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Abstract In December 2009 the 768-bit, 232-digit number
RSA-768 was factored using the number field sieve. Over-
all, the computational challenge would take more than 1700
years on a single, standard core. In the article we present
the heterogeneous computing approach, involving different
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compute clusters and Grid computing environments, used to
solve this problem.

Keywords RSA · HPC · Integer factorization

1 Introduction

Scientific calculations in domains such as physics (fluid
dynamics, high-energy physics etc.), chemistry (quantum
chemistry, molecular modeling, etc.), biology (large scale
genomic or proteomics projects), and climate modeling of-
ten require massive amounts of computing power. If the kind
of problem calls for tightly coupled massively parallel com-
puting, it is often well suited for supercomputers and stands
a good chance to attract funding both to get access to the
proper hardware and to develop suitable software. In con-
trast, embarrassingly parallel applications, where any num-
ber of stand-alone devices will do, are often not welcome
on classical supercomputers but are instead relegated to
high-performance computing clusters, Grid infrastructures,
or desktop computing environments such as BOINC or Con-
dor.

The latter category includes cryptographic applications.
Although they are not less CPU-demanding than other sci-
entific applications, they are not considered to be of much
interest by the HPC community. Despite this disregard,
many cryptographic problems are computationally, mathe-
matically and algorithmically challenging and non-trivial,
and practically relevant for users of cryptography (i.e., al-
most everyone these days). One of these problems is inte-
ger factorization, the subject of this paper: we present the
heterogeneous computational infrastructure that was used to
set a new integer factorization record by factoring the chal-
lenge number RSA-768, a 768-bit, 232-digit composite in-
teger [11].
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We used the approach commonly used to factor large in-
tegers since the late 1980s. Thus, we did not aim for a sin-
gle, homogeneous computing environment or single super-
computer, but used a heterogeneous compute environment
consisting of several cluster and Grid environments (in Aus-
tralia, Japan, and many European countries), different op-
erating systems, job execution environments and technical
personnel. Several technical as well as non-technical reasons
have led us to a such a heterogeneous approach:

– Single Grid infrastructures such as the European Grid in-
frastructure: only a limited number of resources (for a
limited time) in the European Grid environment have been
dedicated to the RSA-factorization problem. Therefore,
even though using a Grid-only environment is promis-
ing and convenient, we had to look into alternative ap-
proaches.

– Individual clusters at different sites are available but
are managed in different ways (i.e., different local re-
source management systems, different file systems, dif-
ferent hardware, different site expertise with respect to
the RSA application, etc.). Again, standardized Grid pro-
tocols and middleware would have helped to address
the problem in a more homogeneous way but the clus-
ters we used are not part of a single Grid environ-
ment.

– A diversified, heterogeneous environment better repre-
sents the Internet as a whole than any organized computer
infrastructure. It thus allows a more reliable estimate of
the havoc miscreants could cause by large surreptitious
cryptanalytic efforts.

In brief, the RSA-768 challenge has the following fea-
tures and computational stages. The first main stage is the
most CPU intensive and embarrassingly parallel part of
the computation and also created most data. Compressed
about 5 TB had to be transferred over the Internet, at a rate
of about 10 GB per day, to a central location where, once
enough data had been collected, the second main stage was
prepared. This stage is not embarrassingly parallel and was
traditionally done on a single supercomputer or, later, on a
single tightly coupled cluster. Lacking access to sufficiently
large clusters for a long enough period of time, we had to
adopt a somewhat more complicated approach that allows
usage of a limited number of tightly coupled clusters at dif-
ferent locations. As a result, roughly 100 GB of data had to
be distributed, using the Internet again, to the contributing
clusters (restricting to those in France, Japan, and Switzer-
land). They worked independently, with the exception of an
intermediate step that had to be done on a single tightly cou-
pled cluster with 1 TB of RAM. This implied, yet again, a
substantial data exchange. In summary, the RSA-768 chal-
lenge was solved using a truly heterogeneous infrastructure

with no communication among the contributors nor compu-
tational cores except to break the computation into indepen-
dent tasks.

Given the embarrassingly parallel nature of the first main
stage, the most CPU intensive part of the computation, we
could have used one of the tools that allow contributions
by volunteers on the Internet. That is how it was done
in the late 1980s and early 1990s, using crude email and
FTP-based precursors of currently popular tools. Indeed,
an ongoing integer factorization BOINC project [14] does
just that. Having managed several such proof-of-concept
projects from 1988 until about 1995, we found that a lot
of time goes into addressing simple concerns of the contrib-
utors, in particular if considerable RAM resources are re-
quired (as was the case for RSA-768 with at least one but
preferably two GB RAM per core). We chose to limit our
project to a limited set of dedicated and knowledgeable re-
searchers who could be expected to resolve occasional is-
sues themselves.

Section 2 gives the cryptographic motivation, Sect. 3
presents the computational steps in more detail, and Sect. 4
describes the heterogeneous compute infrastructure used.

2 Cryptographic background and motivation

Cryptography is ubiquitous on the Internet. Authentication
methods used by browsers, Grid computing applications,
and websites accessed through HTTPS commonly rely on
X.509 certificates based on the RSA cryptosystem. This
means that the security depends on the hardness of factoring
an appropriately chosen integer, typically of 1024 or 2048
bits: factoring that integer could undermine the security of
that particular instance of the HTTPS protocol.

A 1024-bit integer has more than 300 decimal digits, a
2048-bit one twice as many. Dealing with such large num-
bers makes protocols unwieldy. Smaller numbers would be
more efficient—but they are easier to factor and give less se-
curity. One would like to use the smallest key size that gives
an acceptable level of security. Once a certain size has been
picked it is hard to modify the choice. But integer factoring
constantly gets easier, not just because computers keep get-
ting faster but also because factoring methods keep getting
better. So far this goes at a fairly steady pace. However, dis-
covery of an efficient factoring method cannot be ruled out:
it is conceivable that from one moment to the next the entire
information security infrastructure collapses.1 This would
affect much more than just web-security, since most of the

1Integer factorization is easy on a quantum computer [16]. Quantum
computers have not been realized yet. Estimates and opinions on this
subject vary.
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public and private sectors use the same cryptographic meth-
ods as HTTPS does. A “disaster” of this sort has not oc-
curred yet—at least, not that we are aware of—and most of
us simply hope that it will not happen either.

The steady progress is taken into account in crypto-
graphic standards that prescribe key sizes for RSA. At this
point in time we are on the verge of an important transi-
tion: the USA National Institute of Standards and Technol-
ogy (NIST) recommends phasing out 1024-bit RSA by the
end of the year 2010 and to adopt 2048-bit RSA or other sys-
tems of comparable security. This does not mean that by the
end of 2010 integers of 1024 bits can suddenly be factored. It
means that the security of 1024-bit RSA is perceived to be-
come too low and that, indeed, several years down the road,
factoring 1024-bit integers may become feasible.

How does our effort, factoring a 768-bit RSA challenge
key, fit in this picture? We now know what effort sufficed
to factor a 768-bit integer. Interestingly, it turned out to be
an order of magnitude easier than predicted by some in the
field [15]. Combined with a theoretical analysis we can now
more accurately predict what would be required to factor a
single 1024-bit RSA challenge. Unless an integer factoring
breakthrough occurs, we are convinced that an effort on a
scale similar to ours will have no chance of success within
the next five years. After that, all bets are off [11]. Thus,
NIST rightly encourages phasing out 1024-bit RSA but there
is no need to rush into a costly, overhasty security upgrade.
There is almost certainly no risk in a more economical grad-
ual adoption of the new standards, as long as the transition
is complete by the year 2014.

Furthermore, our result shows that an effort of this sort
can be pulled off even if there is no uniformity in the plat-
forms used or in the way they communicate. This requires
an extra degree of prudence when selecting cryptographic
key sizes, as the enormous computational power of Internet
as a whole, or a substantial fraction thereof, can in principle
be harnessed for similar cryptanalytic calculations.

A project of this sort is scientifically interesting in its own
right as well. When trying to solve larger problems there
are always new challenges that must be dealt with. For in-
stance, for a previous large scale effort [1], when dividing
the second main step over a number of independent tightly
coupled clusters, we had not realized that the faster clusters
would finish their task much earlier than the slower ones,
quite simply because we had never ran this step for such a
long time in such a heterogeneous environment. Faced with
the “threat” of long idle times on some clusters, a new algo-
rithmic twist was developed allowing total flexibility in task
sizes, eliminating all idle times. It considerably facilitated
management of the present project where the new approach
was used for the first time. This project, in turn, triggered
algorithmic advances for new types of processors, adapting
not just to multicores but also to the decreasing amount of

RAM per core. This will prove useful in later projects and
will greatly influence the feasibility of a 1024-bit factoring
attempt.

3 The computational challenge

When faced with a factoring problem, one first checks for
small factors. For RSA challenges this step can be omit-
ted, since the RSA challenge numbers are constructed as the
product of two primes of about the same size and therefore
they have no small factor. The fastest known algorithm to
factor RSA challenges is the number field sieve (NFS, [12]),
which works by combining relations, as illustrated below.
The two main steps mentioned in Sect. 1 are the most CPU
intensive steps of NFS: in the first step relations are gen-
erated, in the second step they are combined. In this sec-
tion we present a more complete outline of NFS, concen-
trating on the computational effort and data sizes for RSA-
768, while avoiding all underlying mathematical details. In
brief, we describe the five main steps of the overall work-
flow.

We give a simple example to show how relations are com-
bined to factor an integer while avoiding the intricacies in-
volved in the NFS. For the integer 143 a relation would be
given by 172 ≡ 3 mod 143 because the difference 172 − 3 is
an integer multiple of 143. Similarly, 192 ≡ 3 · 52 mod 143
is a relation. These relations can be combined into the re-
lation 172 · 192 ≡ 32 · 52 mod 143 with squares on both
sides. The square roots 17 · 19 and 3 · 5 of both sides fol-
low immediately. The greatest common divisor of 143 and
the difference 17 · 19 − 3 · 5 of the square roots turns out
to be 11, a factor of 143. Relations for NFS are more com-
plex and involve algebraic integers. Defining those requires
proper polynomials, which are selected in the first step of
NFS:

Preparatory step: polynomial selection The runtime of
NFS depends strongly on the parameter choice. The most
important choice is that of a pair of irreducible polynomi-
als f , g that define two algebraic number fields. For RSA-
768 we fixed degree(f ) = 6 and degree(g) = 1, implying
that the number field defined by g is the field Q of the ra-
tional numbers. The best current method to find good f

and g is a mathematically rather sophisticated, embarrass-
ingly parallel search. A good pair was found in 2005 already,
after three months on 80 AMD Opteron cores in Bonn.
A comparable effort at EPFL, in 2007, did not turn up a bet-
ter pair. Overall, more than 2 ·1018 pairs were considered, at
a rate of 1.6 billion pairs per core per second. Although this
is a considerable computation, as it would have required a
day of computing on a 15 000 core cluster, it is dwarfed by
the other steps.
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First main step: sieving In this step many relations are
sought: co-prime pairs of integers a, b such that f (a, b) ·
g(a, b) has no large prime factors. How many relations are
needed depends on the size of those prime factors. For RSA-
768 we used the bound 240. We analyzed that enough rela-
tions could be found by searching through |a| < 6.3 · 1011

and 0 < b < 1.4 · 107. This implies that for more than 1019

co-prime pairs a, b the value f (a, b) · g(a, b) had to be
tested for divisibility by the almost 38 billion primes < 240.
Per prime p this can be done for many a, b pairs simultane-
ously using sieving: if a polynomial value such as f (a, b) is
a multiple of p, then so is f (a +mp,b +np) for integers m

and n.
The sieving can be distributed, in an embarrassingly par-

allel fashion, by assigning disjoint ranges of b-values to
different contributors. Given a b-value one just sieves all
|a| < 6.3 · 1011. This straightforward approach was used in
the earliest distributed NFS factoring efforts. A more effi-
cient and still embarrassingly parallel strategy is to assign
disjoint ranges of primes q to different contributors, and to
limit the search, given such a special q , to all relevant a, b

pairs for which f (a, b) is divisible by q . Each special q re-
sults in a number of different sieving tasks that varies from
zero to degree(f ) (i.e., six, for RSA-768). This approach,
which is a bit harder to program, has gained popularity since
the mid 1990s. We used it for RSA-768 and we could fully
inspect 15 to 20 million a, b pairs per second on a 2.2 GHz
core with 2 GB RAM. Sieving task were distributed among
the contributors depending on their available computer re-
sources.

Overall, about 465 million sieving tasks were processed,
for special q values between 108 and 1.11 ·1010. An average
sieving task took about 100 seconds on a core as above, and
resulted in about 134 relations at about 150 bytes per rela-
tion. Sieving started in the summer of 2007 and lasted for
almost two years. With about 1500 core years, we achieved
a sustained performance equivalent to more than 700 cores,
full time for two years. Table 1 gives a breakdown of the
ranges of special q values processed by the different contrib-
utors. Section 4 presents more details of the infrastructures
used. Including duplicates, in total more than 64 billion re-
lations were generated. They were collected at EPFL, with
several backups, also off-campus.

The main input for a processor contributing to the sieving
is the range of special q values to be processed. The number
of sieving tasks per range behaves roughly as the number
of primes in it. Thus, it slowly drops off with increasing q

values, and for a range [L,U ] can be estimated as U
ln(U)−1 −

L
ln(L)−1 . For a range of length 1000 with L ≈ 109 this results
in about 48 sieving tasks, which is reduced to about 43 for
L ≈ 1010. Such ranges can typically be processed in less
than two hours.

Compressed storage of the relations, along with the fac-
torizations of the f (a, b) · g(a, b)-values, took 5 TB. This

amount of storage is by no means exceptional, and should
not be hard to deal with. Nevertheless, storage problems
caused most stress while sieving for RSA-768, mostly due
to the lack of reliability of the storage devices. Not just disks
failed (with RAID servers as a first line of defense), disk cas-
ings failed as well, with unforeseeable consequences for the
disks and RAID servers. In the course of the sieving we de-
cided to hedge our bets by spreading the risk over a variety
of manufacturers and vendors. Additionally, human errors
are unavoidable and rigid rules had to be enforced to mini-
mize the consequences.

Otherwise, sieving is the least stressful step of NFS, as it
is not just embarrassingly parallel but also tolerant to slop-
piness and errors. All that counts is if ultimately enough
relations will be found, for the rest one mostly needs pa-
tience. It does not matter what special q was used to find
a relation, and it does not matter much—except for a mi-
nor loss of efficiency, and unless it occurs systematically—
if not all special q values in a range are properly processed
or if occasionally some of the data generated gets lost or
corrupted (as the correctness of a relation can easily be ver-
ified at the central repository: anything that is not correct is
simply discarded). A crash of one or more processors does
not affect the results of any of the other processors, and a
task that may be left unfinished due to some mishap can be
reassigned to another processor or it can be dropped alto-
gether.

Intermediate step: filtering After duplicate removal, use-
less relations are removed. These include, for instance, re-
lations for which f (a, b) contains a prime factor that does
not occur in any other relation. This can only conveniently
be done if all data reside at a single location. The surviving
relations are used to build an over-square bit-matrix with
rows determined by the exponent-vectors of the primes in
the remaining f · g-values, or combinations thereof. While
building this bit-matrix, many choices can be made. Be-
cause dependencies among the rows will be determined
in the next step, it pays off to aim for a low dimension
and overall weight (i.e., number of non-zero matrix en-
tries).

For RSA-768, the 64 billion relations resulted in 48 bil-
lion non-duplicates. Several matrices were built, the best of
which had 193 million rows and 28 billion non-zero entries.
It required about 105 GB of disk space. The entire process
to convert the raw relations into a matrix took about two
weeks of computing on a 304-core cluster at EPFL: rela-
tively speaking quite modest but rather cumbersome as large
amounts of data had to be moved around.

Second main step: matrix Although the sieving step re-
quires more CPU time, the matrix step is considered to be
the most challenging step of current large scale factoring ef-
forts. Gaussian elimination was used for factoring related
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Table 1 For each range of special q values, the contributor that sieved
that range is listed, along with the amount of RAM used for the sieving
program, the number of relations found, and the approximate number
of relations that was found per task. The number of relations per task
decreases with increasing special q values. Independently, the number
of tasks per fixed length range decreases because the number of primes
per range decreases. Together these effects contribute to the overall

drop in the number of relations found per fixed length range (as exem-
plified by the two arrows), though for some machines it turned out to
be faster to produce fewer relations per range. Note also that, on aver-
age, fewer relations are found per task if less RAM is available: except
for the low range of special q values, we therefore preferred to use ma-
chines with at least 2 GB RAM per core to sieve the more productive
ranges

q-range Contributor RAM Number of Percentage Relations Percentage

(millions) relations found of relations per task of tasks

100–170: EPFL Greedy (89% done) .5 GB 530 837 179 0.83% 159 0.72%

170–400: Not assigned

400–444: CWI .5 GB 493 758 264 0.77% 223 0.48%

444–450: Not assigned

450–1100: NTT 1 GB 6 040 634 011 9.39% 190 6.84%

1100–1200: EPFL Lacal304 2 GB 1 085 485 063 1.69% 227 1.03%

1200–1500: EGEE 1–2 GB 2 906 539 451 4.52% 204 3.06%

1500–2000: Bonn 2 GB 4 953 637 869 7.70% 211 5.05%

2000–2035: AC3 1.7 GB 278 083 916 0.43% 170 0.35%

2035–2100: EPFL

⎧
⎪⎨

⎪⎩

Callisto

Lacal140

Lacal304

⎫
⎪⎬

⎪⎭
2 GB 583 487 657 0.91% 193 0.65%

2100–2400: EPFL Lacal304 2 GB 2 644 305 334 4.11% 204 2.79%

2400–2500: INRIA 2 GB 889 307 119 1.38% 192 1.00%

2500–2600: INRIA 1–2 GB 729 836 401 1.13% 158 0.99%

2600–2700: EPFL Lacal304 2 GB 811 399 503 1.26% 176 0.99%

2700–2800: CWI 1–2 GB 742 575 917 1.15% 161 0.99%

2800–3000: INRIA 2 GB 1 633 654 656 2.54% 178 1.97%

3000–3300: EPFL Callisto 2 GB 2 256 163 004 3.51% 164 2.96%

3300–3600: EPFL Lacal140 2 GB 2 177 658 504 3.38% 159 2.95%

3600–4000: INRIA 1–2 GB 2 526 184 293 3.93% 139 3.91%

4000–4200: INRIA 2 GB 1 449 153 442 2.25% 160 1.95%

4200–4600: INRIA 1 GB 2 320 916 889 3.61% 129 3.87%

4600–4700: Not assigned

4700–4760: NTT 1 GB 273 747 997 0.43% 102 0.58%

4760–4800: Bonn 2 GB 258 785 877 0.40% 144 0.39%

4800–5200: EPFL Lacal304 2 GB 2 554 062 089 3.97% 143 3.84%

5200–5400: EPFL Lacal140 2 GB 1 245 110 392 1.94% 139 1.93%

5400–5600: EPFL Callisto 2 GB 1 235 783 457 1.92% 139 1.91%

5600–5800: EPFL Lacal304 2 GB 1 219 439 733 1.90% 137 1.91%

5800–6000: EPFL Callisto 2 GB 1 202 926 042 1.87% 135 1.92%

6000–6200: EPFL Lacal140 2 GB 1 182 875 721 1.84% 133 1.91%

6200–6300: INRIA

EPFL Lacal304

}

not done
6300–6500:

6500–7000: INRIA 1–2 GB 2 476 812 744 3.85% 112 4.76%

7000–7900: NTT 1 GB 3 574 335 463 5.56% 90 8.54%

7900–8900: INRIA 1 GB 4 589 325 052 7.13% 105 9.40%

8900–9300: INRIA 1 GB 1 776 088 161 2.76% 102 3.75%

9300–9400: CWI 1–2 GB 495 380 881 0.77% 114 0.93%

9400–9500: EPFL Greedy (80% done) 1 GB 351 107 747 0.55% 101 0.75%

9500–9600: Leyland 1 GB 443 023 506 0.69% 102 0.93%

9600–10000: INRIA 1 GB 1 729 354 187 2.69% 99 3.76%

10000–11000: INRIA 1 GB 4 201 641 235 6.53% 97 9.32%

11000–11100: CWI 1–2 GB 471 070 974 0.73% 109 0.93%
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matrices until the early 1990s. It was abandoned in favor
of the block Lanczos algorithm [6] which requires much
less time and memory due to the sparseness of the input
matrix. A disadvantage of block Lanczos (which it shares
with Gaussian elimination) is that it does not allow indepen-
dent parallelization: it must be run on a single tightly cou-
pled massively parallel machine. We are still in the process
of evaluating the feasibility of doing this step using block
Lanczos at a single location.

Because of this disadvantage, we preferred block Wiede-
mann [7]. Though not embarrassingly parallel, the compu-
tation can be split up into a limited number of chunks. Each
chunk can be processed on a tightly coupled cluster, inde-
pendently of the other chunks each of which may simulta-
neously be processed at some other location.

More precisely, block Wiedemann works in three stages:
a first stage that can be split up as above, a brief central
stage that needs to be done at one location, and a final stage
that is less work than the first stage and that can be split up
into any number of chunks if enough checkpoints are kept
from the first stage. The first and final stages both consist
of iterations of matrix × vector multiplications, where the
matrix is the fixed, sparse bit-matrix resulting from the fil-
tering step, and where the (bit-)vector is constantly updated
(as the result of the previous multiplication). It is possible to
use k different initial bit-vectors and to reduce the number
of multiplications per bit-vector by a factor of k, as long as
the total number of multiplications by bit-vectors remains
constant. This comes at various penalties, though, and com-
plicates the brief central stage if k gets large.

For RSA-768 we used k = 8 · 64 = 512 and 8 chunks
each of which processed 64 bit-vectors at a time. Per chunk,
565 000 matrix × vector multiplications had to be done in
the first stage, 380 000 in the third stage, for our matrix
of dimension 193 million with 28 billion non-zero entries.
Running a first or third stage chunk required 180 GB RAM.
Table 3 in Appendix lists the various clusters used for the
first and third stage, along with the time required per mul-
tiplication per chunk. Obviously, the timings vary consider-
ably depending on the type of processor, number of cores,
and type of interconnect. For instance, on 12 dual AMD
2427 nodes (hex-core, thus 144 cores, with 16 GB RAM
per node) with InfiniBand, a multiplication takes about 4.5
seconds. This implies that on 48 such nodes (576 cores—
56 such nodes with 672 cores were installed at EPFL while
the first stage was underway) all eight chunks for stages one
and three could have been completed in about 100 days, for
about 160 core years of computing. The central stage took
a bit more than 17 hours on the 56 freshly installed nodes,
using all available 896 GB RAM (except for a short period
when a terabyte was needed and swapping occurred), but
just 224 of the 672 available cores. On the variety of clus-
ters that was actually used the entire block Wiedemann step
took 119 days.

Unlike sieving, no errors can be tolerated during the ma-
trix step. The iterations thus included frequent checkpoints
to ensure that the computation was still on-track. We expe-
rienced no glitches. In the original distributed block Wiede-
mann all chunks consisted of an equal amount of work, i.e.,
the same number of multiplications on matrices and vectors
of identical sizes. We used a more flexible version of the al-
gorithm, so that faster jobs can do more multiplications and
slower ones fewer, as long as the same overall number of
multiplications as before is reached.

Finishing up: square root Finding out if the dependencies
as produced by the matrix step are correct is probably the
most nerve-racking part of any large scale factoring project.
Also from a mathematical point of view, deriving a factor-
ization from a dependency is one of the more exciting steps.
Computationally speaking, however, it is usually the least
challenging step. For RSA-768 it took about one core day
and resulted in the following factorization.

RSA-768 = 12301866845301177551304949583849627207

72853569595334792197322452151726400507

26365751874520219978646938995647494277

40638459251925573263034537315482685079

17026122142913461670429214311602221240

47927473779408066535141959745985690214

3413

= 33478071698956898786044169848212690817

70479498371376856891243138898288379387

80022876147116525317430877378144679994

89 · 3674604366679959042824463379962795

26322791581643430876426760322838157396

66511279233373417143396810270092798736

308917.

The correctness of the result, once obtained after 1700 core
years of computing, can be verified in a fraction of a second.

Table 2 gives the overall workflow, along with the per-
centages contributed (for the sieving measured in different
ways).

4 Heterogeneous compute infrastructure

In this section we describe the heterogeneous environment
used for the factorization of RSA-768, with a focus on the
management of the sieving step.
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Table 2 Workflow of the project. The sieving percentages are only
rough indications for the overall sieving contributions because tasks
for larger special q values are less productive, and as a consequence

also faster to process: the truth is biased toward the relation contri-
bution percentage. The last two rows contain approximations for core
years (“cy”) spent and dates (yyyy:mm:dd) of the calculation

Polynomial

selection

Sieving Filtering Matrix Squareroot
︷ ︸︸ ︷
Stage 1 Stage 2 Stage 3

Bonn

Lacal140

}

→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Relations Tasks

AC3 0.43% 0.35%

Bonn 8.10% 5.44%

Callisto 7.60% 7.01%

CWI 3.42% 3.33%

EGEE 4.52% 3.06%

Greedy 1.37% 1.47%

INRIA 37.80% 44.68%

Lacal140 7.46% 7.01%

Lacal304 13.23% 10.79%

Leyland 0.69% 0.93%

NTT 15.37% 15.96%

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→Lacal304→

⎧
⎪⎪⎪⎨
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Callisto 1.8%

Lacal672 32.5%

INRIA 46.8%

NTT 18.9%

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

→Lacal672→

⎧
⎪⎨

⎪⎩

Lacal672 78.2%

INRIA 17.3%

NTT 4.5%

⎫
⎪⎬

⎪⎭
→ Lacal672

20 cy 20 cy ≈1500 cy <12 cy 95 cy < 1
2 cy 63 cy < 1

10 cy

2005 2007:06 2007:08–2009:06 2009:08 2009:09-11 2009:11:03 2009:11-12 2009:12:12

As set forth in Sect. 3, sieving consists of processing a
range of special q values, where for each special q value at
most six sieving tasks have to be performed. Given a range,
this is carried out by a C program. This program, called
lasieve, resulted from many years of research, develop-
ment and refinements at the university of Bonn. All collab-
orators got statically linked versions of lasieve, geared
toward their hardware (processor type and cache size) and
operating systems. The number of relations found per task
drops off with increasing special q values. One therefore
tries to completely process all smaller ranges before mov-
ing to larger ones, leaving as few unprocessed gaps as pos-
sible.

At the highest level, EPFL distributed relatively large,
disjoint ranges of special q values among the collabora-
tors, depending on the specifics of the cluster(s) or machines
to be used. The way a range is processed depends on how
lasieve is run, the cluster usage agreements, and the job
scheduler. In any case, a large range assigned to a site must
be partitioned into smaller subranges, each of which can be
processed in a reasonable amount of time by a CPU core
running lasieve: as mentioned, a range of length 1000
takes about two hours to process. The naive approach to
assign subranges is to do so upfront at the job scheduler’s
level before any particular CPU core has been allocated to
process that subrange using lasieve. It allows for man-
ual range partitioning and assignment. This works if, bar-
ring exceptional irregularities, one may assume that all jobs,
once put in the queue to be executed, will eventually be
taken into execution and that, when taken into execution,
they will finish their allotted range. This situation may ap-
ply if one is the sole user or owner of a desktop machine

or cluster, or if otherwise favorable access conditions have
been granted to the compute resources. It applied to some
contributors.

Even so, several set-ups used for the sieving used an au-
tomated approach where range assignment is postponed to
the moment that a CPU core is ready to start sieving. It
avoids range fragmentation caused by the apparently un-
avoidable fact of life that in some environments there are al-
ways jobs that disappear from the queue without ever having
been taken into execution. Nevertheless, and in either case,
it may be desirable to conduct post-mortems of occasional
crashes. This would involve cumbersome analysis of partial
output files to extract (and reassign) previously assigned but
unfinished ranges. Several such systems were used (and are
described below) that are semi-automated in the sense that
ranges were assigned automatically, but that make the im-
plicit assumption that range fragmentation will be kept to a
minimum, i.e., that normally speaking assigned ranges will
be fully processed and will not be left unfinished. We stress
again that the existing systems that we used are heteroge-
neous and do not share a common software layer. Addition-
ally, the systems were not always available at or for the same
time, and resource allocation and availability was not guar-
anteed neither at the beginning nor during the computational
runs.

This assumption, which is based on a 100% completion
model of assigned ranges, can certainly not always be made.
Traditionally, sieving jobs are only run on processors that
would otherwise be idle. For example, in [13], the more
than 20 year old, first collaborative sieving effort that we
are aware of, usage is cited of a “machine idle” tool to iden-
tify machines that have not recently been used and that thus
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may be added to the pool of sievers. However, sieving jobs
were terminated instantaneously as soon as a machine was
reclaimed, for instance by hitting a key. See also [10]. In the
cluster job scheduling system OAR [4] the possibility to ex-
ploit otherwise idle resources in a similarly volatile way is
created by best-effort jobs. With such jobs, partial process-
ing of assigned ranges is systematic, making extraction of
parts of ranges that are left unfinished mandatory, and re-
sulting in range fragmentation that quickly becomes unman-
ageable for humans. A convenient way to fully automate
range management—including reclaiming ranges from in-
terrupted jobs—was implemented at INRIA and is described
below.

The matrix jobs require much closer supervision than
sieving jobs. Gaps cannot be tolerated, and work left un-
finished by crashed jobs has to be completed starting from
the most recent checkpoint. Thus, preferably the matrix is
not done using best-effort types of jobs but using super-
computers or relatively large dedicated (sub)clusters for ex-
tended periods of time. This is what we did for the RSA-
768 project, simultaneously using various clusters, all with
manually managed jobs, only a small percentage of which
were best-effort jobs. In particular during stage 3 of the ma-
trix step the three participants contributing to that part of
the calculation frequently discussed task assignments, with
some clusters taking over jobs previously assigned to others.
The matrix step is not further discussed below. Some details
on how and where it was run are listed in Tables 2 and 3.

4.1 AC3

The Australian Centre for Advanced Computing and Com-
munications provides high performance computing plat-
forms for academic and research staff at eight Australian
universities. A selection of machines is available for staff
to apply for system units of computing time. We were allo-
cated computing resources equivalent to full-time use of 16
nodes of the machine Barossa, a Dell Beowulf cluster hav-
ing 155 3 GHz dual processor Pentium 4 nodes with 2 GB
RAM per core. Of this memory, each node reserves some
for the operating system, the batch queue system, and video
sharing. As a result, only about 1.7 GB are available for
submitted jobs. Although less than the ideal 2 GB, we sub-
mitted jobs restricted to 1.7 GB RAM and to 2 GB of vir-
tual memory, and these jobs ran nearly as efficiently as ma-
chines that had the full 2 GB RAM. So, swapping was min-
imal.

Submission of jobs to Barossa is via the PBS batch queue
system. In addition to the memory restrictions, a job is only
allowed to run for two days or else an automated program
kills the violating submissions. From a few experiments,
we determined how many special q values could be han-
dled safely under the two day limit. A simple shell script

was used to submit new ranges while keeping track of what
ranges had already been done. Running of this shell script
was done manually on a daily basis. Moreover, uploading
of the data to EPFL and dealing with the rare occurrences
of failed jobs was also done manually. Participation was
cut short when the Australian participant (Scott Contini)
left Macquarie University for a full-time position in indus-
try.

4.2 CWI

At the Centrum Wiskunde & Informatica we utilized work-
stations outside the usual office hours. All workstations run
a recent version of Fedora Linux. The home and project di-
rectories are hosted on the NFS2 file server located at SARA
(the Academic Computing Centre Amsterdam), over a net-
work based on UTP switched gigabit Ethernet.

All workstations that participated are x86-64 machines
with varying numbers of cores, clock rates, cache sizes and
amounts of memory per core. At the outset, most were
single-core machines with 1 GB RAM, with a small num-
ber of Intel dual-core machines. During the sieving, almost
all single-core machines were replaced by dual-core ones,
whereas some dual-cores were replaced by quad-cores with
2 GB RAM per core. We had 120 to 180 cores at our dis-
posal, depending on hardware upgrades and on users willing
to share their workstations.

After getting a large special q range from EPFL, we used
a script to generate jobs that invoke lasieve on subranges
that a single core can complete within three to five nights or
a weekend. All jobs were placed in the input queue which
is located at the NFS file server accessible from every work-
station. The jobs were managed and run as follows:

factord. On each participating workstation, the shell
script factord was invoked by crontab every evening.
It manages the supply of jobs in the following manner:

1. checking existence in the machine’s working directory
of a checkpoint file of a previous job, and if so re-
invoking that job (using sieving task as described
below);

2. fetching a new job from the input queue if a checkpoint
file is not present;

3. moving output produced by jobs that completed their
range to the output queue;

4. terminating if the input queue is empty;
5. sending a termination signal to lasieve early in the

morning on working days.

Early on in the project, the simultaneous start of many
sieving jobs crashed the automounter daemon on some

2In this section NFS stands for Network File System instead of Number
Field Sieve.
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single-core machines, thereby preventing lasieve to
start. This was solved by randomly spreading the starting
times over a period of half an hour. When invoked, fac-
tord reschedules its next start. The script is used to man-
age other factorization projects as well.
sieving task. This is a shell script that ensures the
proper start of lasieve. If a checkpoint file exists in
the machine’s sieving working directory, the script resumes
lasieve with the old configuration, starting from the last
used special q . Otherwise, sieving task determines
the number of available cores and RAM per core, in or-
der to set proper input parameters for lasieve. On many
multi-core machines we utilized all but one core, keep-
ing one core available for applications by the workstation’s
owner.

Monitoring. A monitoring tool checked regular progress of
all jobs. If a job is found to be stalled, for instance due
to a user program or hardware failure, the tool moves all
relations from the machine’s working directory to the out-
put queue and reassigns the remaining special q values to
a new job which is put in the input queue. Once the host
is available for sieving again, it fetches a new job from the
input queue as described above.

4.3 EGEE

The infrastructure provided by the Enabling Grids for E-
SciencE (EGEE, cf. [8]) is the biggest production Grid in-
frastructure in the world. It is open to various types of
scientific domains, applications and users. Typically, sci-
entific applications are organized in Virtual Organizations
(VOs) and are shared among several users. Since there was
no VO available that would suit our factoring attempt, we
first used an existing VO and later created our own crypto
VO.

As we demonstrated in [17] the gLite [9] Grid mid-
dleware that underlies EGEE’s job submission and execu-
tion, though suitable for embarrassingly parallel jobs, fo-
cuses on optimizing throughput for many users and applica-
tions rather than for a single application or user. This is due
to a complex interaction of the Grid’s meta-scheduler and
each site’s local resource management system, and is com-
pounded by job queue latencies affecting perceived perfor-
mance, scheduler failures that cause jobs to vanish (as noted
above), and heterogeneous hardware causing diverse run-
times. We therefore adopted the approach proposed in [17]
which integrates in the gLite Grid middleware a runtime-
sensitive BOINC-like system with a task server, as illus-
trated in Fig. 1. Compared to the traditional way EGEE jobs
are handled, the main advantage of our approach is that it
adapts automatically to the different runtimes required on
the heterogeneous EGEE worker nodes, thereby maximiz-
ing throughput. The EGEE infrastructure, thus adapted, was

successfully used for several months, processing up to a
thousand ranges in parallel at more than 20 sites across Eu-
rope.

The overall workflow included the following software
components.

siever-submit.pl. This perl script uses the gLite job
submission command line interface to submit siever-
worker.pl jobs to the gLite resource broker (Step 1a
in Fig. 1), which for each job selects a suitable worker
node (depending on required RAM) and submits it there
for execution (Step 1b in Fig. 1). As long as a certain con-
figurable minimum number of running jobs is not reached
(we used from 100 to 1000 parallel jobs; once running, jobs
may abort due to failure or because they exceed their max-
imum runtime), the script keeps submitting new jobs. Ad-
ditionally, the script monitors how many jobs have finished
(Step 6 in Fig. 1) and displays the status on a webpage
(Step 7 in Fig. 1).
siever-worker.pl. This is an (in principle) everlast-

ing perl script that runs on a worker node and that

1. attempts to obtain a range of special q values by sub-
mitting an HTTP request to the task server (steps 2 and
3 in Fig. 1);

2. terminates if no range was received;
3. runs lasieve on the range obtained (Step 4 in Fig. 1);
4. upon completion of the range, notifies the task server

and transfers the results of the calculation to a Grid stor-
age element (step 5a and 5b in Fig. 1);

5. returns to Step 1.

Because several EGEE job submission systems limit job
runtimes to 24 hours, the script (and thus its most recently
spawned lasieve job) may be terminated, giving rise to
assigned but unfinished ranges.
Taskserver.pl. The task server is initially loaded

(Step 0 in Fig. 1) with a special q range, partitioned in
subranges of length 1000. If notification of completion of a
range is not received within some fixed period of time (say,
one day) after it was assigned, the task server returns the
entire range to the pool. No attempts were made to avoid
recomputation of data by analyzing partial output files to
extract unprocessed subranges.
The task server has an HTTP interface for task assignment
and management and, since the task server keeps track of
completed ranges, to determine which output files have
been uploaded to the Grid storage element. Internally, the
task server uses a relational database management system
back-end to manage tasks (start date, maximum allowed
runtime to avoid zombie tasks, end date, etc.).
gLite StorageElement. This is a conventional, Stor-

age Resource Manager (SRM) based Grid storage system
that securely and reliably stores result files.
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Fig. 1 Job submission and
execution infrastructure are
based on gLite (components
indicated by italic font). The
controlling script
siever-submit.pl generates
sieving jobs which are executed
on nodes of the various EGEE
clusters

4.4 EPFL

EPFL DIT Of the various computing resources provided
by EPFL’s Domaine IT (Central IT services), the Callisto
cluster and the campus grid “Greedy” contributed to the
sieving. Callisto is a general-purpose cluster, usable by
EPFL researchers; Greedy is EPFL’s desktop grid (also
known as a campus grid), meant to enable recovering un-
used CPU power. Table 3 lists some of the hardware speci-
fications for both systems.

Callisto is served by two front-end nodes, also acting
as file servers for an 18 TB General Parallel File System
(GPFS). Behind the two front-ends sit 128 dual quad-core
compute nodes, interconnected via a fast Dual Data Rate
(DDR) InfiniBand fabric. All the compute nodes are run-
ning SuSE Linux 10.2, and job scheduling is done with PBS
(“Portable Batch System”) Pro 10. For the sake of energy
consumption and ease of administration, the compute nodes
are in “blade” format: a single chassis can host up to 14
blades, leading to higher electrical efficiency and less ca-
ble clutter behind the racks. Furthermore, in an effort to re-
lieve the air-cooling infrastructure, the cluster is installed in
water-cooled racks, with almost no heat dissipation into the
machine room air. At the start of the sieving, access to Cal-
listo was free, though closely regulated with a focus on par-
allel jobs that can profit from the fast interconnect. In 2009
Callisto’s access policies were changed, by requiring labo-
ratories wishing to use the cluster to give a partial financial
contribution toward its purchase.

Greedy is the second axis of the computing resources
landscape of DIT (the third being a massively parallel super-
computer), with an emphasis on grid computing and single-
core jobs. Access to Greedy is free to all members of EPFL.
The goal of Greedy is to federate unused CPU power across
campus, by harvesting otherwise unused cycles of classroom
and office PCs at EPFL. In order to not bother the user of

the machine with continuous computations (fan noise can
be bothersome in an office environment), grid jobs can run
only during nights and weekends, when the probability of
having someone working on the machine is low. Addition-
ally, if user activity is detected while a grid job is running,
the grid job will be suspended.

The software stack used is Condor [5], a “High Through-
put Computing” middleware. All policies governing job
startups and suspensions are made with Condor mech-
anisms, without relying on external tools. Besides two
centrally-managed servers controlling the grid infrastruc-
ture, more than 1000 compute cores are available on the
grid, mainly from classrooms. Greedy is a highly hetero-
geneous environment, with operating systems ranging from
Linux on 32-bit machines to Windows 7 on 64-bit ones,
and a variety of combinations of CPU types and memory
amounts. Due to this heterogeneity, mechanisms are put in
place that select the proper platform for a given set of jobs,
so that they run on the operating system/CPU combination
they were compiled for.

EPFL LACAL EPFL’s Laboratory for Cryptologic Algo-
rithms has a variety of clusters at its disposal. Two of these
clusters (Lacal140 and Lacal304) were used for the siev-
ing. A third (Lacal672) was used only for the matrix, as it
was purchased when the sieving was already complete. Ta-
ble 3 lists some hardware specifications for these three clus-
ters.

Lacal140 is hooked up to a front-end with a 4.2 TB NFS
file system and a 6.1 TB Parallel Virtual File System (ver-
sion 2) provided by 8 IO servers. It is integrated in EPFL’s
Pleiades2 HPC Linux cluster, running SuSE Linux 10.2 and
using Torque with Maui for job scheduling. Lacal304 ran
Gentoo Linux, and used a single front-end server that acted
as a file server for a 1.5 TB NFS file system. Formerly lo-
cated at EPFL’s Sciences de Base clusterroom, Lacal304
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was partially dismantled with the arrival of the new cluster
Lacal672 (cf. below) and 24 of its nodes now serve as the
freely accessible general purpose 192-core cluster VEGA at
EPFL DIT.

The 56 Lacal672 nodes are connected to a single front-
end server that acted before as Lacal304’s file server (for
the 1.5 TB NFS file system that was used by Lacal304).
It was installed, at EPFL’s Sciences de Base clusterroom,
while stage 1 of block Wiedemann was already in progress.

Sieving at EPFL With the exception of the Greedy pool,
Paul Leyland’s cabalc and cabaldwere used to run siev-
ing jobs on EPFL’s DIT and LACAL clusters. This is fully
described in Sect. 4.6.

On the Greedy pool Condor jobs are submitted with para-
meters for machines with 1 GB RAM. Because most of the
workstations on the grid run a Windows operating system,
special binaries were created that do not use our fast assem-
bly routines. As a consequence, processing a range of length
2000 would take five to six hours, i.e., a bit slower than usual
but typically less than a night. Therefore, jobs with ranges of
length 2000 were submitted to the grid, in batches of 5000 as
that would produce at most 10 gigabytes of data. Transfer-
ring the output to the storage facilities at LACAL was done
manually.

4.5 INRIA

The Aladdin-Grid’5000 (“g5k”) is an HPC grid funded by
several French research institutions, including INRIA, and
intended for experimental research. Started in 2004 it con-
sists of about 5000 CPU cores (taking the latest hardware
upgrades into account there are currently more than 6400
cores), spread over nine sites across France. Each site hosts
up to five clusters of identical nodes. The g5k clusters used
for this project are listed in Table 3. Nodes at the same site
have access to a shared NFS volume, but no global NFS
filesystem is shared across the sites.

Access to g5k is not exclusively limited to experimental
research projects. Long running, resource-hungry applica-
tions such as sieving are allowed as well, as long as they
comply with the platform’s policies for this type of jobs.
Thus we agreed to limit our jobs to at most 25% of a site’s
resources at any given time, running at the lowest priority.
In the job submission system OAR [4] used by g5k these
are best-effort jobs, as mentioned above.

Premature termination of best-effort jobs is a normal
event. If it occurs it affects all nodes allocated to the job.
Notification of termination may never be received. Further-
more, as alluded to above, due to scheduler errors it cannot
be guaranteed that all queued jobs are eventually taken into
execution: sometimes jobs vanish. To deal with the range
fragmentation that would result from premature termination,

and to avoid fragmentation due to jobs disappearing from
the queue, a framework consisting of simple shell and perl
scripts was designed that resulted in a very effective and user
friendly range management system. It was successfully used
for about a year, contributing substantially to the sieving ef-
fort.

The workflow described below, as it applied to each of
the g5k clusters that we used, is superficially similar to the
EGEE workflow. The details are quite different.

OAR jobs. The scheduler allocates best-effort OAR jobs to
the nodes. These jobs may differ in the number of nodes
targeted, but are otherwise identical and carry no infor-
mation about the calculation to be performed. The num-
ber of OAR jobs that can be submitted at the same time
is limited because, due to our best-effort constraint, in to-
tal never more than 25% of the nodes may be used, and
because the job scheduler performs suboptimally if there
are many jobs in the queue (recent software upgrades have
improved it). More down-to-earth, the web-based grid oc-
cupancy visualization tool uses one line per job irrespective
of the job’s size: if many sieving jobs are displayed nega-
tive feedback can be expected. To deal with these issues,
and to make sure that we always had jobs small enough
to “fit in the holes”, we submitted OAR jobs that allocate
n/2, n/4, n/8, n/16, and n/16 nodes, where n is a quar-
ter of the number of nodes at the site, targeting a total of n

nodes.
An OAR job starts one core job on each CPU core of
the nodes it had been given access to. Upon (expected)
interruption of OAR jobs, a new one needs to be sub-
mitted to sustain the throughput. The required function-
ality of resubmitting interrupted jobs is provided by the
OAR scheduler: so-called “idempotent” jobs, if left un-
finished, may be restarted with the same command lines.
Given our generic OAR jobs it thus sufficed to set their
time limit to infinity (actually, one week), with the result
that the scheduler made them persistent. As a result we
did not have to rely on scripts that automatically submit
jobs and that, in our experience, often lack the robustness
they should have (due to communication glitches and time
drifts).

Core jobs. All core jobs, over all nodes and all OAR jobs
on the same cluster, are identical. A core job is an (in prin-
ciple) everlasting shell script that

1. attempts to obtain a range of special q values that does
not intersect with any other range that has been com-
pleted or that is currently under execution:

As different core jobs may make concurrent re-
quests for ranges of special q values, range al-
location must be atomic. Because file renaming
(moving) on an NFS partition is atomic, ranges
may be claimed by a core job by trying to move a
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file containing a range from the queue/directory
to the inprogress/directory. Per file the move
is guaranteed to succeed for exactly one core job,
which gets the claimed range. Core jobs that fail
to move a file sleep for a couple of seconds before
trying again.
The queue/directory contains ranges to be
processed encoded in names of otherwise empty
files, allowing for convenient sequential process-
ing of the available ranges assuming files are
claimed in lexicographic order. Obviously, differ-
ent clusters receive non-intersecting ranges.

2. terminates if no range could be obtained;
3. runs lasieve on the range obtained;
4. upon completion of the range, marks the output as

clean:

If a call to lasieve terminates because it fin-
ished the assigned range, the core job com-
presses the output created in the working/
directory, moves it to the results/directory,
and removes the corresponding file from the in-
progress/directory, thereby marking that out-
put as clean.

5. returns to Step 1.

Although a core job is not meant to terminate (except on
range starvation), it dies as soon as the scheduler decides
to abort the best-effort OAR job that spawned it. Abrupt
termination during execution of lasieve was handled as
described below.

Watchdog job. The working/directory will contain par-
tial output files of interrupted lasieve jobs, along with
still active output files. The watchdog job identifies out-
put files that have not been touched for longer than rea-
sonable if its lasieve job were still alive (say, for 15
minutes, which is 5 to 10 times more than the expected de-
lay between subsequent writes). It analyses each of these
partial output files, returns the unprocessed part of the
range to the queue/directory, renames and compresses
the output file (possibly after truncation) so its name re-
flects the processed part of the range, moves it to the
results/directory, and removes the corresponding file
from the inprogress/directory. Due to the lightweight
approach of encoding ranges in names of empty files the
file system could easily cope with the range fragmenta-
tion.
This approach makes sure that, eventually, all special
q values assigned to the cluster are processed, with-
out human supervision. All that needed to be done was
keeping an eye on the queue/directory to make sure
that there was an adequate supply of ranges. The I/O
and CPU footprint of the watchdog job are not sig-
nificant, so it could be run on the submission front-
end.

Data movement. Storage nodes on g5k are not meant to
host large amounts of data. Results were therefore reg-
ularly copied from g5k to INRIA Nancy, where sev-
eral partitions totaling 13 TB were used for storage and
backups. Relations were assembled to larger files cor-
responding to ranges of length e.g. 106 (about half a
GB compressed), checked for correctness, and copied to
EPFL.

4.6 Leyland

In comparison with the computation as a whole, Leyland’s
sieving contribution was relatively minor. At most 25 ma-
chines, most of them dual-core systems, were in use at any
one time. Accordingly a relatively simple client/server har-
ness was used to allocate special q ranges and a simple script
used to automate uploading the results to an sftp site located
at EPFL. Monitoring of progress, detection of error condi-
tions and recovery from them was performed manually. The
scripts running on the client and server side are named ca-
balc and cabald, respectively, because they were devel-
oped for the factorization of 2773 + 1 in 2000 by a team
using the nom-de-plume ‘The Cabal’ [3], some of whom
contributed to the factorization of RSA-768. The scripts, de-
scribed in more detail below, were also used for the sieving
on the clusters at EPFL DIT and LACAL.

cabalc. cabalc uses a configuration file to specify the
IP address of the machine running its cabald; the port
on which to communicate; and a prototypical command to
be run. It can execute an arbitrary command with parame-
ters derived from a pair of numbers provided by cabald,
allowing it to correctly run lasieve for any range of spe-
cial q values.
Upon start, cabalc clears a Boolean ‘work-to-do’ vari-
able, reads the server’s address and port from the con-
figuration file and then enters an endless loop. There, it
first attempts to open communications to the server. If
nothing is forthcoming, cabalc waits for a few sec-
onds and tries again. If ‘work-to-do’ is clear a request is
made of the server for a special q range. The range is
stored and ‘work-to-do’ set. The command given in ca-
balc’s configuration file is then run with proper com-
mand line arguments to process the newly received range.
When that sub-process completes, cabalc returns to the
start of its endless loop. This time around, ‘work-to-do’ is
set so the saved initial and final values of the completed
range are returned to cabald before a new task is re-
quested.
cabald. cabald maintains a configuration file which

contains a list of special q values which have been allo-
cated to clients; one or more pool lines to specify un-
allocated special q values; a list of zero or more frag-
ments; a single value, blocksize, which specifies the
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maximum special q range to be allocated to each client;
and the network port on which it communicates to its
clients. Initially, there are no fragments and a single
pool containing a large special q range. A final set of
lines contains information about which special q ranges
have been allocated to clients by earlier invocations of ca-
bald.
When cabald starts it reads its configuration file and cre-
ates a data structure which contains one or more ranges
(lower and upper limits) of special q values which have
not yet been allocated. Under normal circumstances, this
would be a single range given by a pool line. Very occa-
sionally, a second such line would be added to the con-
figuration file when the existing pool was close to ex-
haustion. A more frequent occurrence would be after one
or more clients had crashed. In this situation, the ca-
bald process would be stopped, the unsieved special q

ranges extracted from partial output files and added to the
server’s configuration file as fragment lines. Any corre-
sponding allocation lines in the configuration file would
be deleted. Upon restart, cabald also places the frag-
ment data into the unallocated tasks data structure. ca-
bald then opens a log file for appending status messages
and enters an endless loop waiting for cabalc client re-
quests.
On receipt of a client communication, the returned special
q values are used to update the unallocated tasks struc-
ture. A new range of special q values, of size at most
blocksize, is then sent to the client. Allocation is made
from the pool(s) only when all the fragments have
been exhausted. The log file is then updated with an en-
try which records the IP address of the client, the spe-
cial q values, if any, returned by the client and the spe-
cial q range just allocated. Finally, the cabald config-
uration file is re-written so that the current state of the
pool and/or fragments is available for subsequent runs
of cabald.
In practice, cabald was very stable. It never crashed un-
expectedly and was stopped only for scheduled system
shutdowns or for maintenance of its configuration file when
fragments or a new pool were added.

Monitoring. As noted above, cabald and cabalc pro-
vide neither detection of errors nor uploading of output
data. The latter was performed by an uploader script which
compressed all but the most recently modified lasieve
output file (on the assumption that the latter was still being
written by an active lasieve); uploaded the result to a
fixed directory of a sftp server at EPFL; and then moved
the compressed files to another directory where they could
be recovered if necessary and yet not interfere with subse-
quent activity.
At sporadic intervals, usually once a day or so, the ma-
chines supposed to be sieving would be examined to see

whether they were in fact doing so. A trivial script was
written to contact all machines in the set of clients and
to determine whether lasieve was running the cor-
rect number of times (a multi-cored system usually ran
several copies). If a client failed to respond or if they
were not sieving the situation would be investigated by
hand. First, the uploader script would be run. Any re-
maining output files were examined to determine the spe-
cial q at which the siever failed. Finally, cabalc was
restarted.

Despite not being fully automated, cabalc and cabald
between them allowed one person (Leyland) to manage sev-
eral dozen siever instances with little effort. That the same
scripts also worked satisfactorily to manage hundreds of
sieving jobs at EPFL is probably due to the fact that there
we restricted ourselves to stable resources fully dedicated to
the sieving.

4.7 NTT

Nippon Telegraph and Telephone Corporation provided the
following computational resources that were fully dedicated
to the sieving:

– 113 Pentium D 3.0 GHz (amd64) + 2 GB RAM;3

– 32 Pentium 4 (Northwood) 3.2 GHz (i386) + 2 GB
RAM;4

– 2 Pentium 4 (Prescott) 3.6 GHz (amd64) + 2 GB RAM;
– 1 Pentium 4 (Northwood) 2.8 GHz (i386) + 2 GB RAM;
– 2 Athlon 64 2.2 GHz (amd64) + 3 GB RAM;
– 2 Opteron 2.0 GHz (amd64) + 4 GB RAM;
– 8 TB of storage via NFS.

The nodes are connected with gigabit Ethernet and each
node is equipped with a local disk. To manage sieving as-
signments we used two perl scripts that were also used dur-
ing the sieving for M1039 [1]: ds2c on the client side and
ds2 on the server side.

ds2c. For each client on which it is running, the script
ds2c requests a special q range from the server, and runs
lasieve while recording its standard input, error and re-
turn values. After lasieve finishes its assigned range,
ds2c sends all resulting data to the server and requests
a new range. When ds2c cannot connect to the server,
lasieve is invoked with a range of special q values that
is randomly chosen from a range previously communicated
by the server.

3These nodes got more RAM for the matrix step (cf. Table 3), resulting
in 5 GB RAM for most nodes (13 nodes got 8 GB RAM). Further
details can be found in [2].
4One of these nodes broke down during the sieving. It was not repaired.
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ds2. The server script ds2 has an interface that allows a
human operator to provide a new range of special q val-
ues, typically of length 1 000 000. Upon request from a
client, ds2 assigns to the client a subrange, typically of
length 1000 as a range of that size can be processed in
a few hours. If a client does not report back within, say,
8 hours, its range is reassigned. At any time the opera-
tor may change priority of range assignments. Data cor-
responding to a range that is reported back are stored.
The server may also receive data for ranges other than
those it assigned; occasionally, correctness of such spuri-
ous data is verified manually. Logging mechanisms are in
place to allow recovery from mishaps (or scheduled main-
tenance).

Although these two scripts can deal with many exceptions,
they are unable to detect a full disk. Every working day
manually invoked scripts and commands are therefore run
to confirm client node status, to merge any duplicate assign-
ments, to roughly confirm the consistency of all data stored
by ds2, to compress the data, and to send them to EPFL.

4.8 University of Bonn

At the University of Bonn sieving took place at only one
location, the Himalaya cluster at the Institute for Numeri-
cal Simulation. On this cluster jobs have to be submitted
via a queueing system. This was done using a simple C-
program. It checked periodically how many sieving jobs are
in the queue and, if this number is below a certain thresh-
old, it submitted new jobs. All problems and inconsisten-
cies, caused by jobs that were never taken into execution,
jobs that crashed, etc., were resolved manually.

5 Conclusion

We described the heterogeneous hardware resources and di-
verse management tools used during a period of about two
years at many different locations to solve a cryptanalytic
challenge. The computational effort required, though large
given the resources available, was considerable though not
exceptionally large: it would require a couple of weeks using
the full “Ranger” supercomputer at the University of Texas
at Austin.

Our result is a good indication for the size cryptana-
lytic effort that can successfully be undertaken in a more
or less acceptable amount of time by a rather loosely cou-
pled, widely scattered and mostly academic team of vol-
unteers. Pulling off a substantially larger effort in com-
parable or less time would require tighter management
or more funding than customary in academic cryptana-
lytic circles. A greater appreciation of the HPC commu-
nity for cryptanalytic activities could change this picture
overnight.
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