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Abstract

We study passwords from the perspective of how they
are generated, with the goal of better understanding how
to distinguish good passwords from bad ones. Based on
reviews of large quantities of passwords, we argue that
users produce passwords using a small set of rules and
types of components, both of which we describe herein.
We build a parser of passwords, and show how this can
be used to gain a better understanding of passwords, as
well as to block weak passwords.

1 Introduction

A good password is hard to guess. Conversely, of course,
a bad password is easy to guess. But what is it that makes
something hard to guess, and how can we tell? Tradi-
tional wisdom holds that passwords should be longhand
complex. Password strength checkers typically translate
this into minimum length requirements and demands to
include an uppers case, lower case character, and a nu-
meral. As a result, a large number of users – some-
what predictably – starts their password with an upper
case, continue with lower case throughout, and append
the digit 1 at the end. This predictability in terms of user
behavior makes passwords easier to guess.

It is easier to tell that something is easy to guess than
that it is hard to guess. For example, the following poten-
tial passwords are easy to guess: fraternity (a dictionary
word); $L (a very short string); qwertyuiop (a string with
a very predictable pattern); and LoveLoveMeDo (famous
lyrics). Similarly, one can look at the commonality of
passwords [15] – any user who wants to use a password
that has already reached the limit has to think of another
password. We can make a long list of reasons to con-
sider a password to be weak – and this is what typical
password strength checkers do – but how can we tell that
we have not missed some?

We argue that to be able to assess the strength of

passwords, we need to understand how they were con-
structed. Passwords are constructed by people, and peo-
ple follow guidelines and mental protocols when per-
forming tasks. Therefore, a better understanding of pass-
words requires a better understanding of people – or at
least how people construct passwords.

It is meaningful to think of passwords as strings that
are composed of components, where components are dic-
tionary words, numbers, and other characters. When
producing a password, a typical user composes a pass-
word from a small number of such components, using
one or more rules. The most common rule is concate-
nation, followed by replacement, spelling mistake, and
insertion. Here, an example of a concatenation is produc-
ing “passbay1” from the three components “pass”, “bay”
and “1”. Use of L33T1 is a common replacement strat-
egy, creating “s3v3nty” from “seventy” by replacement
of each “e” with a “3”. Misspellings, of course, may
either be intentional or unintentional; resulting in pass-
words such as “clostrofobic”. Insertion, finally, produces
strings such as “Christi77na”, where “77” was inserted
into the name “Christina”. (This was the least common
type of rule among those we have surveyed, and the hard-
est one to automatically identify the use of, so this rule
was not used in the experiment we describe herein.)

The simple insight that people choose passwords sug-
gests a new approach to determining the strength of a
password: One can determine the components making
up the password, and the commonality of each such com-
ponent; then, one could consider the mental generation
rules used to combine the components and make up the
password – along with the commonality of these rules
being used. The strength of the password, in some sense,
depends directly on the commonality of the password,
which in turn depends on the commonality of its compo-
nents and the password generation rules used.

1L33T is pronounced “leet”, and is a relatively common transcrip-
tion of words in which letters are replaced by other characters with
some resemblance to the replaced letter.



Outline. We begin by a brief overview of the related
work in section 2. We then describe how to parse pass-
words (section 3). In section 4, we detail the approach
we took. Finally in section 5, we share our observations
and the results of our analysis.

2 Related Work

Various attempts have been made to understand user at-
titudes towards passwords [7, 10, 13]. These attempts
are based on user surveys or lab studies using relatively
small sample sizes. Other studies [4, 5, 20, 22] ana-
lyze large number of passwords that have been leaked
to the public, typically after large-scales attacks by on-
line fraudsters. Some recent work has looked into users’
mental model of password security. People are generally
not very good at accessing the strength of their passwords
[6]. However, most users do recognize the difference
in security requirements between sites, and correspond-
ingly attempt to segregate passwords amongst them [14].
A recent survey examined user attitudes towards the im-
position of stringent new password requirements for user
accounts [18]. While users were initially annoyed by the
new requirements, most felt remembering more compli-
cated passwords was worthwhile to improve security [3].

One of the important reasons for understanding how
passwords are generated is to produce better password
strength checkers, allowing these to block or flag pass-
words that are insufficiently secure. Most of the ex-
isting password checkers are based on naive measures
like password length, resilience to brute force, dictio-
nary based attacks, or constraints like the presence or
absence of certain non-alphabetic and uppercase charac-
ters [21, 2]. Another common method used by pass-
word strength checkers is to use blacklist checks on new
passwords. Blacklist checks can be performed in a con-
stant time regardless of the size [19], thereby making
large blacklist checking feasible. Schechter et al. [15]
proposed a password policy in which passwords chosen
by too many users are blacklisted for subsequent users.

Another important reason for understanding pass-
words is to provide better measures of the security they
provide, in order to gauge the security exposure of var-
ious systems. One such measure of security is Shan-
non entropy, defined as the amount of information con-
tained in a string [17], and used by the National Insti-
tute of Standards and Technology (NIST) to represent the
strength of a password [1]. However, entropy only pro-
vides a lower bound on the expected number of guesses
to find a password [12].

Another method to measure password strength is the
notion of guessability. Guessability is the measure of the
time needed to “guess” a given password by an efficient
password cracking algorithm [9]. This is also a lower

bound on the expected number of guesses needed to find
a password, since there is no assurance that the best pass-
word cracking algorithms were used, or that these cannot
be improved.

Weir et al. [20] divide a large set of existing passwords
into different categories based on composition, then ap-
ply various automated cracking tools, like John The Rip-
per. In this way they try to examine the effectiveness
of NIST’ss entropy estimates in predicting the password
strength by comparing the calculated bit strengths with
actual guessing difficulty based on results from pass-
word cracking tools. Narayanan et al. [13] discuss a
password-cracking technique based on a Markov model,
in which password guesses are made based on contextual
frequency of characters.

In this paper, we decompose passwords into compo-
nents and score them based on the observed frequencies
of the components, and the rules that bind these together.
Recently, Jakobsson and Akavipat [8] took a similar ap-
proach to score the security another type of credential,
composed of a sequence of dictionary words. We ap-
ply the same techniques, along with scoring of rules, to
legacy credentials – passwords, to be specific. We de-
termine frequencies of password components by training
on the large RockYou dataset [16], containing 32 mil-
lions credentials. This dataset has previously been used
to understand weak passwords (see, e.g., [11]).

3 Building a Parser

The parser takes a password as input and outputs the var-
ious components and rules which have been used to con-
struct that password – or appear to have been used, to be
specific. Components include words, numbers, individ-
ual characters and special symbols. Some components
may be overlapping, e.g., a word is made up of number of
characters. Our parser has built-in rules to identify three
major password creation rules: Concatenation, L33T and
misspelling.

In order to parse an input, the parser uses an input dic-
tionary. It is worth noting that language has strong in-
fluence on creation of passwords and that words usually
form the core on which various other operations are ap-
plied to make the password more complex. For simplic-
ity, only English dictionaries were used. The final dictio-
nary obtained upon merging several specialized dictio-
naries contained just below 670,000 words.

Note that in many cases the passwords can be broken
into components in more than one way. In such cases,
the parser selects the components containing words with
the maximum coverage. Maximum coverage means that
the total length of the combined components, which
are words, is maximized. For example, “thinput” will
get parsed as “thin” and “put” rather than “t”, “h” and
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“input”. When two paths produce the same coverage,
the path with the greatest probability of occurrence (as
judged by the frequency of use of the rules and compo-
nents) is chosen. Practically speaking, this typically cor-
responds to the path with the smallest number of compo-
nents.

Since L33T is not a proper language and many differ-
ent dialects of L33T occur on the Internet, there is no
perfect algorithm to convert between English and L33T.
Since the rules for such conversion vary, one can use an
exhaustive approach. One can construct a table contain-
ing all mappings from a token to be replaced (number or
special symbol) to a list of all common replacements for
that token, as seen in various L33T to English translators.
For example, the character “0” is substituted for “o” and
the character “|” can be substituted for both “i” and “l”.
Hence, the mapping table there will be entry for ”@” to
be mapped to “a” and “|” to be mapped to both “i” and
“l”.

Identification of spelling mistakes amounts to identifi-
cation of words with small Levenshtein distance to dic-
tionary words.

4 Approach

We use large password datasets that were obtained from
breaking in to dropboxes used by fraudsters; a dropbox
is the file used by the fraudster to store stolen credentials,
or which were somehow made public on the Internet. We
used one such dataset to build a statistical model of how
people generate passwords, and then used this model to
score passwords from the other datasets. Each dataset
has different characteristics, as will be shown, which in-
fluences the average strength of the passwords and hence,
the password scores. We first describe three major char-
acteristics of all datasets.

The first obvious characteristic is the type of resource
being protected, i.e., what would be lost if a password
is stolen. We consider only the losses as perceived by
the user who produces the password, and not those po-
tentially suffered by other users as a result of the theft
– nor the losses of the organization associated with the
password. The rationale is this: users are influenced by
the risk they associate with theft when they select their
password. For financial service providers, money would
be lost. For social networking sites, the user would lose
face, or be inconvenienced. For a porn site, the loss may
be limited to the access to the site. In addition to this,
some private information – such as user name and ad-
dress – may be at stake for all of these types of sites.

A second characteristic is the demographics of users.
We note indications that demographics affect password
strength in our findings.

Finally, the collection method could introduce a bias
in the dataset. For example, if a dataset is obtained by
malware attacks, the dataset may have greater percent-
age of passwords of people who are not security con-
scious than if it was obtained by the corruption of the site
that stored the passwords. Similarly, a dataset associated
with phishing is likely to have a greater percentage of
passwords of people who are gullible than other datasets
would.

Training. In order to build a model of passwords, we
used the RockYou dataset [16]. The RockYou dataset
contains 32 million passwords. The RockYou dataset is
unbaised due to its collection method – it was obtained
by compromise of a website using SQL Injection. Dur-
ing training, we parsed the passwords from the Rock-
You dataset and determined the frequencies of the vari-
ous rules and components.

Scoring. After training on the RockYou dataset, we
parsed and scored passwords from five other datasets.
The first dataset, the Rootkit dataset, contains 64498
passwords. It was obtained by compromise of
rootkit.com. This website has forums about discussions
of advanced topics in computer security. Most people
registering on this website are more aware about secu-
rity issues than typical users are. Second, the Paypal
dataset contains 19053 passwords. Most of the users be-
hind the passwords are adults. The method of collection
is phishing, which introduces a bias towards people who
are more gullible. Third, the Justin Bieber dataset con-
tains 5091 passwords and was obtained by compromise
of a fan website. Hence, there is no bias due to the col-
lection method. However, the demographics introduces
a bias as most of the users are teenagers. The fourth
dataset is the Sony dataset, which contains 17785 pass-
words, and which was obtained by compromise of Sony
Pictures Europe. As a result, there was no bias among
passwords due to the collection method. And finally, the
Porn dataset contains 8089 passwords, and was obtained
by compromise of a pornographic website. As a result,
there is no bias due to the collection method. However,
there is a visible bias associated with the type of resource
being protected.

5 Results

Here, we analyze the usage of various rules and compo-
nents in the datasets described above.

Word components form the core of a large percentage
of passwords, as can be seen in figure 1. The average
number of word components per password is directly re-
lated to the average strength of the password. The Justin
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Bieber dataset has the highest average number of word
components per password whereas the Porn dataset has
the lowest. It is not surprising that the Porn dataset is as-
sociated with a low average password security – after all,
the loss of a password does not cause any great damage
to a user, except if the user employes the same password
elsewhere, too. However, it is a bit surprising that the
Justin Bieber dataset exhibits a greater password security
than the Paypal dataset – after all, the protected resources
for the former are simply a user profile on a fan site. The
reason may be that the Justin Bieber passwords were cor-
rupted at the site, while the Paypal passwords were stolen
from gullible users, who are likely to use lower quality
passwords than more security conscious users are. It may
also be due to demographic differences.

Figure 1: The figure shows the average number of com-
ponents per password in the different datasets.

Average security is a bit deceptive, since it is com-
monly the weakest passwords that are guessed by crack-
ing software. As a case in point, it can be seen that a
small number of words in the Justin Bieber dataset were
used to construct a much larger number of passwords
than any other dataset – see figure 2 for an illustration
of this. This forms the maybe best argument for why one
should parse passwords: By doing that, it is possible to
block the use of the most vulnerable passwords.

The remaining components include leftover characters
and special symbols obtained after “cutting” words and
numerals from passwords. Even though usage of special
symbols in passwords increases the effective size of the
character set, special symbols are unpopular among users
– see figure 1.

Even in the small percentage of passwords where spe-
cial symbols are used, the usage is highly skewed. Out
of the 32 possible special symbols on standard ASCII
keyboards, only a few of them have high frequencies.
These special symbols are usually those which are used
in rules like L33T e.g., “@” and “&”. Most of the re-
maining special symbols are rarely used. In fact, we
found some special symbols which were almost never

Figure 2: The figure shows the frequencies of top 100
most common words in each dataset. Even though pass-
words from Justin Bieber dataset usually contain a larger
number of components per password, it can be clearly
seen that a small number of words are reused to a greater
extent in the Justin Bieber dataset, compared to other
datasets.

used in any of the datasets – such as the “?” and “}”. This
is not a statistic anomaly: Given that the datasets contain
over 100,000 passwords, this is a reminder that humans
do not select passwords randomly, but rather, based on
mnemonics and rules used by many others.

For a given password, the number of concatenation op-
erations is one less than the total number of components.
It can be clearly seen from figure 3 that concatenation
is prevalent in all datasets. In the Justin Bieber dataset
there is on average1.67 components per password, with
the other datasets having lower averages. The higher us-
age of concatenation associated with higher security sites
indicates how people typically increase password secu-
rity.

Figure 3: The average use of concatenation and L33T
rules per password for different datasets.

Usage of L33T requires users to remember a new pat-
tern replacing an old pattern which may require some
effort, but can dramatically increase the strength of the
password. The average number of L33T operations per
password is shown in figure 3. The highest value is for
Rootkits dataset. That dataset is from a corrupted web-
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site dealing related to computer security, which supports
our belief that there are demographic differences be-
tween password datasets, and in particular, that “geeks”
are more frequent users of L33T than others. We observe
that by assigning a greater weight to the use of L33T than
to the use of concatenation, we can “reward” users using
uncommon rules by increasing the scores accordingly.
We implicitly do this by taking the frequency of oper-
ations into consideration when determining the score of
a password, and not only the frequencies of the compo-
nents.

Figure 4: The average number of spelling mistakes per
password for the different datasets. The use of this rule
is dramatically less common than both L33T and con-
catenation.

The usage of spelling mistakes is quite interesting. To
begin with, it is not possible for us to determine whether
spelling mistakes are intentional or not, whereas the use
of other rules are evidently intentional. Unintentional
spelling mistakes, in the context of password strength,
is therefore an excellent example of a case where “Ig-
norance is Bliss”. Figure 4 shows the prevalence of
spelling mistakes in the different datasets, showing the
much greater frequency of this rule in the Porn dataset.

While the different datasets exhibit different rates of
spelling errors, they are all relatively low in comparison
to other rules. The low frequency of the use of spelling
mistakes emphasizes the potential value of this rule to
password security.

Scores. For simplicity, the score calculator we describe
uses only on the frequencies of rules and components,
and not the location or order of these. Therefore, we fail
to take into consideration that many passwords have a
“1” at the end of the password, but very few have it at an-
other position within the password. Our score calculator
is a first step towards better password strength checkers,
and we believe that it can be improved considerably by
further analysis along the lines of what we introduce in
this paper.

Figure 5: The figure shows the distribution of password
strengths, as assessed by multiplying the frequencies of
the rules and components used. The second logarithm of
these values correspond to the bit strength of the pass-
words. It is evident that passwords from the Porn dataset
are weaker than the passwords of the other datasets.

The score calculator utilizes the three different trained
dictionaries: a dictionary of words, a dictionary of char-
acters and special symbols and a dictionary of numer-
als. All of these are obtained by training on the RockYou
dataset.

Figure 6: This figure shows a portion of the graph in
figure 5. This portion of the distribution corresponds to
unnecessarily weak passwords. By decomposing pass-
words and scoring them in the manner we describe, such
passwords can be avoided.

The frequencies are the count of occurrence divided by
the total count. The score calculator utilizes the frequen-
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cies of rules of occurrences of rules in that dataset. These
are obtained by analysis of passwords of each particular
dataset. The score of a password is simply calculated by
the multiplying the frequencies of all the rules and com-
ponents occurring in the password. Since all frequencies
are between 0 and 1, the score will also be a (very small)
value in the range of 0 and 1. The second logarithm of
this product is an assessment of the bit strength of the
password.

Figure 5 shows the distribution of password scores for
the passwords of the different datasets. Note the close
resemblance to a bell curve. Password crackers target
the most frequent credentials, corresponding to the pass-
words with the lowest scores. The least secure region
from figure 5 is magnified in figure 6.

Future Work
We anticipate that our parsing techniques can be help-
ful as an underlying building block to analyze and score
passwords in a variety of ways, significantly improving
on the result reported on herein.

There are several potentially interesting extensions to
our work. We have not addressed the order of compo-
nents in our scoring mechanism. Doing so will help
us assign different scores to the rather common “Pass-
word1” and the not at all common “1passWord”. We also
have not considered scoring particular combinations of
elements and rules – corresponding to creating an aware-
ness of correlation. Our techniques can be used to com-
pute similarity scores between passwords, e.g., to deter-
mine whether an updated password is sufficiently differ-
ent from the old password, and to identify approximate
reuse of credentials.
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