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ABSTRACT
It has been well established that most operating system
crashes are due to bugs in device drivers. Because drivers are
normally linked into the kernel address space, a buggy driver
can wipe out kernel tables and bring the system crashing to
a halt. We have greatly mitigated this problem by reduc-
ing the kernel to an absolute minimum and running each
driver as a separate, unprivileged process in user space. In
addition, we implemented a POSIX-conformant operating
system as multiple user-mode processes. In this design, all
that is left in kernel mode is a tiny kernel of under 3800 lines
of executable code for catching interrupts, starting and stop-
ping processes, and doing IPC. By moving nearly the entire
operating system to multiple, protected user-mode processes
we reduce the consequences of faults, since a driver failure no
longer is fatal and does not require rebooting the computer.
In fact, our system incorporates a reincarnation server that
is designed to deal with such errors and often allows for full
recovery, transparent to the application and without loss of
data. To achieve maximum reliability, our design was guided
by simplicity, modularity, least authorization, and fault tol-
erance. This paper discusses our lightweight approach and
reports on its performance and reliability. It also compares
our design to other proposals for protecting drivers using
kernel wrapping and virtual machines.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design;
D.4.5 [Operating Systems]: Reliability;
D.4.8 [Operating Systems]: Performance

General Terms
Design, Experimentation, Reliability, Performance

‘Perfection is not achieved when there is nothing left to
add, but when there is nothing left to take away.’

– Antoine de Saint-Exupéry [9]

1. INTRODUCTION
For many computer users, the biggest perceived problem
with using computers is that they are so unreliable. Com-
puter science researchers are used to computers crashing reg-
ularly and installing software patches every few months, and
may find this normal. The vast majority of users, however,
consider this lack of reliability unacceptable. Their mental
model of how an electronic device should work is based on
their experience with TV sets and video recorders: you buy
it, plug it in, and it works perfectly for the next 10 years.
No crashes, no semiannual software updates, no newspaper
stories about the most recent in an endless string of viruses
lurking out there somewhere. To make computers more like
TV sets, the goal of our research is to improve the reliability
of computer systems, starting with operating systems.

1.1 Why do Systems Crash?
The underlying reason that operating systems crash can be
traced back to two fundamental design flaws they all share:
too many privileges and lack of adequate fault isolation. Vir-
tually all operating systems consist of many modules linked
together in one address space to form a single binary pro-
gram that runs in kernel mode. A bug in any module can
easily trash critical data structures in an unrelated module
and bring the system down in an instant. The reason for
linking all the modules together in a single address space,
with no protection between the modules, is that designers
have made a Faustian bargain: better performance at the
cost of more system crashes. We will quantitatively examine
the price of this trade-off below.

A closely related issue is why crashes occur in the first
place. After all, if every module were perfect, there would
be no need for fault isolation between the modules because
there would be no faults to propagate. We assert that most
faults are due to programming errors (bugs) and are largely
the consequence of too much complexity and the use of for-
eign code. Studies have shown that software averages 1-16
bugs per 1000 lines of code [27, 22, 2] and this range is
surely an underestimate because only bugs that were ulti-
mately found were counted. The obvious conclusion of these
studies is: more code means more bugs. As software devel-
ops, each new release tends to acquire more features (and
thus more code) and is often less reliable than its predeces-
sor. Studies [22] have shown that the number of bugs per
thousand lines of code tends to stabilize after many releases
and does not go asymptotically to zero.



Some of these bugs are exploited by attackers to allow
viruses and worms to infect and damage systems. Thus
some alleged ‘security’ problems have nothing to do with the
security measures in principle (e.g., flawed cryptography or
broken authorization protocols), but are simply due to code
bugs (e.g., buffer overruns that allow execution of injected
code). In this paper, when we talk about ‘reliability,’ we also
mean what is often referred to as ‘security’—unauthorized
access as a result of a bug in the code.

The second problem is introducing foreign code into the
operating system. Most sophisticated users would never al-
low a third party to insert unknown code into the heart of
their operating system, yet when they buy a new peripheral
device and install the driver, this is precisely what they are
doing. Device drivers are usually written by programmers
working for the peripheral manufacturer, which typically has
less quality control than the operating system vendor. When
the driver is an open-source effort, it is often authored by a
well-meaning but not necessarily experienced volunteer and
with even less quality control. In Linux, for example, the er-
ror rate on device drivers is three to seven times higher than
in the rest of the kernel [7]. Even Microsoft, which has the
motivation and resources to apply tighter quality controls,
does not do any better: 85% of all Windows XP crashes are
due to code bugs in device drivers [25].

Recently, related efforts have been reported on isolating
device drivers using the MMU hardware [26] and virtual
machines [19]. These techniques are focused on handling
problems in legacy operating systems; we will discuss them
in Sec. 6. Our approach, in contrast, achieves reliability
through a new, lightweight operating system design.

1.2 The Solution: Proper Fault Isolation
For decades, the proven technique for handling untrusted
code has been to put it in a separate process and run it
in user mode. One of the key observations of the research
reported in this paper is that a powerful technique for in-
creasing operating system reliability is to run each device
driver as a separate user-mode process with only the mini-
mal privileges required. In this way, faulty code is isolated,
so a bug in say, the printer driver, may cause printing to
cease, but it cannot write garbage all over key kernel data
structures and bring the system down.

In this paper, we will carefully distinguish between an
operating system collapse, which requires rebooting the com-
puter, and a server or driver failure or crash, which in our
system, does not. In many cases, a faulty user-mode driver
can be killed and replaced without restarting other parts of
the (user-mode) operating system.

We do not believe that bug-free code is likely to appear
soon, certainly not in operating systems, which are usually
written in C or C++. Unfortunately, programs written in
these languages make heavy use of pointers, a rich source
of bugs. Our approach is therefore based on the ideas of
modularity and fault isolation. By breaking the system into
many self-contained modules, each running in a separate
user-space process, we were able to reduce the part that
runs in kernel mode to a bare minimum and to keep faults
in other modules from spreading. Making the kernel small

greatly reduces the number of bugs it is likely to contain.
The small size also reduces its complexity and makes it eas-
ier to understand, which also helps the reliability. Hence,
we followed Saint-Exupéry’s dictum and made the kernel as
small as humanly possible: under 3800 lines of code.

One objection that has always been raised about such
minimal kernel designs is that they are slow due to the ad-
ditional context switches and data copies required when dif-
ferent modules in user space need to communicate with one
another. This fear is mostly due to historical reasons and
we argue that these reasons to a large extent no longer hold.
First, new research insights has proven that minimal ker-
nel design do not necessarily cripple the performance [3, 23,
15]. Smaller kernels and clever multiserver protocols help to
limit the performance penalty. Second, the vast increase in
computer power in the past decade has greatly reduced the
absolute performance penalty incurred by a modular design.
Third, we believe the time has come when most users would
gladly sacrifice some performance for better reliability.

We provide a detailed discussion of the performance of
our system in Sec. 5. However, we briefly mention three
preliminary performance measurements to support our case
that minimal kernel systems need not be slow. First, the
measured time for the simplest system call, getpid, is 1.01 µs
on a 2.2 GHz Athlon. This means that a program execut-
ing 10,000 system calls/sec wastes only 1% of the CPU on
context switching overhead, and few programs make 10,000
system calls/sec. Second, our system is able to do a build
of itself, including the kernel and the required user-mode
parts, compiling 123 files and doing 11 links, within 4 sec-
onds. Third, the boot time, as measured between exiting
the multiboot monitor and getting the login prompt, is less
than 5 seconds. At that point, a full POSIX-conformant
operating system is ready to use.

1.3 The Contribution of This Paper
The research reported in this paper is trying to answer the
question: How do you prevent a serious bug (e.g., a bad
pointer or infinite loop) in a device driver such as a printer
driver from crashing or hanging the entire operating system?

Our approach was to design a reliable, multiserver oper-
ating system on top of a tiny kernel that does not contain
any foreign, untrusted code. To isolate faults properly each
server and driver runs as a separate, unprivileged user-mode
process. In addition, we added mechanisms to recover from
common failures. We describe the reliability features in de-
tail and explain why they are absent in traditional mono-
lithic operating systems. We also discuss measurements we
made of its performance and show that the reliability fea-
tures slow the system down by about 5-10%, but make it
able to withstand bad pointers, infinite loops, and other bugs
that would crash or hang traditional operating systems.

While none of these individual aspects, such as small
kernels, user-mode device drivers, or multiserver systems is
new, no one before has put all the pieces together to build a
small, flexible, modular, UNIX clone that is far more fault-
tolerant than normal UNIX systems, while the performance
loss is only 5% to 10% compared to our base system with
drivers in the kernel.



Furthermore, our approach is fundamentally different
from related efforts as we do not focus on commodity oper-
ating systems. Instead, we obtain reliability through a new,
lightweight design. Rather than adding additional reliabil-
ity code to patch unreliable systems, we split the operating
system into small components and achieve reliability by ex-
ploiting the system’s modularity. While our techniques can-
not be applied to legacy operating systems, we believe they
make future operating systems more reliable.

We start out by describing how our design compares to
other operating system structures (Sec. 2) followed by an
extensive discussion of the reliability features of our system
(Sec. 3). Then we analyze the system’s reliability (Sec. 4)
and performance (Sec. 5) based on actual measurements.
Finally, we examine related work (Sec. 6) and present our
conclusions (Sec. 7).

2. OPERATING SYSTEM DESIGN
This project is about building a more reliable operating sys-
tem. Before describing our design in detail we will briefly
discuss how the choice of an operating system structure can
immediately affect its reliability. For our purposes, we dis-
tinguish between two operating system structures: mono-
lithic systems and minimal kernel systems. In addition there
are other types of operating systems, such as exokernels [10]
and virtual machines [24]. They are not directly relevant to
this paper, but we will revisit them in Sec. 6.

2.1 Problems with Monolithic Systems
In a standard monolithic system, the kernel contains the
entire operating system linked in a single address space and
running in kernel mode, as shown in Fig. 1. The kernel may
be structured into components or modules, as indicated by
the dashed rectangular boxes, but there are no protection
boundaries around the components. In contrast, the solid
rounded rectangles indicate separate user-mode processes,
each of which runs in a separate address space protected by
the MMU hardware.

Monolithic operating systems have a number of prob-
lems that are inherent to their design. While some of these
problems were already mentioned in the introduction, we
summarize them here:

1. No proper isolation of faults.
2. All code runs at the highest privilege level.
3. Huge amount of code implying many bugs.
4. Untrusted, third-party code in the kernel.
5. Hard to maintain due to complexity.

This list of properties questions the reliability of monolithic
systems. It is important to realize that these properties
are not due to a bad implementation, but are fundamental
problems that stem from the operating system design.

The kernel is assumed to be correct, while its size alone
means that it must contain numerous bugs [27, 22, 2]. More-
over, with all operating system code running at the highest
privilege level and no proper fault containment, any bug
might be fatal. A malfunctioning third-party device driver,
for example, can easily destroy key data structures and take
down the entire system. That this scenario is a serious threat
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Figure 1: Structure of a monolithic system. The
entire operating system runs in kernel mode without
proper fault isolation.

follows from the observation that the majority of operating
system crashes are caused by device drivers [7, 25]. Yet
another problem is that the immense size of monolithic ker-
nels makes them very complex and hard to fully understand.
Without a global understanding of the kernel even the most
experienced programmers can easily introduce faults by not
being aware of some peculiar side-effect of their actions.

2.2 Minimal Kernel Systems
At the other extreme is the minimal kernel, which contains
only the barest mechanism, but no policy. A minimal ker-
nel provides interrupt handlers, a mechanism for starting
and stopping processes (by loading the MMU and CPU reg-
isters), a scheduler, and interprocess communication, but
ideally nothing else. Standard operating system functional-
ity that is present in a monolithic kernel is moved to user
space, and no longer runs at the highest privilege level.

Different operating system organizations are possible on
top of a minimal kernel. One option is to run the entire
operating system in a single user-mode server, but in such
a design the same problems as in a monolithic system ex-
ist, and bugs can still crash the entire user-mode operating
system. In Sec. 6, we will discuss some work in this area.

A better design is to run each untrusted module as a sep-
arate user-mode process that is isolated from the others. We
took this idea to the extreme and fully compartmentalized
our system, as shown in Fig. 2. All operating system func-
tionality, such as device drivers, the file system, the network
server and high-level memory management, runs as a sepa-
rate user process that is encapsulated in a private address
space. This model can be characterized as a multiserver
operating system.

Logically, our user processes can be structured into three
layers, although from the kernel’s point of view, they are all
just processes. The lowest level of user-mode processes are
the device drivers, each one controlling some device. We
have implemented drivers for IDE, floppy, and RAM disks,
keyboards, displays, audio, printers, and various Ethernet
cards. Above the driver layer are the server processes. These
include the file server, process server, network server, in-
formation server, reincarnation server, and others. On top
of the servers come the ordinary user processes, including
shells, compilers, utilities, and application programs. With
a small number of minor exceptions, the servers and drivers
are normal user processes.
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Figure 2: Structure of our system. The operating
system runs as a collection of isolated user-mode
processes on top of a tiny kernel.

To avoid any ambiguity, we note again that each server
and driver runs as a separate user process with its own ad-
dress space completely disjoint from the address spaces of
the kernel and other servers, drivers, and user processes. In
our design, processes do not share any virtual address space
and can only communicate with each other using the IPC
mechanisms that are provided by the kernel. This point is
crucial to the reliability as it prevents faults in one server or
driver from spreading to a different one, in exactly the same
way that a bug in a compilation going on in one process
cannot affect what a browser in a different process is doing.

In user mode, the operating system processes are re-
stricted in what they can do. Therefore, to support the
servers and drivers in performing their tasks, the kernel ex-
ports a number of kernel calls that authorized processes can
make. Device drivers, for example, no longer have privileges
to perform I/O directly, but can request the kernel to do the
work on their behalf. In addition, servers and drivers can
request services from each other. All such IPC is done by
exchanging small, fixed-size messages. This message passing
is implemented as traps to the kernel, which checks the call
being requested to see if the caller is authorized to make it.

Now let us consider a typical kernel call. An operating
system component running as a user-mode process may need
to copy data to/from another address space, but cannot be
trusted to be given access to raw memory. Instead, kernel
calls are provided to copy to/from valid virtual addresses
within the data segment of a target process. This is a far
weaker call than giving it the ability to write to any word
in memory, but it still has considerable power, so its use
is restricted to operating system processes that need to do
interaddress space block copies. Ordinary user processes are
prohibited from using it.

Given this structure, we can now explain how user pro-
cesses obtain the operating system services defined by the
POSIX standard. A user process wanting to make, say, a
READ call builds a message giving the system call number
and (pointers to) the parameters and executes the kernel
trap to send the little request message to the file server, an-
other user process. The kernel makes sure that the caller is
blocked until the request has been served by the file server.
By default all communication between processes is denied
for security reasons, but this request succeeds because com-
munication with the file server is explicitly allowed to ordi-
nary user processes.

If the file server has the requested data in its buffer
cache, it makes a kernel call asking the kernel to copy it
to the user’s buffer. If the file server does not have the data,
it sends a message to the disk driver requesting the necessary
block. The disk driver then commands the disk to read the
block directly to the address within the file server’s buffer
cache. When the disk transfer is complete, the disk driver
sends a reply message back to the file server giving it the
status of the request (success or the reason for failure). The
file server then makes a kernel call asking the kernel to copy
the block to the user’s address space.

This scheme is simple and elegant and separates the
servers and drivers from the kernel so they can be replaced
easily, making for a modular system. Although up to four
messages are required here, these are very fast (under 500 ns
each, depending on the CPU). When both the sender and
receiver are ready, the kernel copies the message directly
from the sender’s buffer to the receiver without first putting
it into its own address space. Furthermore, the number
of times the data are copied is precisely the same as in a
monolithic system: the disk puts the data directly in the
file server’s buffer cache and there is one copy from there to
the user process.

2.3 Design Principles
Before we move on to a detailed treatment of the reliability
features of our system we will now briefly discuss the design
principles that guided our quest for reliability:

1. Simplicity.
2. Modularity.
3. Least authorization.
4. Fault tolerance.

First, we have kept our system as simple as possible so
that it is easy to understand and thus more likely to be
correct. This concerns both the high-level design and im-
plementation. Our design structurally avoids known prob-
lems such as resource exhaustion. If needed we explicitly
trade resources and performance for reliability. The kernel,
for example, statically declares all data structures instead
of dynamically allocating memory when needed. While this
may waste some memory, it is much simpler to manage and
can never fail. As another example, we have deliberately not
implemented multithreading. This may (or may not) cost
some performance, but not having to care about potential
race conditions and thread synchronization makes life much
easier for the programmer.

Second, we have split our system into a collection of
small, independent modules. Exploiting modularity proper-
ties, such as fault containment, is a crucial element of the
design of our system. By fully compartmentalizing the oper-
ating system we can establish ‘firewalls’ across which errors
cannot propagate, thus resulting in a more robust system.
To prevent failures in one module from indirectly affecting
another module, we structurally reduced interdependencies
as much as possible. When this was not possible due to the
nature of the modules we employed additional safety mea-
sures. The file system, for example, depends on the device
drivers, but is designed in such a way that it is prepared to
handle a driver failure.



Third, we enforce the principle of least authorization.
While isolation of faults helps to keep faults from spread-
ing, a fault in a powerful module still might cause substan-
tial damage. Therefore, we have reduced the privileges of all
user processes, including the servers and drivers, as far as we
could. The kernel maintains several bit maps and lists that
govern who can do what. These include, for example, the
allowed kernel call map and the list of permitted message
destinations. This information is centralized in each pro-
cess’ process table entry, so it can be tightly controlled and
managed easily. It is initialized at boot time largely from
configuration tables created by the system administrator.

Fourth, we have explicitly designed our system to with-
stand certain failures. All servers and drivers are managed
and monitored by a special server known as the reincarna-
tion server that can handle two kinds of problems. If a sys-
tem process unexpectedly exits this is immediately detected
and the process will be restarted directly. In addition, the
status of each system process is periodically checked to see
if it is still functioning properly. If not, the malfunctioning
server or driver is killed and restarted. This is how fault
tolerance works: a fault is detected, the faulty component is
replaced, but the system continues running the entire time.

3. RELIABILITY FEATURES
We believe that our design improves system reliability over
all current operating systems in three important ways:

1. It reduces the number of critical faults.
2. It limits the damage each bug can do.
3. It can recover from common failures.

In the following subsections we will explain why. We will
also compare how certain classes of bugs affect our system
versus how they affect monolithic systems such as Windows,
Linux, and BSD. In Sec. 6, we will compare our approach
to reliability to other ideas proposed in the literature.

3.1 Reducing the Number of Kernel Bugs
Our first line of defense is a very small kernel. It is well
understood that more code means more bugs, so having a
small kernel means fewer kernel bugs. Using an estimate of 6
bugs per 1000 lines of executable code as the lower limit [27],
with 3800 lines of executable code are probably at least 22
bugs in the kernel. Furthermore, 3800 lines of code (under
100 pages of listing, including headers and comments) is
sufficiently small that a single person can understand all of
it, greatly enhancing the chance that in the course of time
all the bugs can be found.

In contrast, a monolithic system such as Linux with
2.5 million lines of executable code in the kernel is likely
to have at least 6 x 2500 = 15,000 bugs. Moreover, with
multimillion-line systems, no person will ever read the com-
plete source code and fully understand it working, thus re-
ducing the chance that all the bugs will ever be found.

3.2 Reducing Bug Power
Of course, reducing the size of the kernel does not reduce
the amount of code present. It just shifts most of it to user
mode. However, this change itself has a profound effect on

reliability. Kernel code has complete access to everything
the machine can do. Kernel bugs can accidentally trigger
I/O or do the wrong I/O or interfere with the memory map
or many other things that unprivileged user-mode programs
cannot do.

Thus we are not arguing that moving most of the op-
erating system to user mode reduces the total number of
bugs present. We are arguing that when a bug is triggered,
the effects will be less devastating by converting it from a
kernel-mode bug to a user-mode bug. For example, a user-
mode sound driver that tries to dereference a bad pointer is
killed by the process server, causing the sound to stop, but
leaving the rest of the system unaffected.

In contrast, consider a bug in a kernel-mode sound driver
that inadvertently overwrites the stacked return address of
its procedure and then makes a wild jump when it returns
in a monolithic design. It might land on the memory man-
agement code and start corrupting key data structures such
as page tables and memory-hole lists. Monolithic systems
are very brittle in this respect and tend to collapse when a
bug is triggered.

3.3 Recovering from Failures
Servers and drivers are started and guarded by a system
process called the reincarnation server. If a guarded process
unexpectedly exits or crashes this is immediately detected—
because the process server notifies the reincarnation server
whenever a server or driver terminates—and the process
is automatically restarted. Furthermore, the reincarnation
server periodically polls all servers and drivers for their sta-
tus. If one does not respond correctly within a specified
time interval, the reincarnation server kills and restarts the
misbehaving server or driver. Since most I/O bugs tend to
be transient, due to rare timing, deadlocks, and the like, in
many cases just restarting the driver will cure the problem.

A driver failure also has consequences for the file sys-
tem. Outstanding I/O requests might be lost, and in some
cases an I/O error must be reported back to the application.
In many cases, full recovery is possible, though. A more de-
tailed discussion of the reincarnation server and application-
level reliability is given in Sec. 4.

Monolithic systems do not usually have have the ability
to detect faulty drivers on the fly like this, although some
recent work in this area has been reported [25]. Neverthe-
less, replacing a kernel driver on the fly is tricky since it can
hold kernel locks or be in a critical section at the time of
replacement.

3.4 Limiting Buffer Overruns
Buffer overruns are a famously rich source of errors that are
heavily exploited by viruses and worms. While our design
is intended to cope with bugs rather than malicious code,
some features in our system offer protection against certain
types of exploits. Since our kernel is minimal and uses only
static allocation of data, the problem is unlikely to occur in
the most sensitive part of the system. If a buffer overrun
occurs in one of the user processes, the problem is not as
severe because the user-mode servers and drivers are limited
in what they can do.



Furthermore, our system only allows execution of code
that is located in a read-only text segment. While this
does not prevent buffer overruns from occurring, it makes it
harder to exploit them because excess data that ends up on
the stack or heap cannot be executed. This defense mech-
anism is extremely important since it prevents viruses and
worms from injecting and executing their own code. The
worst case scenario changes from giving direct control to
overwriting the return address on the stack and executing an
existing library procedure of choice. The most well-known
example is often referred to as a ‘return-to-libc’ attack and
is considered significantly more complex than execution of
code on the stack or heap.

On monolithic systems, in contrast, root privileges are
gained if the buffer overrun occurs in any part of the op-
erating system. Moreover, many monolithic systems allow
execution of code on the stack or heap, making it much eas-
ier to exploit buffers overruns.

3.5 Ensuring Reliable IPC
A well-known problem with message passing is buffer man-
agement, but we avoid this problem altogether in our design
of our communication primitives. Our synchronous message
passing mechanism uses rendezvous, which eliminates the
need for buffering and buffer management, and cannot suf-
fer from resource exhaustion. If the receiver is not waiting,
a SEND blocks the caller. Similarly, a RECEIVE blocks if
there is no message pending for it. This means that for a
given process only a single pointer to a message buffer has
to be stored at any time in the process table.

In addition, we have an asynchronous message passing
mechanism, NOTIFY, that also is not susceptible to re-
source exhaustion. Notification messages are typed and for
each process only one bit per type is saved. All pending
notifications thus can be stored in a compact bit map that
is statically declared as part of the process table. Although
the amount of information that can be passed this way is
limited, this design was chosen for its reliability.

As an aside, we avoid buffer overruns in our IPC by
restricting all communication to short fixed-length messages.
The message is a union of several typed message formats,
so the size is automatically chosen by the compiler as the
largest of the valid message types, which depends on the
size of integers and pointers. All requests and replies use
this message passing mechanism.

3.6 Restricting IPC
IPC is a powerful mechanism that must be tightly con-
trolled. Since our rendezvous message passing mechanism
is synchronous, a process performing IPC is blocked until
both parties are ready. User process could easily misuse
this property to hang system processes by sending a request
and not waiting for the response. Therefore, another IPC
primitive, SENDREC, exists, which combines a SEND and
a RECEIVE in a single call. It blocks the caller until the
reply to a request has been received. To protect the oper-
ating system, this is the only primitive that can be used by
ordinary users. In fact, the kernel maintains a bit map per
process to restrict the IPC primitives each is allowed to use.

Furthermore, the kernel maintains a bit map telling with
which drivers and servers a process may communicate. This
send mask is the mechanism by which user processes are
prevented from sending messages to drivers directly. In-
stead, they are restricted to only communicating with the
servers that provide the POSIX calls. However, the send
mask mechanism is also used to prevent, say, the keyboard
driver from sending an (unexpected) message to the sound
driver. Again, by tightly encapsulating what each process
can do, we can largely prevent the inevitable bugs in drivers
from spreading and affecting other parts of the system.

In contrast, in a monolithic system, any driver can call
any piece of code in the kernel using the machine’s sub-
routine call instruction (or worse yet, the subroutine return
instruction when the stack has been overwritten by a buffer
overrun), letting problems within one subsystem propagate
to other subsystems.

3.7 Avoiding Deadlocks
Because the default mode of IPC are synchronous SEND and
RECEIVE calls, deadlocks can occur when two or more pro-
cesses simultaneously try to communicate and all processes
are blocked waiting for one another. Therefore, we care-
fully devised a deadlock avoidance protocol that prescribes
a partial, top-down message ordering.

The message ordering roughly follows the layering that is
described in Sec. 2.2. Ordinary user processes, for example,
are only allowed to SENDREC to the servers that imple-
ment the POSIX interface, which can request services from
the drivers, which in turn can call upon the kernel. How-
ever, for asynchronous events such as interrupts and timers,
messages are required in the opposite direction, from the ker-
nel to a server or a driver. Using synchronous SEND calls
to communicate these events can easily lead to a deadlock.
We avoid this problem by using the NOTIFY mechanism,
which never blocks the caller, for asynchronous events. If a
notification message cannot be delivered, it is stored in the
destination’s process table entry until it does a RECEIVE.

Although the deadlock avoidance protocol is enforced by
the send mask mechanism discussed above, we also imple-
mented deadlock detection in the kernel. If a process unex-
pectedly were to cause a deadlock, the offending is denied
and an error message is returned to the caller.

3.8 Unifying Interrupts and Messages
The basic IPC mechanism is rendezvous message passing,
but asynchronous messages are also needed, for example, for
reporting interrupts, a potential source of bugs in operating
systems. We have greatly reduced the chance of errors here
by unifying asynchronous signaling and messages. Normally
when a process sends a message to another process and the
receiver is not ready, the sender is blocked. This scheme
does not work for interrupts because the interrupt handler
cannot afford to block. Instead the asynchronous notifica-
tion mechanism is used, in which a handler issues a NOTIFY
call to a driver. If the driver is waiting for a message, the
notification is directly delivered. If it is not waiting, the no-
tification is saved in a bitmap until the driver subsequently
blocks on a RECEIVE call.



3.9 Restricting Driver Functionality
The kernel exports a limited set of functions that can be
called. This kernel API is the only way a driver can interact
with the kernel. However, not every driver is allowed to
use every kernel call. The kernel maintains a bit map per
driver (in the process table), telling which kernel calls that
driver may make. The granularity of kernel calls is quite
fine. There is no multiplexing of calls onto the same function
number. Each call is individually protected with its own bit
in the bit map. Internally, several calls may be handled by
the same kernel function, though. This technique allows a
fine grain of control.

For example, some drivers need to read and write user
address spaces to move data in and out, but the calls for
reading and writing user address spaces are different. Thus
we do not multiplex read and write onto the same call with
a ’direction’ parameter. Accordingly, it is possible to give
a printer driver, for example, the ability to make the kernel
call to read from user processes but not the ability to write
to them. As a consequence, a bug in a driver with read-only
permission cannot accidentally corrupt user address spaces.

Contrast this situation with a device driver in a mono-
lithic kernel. A bug in the code could cause it to write to
the address space in a user process instead of reading from
it, destroying the process. In addition, a kernel driver can
call any function in the entire kernel, including functions no
driver should ever call. Since there is no intrakernel protec-
tion, it is virtually impossible to prevent this. In our design,
no driver can ever call a kernel function that has not been
explicitly exported as part of the kernel-driver interface.

3.10 Denying Access to I/O Ports
For each driver, the kernel maintains a list of which I/O
ports it may read and which ones it may write. Read and
write access are protected separately, so a process that has
read-only permission to some I/O port cannot write to it.
Any attempt to violate these rules will result in an error
code returned to the caller. In this way, a printer driver can
be restricted to the I/O ports for the printer, a sound driver
can be restricted to the I/O ports for the sound card, etc.

In contrast, there is no way in monolithic systems to
restrict an in-kernel driver to only a handful of I/O ports.
A kernel driver can accidentally write to any I/O port and
cause substantial damage

In some cases the actual I/O device registers can be
mapped into the driver’s address space to avoid any interac-
tion with the kernel when doing I/O. However, since not all
architectures allow to map I/O registers into user processes
in a fine-grained protected way, we have chosen for a model
in which only the kernel performs actual I/O operations.
This design decision is yet another example of how we have
opted for reliability over performance.

While the tables with allowed I/O ports are currently
initialized from a configuration file, we plan to implement a
PCI bus server to do this automatically. The PCI bus server
can obtain the I/O ports required by each driver from the
BIOS and use this information to initialize the kernel tables.

3.11 Parameter Checking
Since all kernel calls are traps to the kernel, it is possible
for the kernel to do a limited amount of parameter valida-
tion before dispatching the call. This validation includes
both sanity and permission checks. For example, if a driver
asks the kernel to write a block of data using physical ad-
dressing, the call may be denied because not all drivers have
permission to do so. Using virtual addressing, the kernel can
probably not tell if this is the right address to write, but it
can at least check that the address is, in fact, a valid address
within the user’s data or stack segments, and not in the text
segment or some random invalid address.

While such sanity checks are coarse, they are better than
nothing. In a monolithic system, nothing prevents a driver
from writing to addresses that should not be written to un-
der any conditions, such as the kernel’s text segment.

3.12 Catching Bad Pointers
C and C++ programs use pointers a great deal and tend to
suffer from bad pointer errors all the time. Dereferencing a
bad pointer often leads to a segmentation fault detected by
the hardware. In our design, a server or driver dereferencing
a bad pointer will be killed and given a core dump for future
debugging, just like any other user process. If a bad pointer
is caught in a part of the user-mode operating system, the
reincarnation server will immediately notice the failure and
replace the killed process with a fresh copy.

3.13 Taming Infinite Loops
When a driver gets stuck in an infinite loop, it threatens
to consume endless CPU time. The scheduler notices this
behavior and gradually drops the offending process’ prior-
ity until it becomes the idle process. Other processes can
continue to run normally however. After a predetermined
time the reincarnation server will notice that the driver is
not responding and will kill and restart it.

In contrast, when a kernel driver gets into an infinite
loop, it consumes all CPU time and effectively hangs the
entire system.

3.14 DMA Checking
One thing that we cannot do is prevent bad DMA from
wreaking havoc on the system. Hardware protection is re-
quired to prevent a driver from overwriting any part of real
memory. However, we can catch some DMA errors as fol-
lows. DMA is normally started by writing the DMA address
to some I/O port. We can give the library procedure that
is called to write to an I/O port a (device-specific) way to
decode I/O port writes to find the DMA addresses that are
used and check them for validity. A malicious driver could
bypass this checking, but for catching programming errors
(as opposed to hostile drivers), it is a cost-efficient way to
weed out at least some bugs.

Depending on the hardware we can do even better. If
the peripheral bus has an I/O MMU we might be able to
precisely restrict memory access on a per-driver basis [16].
For systems with a PCI-X bus we intend to make our PCI
bus server responsible for initializing the tables of the I/O
MMU. This is part of our future work.



4. RELIABILITY ANALYSIS
To test the reliability of the system, we manually injected
some carefully selected faults into some of our servers and
drivers to see what would happen. As described in Sec. 3.3,
our system is designed to detect and correct many failures,
and this is precisely what we observed. If a component failed
for whichever reason this was detected by the reincarnation
server, which took all needed measures to revive the failing
component. This is described in more detail below.

To appreciate the working of our design, two classes of
errors have to be distinguished. First, logical errors mean
that a server or driver adheres to the intermodule protocol
and normally responds to requests as if it successfully did
the work, while, in fact, it did not. An example is a printer
driver that prints garbage but returns normally. It is very
hard if not impossible for any system to catch this kind of
errors. Logical errors are outside the scope of this research.

A second class of errors are protocol errors where the
rules determining how the servers and drivers should behave
are violated. In our system, servers and drivers, for exam-
ple, are required to respond to the periodic status requests
from the reincarnation server. If they do not obey this rule,
corrective action will be taken. Our system is designed to
deal with protocol errors.

4.1 The Reincarnation Server
The reincarnation server is the central server that manages
all servers and drivers of the operating system. It greatly
enhances the reliability by offering:

1. Immediate crash detection.
2. Periodic status monitoring.

It thus helps to catch two common failures: dead or misbe-
having system processes, and immediately tackles the worst
problem. Whenever a system process exits, the reincarna-
tion server is directly notified and checks its tables to see
if the service should be restarted. This mechanism, for ex-
ample, ensures that a driver that is killed because of a bad
pointer is replaced instantaneously. In addition, periodic
status monitoring helps to discipline misbehaving system
services. A driver that, for example, winds up in an infi-
nite loop and fails to respond to a status request from the
reincarnation server will be killed and restarted.

Replacing a device driver is a tightly controlled sequence
of events. First, the reincarnation server spawns a new pro-
cess, which is inhibited from running because its privileges
are not yet assigned. The reincarnation server then tells the
file system about the new driver and, finally, assigns the re-
quired privileges. When all of these steps have succeeded,
the new process starts running and executes the driver’s
binary from the file system. As an extra precaution, the
binary of certain drivers can be shadowed in RAM, so that,
for example, the driver for the root file system disk can be
reloaded without requiring disk I/O.

4.2 Application-Level Reliability
A failing driver might have implications for the file system
and applications doing I/O. If the file system had an out-
standing I/O request, an error will be returned telling that

the driver failed. At this point different actions may be
taken. A distinction must be made between block devices
and character devices, because I/O for the former is buffered
in the file systems’s buffer cache. Fig. 3 gives an overview
of different recovery scenarios at the application level.

Driver Type Recovery How

Hard disk Block Full Flush FS cache
RAM disk Block Full Flush FS cache
Floppy Block Full Flush FS cache
Printer Character Partial Reissue print job
Ethernet Character Full Transport layer
Sound Character Partial Jitter

Figure 3: Different application-level recovery sce-
narios for various types of failing device drivers.

A crash of a block device driver allows for full recov-
ery transparent to the application and without loss of data.
When the failure is detected, the reincarnation server starts
a fresh copy of the sick driver and flushes the file system’s
cache to synchronize. The buffer cache thus not only im-
proves performance, but is also crucial for reliability.

When a character device driver fails transparent recov-
ery is sometimes possible. Since the I/O request is not
buffered in the file system’s block cache, an I/O error must
be reported to the application. If the application is not able
to recover, the user will be notified about the problem. Ef-
fectively, driver failures are pushed up, which leads to differ-
ent recovery scenarios. For example, if an Ethernet driver
fails the networking server will notice the missing packets
and recover transparently when the application uses a reli-
able transport protocol, such as TCP. On the other hand, if
a printer driver fails, the user will no doubt notice that his
printout failed and reissue the print command.

In many cases, our system thus can provide full recovery
at the application level. In the remaining cases, the I/O
failure is pushed back to the user. It might be possible to
alleviate this nuisance by using a shadow driver to recover
applications that were using a faulty driver when it crashed,
by applying the same techniques as demonstrated in [25].
Lack of manpower prevented us from doing this.

4.3 Reliability Test Results
To verify the reliability of our system we manually injected
faults in some of our drivers to test specific kinds of errors
and observed what happened. In the simplest case, we killed
a driver with a SIGKILL signal. More severe test cases caused
drivers to dereference a bad pointer or loop forever. In all
cases, the reincarnation server detected the problem and
replaced the malfunctioning driver with a fresh copy. The
test results are shown in Fig. 4.

While testing the reliability we learned several lessons
that are important for the design of our system. First, since
the reincarnation server restarts bad servers and drivers, it
is required that they remain stateless so that they can prop-
erly reinitialize when they are brought up again. Stateful
components, such as the file system and the process server,
cannot be cured this way because they loose too much state
on a restart. There are limits to what we can do.



Cause Effect Action Recovery

Bad pointer Killed Restart OK
Infinite loop Hung Kill & Restart OK
Panic Exit Restart OK
Kill signal Killed Restart OK

Figure 4: Test results for serious failures in device
drivers. If the reincarnation server detects a prob-
lem it automatically takes corrective measures.

Another insight is that some drivers were implemented
such that initialization only happened on the first OPEN
call. However, for transparent application-level recovery
from a driver failure an application should not be required to
call OPEN again. Instead, issuing a READ or WRITE call
to a revived driver should trigger the driver to reinitialize.

Furthermore, while we anticipated dependencies between
the file system and the drivers, our tests revealed some other
interdependencies. Our information server that displays de-
bugging dumps when a function key is pressed, for example,
lost its key mappings after a restart. As a general rule, de-
pendencies must be prevented and all components should be
prepared to deal with unexpected failures.

Finally, user-space applications should be changed as
well to further enhance the reliability. For historical reasons,
most applications assume that a driver failure is fatal and
immediately give up, while recovery sometimes is possible.
Printing is example where application-level recovery is pos-
sible. If a line printer daemon is notified about a temporary
driver failure, it can automatically reissue the print com-
mand without user intervention. Further experimentation
with application-level recovery is part of our future work.

5. PERFORMANCE MEASUREMENTS
The issue that has haunted minimal kernels for decades is
performance. Therefore, the question immediately arises:
how much do the changes discussed above cost? To find
out, we built a prototype consisting of a small kernel be-
neath a collection of user-mode device drivers and servers.
As a base for the prototype, we started with the MINIX 2
system due to its very small size and long history. The code
has been studied by many tens of thousands of students at
hundreds of universities for a period of 18 years with almost
no bug reports concerning the kernel in the last 10 years,
presumably due to its small size and thus lack of bugs. We
then heavily modified the code, removing the device drivers
from the kernel and adding the reliability features discussed
in Sec. 3. In this way, we arrived at what is effectively a
new system, called MINIX 3, without having to write large
amounts of code not relevant to this project such as drivers
and the file system.

Since we are interested in isolating the cost of the changes
discussed in this paper, we compare our system with the base
system in which the device drivers are part of the kernel by
running the same tests on both of them. This is a much
purer test than comparing the system to Linux or Windows,
which would be like comparing apples to pineapples. Such
comparisons would be plagued by differences in compiler
quality, memory management strategy, file systems, amount

of optimization performed, system maturity, and many other
factors that would completely overshadow everything else.

The test system was a 2.2 GHz Athlon (specifically, an
AMD64 3200+) with 1 GB of RAM and a 40-GB IDE disk.
None of the drivers have been optimized for user-mode op-
eration yet. For example, on the Pentium, we expect to
be able to give drivers direct access to the I/O ports they
need in a protected way, thus eliminating many kernel calls.
To maintain portability the interface will not be changed,
though. Also, the drivers currently use programmed I/O,
which is much slower than using DMA. We expect sub-
stantial improvement when these optimizations are imple-
mented. Nevertheless, even with the current system, the
performance penalty turns out to be very reasonable.

5.1 System Call Test Results
The first batch of tests contained pure POSIX system call
tests. A user program was programmed to record the real
time in units of clock ticks (at 60 Hz), then make a system
call millions of times, then record the real time again. The
system call time was computed as the difference between the
end and start time divided by the number of calls, minus the
loop overhead, which was measured separately. The number
of loop iterations was different for each test because testing
getpid 100 million times was reasonable but reading a 64-MB
file 100 million times would have taken too long. All tests
were made on an idle system. For these tests, both the CPU
cache hit rate and the file server buffer cache hit rate were
presumably 100%. The results are shown in Fig. 5.

Call Kernel User ∆ Ratio

getpid 0.831 1.011 0.180 1.22
lseek 0.721 0.797 0.076 1.11
open+close 3.048 3.315 0.267 1.09
read 64k+lseek 81.207 87.999 6.792 1.08
write 64k+lseek 80.165 86.832 6.667 1.08
creat+wr+del 12.465 13.465 1.000 1.08
fork 10.499 12.399 1.900 1.18
fork+exec 38.832 43.365 4.533 1.12
mkdir+rmdir 13.357 14.265 0.908 1.07
rename 5.852 6.812 0.960 1.16

Average 1.12

Figure 5: System call times for kernel-mode versus
user-mode drivers. All times are in microseconds.

Let us briefly examine the results of these tests. The
getpid system call takes 0.831 µs with kernel mode drivers
and 1.011 µs with user-mode drivers. This call consists of a
simple message from the user process to the memory man-
ager and an immediate answer. It is slower with user drivers
due to the increased checking of who is allowed to send to
whom. With such a simple call, even a few additional lines
of code slows it down measureably. While the percent dif-
ference is 22%, we are only talking about 180 ns per call,
so even with 10,000 calls/sec the loss is only 2.2 ms/second,
well under 1%. The lseek call has more work to do, so the
relative overhead drops to 11%. For opening and closing a
file, the user-driver version is 9% worse.

Reading and writing of 64-KB data chunks takes just
under 90 µs and has a performance penalty of 8%. Creating



a file, writing 1 KB to it, and then deleting it takes 13.465
µs with user-mode drivers. Due to the file server’s buffer
cache, none of these tests involve driver calls, so we can
conclude that the other nondriver-related changes slow the
system down by about 12%.

5.2 Disk I/O Test Results
For the second batch of tests, we read and wrote a file in
units of 1 KB to 64 MB. The tests were run many times,
so the file being read was in the file server’s 12-MB cache
except for the 64-MB case, when it did not fit. That is why
there is such a large jump from 4 MB (reading from and
writing to the cache) and 64 MB, where the file did not fit.
The disk controller’s internal cache was not disabled. The
results are shown in Fig. 6.

File reads 2.0.4 3.0.1 ∆ Ratio

1 KB 2.619 2.904 0.285 1.11
16 KB 18.891 20.728 1.837 1.10

256 KB 325.507 351.636 26.129 1.08
4 MB 6962.240 7363.498 401.258 1.06

64 MB 16.907 17.749 0.841 1.05

Average 1.08

File writes 2.0.4 3.0.1 ∆ Ratio

1 KB 2.547 3.004 0.457 1.18
16 KB 18.593 20.609 2.016 1.11

256 KB 320.960 345.696 24.736 1.08
4 MB 8376.329 8747.723 371.394 1.04

64 MB 18.789 19.294 0.505 1.03

Average 1.09

Figure 6: Times to read and write chunks of a large
file. Times are in microseconds except for the 64
MB operations, where they are in seconds.

The result is that we see a performance hit ranging from
3% to 18% with an average of 8.4%. However, note that
the worst performance is for 1-KB writes, but the absolute
time increase is only 457 ns. The ratio decreases when more
I/O is done because the relative overhead decreases. On the
three 64-MB tests in Figs. 6 and 7, it is only 3% to 5%.

Another test reads the raw block device corresponding
to the hard disk. Writing to the raw device would destroy
its contents, so that test was not performed. The results are
shown in Fig. 7. These tests bypass the file system’s buffer
cache and just test moving bits from the disk. Here we see
an average overhead of just 9%.

Raw reads 2.0.4 3.0.1 ∆ Ratio

1 KB 2.602 2.965 0.363 1.14
16 KB 17.907 19.968 2.061 1.12

256 KB 303.749 332.246 28.497 1.09
4 MB 6184.568 6625.107 440.539 1.07

64 MB 16.729 17.599 0.870 1.05

Average 1.09

Figure 7: Times to read the raw disk block device.
Times are in microseconds except for the 64 MB
operations, where they are in seconds.

5.3 Application Test Results
The next set of tests were actual programs rather than pure
measures of system call times. The results are given in
Fig. 8. The first test consisted of building a boot image, in a
loop containing system(”make image”) to run the build many
times. The C compiler was called 123 times, the assembler 4
times, and the linker 11 times. Building the kernel, drivers,
servers and the init program, and assembling the boot image
took 3.878 seconds. The mean compilation time was under
32 ms per file.

Program 2.0.4 3.0.1 ∆ Ratio

Build image 3.630 3.878 0.248 1.07
Build POSIX tests 1.455 1.577 0.122 1.08

Sort 99.2 103.4 4.2 1.04
Sed 17.7 18.8 1.1 1.06
Grep 13.7 13.9 0.2 1.01
Prep 145.6 159.3 13.7 1.09
Uuencode 19.6 21.2 1.6 1.08

Average 1.06

Figure 8: Run times in seconds for various test pro-
grams. The first two test were repeatedly run a loop,
while the others were run only once to exclude ef-
fects from the file system’s cache.

The second test consisted of a loop compiling the POSIX-
conformance test suite repeatedly. The suite of 42 test pro-
grams compiled in 1.577 seconds, or about 37 ms per test
file. The third through seventh tests consisted of sorting,
sedding, grepping, prepping, and uuencoding a 64-MB file,
respectively. These tests mix computation with disk I/O in
varying amounts. Each test was run only once, so the file
server’s cache was effectively useless; every block came from
the disk. The average performance hit here was 6%, similar
to the final lines in Figs. 6 and 7.

If we average the last column of the 22 tests reported in
Figs. 6 through 8, we get 1.08. In other words the version
with user-mode drivers is about 8% slower than with kernel-
mode drivers for operations involving disk I/O.

5.4 Networking Performance
We also tested the networking performance of user-mode
drivers. The test was done with the Intel Pro/100 card as
we did not have a driver for the Intel Pro/1000 card. We
were able to drive the Ethernet at full speed. In addition
we ran loopback tests, with the sender and receiver on the
same machine and observed a throughput of 1.7 Gbps. Since
this is equivalent to using a network connection to send at
1.7 Gbps and receive at 1.7 Gbps at the same time, we are
confident that handling gigabit Ethernet with a single uni-
directional stream at 1 Gbps should pose no problem with
a user-mode driver.

5.5 Code Size
Speed is not the only metric of interest; the number of bugs
is also very important. Unfortunately, we were not able to
enumerate all the bugs directly, but the number of lines of
code is probably a reasonable proxy for the number of bugs.
Remember: the more code, the more bugs.



Counting lines of code is not as straightforward as it
might at first appear. First, blank lines and comments do
not add to the code complexity so we omitted them. Second,
#define and other definitions in header files do not add to the
code complexity, so we omitted the header files as well. Line
counting was done by the sclc.pl Perl script available on the
Internet. The results for the kernel, four servers (file system,
process server, reincarnation server, information server), five
drivers (hard disk, floppy disk, RAM disk, terminal, log de-
vice), and the init program are given in Fig. 9.

Part # C Asm ; Binary

Init 1 327 0 193 7088
File 25 4648 0 2698 43,056
Process 13 2242 0 1308 20,208
Reinc. 28 519 0 278 6368
Info 6 783 0 457 13,808
Hard disk 1 1192 0 653 24,384
Floppy 1 770 0 435 10,448
RAM disk 1 237 0 116 4992
Terminal 19 5161 120 2120 26,352
Log device 4 430 0 235 6048
Kernel 45 2947 778 1729 21,312

Total 127 18,009 898 10,363 173,844

Figure 9: MINIX 3 code size statistics. For each
part the number of files, the number of lines of C
and assembler code, the number of semicolons, and
the binary size of the text segment in bytes is given.

From the figure it can be seen that the kernel consists of
2947 lines of C and 778 lines of assembler (for low-level func-
tionality, such as catching interrupts and saving the CPU
registers on a process switch). The total is 3725 lines of
code. This is the only code that runs in kernel mode. An-
other way to measure code size for C programs is to count
the number of semicolons, since many C statements are ter-
minated by a semicolon. The number of semicolons present
in the code for the kernel is 1729. Finally, the compiled size
of the kernel is 21,312 bytes. This number is just the code
(i.e., text segment) size. Initialized data (3800 bytes) and
stack are not included in this number.

Interestingly, the code size statistics shown in Fig. 9 rep-
resent a minimal yet functional operating system. The total
size for both the kernel part and the user-mode part, is just
over 18,000 lines of code, remarkably small for a POSIX-
conformant operating system. We will compare these num-
bers to other systems in Sec. 6.

6. RELATED WORK
We are not the first researchers trying to prevent buggy de-
vice drivers from causing system crashes. Nor are we the first
to examine minimal kernels as a possible solution. We are
not even the first to implement user-space device drivers.
Nevertheless, we believe we are the first to build a fully
POSIX-conformant multiserver operating system with ex-
cellent fault isolation properties on top of a 3800-line mini-
mal kernel with each driver running as a separate user-mode
process and the OS itself running as multiple separate user-
mode processes. In this section we will discuss work by other
research groups that is similar in part to what we have done.

6.1 Wrapping Drivers in Software
One important research project that attempts to build a
reliable system in the presence of unreliable device drivers is
Nooks [26]. The goal of Nooks is to improve the reliability of
current operating systems. In the words of the authors: “we
target existing extensions for commodity operating systems
rather than propose a new extention architecture. We want
today’s extensions to execute on today’s platforms without
change if possible.” The idea is to be backward compatible
with existing systems, but small changes are permitted.

The Nooks approach is to keep device drivers in the ker-
nel but to enclose them in a kind of lightweight protective
wrapper so that driver bugs cannot propagate to other parts
of the operating system. Nooks works by transparently in-
terposing a reliability layer between the device driver being
wrapped and the rest of the operating system. All control
and data traffic between the driver and the rest of the ker-
nel is inspected by the reliability layer. When the driver is
started, the reliability layer modifies the kernel’s page map
to turn off write access to pages that are not part of the
driver, thus preventing it from directly modifying them. To
support legitimate write access to kernel data structures,
Nooks copies needed data into the driver, and copies them
back after modification.

Our goal is completely different than that of Nooks. We
are not attempting to make legacy operating systems more
reliable. As researchers, we ask the question: How should
future operating systems be designed to prevent the prob-
lem in the first place? We do believe the right design for
future systems is to build a multiserver operating system
and run untrustworthy code in independent user-mode pro-
cesses, where it can do far less damage, as discussed in Sec. 3.

Despite different goals there are also technical points
on which the systems can be compared. Consider just a
few examples. Nooks cannot handle byzantine faults such
as a driver inadvertently changing the page map; in our
system, drivers have no access to the page map. Nooks
cannot handle infinite loops; we can because when a driver
fails to respond correctly to the reincarnation server, it is
killed and a fresh copy started. While in practice Nooks can
handle wild stores into kernel data structures most of the
time, in our design, such stores are structurally impossible.
Nooks cannot handle a printer driver that accidentally tries
to write to the I/O ports that control the disk; we catch
100% of such attempts. Also worth mentioning is the code
size. Nooks is 22,000 lines of code, almost six times the size
of our entire kernel and larger than a minimal configuration
of our complete operating system. It is difficult to get away
from this fundamental truth: more code means more bugs.
Thus, statistically, Nooks itself probably contains five times
as many bugs as our entire kernel.

6.2 Wrapping Drivers with Virtual Machines
Another project that encapsulates drivers does this using
the concept of a virtual machine to isolate them from the
rest of the system [19, 18]. When a driver is called, it is run
on a different virtual machine than the main system so that
a crash or other fault does not pollute the main system. Like
Nooks, this approach is entirely focused on running legacy
drivers for legacy operating systems. The authors make no



claim that for new designs it is a good idea to put untrusted
code in the kernel and then protect each driver by running
it on a separate virtual machine.

While this approach does accomplish what it was de-
signed for, it does have some problems. First, there are
issues with how much the main system and the driver’s vir-
tual machine trust each other. Second, running a driver
on a virtual machine raises timing and locking issues be-
cause all the virtual machines are timeshared, and a kernel
driver that was designed to run to completion without in-
terruption may be unexpectedly timesliced with unintended
consequences. Third, some resources, such as the PCI bus
configuration space, may need to be shared among multiple
virtual machines. Fourth, the virtual machine machinery
consumes extra resources, although the amount is compara-
ble to what our scheme costs: 3% to 8%. While solutions
have been proposed to these problems, the approach is at
best cumbersome and mainly suited for protecting legacy
drivers in legacy operating systems rather than being used
in new designs, which is the problem we are addressing.

6.3 Language-Based Safety Measures
In previous work, one of the authors also addressed the prob-
lem of safe execution of foreign code into the kernel. The
Open Kernel Environment (OKE) provides a safe, resource-
controlled environment which allows fully optimized native
code to be loaded in the kernel of the Linux operating sys-
tem [4]. The code is compiled with a customized Cyclone
compiler that adds instrumentation to the object code ac-
cording to a policy that corresponds to the user’s privi-
leges. Cyclone, like Java, is a type-safe language, in which
most pointer errors are prevented by the language defini-
tion. Explicit trust management and authorization control
make sure that administrators are able to exercise strict con-
trol over which parties are given which privileges, and this
control is automatically enforced on their code. Besides the
authorization, a central role is played by the compiler which
checks that code conforms to the agreed policy by both static
checks and dynamic instrumentation.

The OKE allows the foreign module to interact inten-
sively with the rest of the kernel, e.g., by sharing kernel
memory. The runtime makes sure of crucial safety mea-
sures, such as that data is always garbage collected and no
dereferencing of pointers to freed memory can ever happen.
Moreover, the OKE is able to enforce strict control over all
of the foreign kernel modules resource’s: CPU time, heap,
stack, entry points, etc.

The OKE was developed with an eye on writing de-
vice drivers and kernel extensions. However, because of the
strict access control procedures and the complex measures
required to make programming in the Linux kernel safe, it
was fairly difficult to use. According to the authors, the
main cause is the organization of Linux that is simply not
designed to allow for safe extension.

6.4 Virtual Machines and Exokernels
Classical virtual machines [24] are a powerful tool for run-
ning multiple operating systems at the same time. Exoker-
nels [10] are similar to virtual machines, but partition the
resources rather than replicating them, leading to greater

efficiency. However, neither approach solves the problem
posed at the beginning of Sec. 1.3: how do you prevent a
bug in a driver from crashing the operating system.

6.5 User-Mode Drivers on Monolithic Kernel
An early project with user-mode drivers was Mach 3.0 [11].
It consisted of the Mach microkernel on top of which ran
Berkeley UNIX as a user-mode process along with device
drivers, also as user-mode processes. Unfortunately, if a
driver crashed, Berkeley UNIX had to be restarted, so little
was gained by isolating the drivers. A multiserver operating
system that would run on Mach was planned but never fully
implemented.

A similar project at the University of New South Wales
implemented Linux drivers in user mode for the hard disk
and gigabit Ethernet [8]. Disk performance was noticeably
better for the kernel driver for block sizes under 32 KB, but
identical for block sizes of 32 KB or more. The Ethernet
test exhibited so many anomalies, probably related to buffer
management, that it was difficult to draw any conclusions.

6.6 Minimal Kernel Designs
While getting the drivers out of the kernel is a big step
forward, getting the operating system out of there as well
is even better. This is where minimal kernels come in:
vastly reducing the number the number of abstractions they
implement. Arguably the first minimal kernel was Brinch
Hansen’s RC4000 system, which dates to the early 1970s
[13]. Starting in the mid 1980s, a number of minimal kernels
were written, including Amoeba [21], Chorus [5], Mach [1],
and V [6]. None of these practiced safe software, however:
they all had unwrapped device drivers inside the kernel.

QNX is a closed-source, commercial UNIX-like real-time
system [17]. Although it has a minimal kernel, called Neu-
trino, little has been published about the system and precise
details are unknown to us. However, from recent informa-
tion sheets we conclude that Neutrino is a hybrid kernel as
the process manager shares its address space with the kernel.

Starting in the early 1990s, the late Jochen Liedtke wrote
a minimal kernel called L4 in assembly code for the x86 ar-
chitecture. It quickly became clear that it was not portable
and hard to maintain, so he rewrote it in C [20]. It has con-
tinued to evolve since then. There are currently two main
branches: L4/Fiasco, maintained at the Technical Univer-
sity of Dresden and L4Ka::Pistachio, maintained at the Uni-
versity of Karlsruhe and the University of New South Wales.
These are written in C++.

The key ideas in L4 are address spaces, threads, and IPC
between threads in different address spaces. A user-mode
resource manager brought up when the system is booted
controls system resources and distributes them among user
processes. L4 is one of the few other true minimal ker-
nels in existence, with device drivers running in user mode.
However, there is no implementation with each driver in a
separate address space and its API is quite different from
ours, so we have not run any tests on it.

However, it was straightforward to run the line count
script on the current L4Ka::Pistachio kernel. The results are



shown in Fig. 10 and can be compared to the ‘Kernel’ line in
Fig. 9. The source code is about twice the size of our kernel
and the memory footprint of the code is six times larger, but
its functionality is different, so it is hard to conclude much
except that it is considerably bigger.

Part Files C++ Asm ; Binary

Kernel 57 6881 420 3053 114 KB

Figure 10: Code size statistics for L4Ka::Pistachio.

6.7 Single-Server Operating Systems
One of the ways that minimal kernels have been used is
to provide a platform on top of which an entire operating
system is run as a single server, possibly in user mode. To
obtain system services, user programs request them from the
operating system process. This design has similar properties
to monolithic systems, as discussed in 2. A bug in a driver
can still bring down the entire operating system and, as a
result, all the application programs. Thus in terms of fault
isolation, running the entire operating system in a single user
process is no better than running it in kernel mode. The only
real gain is that rebooting the user-mode operating system
server and all the applications after a crash is faster than
rebooting the computer.

One example of this technology is Berkeley UNIX on top
of Mach (renamed Darwin by Apple), which is the core of
the Apple Mac OS X system [28]. However in this system,
UNIX runs in the kernel, which makes it simply a differently-
structured monolithic kernel. A second example is MkLinux,
in which Linux is run as a single user process on top of Mach.
A third example is L4-Linux, in which full Linux is run on
top of L4 [15]. In the latter system, user processes obtain op-
erating system services by making remote procedure calls to
the Linux server using L4’s IPC mechanism. Measurements
show the performance penalty over native Linux to be 5%
to 10%, quite similar to what we have observed. However,
a single line of faulty code in a Linux driver can crash the
entire operating system, so the only gain of this design from
a reliability point of view is a faster reboot.

6.8 Multiserver Operating Systems
A more sophisticated approach is to split the operating sys-
tem into pieces and run each one in its own protection do-
main. One such project was SawMill Linux [12]. However,
this project was abruptly terminated in 2001 when many of
the principals left IBM.

Another multiserver system is DROPS, which is also
built on top of the L4/Fiasco minimal kernel [14]. It is
targeted toward multimedia applications. However, most of
the device drivers still run as part of a big L4-Linux server
process, with only the multimedia subsystem running sepa-
rately. After some tuning, the performance penalty dropped
to the 2% to 4% range.

Nemesis [23] is yet another multiserver operating system
with user-mode device drivers. This system had a single ad-
dress space shared by all processes, but with hardware pro-
tection between processes (called domains). Like DROPS, it
was aimed at multimedia applications, but it was not POSIX
conformant or even UNIX like.

7. CONCLUSIONS
The primary achievement of the work reported here is that
we have built a POSIX-conformant operating system based
on a minimal kernel whose complete source is under 3800
lines of executable code. This code represents the total
amount of code that runs in kernel mode. To the best of
our knowledge, this is by far the smallest minimal kernel
in existence that supports a fully POSIX-conformant multi-
server operating system in user mode. It is also the only one
that has each device driver running as a separate user-mode
process, with many encapsulation facilities, and the ability
to reincarnate dead or misbehaving drivers on the fly with-
out rebooting the operating system. We make no claim that
we can catch every bug, but we greatly improve the oper-
ating system’s reliability by structurally eliminating many
different classes of bugs.

To achieve maximum reliability our design was guided by
simplicity, modularity, the principle of least authorization,
and fault tolerance. An understandable and minimal kernel
means fewer kernel bugs and thus fewer crashes. Our kernel
code, for example, is not subject to the buffer overruns that
plague other software, because it statically declares all data
instead of using dynamic memory allocation. Furthermore,
by moving most of the code (and thus most of the bugs) to
unprivileged user-mode processes and restricting the pow-
ers of each one, we gain proper fault isolation and limit the
damage bugs can do. Moreover, most servers and all device
drivers of the operating system are monitored and automat-
ically revived if a problem is detected. For this reduction in
operating system crashes, we pay a performance penalty of
5% to 10%. We consider this price well worth paying.

Of course, drivers, file systems, and other components
are not magically rendered bug-free by our design. However,
with a stable minimal kernel in place, the worst case scenario
changes from requiring a computer reboot to restarting the
operating system in user mode. At the very least, this re-
covery is much faster. In the best case, if, say, a wild store in
the printer driver causes it to crash, the reincarnation server
automatically starts a fresh copy of the printer driver. The
current print job will have to be redone, but other programs
running at the time of the driver crash will not be affected.
For block devices the situation is even better. If a disk driver
failure is detected, the system can fully recover by transpar-
ently replacing the driver and rewriting the blocks from the
file system’s buffer cache.

Concluding, we have demonstrated how operating sys-
tem reliability can be increased with an elegant, lightweight
approach. Our system can currently withstand most mal-
functions caused by bugs. Malicious or hostile servers and
drivers pose new challenges, though. Therefore, our research
in this area is continuing.
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