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Abstract
Cloud services are rapidly gaining adoption due to the
promises of cost efficiency, availability, and on-demand
scaling. To achieve these promises, cloud providers share
physical resources to support multi-tenancy of cloud plat-
forms. However, the possibility of sharing the same hard-
ware with potential attackers makes users reluctant to off-
load sensitive data into the cloud. Worse yet, researchers
have demonstrated side channel attacks via shared mem-
ory caches to break full encryption keys of AES, DES,
and RSA.

We present STEALTHMEM, a system-level protection
mechanism against cache-based side channel attacks in
the cloud. STEALTHMEM manages a set of locked cache
lines per core, which are never evicted from the cache,
and efficiently multiplexes them so that each VM can load
its own sensitive data into the locked cache lines. Thus,
any VM can hide memory access patterns on confiden-
tial data from other VMs. Unlike existing state-of-the-art
mitigation methods, STEALTHMEM works with exist-
ing commodity hardware and does not require profound
changes to application software. We also present a novel
idea and prototype for isolating cache lines while fully
utilizing memory by exploiting architectural properties
of set-associative caches. STEALTHMEM imposes 5.9%
of performance overhead on the SPEC 2006 CPU bench-
mark, and between 2% and 5% overhead on secured AES,
DES and Blowfish, requiring only between 3 and 34 lines
of code changes from the original implementations.

1 Introduction

Cloud services like Amazon’s Elastic Compute Cloud
(EC2) [5] and Microsoft’s Azure Service Platform
(Azure) [26] are rapidly gaining adoption because they of-
fer cost-efficient, scalable and highly available computing
services to their users. These benefits are made possible
by sharing large-scale computing resources among a large

number of users. However, security and privacy concerns
over off-loading sensitive data make many end-users, en-
terprises and government organizations reluctant to adopt
cloud services [18, 20, 25].

To offer cost reductions and efficiencies, cloud
providers multiplex physical resources among multiple
tenants of their cloud platforms. However, such sharing
exposes multiple side channels that exist in commod-
ity hardware and that may enable attacks even in the
absence of software vulnerabilities. By exploiting side
channels that arise from shared CPU caches, researchers
have demonstrated attacks extracting encryption keys of
popular cryptographic algorithms such as AES, DES, and
RSA. Table 1 summarizes some of these attacks.

Unfortunately, the problem is not limited to cryptog-
raphy. Any algorithm whose memory access pattern de-
pends on confidential information is at risk of leaking
this information through cache-based side channels. For
example, attackers can detect the existence of sshd and
apache2 via a side channel that results from memory
deduplication in the cloud [38].

There is a large body of work on countermeasures
against cache-based side channel attacks. The main direc-
tions include the design of new hardware [12, 23, 24, 41–
43], application specific defense mechanisms [17, 28, 30,
39] and compiler-based techniques [11]. Unfortunately,
we see little evidence of general hardware-based defenses
being adopted in mainstream processors. The remaining
proposals often lack generality or have poor performance.

We solve the problem by designing and implementing a
system-level defense mechanism, called STEALTHMEM,
against cache-based side channel attacks. The system (hy-
pervisor or operating system) provides each user (virtual
machine or application) with small amounts of memory
that is largely free from cache-based side channels. We
first design an efficient software method for locking the
pages of a virtual machine (VM) into the shared cache,
thus guaranteeing that they cannot be evicted by other
VMs. Since different processor cores might be running



Type Enc. Year Attack description Victim machine Samples Crypt. key
Active Time-driven [9] AES 2006 Final Round Analysis UP Pentium III 213.0 Full 128-bit key
Active Time-driven [30] AES 2005 Prime+Evict (Synchronous Attack) SMP Athlon 64 218.9 Full 128-bit key
Active Time-driven [40] DES 2003 Prime+Evict (Synchronous Attack) UP Pentium III 226.0 Full 56-bit key

Passive Time-driven [4] AES 2007 Statistical Timing Attack (Remote) SMT Pentium 4 with HT 220.0 Full 128-bit key
Passive Time-driven [8] AES 2005 Statistical Timing Attack (Remote) UP Pentium III 227.5 Full 128-bit key

Trace-driven [14] AES 2011 Asynchronous Probe UP Pentium 4 M 26.6 Full 128-bit key
Trace-driven [29] AES 2007 Final Round Analysis UP Pentium III 24.3 Full 128-bit key
Trace-driven [3] AES 2006 First/Second Round Analysis - - 23.9 Full 128-bit key
Trace-driven [30] AES 2005 Prime+Probe (Synchronous Attack) SMP Pentium 4 with HT 213.0 Full 128-bit key
Trace-driven [32] RSA 2005 Asynchronous Probe SMT Xeon with HT - 310-bit of 512-bit key

Table 1: Overview of cache-based side channel attacks: UP, SMT and SMP stand for uniprocessor, simultaneous
multithreading and symmetric multiprocessing, respectively.

different VMs at the same time, we assign a set of locked
cache lines to each core, and keep the pages of the cur-
rently running VMs on those cache lines. Therefore each
VM can use its own special pages to store sensitive data
without revealing its usage patterns. Whenever a VM
is scheduled, STEALTHMEM ensures the VM’s special
pages are loaded into the locked cache lines of the cur-
rent core. Furthermore, we describe a method for locking
pages without sacrificing utilization of cache and memory
by exploiting an architectural property of caches (set asso-
ciativity) and the cache replacement policy (pseudo-LRU)
in commodity hardware.

We apply this locking technique to the last level caches
(LLC) of modern x64-based processors (usually the L2
or L3 cache). These caches are particularly critical as
they are typically shared among several cores, enabling
one core to monitor the memory accesses of other cores.
STEALTHMEM prevents this for the locked pages. The
LLC is typically so large that the fraction of addresses
that maps to a single cache line is very small, making
it possible to set aside cache lines without introducing
much overhead. In contrast, the L1 cache of a typical x64
processor is not shared and spans only a single 4 kB page.
Thus, we do not attempt to lock it.

We use the term “locking” in a conceptual sense. We
have no hardware mechanism for locking cache lines on
mass market x64 processors. Instead, we use a hypervi-
sor to control memory mappings such that the protected
memory addresses are guaranteed to stay in the cache,
irrespective of the sequence of memory accesses made by
software. While the cloud was our main motivation, our
techniques are not limited to the cloud and can be used
to defend against cache-based side channel attacks in a
general setting.

Our experiments show that our prototype of the idea on
Windows Hyper-V efficiently mitigates cache-based side
channel attacks. It imposes a 5.9% performance overhead
on the SPEC 2006 CPU benchmark running with 6 VMs.
We also adapted standard implementations of three com-
mon block ciphers to take advantage of STEALTHMEM.
The code changes amounted to 3 lines for Blowfish, 5
lines for DES and 34 lines for AES. The overheads of the
secured versions were 3% for DES, 2% for Blowfish and

Level Shared Type Line size Assoc. Size
L1 No Inst./Data 64 Bytes 4/8 32 kB/32 kB
L2 No Unified 64 Bytes 8 256 kB
L3 Yes Unified 64 Bytes 16 8 MB

Table 2: Caches in a Xeon W3520 processor

5% for AES.

2 Background

This section provides background on the systems
STEALTHMEM is intended to protect, focusing on CPU
caches and the channels through which cache information
can be leaked. It also provides an overview of known
cache-based side channel attacks.

2.1 System Model

We target modern virtualized server systems. The hard-
ware is a shared memory multiprocessor whose process-
ing cores share a cache (usually the last level cache). The
CPUs may support simultaneous multi-threading (Hyper-
Threading). The system software includes a hypervisor
that partitions the hardware resources among multiple
tenants, running in separate virtual machines (VMs). The
tenants are not trusted and may not trust each other.

2.1.1 Cache Structure

The following short summary of caches is specific to typ-
ical x64-based CPUs, which are the target of our work.
The CPU maps physical memory addresses to cache ad-
dresses (called cache indices) in n-byte aligned units.
These units are called cache lines, and mapped physi-
cal addresses are called pre-image sets of each cache line
as in Figure 1. A typical value of n is 64. We call the
number of possible cache indices the index range. We
call the index range times the line size, the address range
of the cache.

On x64 systems, caches are typically set associative.
Every cache index is backed by cache storage for some
number w > 1 of cache lines. Thus, up to w different
lines of memory that map to the same cache index can
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Figure 1: Cache structure and terminology

be retained in the cache simultaneously (see Figure 1).
The number w is called the wayness or set associativity,
and typical values are 8 and 16, as in Table 2. Since w
cache lines have the same pre-image sets (correspondingly
mapped physical memory), we refer to all w cache lines
as a cache line set.

CPUs typically implement a logical hierarchy of
caches, called L1, L2 and L3 depending on where they
are located. L1 is physically closest to CPU, so it is the
fastest (about 4 cycles), but has the smallest capacity (e.g.,
32 kB). In multi-core architectures (e.g., Xeon), each
core has its own L1 and backed L2 cache. The L3 cache,
usually the last level cache, is the slowest (about 40 cy-
cles) and largest cache (e.g., 8 MB). It is shared by all
cores of a processor. The L3 is particularly interesting
because it can be shared among virtual machines running
concurrently on different cores.

2.1.2 Cache Properties

This section lists two well-known properties of caches
that our algorithms rely on. The first condition is the
basis for our main algorithm. We will also describe an
optimization that is possible if the cache has the second
property.

Inertia No cache line of a cache line set will be evicted
unless there is an attempt to add another item to the cache
line set. In other words, the current contents of each cache
line set stay in the cache until an address is accessed that
is not in the cache and that maps to the same cache line
set. That is, cache lines are not spontaneously forgotten.
The only exceptions are CPU instructions to flush the
cache such as invd or wbinvd on x64 CPUs. However,
such instructions are privileged and can be controlled by
a trusted hypervisor.

k-LRU Cache lines are typically evicted according to a
pseudo-LRU cache replacement policy. Under an LRU
replacement policy, the least recently used cache line is
evicted, assuming that cache line is not likely to be uti-
lized in the near future. Pseudo-LRU is an approximation
to LRU which is cheaper to implement in hardware. We
say that an associative cache has the k-LRU property if
the replacement algorithm will never evict the k most re-
cently used copies. The k is not officially documented by
major CPU vendors and may also differ by micro archi-
tectures and their implementations. We will perform an
experiment to find the proper k for our Xeon W3520 in
Section 5.

2.1.3 Leakage Channels

This section summarizes the different ways in which in-
formation can leak through caches (see Figure 2). These
leakage channels form the basis for active time-driven
attacks and trace-driven attacks that we will define in the
next section.

Preemptive scheduling An attacker’s VM and a vic-
tim’s VM may share a single CPU core (and its cache).
The system uses preemptive scheduling to switch the CPU
between the different VMs. Upon each context switch
from the victim to the attacker, the attacker can observe
the cache state as the victim had left it.

Hyper-Threading Hyper-Threading is a hardware tech-
nology that allows multiple (typically two) hardware
threads to run on a single CPU core. The threads share
a number of CPU resources, including the ALU and all
of the core’s caches. This gives rise to a number of side
channels, and scheduling potentially adversarial VMs on
Hyper-Threading of the same core is generally considered
to be unsafe.

Multicore The attacker and the victim may be running
concurrently on separate CPU cores with a shared L3
cache. In this case, the attacker can try to probe the
L3 cache for accesses by the victim while the victim is
running.

2.2 Cache-based Side Channel Attacks
In this section, we summarize and classify well-known
cache-based side channel attacks. Following Page [31],
we distinguish between time-driven and trace-driven
cache attacks, based on the information that is leaked
in the attacks. Furthermore, we classify time-driven at-
tacks as passive or active, depending on the scope of the
attacks.
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Figure 2: Leakage channels in three VM settings—uniprocessor, Hyper-Threading and multicore architectures. Modern
commodity multicore machines suffer from all of three types of cache-based side channels. The letters (I) and (D)
indicate instruction-cache and data-cache, respectively.

2.2.1 Time-driven Cache Attacks

The first class of attacks are time-driven cache attacks,
also known as timing attacks. Memory access times de-
pend on the state of the cache. This can result in measur-
able differences in execution times for different inputs.
Such timing differences could be converted into mean-
ingful attacks such as inferring cryptographic keys. For
example, the number of cache lines accessed by a block
cipher during encryption may depend on the key and on
the plaintext, resulting in differences in execution times.
Such differences may allow an attacker to derive the key
directly or to reduce the possible key space, making it pos-
sible to extract the complete key within a feasible amount
of time by brute force search.

Depending on the location of the attacker, the time-
driven cache attacks fall into two categories: passive and
active attacks. A passive attacker has no direct access to
the victim’s machine. Thus the attacker cannot manipulate
or probe the victim’s cache directly. Furthermore, he does
not have access to precise timers on the victim’s machine.
An active attacker, on the other hand, can run code on
the same machine as the victim. Thus, the attacker can
directly manipulate the cache on the victim’s machine.
He can also access precise timers on that machine.

Passive time-driven cache attacks The time measure-
ments in passive attacks are subject to two sources of
noise. The initial state of the cache, which passive attack-
ers cannot directly manipulate or observe, may influence
the running time. Furthermore, since the victim’s running
time cannot be measured locally with a high precision
timer, the measurement itself is subject to noise (e.g. due
to network delays). Passive attacks, therefore, generally
require more samples and try to reduce the noise by means
of statistical methods.

For example, Bernstein’s AES attack [8] exploits the

fact that the execution time of AES encryption varies
with the number of cache misses caused by S-box table
lookups during encryption. The indices of the S-box
lookups depend on the cryptographic key and the plaintext
chosen by the attacker. After measuring the execution
times for a sufficiently large number of carefully chosen
plaintexts, the attacker can infer the key after performing
further offline analysis.

Active time-driven cache attacks Active attackers can
directly manipulate the cache state, and thus can induce
collisions with the victim’s cache lines. They can also
measure the victim’s running time directly using a high
precision timer of the victim. This eliminates much of the
noise faced by passive attackers, and makes active attacks
more efficient. For example, Osvik et al. [30] describe an
active timing attack on AES which can recover the com-
plete 128-bit AES key from only 500,000 measurements.
In contrast, Bernstein’s passive timing attack required
227.5 measurements.

2.2.2 Trace-driven Cache Attacks

The second type of cache-based side channel attacks are
trace-driven attacks. These attacks try to observe which
cache lines the victim has accessed by probing and ma-
nipulating the cache. Thus, like active timing attacks,
trace-driven attacks require attackers to access the same
machine as the victim. Given the additional information
about access patterns of cache lines, trace-driven attacks
have the potential of being more efficient and sophisticate
than time-driven attacks.

A typical attack strategy (Prime+Probe) is for the at-
tacker to access certain memory addresses, thus filling the
cache with its own memory contents (Prime). Later, the
attacker measures the time required to access the same
memory addresses again (Probe). A large access time
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indicates a cache miss which, in turn, may indicate that
the victim accessed a pre-image of the same cache line.

Trace-driven attacks were considered harmful espe-
cially with simultaneous multi-threading technologies,
such as Hyper-Threading, that enable one CPU to exe-
cute multiple hardware threads at the same time without
a context switch. By exploiting the fact that both threads
share the same processor resources, such as caches, Perci-
val [32] experimentally demonstrated a trace-driven cache
attack against RSA. The attacker’s process monitoring L1
activity of RSA encryption can easily distinguish the foot-
prints of modular squaring and modular multiplications
based on the Chinese Remainder Theorem, which is used
by various RSA implementations to compute modular
operations on the private key of RSA [32].

More severely, Neve [29] introduced another trace-
driven attack even without requiring multi-threading tech-
nologies. Within a single-threaded processor, Neve an-
alyzed the last round of AES encryption with multiple
footprints of the AES process. To gain a footprint, Neve’s
attack exploits the preemptive scheduling policy of com-
modity operating systems. Gullasch et al. similarly used
the Completely Fair Scheduler of Linux to extract full
AES encryption keys. This is the first fully functional
asynchronous attack in a real-world setting.

More quantitative research on trace-driven cache-based
side channel attacks was conducted by Osvik, Shamir
and Tromer [30, 39]. They demonstrated two interesting
AES attacks by analyzing the first and second round of
AES. The first attack (Prime+Probe) was able to recover
a complete 128-bit AES key after only 8,000 encryptions.
The second attack is asynchronous and allows an attacker
to recover parts of an AES key when the victim is run-
ning concurrently on the same machine. The attack was
applied to a Hyper-Threading processor. However, it is in
principle also applicable to modern multicore CPUs with
a shared last level cache.

3 Threat Model and Goals

With the move from private computing hardware toward
cloud computing, the dangers of cache-based side chan-
nels become more acute. The sharing of hardware re-
sources, especially CPU caches, exposes cloud tenants
to both active time-driven and trace-driven cache attacks
by co-located attackers. Neither of these attack types is
typically a concern in a private computing environment
which does not admit arbitrary code of unknown origin.

In contrast, passive time-driven attacks do not require
the adversary to execute code on the victim’s machine
and thus apply equally to both environments. This class
of attacks depends on the design, implementation, and
behavior of the victim’s algorithms.

The goal of this paper is to reduce the exposure of cloud

systems to cache-based side channels to that of private
computing environments. This requires defenses against
active time-driven and trace-driven attacks.

We aim to design a practical system-level mechanism
that provides such defenses. The design should be practi-
cal in the sense that it is compatible with existing commod-
ity server hardware. Furthermore, its impact on system
performance should be minimal, and it should not require
significant changes to tenant software.

4 Design

We have designed the STEALTHMEM system to meet the
aforementioned goals. The high-level idea is to provide
users with a limited amount of private memory that can be
accessed as if caches were not shared with other tenants.
We call this abstraction stealth memory [13]. Tenants can
use stealth memory to store data, such as the S-boxes of
block ciphers, that are known to be the target of cache-
based side channel attacks.

We describe our design and implementation for virtu-
alized systems that are commonly used in public clouds.
However, our design could also be applied to regular op-
erating systems running directly on a physical machine.
STEALTHMEM extends a hypervisor, such that each VM
can access small amounts of memory whose cache lines
are not shared.

Let p be the maximum number of CPU cores that can
share a cache. This number depends on the CPU model.
However, it is generally a small constant, such as p = 4
or p = 6. In particular, systems with larger numbers of
processors typically consist of independent CPUs without
shared caches among them.

The hypervisor selects p pre-image sets arbitrarily and
assigns one page (or a few pages) from each set to one of
the cores such that any two cores that share a cache are
assigned pages from different pre-image sets and such that
no page is assigned to more than one core. These pages
are the cores’ stealth pages, and they will be exposed
to virtual machines running on the cores. At boot or
initialization time, the hypervisor sets up the page tables
for each core, such that each stealth page is mapped only
to the core to which it was assigned. We will call the p
pre-image sets from which the stealth pages were chosen
the collision sets of the stealth pages.

Figure 3 shows an example of a CPU with four cores
sharing an L3 cache. Thus, p = 4. STEALTHMEM would
pick four pages from four different pre-image sets and set
the page tables such that the i-th core has exclusive access
to the i-th page.

In the rest of this section, we will refine the design and
describe how STEALTHMEM disables the three leakage
channels of Section 2.
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Figure 3: STEALTHMEM on a typical multicore machine: Each VM has its own stealth page. When a VM is scheduled
on a core, the core will lock the VM’s stealth page into the shared cache. In one version, the hypervisor will not use the
collision sets in order to avoid cache collisions.

4.1 Context Switching

In general, cores are not assigned exclusively to a single
VM, but are time-shared among multiple VMs. STEALTH-
MEM will save and restore stealth pages of VMs dur-
ing context switches. In the notation of Figure 3, when
VM5 is scheduled to a core currently executing VM4,
the STEALTHMEM hypervisor will save the stealth pages
of the core into VM4’s context, and restore them from
VM5’s context. STEALTHMEM will thus ensure that all of
VM4’s stealth pages are removed from the cache and all of
VM5’s stealth pages are loaded into the cache. STEALTH-
MEM performs this step at the very end of the context
switch—right before control is transferred from VM4 to
VM5. This way, all of VM5’s stealth pages will be in the
L1 cache (in addition to being in L2 and L3) when VM5
starts executing.

Guest operating systems can use the same technique to
multiplex their stealth memory to an arbitrary number of
applications.

4.2 Hyper-Threading

In order to avoid asynchronous cache side channels be-
tween hyperthreads on the same CPU core, STEALTH-
MEM gang schedules them. In other words, the hyper-
threads of a core are never simultaneously assigned to
different VMs. Some widely used hypervisors such as
Hyper-V already implement this policy. Given the tight
coupling of hyperthreads through shared CPU compo-
nents, it is hard to envision how the hyperthreads of a core
could be simultaneously assigned to multiple VMs with-
out giving rise to a multitude of side channels. Another
option is to disable Hyper-Threading.

4.3 Multicore

STEALTHMEM has to prevent an attacker running on one
core from using the shared cache to gain information
about the stealth memory accesses of a victim running
concurrently on another core. For this purpose, STEALTH-
MEM has to remove or tightly control access to any page
that maps to the same cache lines as the stealth pages;
i.e., to the p pre-image sets from which the stealth pages
were originally chosen. We consider two options: a)
STEALTHMEM makes these pages inaccessible and b)
STEALTHMEM makes the pages available to VMs, but
mediates access to them carefully.

Under the first option, STEALTHMEM ensures at the
hypervisor level that, beyond the stealth pages, no pages
from the p pre-image sets from which the stealth pages
were taken are mapped in the hardware page tables. Thus,
these pages are not used and are physically inaccessible
to any VM. There is no accessible page in the system
that maps to the same cache lines as the stealth pages.
Code running on one core cannot probe or manipulate
the cache lines of another core’s stealth page because it
cannot access any page that maps to the same cache lines.

The total amount of memory that is sacrificed in this
way depends on the shared cache configuration of the
processor. It is about 3% for all CPU models we have
examined. For example, the Xeon W3520 of Table 2 has
an 8 MB 16-way set associative L3 cache that is shared
among 4 cores (p = 4). Dividing 8 MB by the wayness
(16) and the page size (4096 bytes), yields 128 page-
granular pre-image sets. Removing p = 4 of them corre-
sponds to a memory overhead of 4/128 = 3.125%. The
available shared cache is reduced by the same amount.

One could consider the option of reducing the overhead
by letting trusted system software (e.g. the hypervisor,
or root partition) use the reserved pages, rather than not
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assigning them to guest VMs. However, this would make
it hard to argue about the security of the resulting system.
For example, if the pages were used to store system code,
one would have to ensure that attackers could not access
the cache lines of stealth pages indirectly by causing the
execution of certain system functions.

4.4 Page Table Alerts

The second option is to use the memory from the p pre-
image sets, but to carefully mediate access to them. This
option eliminates the memory and cache overhead at the
expense of maintenance cost.

STEALTHMEM maintains the invariant that the stealth
pages never leave the shared cache. The shared cache is
w-way set associative. Intuitively, STEALTHMEM tries
to reserve one of the w slots for the stealth cache line,
while the remaining w− 1 slots can be used by other
pages. STEALTHMEM interposes itself on accesses that
might cause stealth cache lines to be evicted by setting
up the hardware page mappings for most of the colliding
pages, such that attempts to access them result in page
faults and, thus, invocation of the hypervisor. We call this
mechanism a page table alert (PTA).

Rather than simply not using the pre-image sets, the
hypervisor maps all their pages to VMs like regular pages.
However, the hypervisor sets up PTAs in the hardware
page mappings for most of these pages.

More precisely, the hypervisor ensures that there will
never be more than w− 1 pages (other than one stealth
page) from any of the p pre-image sets without a PTA.
The w−1 pages without PTAs are effectively a cache of
pages that can be accessed directly without incurring the
overhead of a PTA.

At initialization, the hypervisor places a PTA on every
page of each of the p pre-image sets. Upon a page fault,
the handler in the hypervisor will determine if the page
fault was caused by a PTA. If so, it will determine the
pre-image set of the page that triggered the page fault
and perform the following steps: (a) If the pre-image set
already contains w−1 pages without a PTA then one of
these pages is chosen (according to some replacement
strategy), and a PTA is placed on it. (b) The hypervi-
sor ensures that all cache lines of the stealth page and
of the up to w− 1 colliding pages without PTAs are in
the cache. This can be done by accessing these cache
lines—possibly repeatedly. On most modern processors,
the hypervisor can verify that the lines are indeed in the
cache by querying the CPU performance counters for the
number of L3 cache misses that occurred while accessing
the w pages. If this number is zero then all required lines
are in the cache. (c) The hypervisor removes the PTA
from the page that caused the page fault. (d) The hypervi-
sor resumes execution of the virtual processor that caused

the page fault. The hypervisor executes steps (b) and (c)
atomically—preemption is disabled.

The critical property of these steps is that all accesses
to the w pages without PTAs will always hit the cache and,
by the inertia property, not cause any cache evictions. Any
accesses to other pages from the same pre-image set are
guarded by PTAs and will be mediated by STEALTHMEM.

In order to improve scalability, we maintain a separate
set of PTAs for each group of p processors that share
the cache. Steps (a) to (d) are performed only locally for
the set of PTAs of the processor group that contains the
processor on which the page fault occurred. Thus, only
the local group of p processors needs to be involved in the
TLB shootdown, and different processor groups can have
different sets of pages on which the PTAs are disabled.
This comes at the expense of additional memory for page
tables.

k-LRU If the CPU’s cache replacement algorithm has
the k-LRU property (see Section 2) for some k > 1, the
following simplification is possible in step (b). Rather
than loading the cache lines from all pages without PTAs
from the pre-image set, STEALTHMEM only needs to
access once each cache line of the stealth page. This
reduces the overhead per PTA.

Furthermore, the maximum number of pages without
PTAs must now be set to k− 1, which may be smaller
than w−1. This may lead to more PTAs in this variant of
the algorithm.

The critical property of this variant of the algorithm is
that, at any time, the only pages in the stealth page’s pre-
image set that could have been accessed more recently
than the stealth page are the k− 1 pages without PTAs.
Thus, by the k-LRU property, the stealth page will never
be evicted from the cache. Figure 4 illustrates this for
k = 4.

4.5 Optimizations
Our design to expose stealth pages to arbitrary numbers
of VMs adds work to context switches. Early experiments
showed that this overhead can be significant. We use the
following optimizations to minimize this cost.

We associate physical stealth pages with cores, rather
than VMs, in order to minimize the need for shared data
structures and the resulting lock contention. STEALTH-
MEM virtualizes these physical stealth pages and exposes
a (virtual) stealth page associated with each virtual pro-
cessor of a guest. This requires copying the contents
of a virtual processor’s stealth page and acquiring inter-
processor locks whenever the hypervisor’s scheduler de-
cides to move a virtual processor to a different core. This
event, however, is relatively rare and costly in itself. Thus,
the work we add is only a small fraction of the total cost.
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Figure 4: Page table alerts on accessing pages 1, 2, 3, 4 and 1, which are the pre-images of the same cache line set.
When getting a page fault on accessing page 4, STEALTHMEMPTA reloads the stealth page to lock its cache lines. The
k-LRU policy (k = 4) guarantees that the stealth page will not be evicted from the cache. Extra page faults come from
accessing PTA-guarded pages. Accessing the tracked cache lines (pages without PTAs) will not generate extra page
faults and, thus, no extra performance penalty.

With this optimization, each guest still has its own pri-
vate stealth pages (one per virtual processor). A potential
difficulty of this approach is that guest code sees different
stealth pages, depending on which virtual processor it
runs on. However, this problem is immaterial for the stan-
dard application of STEALTHMEM, in which the stealth
pages store S-box tables that never change.

Furthermore, we use several optimizations to minimize
the cost of copying stealth pages and flushing their cache
lines during context switches. Rather than backing the
contents of a core’s stealth page to a regular VM context
page, we give each VM a separate set of stealth pages.
Each VM has its own stealth page from pre-image set i
for core i. Thus, if a VM is preempted and later resumes
execution on the same set of cores, it is only necessary to
refresh the cache lines of its stealth pages. The contents
of a stealth page only have to be saved and restored if a
virtual processor moves to a different core.

A frequent special case are transitions between a VM
and the root partition. When a VM requires a service,
such as access to the disk or the network, the root parti-
tion needs to be invoked. After the requested service is
complete, control is returned to the VM—typically on the
same cores on which it was originally running. Thus, it is
not necessary to copy the stealth page contents on either
transition. Furthermore, since we do not assign stealth
pages to the root partition, it is not even necessary to flush
caches.

4.6 Extensions
As long as the machine has sufficient memory, we do
not use the pages from the collision sets. This will help
STEALTHMEM to avoid the performance overhead of
maintaining PTAs. If, at some point, the machine is
short of memory, STEALTHMEM can start assigning PTA-
guarded pages to VMs, making all memory accessible.

STEALTHMEM can, in principle, provide more than
one page of stealth memory per core. In order to ensure
that stealth pages are not evicted from the cache, the
number of stealth pages per core can be at most k−1 for
variants that rely on the k-LRU property and at most w−1
for other variants, where w is the wayness of the cache.

4.7 API
VM level STEALTHMEM exposes stealth pages as ar-
chitectural features of virtual processors. The guest oper-
ating system can find out the physical address of a virtual
processor’s stealth page by making a hypercall, which is
a common interface to communicate with the hypervisor.

Application level Application code has to be modified
in order to place critical data on stealth pages. STEALTH-
MEM provides programmers with two simple APIs for
requesting and releasing stealth memory as shown in Ta-
ble 3: sm alloc() and sm free(). Programmers can pro-
tect important data structures, such as the S-boxes of
encryption algorithms, by requesting stealth memory and
then copying the S-boxes to the allocated space. In Sec-
tion 6, we will evaluate the API design by modifying
popular cryptographic algorithms, such as DES, AES and
Blowfish, in order to protect their S-boxes with STEALTH-
MEM.

5 Implementation

We have implemented the STEALTHMEM design on Win-
dows Server 2008 R2 using Hyper-V for virtualization.
The STEALTHMEM implementation consists of 5,000
lines of C code that we added to the Hyper-V hypervisor.
We also added 500 lines of C code to the Windows boot
loader modules (bootmgr and winloader).
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API Description
void ∗ sm alloc(size t size) Allocate dynamic memory of size bytes and return a corresponding pointer
void sm free(void ∗ptr) Free allocated memory pointed to by the given pointer, ptr

Table 3: APIs to allocate and free stealth memory

STEALTHMEM exposes stealth pages to applications
through a driver that runs in the VMs and that produces
the user mode mappings necessary for sm alloc() and
sm free(). We did not have to modify the guest operating
system to use STEALTHMEM.

We implemented two versions of STEALTHMEM. In
the first implementation, Hyper-V makes the unused
pages from the p pre-image sets inaccessible. We will
refer to this implementation as STEALTHMEM. The sec-
ond implementation maps those pages to VMs, but guards
them with PTAs. We will explicitly call this version
STEALTHMEMPTA.

Hyper-V configures the hardware virtualization exten-
sions to trap into the hypervisor when VM code executes
invd instructions. We extended the handler to reload the
stealth cache lines immediately after executing invd. We
proceeded similarly with wbinvd.

5.1 Root Partition Isolation

Hyper-V relies on Windows to boot the machine. First,
Windows boots on the physical machine. Hyper-V is
launched only after that. The Windows instance that
booted the machine becomes the root partition (equiva-
lent to dom0 in Xen). In general, by the time Hyper-V is
launched, the root partition will be using physical pages
from all pre-image sets. It would be hard or impossible
to free up complete pre-image sets by evicting the root
partition from selected physical pages. The reasons in-
clude the use of large pages which span all pre-image sets
or the use of pages by hardware devices that operate on
physical addresses.

We obtain pre-image sets that are not used by the sys-
tem by marking all pages in these sets as bad pages in the
boot configuration data using bcdedit. This causes the
system to ignore these pages and cuts physical memory
into many small chunks. We had to adapt the Windows
boot loader to enable Windows to boot under this unusual
memory configuration.

As a result of this change there are no contiguous large
(2 MB or 4 MB) pages on the machine. Both the Windows
kernel and Hyper-V attempt to use large pages to improve
performance. Large page mappings reduce the translation
depth from virtual to physical addresses. Furthermore,
they reduce pressure on the TLB. We will evaluate the
impact of not using large pages on the performance of
STEALTHMEM in Section 6).

5.2 k-LRU

Major CPU vendors implement pseudo-LRU replacement
policies as an approximation of the LRU policy [14].
However, this is neither officially documented nor ex-
plicitly stated in CPU developer manuals [6, 16]. We
conducted the following experiment to find a k value for
which our target Xeon W3520 CPU has the k-LRU prop-
erty.

We selected a set of pages that mapped to the same
cache lines. Then, we loaded one page into the L3 cache
by reading the contents of the page. After that, we loaded
k′ other pages of the same pre-image set. Then, we turned
on the performance counter and checked L3 cache misses
after reading the first page again. We ran this experiment
in a device driver (ring0) on one core, while the other
cores were spinning on a shared lock. Interrupts were
disabled. We varied k′ from 1 to 16 (set associativity).
We started seeing L3 misses at k′ = 15 and concluded that
our CPU has the 14-LRU property.

6 Evaluation

We ask three questions to evaluate STEALTHMEM. First,
how effective is STEALTHMEM against cache-based side
channel attacks? Second, what is the performance over-
head of STEALTHMEM and its characteristics? And fi-
nally, how easy is it to adopt STEALTHMEM in existing
applications?

6.1 Security

6.1.1 Basic Algorithm

We consider the basic algorithm (without the optimiza-
tions of Section 4.5) first. STEALTHMEM guarantees that
all cache lines of stealth pages are always in the shared
(L3) cache. In the version that makes colliding pages in-
accessible, this is the case simply because on each group
of cores that share a cache, the only accessible pages from
the collision sets of the stealth pages are the stealth pages
themselves. We load all stealth pages into the shared
cache at initialization. Since Section 4.6 limits the num-
ber of stealth pages per collision set to w− 1 , this will
result in all stealth pages being in the cache simultane-
ously. It is impossible to generate collisions. Thus, by the
inertia property, these cache lines will never be evicted.

In the PTA version, it is theoretically possible for
stealth cache lines to be evicted very briefly from the
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cache during PTA handling while the w− 1 colliding
pages without PTAs are loaded into the cache. The stealth
cache line would be reloaded immediately as part of the
same operation, and the time outside the shared cache
could be limited to one instruction by accessing the stealth
cache line immediately after accessing a colliding line.

Leakage channels This property together with other
properties of STEALTHMEM prevents trace-driven and
active time-driven attacks on stealth pages. We consider
each of the three leakage channels in turn:

Multicore: Attackers running concurrently on other
cores cannot directly manipulate (prime) or probe stealth
cache lines of the victim’s core. This holds for the shared
cache because, as observed above, all stealth lines always
remain in the shared (L3) cache irrespective of the actions
of victims or attackers. It also holds for the other caches
(L1 and L2) because they are not shared.

Time sharing: Attackers who time-share a core with a
victim cannot directly manipulate or probe stealth cache
lines either because we load all stealth cache lines into the
cache (including L1 and L2) at the very end of a context
switch. Thus, no matter what the adversary or the victim
did before the context switch, all stealth lines will be in
all caches after a context switch. Thus, direct priming and
probing the cache should yield no information.

Hyper-Threading: STEALTHMEM gang schedules hy-
perthreads to prevent side channels across them.

Limitations While STEALTHMEM locks stealth lines
into the last level shared (L3) cache, it has no such con-
trol over the upper level caches (L1 and L2) other than
reloading stealth pages while context switching. Accord-
ingly, STEALTHMEM cannot hide the timing differences
coming out of L1 and L2 cache. Passive timing attacks
may arise by exploiting the timing differences between
L1 and L3 from a different VM. As stated earlier, passive
timing attacks are not our focus since they are not a new
threat that results from hardware sharing in the cloud.

6.1.2 Extensions and Optimizations

Per-VM stealth pages Section 4.5 describes an opti-
mization that maintains a separate set of per-core stealth
pages for each VM. With this optimization, stealth cache
lines are not guaranteed to stay in the shared cache perma-
nently. However, by loading the stealth page contents into
the cache at the end of context switches, STEALTHMEM
guarantees that the contents of a VM’s per-core stealth
pages are reloaded in the shared cache, whenever the core
executes the VM. Thus, the situation for attackers running
concurrently on different cores is the same as for the basic
algorithm. Our observations regarding context switches
and Hyper-Threading also carry over directly.

k-LRU In the PTA variant that relies on the k-LRU
property, the stealth page is kept in the cache because at
most k−1 colliding pages can be accessed without PTAs.
Since STEALTHMEM accesses the stealth page at the end
of every page fault that results in a PTA update, the stealth
cache lines are always at least the k-least recently used
lines in their associative set. Thus, on a CPU with the
k-LRU property, they will not be evicted.

6.1.3 Denial of Service

VMs do not have to (and cannot) request or release stealth
pages. Instead, STEALTHMEM provides every VM with
its own set of stealth pages as part of the virtual machine
interface. This set is fixed from the point of view of the
VM. Accesses by a VM to its stealth pages do not affect
other VMs. Thus, there should be no denial of service
attacks involving stealth pages at the VM interface level.

Guest operating systems running inside VMs may have
to provide stealth pages to multiple processes. The details
of this lie outside the scope of this paper. As noted above,
the techniques used in STEALTHMEM can also be applied
to operating systems. Operating systems that choose to
follow the STEALTHMEM approach virtualize their VM-
level stealth pages and provide a fixed independent set of
stealth pages to each process. Again, this type of stealth
memory should not give rise to denial of service attacks.
The APIs of Table 3 would be merely convenient syntax
for a process to obtain a pointer to its stealth pages.

6.2 Performance

We have measured the performance of our STEALTHMEM
implementation to assess the efficiency and practicality
of STEALTHMEM. The experiments ran on an HP Z400
workstation with a 2.67 GHz 4 core Intel Xeon W3520
CPU with 16 GB of DDR3 RAM. The cores were running
at 2.8 GHz. Each CPU core has a 32 kB 8-way L1 D-
cache, a 32 kB 4-way L1 I-cache and a 256 kB 8-way L2
cache. In addition, the four cores share an 8 MB 16-way
L3 cache. The machine ran a 64-bit version of Windows
Server 2008 R2 HPC Edition (no service pack). We con-
figured the power settings to run the CPU always at full
speed in order to reduce measurement noise. The virtual
machines used in the experiments ran the 64-bit version
of Windows 7 Enterprise Edition and had 2 GB of RAM.
This was the recommended minimum amount of memory
for running the SPEC 2006 CPU benchmark [37].

6.2.1 Performance Overhead

Our first goal was to estimate the overhead of STEALTH-
MEM and STEALTHMEMPTA. We have measured exe-
cution times for three configurations: Baseline—an un-
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Benchmark Baseline Stealth Stealth PTA BaselineNLP
time st.dev. time st.dev. overhead time st.dev. overhead time st.dev. overhead

perlbench 508 0.1% 537 0.3% 5.7% 538 0.5% 5.9% 532 0.5% 4.7%
bzip2 610 2.0% 618 0.2% 1.3% 624 1.8% 2.3% 617 2.0% 1.1%
gcc 430 0.1% 466 0.3% 8.4% 476 0.2% 10.7% 462 0.3% 7.4%
milc 257 0.1% 289 0.7% 12.5% 298 0.5% 16.0% 284 1.6% 10.5%
namd 498 0.0% 500 0.1% 0.4% 500 0.1% 0.4% 499 0.1% 0.2%
dealII 478 0.1% 492 0.3% 2.9% 495 0.2% 3.6% 490 0.1% 2.5%
soplex 361 1.9% 401 0.4% 11.1% 412 0.3% 14.1% 394 0.2% 9.1%
povray 228 0.1% 229 0.6% 0.4% 229 0.1% 0.4% 228 0.2% 0.0%
calculix 360 0.2% 366 0.3% 1.7% 366 0.3% 1.7% 363 0.8% 0.8%
astar 454 0.1% 501 0.3% 10.4% 508 1.3% 11.9% 495 0.2% 9.0%
wrf 307 1.9% 331 0.8% 7.8% 336 1.2% 9.4% 329 0.6% 7.2%
sphinx3 602 0.1% 654 0.4% 8.6% 662 0.7% 10.0% 639 0.2% 6.1%
xalancbmk 307 0.2% 324 0.2% 5.5% 329 0.3% 7.2% 321 0.0% 4.6%
average 5.9% 7.2% 4.9%

Table 4: Running time in seconds (time), error bound (st.dev.) and overhead on 13 SPEC2006 CPU benchmarks for
Baseline, STEALTHMEM, STEALTHMEMPTA and BaselineNLP.

modified version of Windows with an unmodified ver-
sion of Hyper-V—and our respective implementations of
STEALTHMEM and STEALTHMEMPTA.

In the first experiment, we ran each configuration with
two VMs. One VM ran the SPEC 2006 CPU bench-
mark [37]. Another VM was idle. Table 4 displays the
execution times for 13 applications from the SPEC bench-
mark suite. We repeated each run ten times, obtaining
ten samples for each time measurement. The running
times in the table are the sample medians. The table also
displays the sample standard deviation as a percentage
of the sample average as an indication of the noise in the
sample. The sample standard deviation is typically less
than one percent of the sample average.

The overhead of STEALTHMEM varies between close
to zero for about one third of the SPEC applications
and 12.5% for milc. The average overhead is 5.9%. As
expected, the overhead of STEALTHMEMPTA (7.2%) is
larger than that of STEALTHMEM because of the extra
cost of handling PTA page faults. Server operators can
choose either variant, depending on the memory usage of
their servers.

We also attempted to find the source of the overhead
of STEALTHMEM. Possible sources are the cost of virtu-
alizing stealth pages, the 3% reduction in the size of the
available cache and the cost of not being able to use large
pages. We repeated the experiment with a configuration
that is identical to the Baseline configuration, except that
it does not use large pages. It is labeled BaselineNLP (for
‘no large pages’) in Table 4. The overheads for Baseli-
neNLP across the different SPEC applications correlate
with the overheads of STEALTHMEM. The overhead due
to not using large pages (4.9% on average) accounts for
more than 80% of the overhead of STEALTHMEM.

We constructed BaselineNLP using the same binaries
as Baseline. However, at hypervisor startup, we disabled

one Hyper-V function by using the debugger to overwrite
its first instruction with a ret. This function is responsible
for replacing regular mappings by large mappings in the
extended page tables. Without it, Hyper-V will not use
large page mappings irrespective of the actions of the root
partition or other guests.

6.2.2 Comparison with Page Coloring

Page coloring [33] isolates VMs from cache-related de-
pendencies by partitioning physical memory pages among
VMs such that no VM shares cache lines with any other
VM. We modified one of the Hyper-V support drivers in
the root partition (vid.sys) to assign physical memory to
VMs accordingly.

In this simple implementation of Page Coloring, the
VMs still share cache lines with the root partition. The
same holds for the system in [33]. In contrast, our
STEALTHMEM implementation isolates stealth pages also
from the root partition. While this difference makes the
Page Coloring configuration less secure, it should work
to its advantage in the performance comparison.

The next experiment compares the overheads of
STEALTHMEM and Page Coloring as the number of VMs
increases. We ran BaselineNLP, STEALTHMEM and Page
Coloring with between 2 and 7 VMs, running the SPEC
workload in one VM and leaving the remaining VMs idle.
The root partition is not included in the VM count. Again,
each time measurement is the median of ten SPEC runs.
The sample standard deviation was typically less than1%
and in no case more than 2.5% of the sample mean.

Figure 5 displays the overheads over BaselineNLP of
STEALTHMEM (left) and Page Coloring (right) as a func-
tion of the number of VMs. We chose to display the
overhead over BaselineNLP, rather than Baseline, in or-
der to eliminate the constant cost of not using large pages,
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Figure 5: Overhead of STEALTHMEM (left) and Page Coloring (right) over BaselineNLP. The x-axis is the number of
VMs.

which affects STEALTHMEM and Page Coloring similarly.
Using Baseline adds an application dependent constant to
each curve.

Overall, the overhead of STEALTHMEM is significantly
smaller than the overhead of Page Coloring. The lat-
ter grows with the number of VMs, as each VM gets a
smaller fraction of the cache. In contrast, the overhead of
STEALTHMEM remains largely constant as the number
of VMs increases.

Figure 5 also shows significant differences between
the individual benchmarks. For eight benchmarks, Page
Coloring shows a large and rising overhead. The most ex-
treme case of this is sphinx3 with a maximum overhead of
almost 50%. For four benchmarks, the overhead of Page
Coloring is close to zero. Finally, the milc benchmark
stands out, as Page Coloring runs it consistently faster
than BaselineNLP and STEALTHMEM.

These observations are roughly consistent with the
cache sensitivity analysis of Jaleel [19]. The applications
with low overhead (namd, povray and calculix) appear to
have very small working sets that fit into the L3 cache of
all configurations we used in the experiment (including
Page Coloring with 7 VMs). For the eight benchmarks
with higher overhead, the number of cache misses appears
to be sensitive to lower cache sizes in the range covered
by our Page Coloring experiment (8/7 MB to 8 MB). For
the milc application, the data reported by Jaleel indicate
a working set size of more than 64 MB. This suggests
that milc may be thrashing the L3 cache as well as the
TLB even when given the entire cache of the machine
under BaselineNLP. The performance improvement under
Page Coloring may be the result of the CPU being able
to resolve certain events (such as page table walks) faster
when a large part of the cache is not being thrashed by
milc.
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Figure 6: Running times of a micro-benchmark as a
function of its working set size.

6.2.3 Overhead With Various Working Set Sizes

The following experiment shows overhead as a function
of working set size. Given the working set of an ap-
plication, developers can estimate the expected perfor-
mance overhead when they modify an application to use
STEALTHMEM.

In the experiment, we used a synthetic application that
makes a large number of accesses to an array whose size
we varied (the working set size). The working set size
is the input to the application. It allocates an array of
that size and reads memory from the array in a tight loop.
The memory accesses start at offset zero and move up
the array in a quasi-linear pattern of increasing the offset
for the next read operation by 192 bytes (three cache line
sizes) and reducing the following offset by 64 bytes (one
cache line size). This is followed by another 192 byte
increase and another 64 byte reduction etc. When the end
of the array is reached, the process is repeated, starting
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Figure 7: Overhead of STEALTHMEM as a function of
the number of stealth pages

again at offset zero.
We ran the application for several configurations. In

each case, we ran seven VMs. One VM was running
our application. The remaining six VMs were idle. We
varied the working set sizes from 100 kB to 12.5 MB and
measured for each run the time needed by the application
to make three billion memory accesses. The results are
displayed in Figure 6. The time measurements in the
figure are the medians over five runs. The sample standard
deviations were less than 0.5% of the sample means for
most working set sizes. However, where the slope of
a curve was very steep, the sample standard deviations
could be up to 5% of the sample means.

Most configurations show a sharp rise in the running
times as the working set size increases past the size of the
L3 cache (8 MB). For Page Coloring, this jump occurs for
much smaller working sets since the VM can access only
one seventh of the CPU’s cache. Most configurations also
display a second, smaller increase around 2 MB. This
may be the result of TLB misses. The processor’s L2
TLB has 512 entries which can address up to 2 MB based
on regular 4 kB page mappings.

For very large workload sizes, BaselineNLP and
STEALTHMEM become slower than Page Coloring. This
appears to be the same phenomenon that caused Page
Coloring to outperform BaselineNLP and STEALTHMEM
on the milc benchmark.

6.2.4 Overhead With Various Stealth Pages

This experiment attempts to estimate how the overhead
of STEALTHMEM depends on the number of stealth
pages that the hypervisor provides to each VM. We ran
STEALTHMEM with one VM running the SPEC bench-
marks and varied the number of stealth pages per VM. As
before, the times we report are the medians over ten runs.

The sample standard deviations were less than 0.4% of
the sample means in all cases.

Figure 7 displays the overhead with respect to
STEALTHMEM with one stealth page per VM. There is no
noticeable increase in the running time as the number of
stealth pages increases. This is the result of the optimiza-
tions described earlier that eliminate the need to copy the
contents of stealth pages or to load them into the cache
frequently.

6.3 Block Ciphers

The goal of this experiment is to evaluate performance for
real-world applications that heavily use stealth pages. We
choose three popular block ciphers: AES [2], DES [1] and
Blowfish [35]. Efficient implementations of each of these
ciphers perform a number of lookups in a table during
encryption and decryption. We picked Bruce Schneier’s
implementation of Blowfish [36], and standard commer-
cial implementations of AES and DES and adapted them
to use stealth pages (as described in Section 6.4).

We measured the encryption speeds of each of the ci-
phers for (a) the baseline configuration (unmodified Win-
dows 7, Hyper-V and cipher implementation), (b) our
STEALTHMEM configuration using the modified versions
of the cipher implementations just described and (c) an
uncached configuration, which places the S-box tables
on a page that is not cached. Configuration (c) runs the
modified version of the block cipher implementations on
an unmodified version of Windows and an essentially un-
modified version of the hypervisor. We added a driver in
the Windows 7 guest that creates an uncached user mode
mapping to a page. We also had to add one hypercall to
Hyper-V to ensure that this page was indeed mapped as
uncached in the physical page tables. We included this
configuration in our experiments since using an uncached
page is the simplest way to eliminate cache side channels.

We measured the time required to encrypt 5 million
bytes for each configuration. In order to reduce mea-
surement noise, we raised the scheduling priority of the
encryption process to the HIGH PRIORITY CLASS of
the Windows scheduler. We ran the experiment in a small
buffer configuration (50,000 byte buffer encrypted 1,000
times) and a large buffer configuration (5 million byte
buffer encrypted once) to show performance overheads
with different workloads.

The numbers in Table 5 are averaged over 1,000 runs.
The sample standard deviation lies between 1 and 4 per-
cent of the sample averages. The overhead of using a
stealth page with respect to baseline performance lies be-
tween 2% and 5%, while the overhead of the uncached
version lies between 97.9% and 99.9%.
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A small buffer (50,000 bytes) A large buffer (5,000,000 bytes)
Cipher Baseline Stealth Uncached Baseline Stealth Uncached

DES 60 58 -3% 0.83 -99% 59 57 -3% 0.83 -99%
AES 150 143 -5% 1.33 -99% 142 135 -5% 1.32 -99%

Blowfish 77 75 -2% 1.65 -98% 75 74 -2% 1.64 -98%

Table 5: Block cipher encryption speeds in MB/s for small and large buffers. We mapped the S-box of each encryption
algorithm to cached, stealth and uncached pages.

Source code
Original static unsigned long S[4][256];

typedef unsigned long UlongArray[256];
static UlongArray *S;

Modified // in the initialization function
S = sm alloc(4*256);

Table 6: Modified Blowfish to use STEALTHMEM

Encryption Size of S-box LoC Changes
DES 256 B * 8 = 2 kB 5 lines
AES 1024 B * 4 = 4 kB 34 lines

Blowfish 1024 B * 4 = 4 kB 3 lines

Table 7: Size of S-box in various encryption algorithms,
and corresponding changes to use STEALTHMEM

6.4 Ease-of-use

We had to make only minor changes to the block cipher
implementations to adapt them to STEALTHMEM. These
changes amounted to replacing the global array variables
that hold the encryption tables by pointers to the stealth
page. In the case of Blowfish, this change required only
3 lines. We replaced the global array declaration by a
pointer and assigned the base of the stealth page to it in
the initialization function (see Table 6).

Adapting DES required us to change a total of 5 lines.
In addition to a change of the form just described, we had
to copy the table contents (constants in the source code)
to the stealth page. This was not necessary for Blowfish
which read these data from a file. Adapting AES required
a total of 34 lines. This large number is the result of the
fact that our AES implementation declares its table as 8
different variables, which forced us to repeat 8 times the
simple adaptation we did for DES. Table 7 summarizes
the S-box layouts and the required code changes for the
three ciphers.

7 Related Work

Kocher [22] presented the initial idea of exploiting tim-
ing differences to break popular cryptosystems. Even
though Kocher speculated about the possibility of ex-
ploiting cache side channels, the first theoretical model
of cache attacks was described by Page [31] in 2002.

Around that time, researchers started investigating cache-
based side channels against actual cryptosystems and
broke popular cryptosystems such as AES [4, 8, 9, 30],
and DES [40]. With the emergence of simultaneous multi-
threading, researchers discovered a new type of cache
attacks, classified as trace-driven attacks in our paper,
against AES [3, 30] and RSA [32] by exploiting the new
architectural feature of an L1 cache that is shared by two
hyperthreads. Recently, Osvik et al. [30, 39] executed
more quantitative research on cache attacks and classified
possible attack methods. The new cloud computing en-
vironments have also gained the attention of researchers
who have explored the possibility of cache-based side
channel attacks in the cloud [7, 34, 44], or inversely their
use in verifying co-residency of VMs [45].

Mitigation methods against cache attacks have been
studied in three directions: suggesting new cache hard-
ware with security in mind, designing software-only de-
fense mechanism, and developing application specific
mitigation methods.

Hardware-based mitigation methods focus on reduc-
ing or obfuscating cache accesses [23, 24, 41–43] by de-
signing new caches, or partitioning caches with dynamic
or other efficient methods [12, 21, 27, 42, 43]. Wang
and Lee [42, 43] proposed PLcache to hide cache access
patterns by locking cache lines, and RPcache to obfus-
cate patterns by randomizing cache mappings. These
hardware-based approaches, however, will not provide
practical defenses until CPU makers integrate them into
mainstream CPUs and cloud providers purchase them.
Our defense mechanism not only provides similar secu-
rity guarantee as these methods, but also allows cloud
providers to utilize existing commodity hardware.

Software-only defenses [7,11,13,15,33] also have been
actively proposed. Against time-drive attacks, Coppens
et al. [11] demonstrated a mitigation method by modi-
fying a compiler to remove control-flow dependencies
on confidential data, such as secret keys. This compiler
technique, however, leaves applications still vulnerable
to trace-driven cache attacks in the cloud. Against trace-
driven attacks, static partitioning techniques, such as page
coloring [33], provide a general mitigation solution by
partitioning pre-image sets among VMs. Since static par-
titioning divides the cache by the number of VMs, its
performance overhead becomes significantly larger when
cloud providers run more VMs, as we demonstrated in
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Section 6. Our solution, however, assigns unique cache
line sets to virtual processors and flexibly loads stealth
pages of each VM if necessary, and thus demonstrates
better performance.

Erlingsson and Abadi [13] proposed the abstraction of
“stealth memory” and sketched techniques for implement-
ing it. We have realized the abstraction in a virtualized
multiprocessor environment by designing and implement-
ing a complete defense system against cache side channel
attacks and evaluating it across system layers (from the
hypervisor to cryptographic applications) in a concrete
security model.

Since existing hardware-based and software-only de-
fenses are not practical because they require new CPU
hardware or because of their performance overhead,
researchers have been exploring mitigation methods
for particular algorithms or applications. The design
and implementation of AES has been actively revisited
by [8–10, 14, 30, 39], focusing on eliminating or control-
ling access patterns on S-Boxes, or not placing S-Boxes
into memory [28], but into registers of x64 CPUs. Re-
cently, Intel [17] introduced a special instruction for AES
encryption and decryption. These approaches may secure
AES from cache side channels, but it is not realistic to
introduce new CPU instructions for every software algo-
rithm that might be subject to leaking information via
cache side channels. In contrast, STEALTHMEM provides
a general system-level protection solution that every ap-
plication can take advantage of if it wants to protect its
confidential data in the cloud.

8 Conclusion

We design and implement STEALTHMEM, a system-level
protection mechanism against cache-based side channel
attacks, specifically against active time-driven and trace-
driven cache attacks, which cloud platforms suffer from.
STEALTHMEM helps cloud service providers offer bet-
ter security against cache attacks, without requiring any
hardware modifications.

With only a few lines of code changes, we can mod-
ify popular encryption schemes such as AES, DES and
Blowfish to use STEALTHMEM. Running the SPEC 2006
CPU benchmark shows an overhead of 5.9%, and our
micro-benchmark shows that the secured AES, DES, and
Blowfish have between 2% and 5% performance over-
head, while making extensive use of STEALTHMEM.
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Úfar Erlingsson and Martı́n Abadi for several valuable

conversations. Taesoo Kim is partially supported by the
Samsung Scholarship Foundation.

References
[1] Data Encryption Standard (DES). In FIPS PUB 46, Federal

Information Processing Standards Publication (1977).

[2] Advanced Encryption Standard (AES). In FIPS PUB 197, Federal
Information Processing Standards Publication (2001).
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