 4 of Algorithm 4)
increases, which results in more lookups to the device memory slowing down the kernel
execution time. Loops of non-uniform lengths are inefficient on a SIMD architecture.
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Fig. 7. Graphs with 100K vertices with varying
degree per vertex, weights 1–10

Figure 6 summarizes results of all pair shortest path implementation on the CUDA
architecture. The SSSP implementation of all pair shortest path requires only one vector
of O(V ) to be copied to the CPU memory in each iteration, it does not require adjacency
matrix representation of the graph and hence only O(V ) threads are required for its
operation. For even larger graphs this approach gives acceptable results. For example on
a graph with 100K vertices, 6 degree per vertex, it takes around 22 minutes to compute
APSP. We also implemented CPU version of the Floyd Warshall algorithm and found
an average improvement of a factor of 3 for the Floyd Warshall CUDA algorithm and a
factor of 17 for the all pair shortest path using SSSP CUDA implementation. As shown
by the results APSP using SSSP is faster than Floyd Warshall’s APSP algorithm on the
GPU, it was found to be orders of magnitude slower when implemented on the CPU.

Figure 7 summarizes the results for BFS and SSSP implementations for increase
in degree per vertex. As the degree increases the time taken by both BFS and SSSP
increases almost linearly, owing to the lookup cost for each vertex in the device memory.

Table 1 summarizes the results for BFS and SSSP for real world data. The graphs
were downloaded from the DIMACS challenge site [1]. The results show that for both
BFS and SSSP the GPU is slower than CPU on these graphs. This is due to the low
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Table 1. BFS and SSSP timings for real world graphs with 2–3 degree per vertex, weights are in
the range 1–300K

Number of Number of BFS CPU BFS GPU SSSP CPU SSSP GPU
Vertices Edges time(ms) time(ms) time(ms) time(ms)

New York 250K 730K 313.117 126.04 1649.85 760.14
Florida 1M 2.7M 1055.22 1143.99 7357.83 7906.49

USA-East 3M 8M 3844.35 4005.75 27000.2 35777.52
USA-West 6 M 15M 6688.78 7853.19 48814.4 63749.54

average degree of these graphs. A degree of 2–3 makes these graphs almost linear. In
the case of linear graphs parallel algorithms cannot gain much as it becomes necessary
to process every vertex in each iteration and hence the performance decreases.

5 Conclusions and Future Work

In this paper, we presented fast implementations of a few fundamental graph algorithms
for large graphs on the GPU hardware. These algorithms have wide practical applica-
tions. We presented fast solutions of BFS, SSSP, and APSP on large graphs at high
speeds using a GPU instead of expensive supercomputers. The Nvidia 8800GTX costs
$600 today and will be much cheaper before this article comes to print. The CUDA
model can exploit the GPU hardware as a massively parallel co-processor.

The size of the device memory limits the size of the graphs handled on a single GPU.
The CUDA programming model provides an interface to use multiple GPUs in parallel
using multi-GPU bridges. Up to 2 synchronized GPUs can be combined using the SLI
interface. Nvidia QuadroPlex is a CUDA enabled graphics solution with two Quadro
5600 cards each. Two such systems can be supported by a single CPU to give even
better performance than the 8800GTX. Nvidia has announced its Tesla range of GPUs,
with up to four 8800 cores and higher memory capacity, targeted at high performance
computing. Further research is required on partitioning the problem and streaming the
data from the CPU to GPU to handle even larger datasets. External memory approaches
can be adapted to the GPUs for this purpose.

Another drawback of the GPUs is the lack of double or higher precision, a serious
limitation for scientific applications. The regular graphics rendering applications and
games – which drive the GPU market – do not require high precisions. Graphics hard-
ware vendors have announced limited double precision support to make their hardware
more appealing to high performance computing community. The use of GPUs as eco-
nomical, high-performanceco-processors can be a significant driving force in the future.
It has the potential to bring double precision support to the GPU hardware in the future.
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