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Abstract. We consider a range of attacks on reduced-round variants
of the block cipher Skipjack. In particular we concentrate on the role of
truncated differentials and consider what insight they give us into the de-
sign and long-term security of Skipjack. An attack on the full 32 rounds of
Skipjack remains elusive. However we give attacks on the first 16 rounds
of Skipjack that can efficiently recover the key with about 217 chosen
plaintexts and an attack on the middle sixteen rounds of Skipjack which
recovers the secret key using only two chosen plaintexts. Several high-
probability truncated differentials are presented the existence of which
might best be described as surprising. Most notably, we show that the
techniques used by Biham et al. can be presented in terms of truncated
differentials and that there exists a 24-round truncated differential that
holds with probability one.

1 Introduction

Skipjack is a 64-bit block cipher that is used in the Clipper Chip [11,12] and was
recently made public by the NSA [15,16]. The length of the user-supplied key
suggests that like other cryptographic proposals from the U.S. government [13,14]
the security level is intended to be 80 bits. Skipjack is a remarkably simple cipher
and one interesting feature is the use of two different types of rounds. These are
referred to as A-rounds and B-rounds and encryption with Skipjack consists of
first applying eight A-rounds, then eight B-rounds, once again eight A-rounds
and finally eight B-rounds.

The simplicity of Skipjack alone makes it an interesting cipher to study.
However if we also recall the speculation and widespread distrust with which the
cipher was first received [11,12] then this once-secret cipher becomes particularly
intriguing. In this paper we will consider some of the structural properties of
Skipjack. In particular we note that the simple rounds of Skipjack seem to
be particularly amenable to analysis using truncated differentials [7]. We will
provide details of some particularly effective attacks on reduced-round versions
of Skipjack and we will consider the applicability of these and other potentially
more powerful attacks to an analysis of the full cipher.
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A preliminary version of a report into the security of Skipjack was published
on July 28, 1993 [9]. Written by five eminent cryptographers, the report reveals
that while Skipjack was designed using techniques that date back more than
forty years, Skipjack itself was initially designed in 1987. Since the cipher and
design details were classified at the time of writing, the authors of the report
were clearly restrained in what they could say. However, one phrase in the report
is particularly interesting. There it is claimed that “[The design process] elim-
inated properties that could be indicative of vulnerabilities” [9]. In this paper
we demonstrate that, in our opinion, this design goal was not attained. While
we find no way to exploit the structural features that we highlight in a direct
attack on the full Skipjack, we feel that the presence of these features could well
be indicative of vulnerabilities. With more study, they could lead others towards
an exploitable weakness in the cipher.

2 Description of Skipjack and other work

The 64-bit input block of Skipjack is split into four words of 16 bits. At the
time of its initial design (1987) this approach was perhaps somewhat uncommon
though RC2 [8] adopts a similar structure. In each round of Skipjack one of the
words passes through a keyed permutation which we denote by G, and at most
two words are modified during a single round. The function G has the structure
of a four-round, byte-wise Feistel network. When needed, we will denote the
round function (which uses a fixed, byte-wise substitution table S) by F . A
counter, which is incremented at each round of encryption, is also used though
it will be ignored throughout this paper since it has no cryptographic impact on
our work. The rounds are illustrated in Figure 1.

The user-supplied key features during the G transformation. At each round
four bytes of the 10 bytes of key material are used, with one byte being used at
each step of the mini-Feistel network contained within G. If we denote the key
by k0 . . . k9 then this key is simply replicated through the rounds, so that bytes
k0, . . ., k3 are used in round one, bytes k4, . . ., k7 are used in round two, bytes
k8, k9, k0, k1 are used in round three and so forth. We will sometimes write
Gk0...k3 to illustrate which key bytes are used in the G transformation.

A first analysis by Biham et al. [1] studied some of the detailed properties of G
and in particular some of the properties of the substitution table S. This provided
a first description of some differential [6] and linear [10] cryptanalytic attacks
on reduced-round versions of Skipjack. It was shown that reducing Skipjack to
consist of the first 16 rounds (eight A-rounds followed by eight B-rounds) allowed
one to mount a differential attack requiring about 255 chosen plaintexts 1.

Independently of the authors of this paper, Biham et al. [2,3] also consid-
ered the role of truncated differentials in Skipjack and some variants. All that
is important for such attacks to be mounted is that the function G be a per-
mutation. Further details about G (and therefore of the substitution box S) are
1 It is important to note that this attack required that the key schedule be treated in

a way that seems to conflicts with its intended use in the full cipher.
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Fig. 1. The two rounds used in Skipjack. The counter is encrypted at each round
and while it is included for completeness, it has no cryptanalytic significance with
regards to the attacks in this paper.

immaterial. Most recently Biham et al. [5] derived attacks that are faster than
exhaustive search for the key if Skipjack is reduced by at least one round. In
this paper we consider alternative enhancements which offer interesting insights
into the design of Skipjack. Currently these seem to be less effective than other
attacks but we observe that there are opportunities for improvement and we
outline promising avenues for further work that remain unexplored.
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3 Truncated differentials of Skipjack

In a typical differential attack, the attacker chooses two plaintexts with a par-
ticular difference between them. During the encryption process the aim is to
predict with some probability how the difference between these two quantities
evolves. When the attacker is able to predict the difference towards the end of
the encryption process with a sufficiently high probability, information about
the user-supplied key can sometimes be derived.

When using truncated differentials, instead of trying to predict the evolution
of some difference across an entire block, the cryptanalyst attempts to predict the
difference across some fraction of this block. With Skipjack it is very natural to
consider the difference across the four 16-bit words as we will now demonstrate.
Let a, b, . . ., h denote any non-zero value to the difference2 in a 16-bit word. We
use rA to denote an A-round and rB to denote a B-round. One useful truncated
differential characteristic allows us to cover the first 16 rounds of Skipjack:

(a, b, 0, c) 8rA−→ (e, e, 0, 0) 8rB−→ (g, h, f, 0), (1)

The probability of the differential is 2−32 since (a, b, 0, c) 4rA−→ (0, d, 0, 0) with
probability 2−32, (0, d, 0, 0) 4rA−→ (e, e, 0, 0) always holds, and the last eight rounds
of the characteristic (e, e, 0, 0) 8rB−→ (g, h, f, 0) always holds. This differential will
be useful to us in Section 4.1 where it is shown how to break the first 16 rounds
of Skipjack with 217 chosen plaintexts.

There are other interesting truncated differentials for Skipjack. The truncated
differential (1) contains a truncated differential over eight B-rounds which holds
with probability one. We found that there are at least two other truncated
differentials over eight B-rounds which hold with the same probability. They are

(0, 0, a, 0) 8rB−→ (b, 0, c, d) and (0, a, 0, 0) 8rB−→ (0, b, c, d).

It is possible to add another four A-rounds to the latter differential while retain-
ing the fact that the truncated differential holds with probability one. Thus, one
gets the following twelve-round truncated differential with probability one

(0, a, 0, 0) 8rB−→ (0, b, c, d) 4rA−→ (h, h, f, g). (2)

In Section 4.2 we will use this truncated differential to mount a particularly
efficient truncated differential attack on the middle 16 rounds of Skipjack.

While a 12-round truncated differential with probability one seems remark-
able enough, there is more and these results are described in Section 3.1. We
also highlight some practical difficulties when using truncated differentials in
Section 3.2 and we describe the semi-exhaustive search that we used to find
these differentials in Section 3.3. We note here that the 16-round truncated dif-
ferential (1) given above is indeed the best truncated differential for the first 16
rounds of Skipjack.
2 While the most useful notion of difference can change depending on the cipher in

question, for Skipjack we use bitwise exclusive-or.
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3.1 Long truncated differentials

At least one truncated differential gives nontrivial information about the ci-
phertexts after 17 rounds of encryption. It goes through four A-rounds, eight
B-rounds and five A-rounds and has the following form:

(0, a, 0, 0) 4rA−→ (b, b, 0, 0) 8rB−→ (c, d, e, 0) 5rA−→ (f, g, h, i),

where f 6= g and h and i can take any values. A variant of Skipjack reduced to
these 17 rounds can be distinguished from a randomly chosen permutation using
only about

√
2 · 28 chosen plaintexts3.

Even more remarkably there are truncated differentials which give non-trivial
information about the ciphertexts after up to 24 rounds of encryption. It is
interesting to compare the following 24-round truncated differential with the 24-
round “impossible differential” of Biham et al. [5]. They are identical, though
the differential described here will be explained in the classical top-down fashion.

First consider the following 12-round differential that also features in [5]. The
words a, b, c, d, e can be arbitrary nonzero values.

(0, a, 0, 0) 4rA−→ (b, b, 0, 0) 8rB−→ (c, d, e, 0) (3)

The differential can be concatenated with the following differential over 8 A-
rounds and 4 B-rounds.

(c, d, e, 0) 8rA−→ (j, k, l, m) 4rB−→ (r, s, t, u) (4)

If we are careful to track how the differential evolves, we are able to place
conditions on different words of the differential even if they are identified as
being non-zero. A pair of inputs have equal values in the fourth word, but dif-
ferent values in the other three. The conditions at each round of the evolution
of truncated differential (4) are given in Table 1. Note, as an example, that after
the second A-round f 6= e since f = c ⊕ e and c 6= 0. Likewise, after the fourth
A-round (i, g) 6= (0, 0). To see this, note that in the preceding round h 6= g,
since b 6= 0. But h 6= g implies that (h, g) 6= (0, 0) and (i, g) 6= (0, 0) since
i = 0 ⇔ h = 0.

We can show (see Table 1) that the three rightmost words at the end of the
last 12 rounds of the 24-round truncated differential cannot all be zero. Suppose
to the contrary that w = 0, γ = 0, and β = 0. This implies k = 0 ⇒ v = 0 ⇒
p = 0 ⇒ u = 0 ⇒ m = 0, and we have a contradiction since (m, k) 6= (0, 0).
Altogether, this yields a 24-round truncated differential, where the differences
in the three rightmost words of the ciphertexts cannot all be zero.

3 To see this choose a pool of different plaintexts with equal values in the first, third
and fourth words. Compute the exclusive-or of the first two words of all ciphertexts
and look for a match in these values. Such a match will not be found for the Skipjack
variant, but for a randomly chosen permutation a match is found with probability
2−16.
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Round Difference Properties
(a, b, c, 0) a, b, c nonzero

A1: (d, d, b, c) b, c, d nonzero
A2: (f, e, d, b) e, d, b nonzero, f 6= e
A3: (h, g, e, d) e, d nonzero, h 6= g
A4: (j, i, g, e) e 6= 0, (i, g) 6= (0, 0), j 6= i
A5: (l, k, i, g) (k, i) 6= (0, 0), (i, g) 6= (0, 0), l 6= k
A6: (n, m, k, i) (m, k) 6= (0, 0)
A7: (q, p, m, k) (m, k) 6= (0, 0)
A8: (s, r, p, m) s = k ⊕ r

B1: (m, t, k, p) (m, k) 6= (0, 0)
B2: (p, u, α, k) α = m ⊕ t
B3: (k, v, β, α) β = p ⊕ u
B4: (α, w, γ, β) γ = k ⊕ v

Table 1. The last 12 rounds of the 24-round truncated differential.

3.2 Important practical details

Before proceeding it is worth highlighting two important features of a truncated
differential if we wish to use it directly in an attack.

Filtering. After accumulating what might be a vast amount of chosen
plaintext-ciphertext pairs in an attack, the cryptanalyst needs to throw away
as much erroneous data (pairs that do not follow the differential as intended) as
possible. This is done by filtering. With the truncated differentials we consider,
the structure we use for filtering is the presence of a zero difference in some word.
In the 16-round attack of Section 4.1, the expected difference in the ciphertexts
is (g, h, f, 0), which means that only pairs of ciphertexts with equal fourth words
will be left after filtering. The more zeros in the expected output difference, the
greater the number of wrong pairs that can be filtered before starting to extract
key material.

Counting. The second feature that is important to consider is where, in
some input and output difference, the non-zero differences lie. While some trun-
cated differentials might initially appear to be useful to the cryptanalyst, it is
not always possible to extract key information. One example is the following
truncated differential (0, a, b, 0) 8rA−→ (c, d, e, 0) 8rB−→ (0, f, g, h) which holds with
probability 2−32. When using this differential in an attack it passes over the first
round of encryption with probability one and it is not possible to distinguish the
correct first-round subkey from the wrong ones.

The semi-exhaustive search described in Section 3.3 was completed for trun-
cated differentials of the full 32-round Skipjack. The search revealed several
truncated differentials of probability 2−64. However for all of these it seems im-
possible to search for keys in both the first and the last round as would be needed
to directly mount an attack.
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3.3 The search for truncated differentials

The semi-exhaustive search for truncated differentials was done in the following
manner. Represent each 16-bit word in Skipjack by a single bit and so four bits
will be used to represent the internal state of the four 16-bit words in Skipjack.
A zero in the ith bit indicates that there is no difference in the values of the ith

of the pair of data that follow the differential. The value one is used to indicate
a non-zero difference which results from the two words having different values.
We can then specify a set of rules that describes the “encryption” of the four
words of difference through the A-rounds and through the B-rounds. It is easy
in this way to do a complete search for any number of A-rounds and similarly
for any number of B-rounds.

When combining A-rounds with B-rounds as required in Skipjack an extra
“rule” is required. In the case where an A-round is followed by a B-round and
where the output difference of the A-round has nonzero values assigned to the
first two words, one needs to know if the difference in the first word is equal to
the difference in the second word. This is of vital importance in the calculation
of the probability of the differential in the B-round. However it is also easy to
incorporate this consideration as a part of the search, since the differences in
the two first output words from an A-round will be equal if, and only if, the
fourth words of the inputs to the A-round are equal. Since no extra “rules” are
needed in the transition from a B-round to an A-round, one can find truncated
differentials for any number of A- and B-rounds.

In the following we report several findings of the search algorithm. In variants
starting with eight B-rounds followed by eight A-rounds the following truncated
differential

(0, a, 0, 0) 4rB−→ (0, b, c, 0) 4rB−→ (0, d, e, f) 4rA−→ (0, 0, g, h) 4rA−→ (0, 0, 0, i)

has component-wise probabilities of 1, 1, 2−16, and 2−16 for the component four-
round differentials respectively. Totally, the differential has probability 2−32 and
a pair of texts following the differential can be found by taking all pairs gener-
ated from a pool of about 217 chosen plaintext values. This makes it possible to
effectively distinguish this variant of 16-round Skipjack from a random permu-
tation using only around 217 chosen plaintexts. For a random permutation two
ciphertexts with equal values in the first three words (as in the above differen-
tial) occur with probability 2−48 and such a pair would normally be expected to
occur after generating around

√
2 · 224 values.

The search revealed several truncated differentials for the full Skipjack with
probability 2−64. One example is the following differential where the words
a, . . . , m can take any nonzero values.

(0, a, b, c) 8rA−→ (0, 0, 0, d) 8rB−→ (0, e, f, g) 8rA−→ (h, h, i, j) 8rB−→ (0, k, l, m),

This differential allows only for a very limited amount of filtering since only the
form of the leftmost word of the ciphertext is restricted. (For all the 32-round
truncated differentials with probability 2−64 that we have identified, only one of
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the words in the expected output differences is zero.) Furthermore, the leftmost
word of the plaintext difference in all cases is zero, which means that key material
cannot be extracted from analysis of the first round since all possible subkeys
are equally likely. Thus, these differentials do not seem to be useful in an attack.
However it is possible, at least theoretically, to mount an attack on the last 28
of the 32 rounds of Skipjack as we will show later.

4 Attacks using truncated differentials

4.1 The first sixteen rounds

We start with a truncated differential attack on the first 16 rounds of Skipjack
that requires only 217 chosen plaintexts and about 234–249 time for the analysis.
The range in the computational complexity comes from whether we treat the
first and last round subkeys as independent or not.

We note that truncated differential cryptanalysis allows for significant im-
provements over an ordinary differential attack [1] due to two effects. First, the
probability of the differential is sharply increased from 2−52.1, which was the
probability of the differential [1] used in the conventional differential attack, to
2−32. Second, the truncated differential allows us to extract more usable plain-
text pairs from fewer chosen plaintexts because there is additional freedom in
the construction of what are termed structures [6].

The attack uses the truncated differential (1) for the first 16 rounds of Skip-
jack. To generate suitable pairs for such a differential we choose 217 plaintexts
where the third words are fixed and obtain the corresponding ciphertexts. From
these plaintexts one can form about 233 pairs with the desired starting difference.
With a high probability two right pairs will follow the truncated differential. Ob-
serving that the rightmost word has zero difference, we can immediately filter
out many wrong pairs before moving on to the next stage of the analysis with
217 pairs of data. In this second phase we will extract key material from the
first and sixteenth rounds but the analysis will differ depending on whether the
subkeys used in the outer two rounds are the same or different.

Independent subkeys. Here we treat the case where the subkeys used in
the first and 16th rounds are independently chosen. This seems more true to the
intent of the Skipjack designers and is perhaps a better reflection of the style of
attack that is needed for the full 32-round version of Skipjack.

Using the same truncated differential as before, each pair that survives fil-
tering will suggest 216 values for the four key bytes in the first round, and 216

values for the four key bytes in the last round. It is possible to find these 217

suggested values with offline work comparable to about 217 G-box computations
[4,5]. (The trick is to use a precomputed table which, given differences y, z, allows
us to find input x such that F (x)⊕F (x⊕y) = z with one table lookup. We guess
k2, k3, decrypt up by two layers of the G-box, and use the precomputed table
to recover k0, k1, noting that z is known from the G-box input difference and
y is known as a result of decrypting up two layers.) In total, we find that after
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filtering each remaining pair suggests about 232 values for the eight key bytes
used in the first and 16th rounds. Naively we could simply count on those 64 key
bits and look for a counter whose value exceeds one. By the birthday paradox,
only about 22×49/264+1 = 233 wrong key values would remain, and each sug-
gested value for the eight key bytes could be tested by exhaustive search over
the remaining two unknown bytes. Thus, we could recover the key with about
(217 × 232) + (233 × 216) = 250 work but the need for 264 counters makes this
approach totally impractical4. Instead we suggest the following technique.

Examine the plaintext pairs two at a time. For each two plaintext pairs use
the calculation of G in the 16th round to recover a list of possible values for the
subkey. On average we expect to find about one possible subkey value. Similarly,
the G computation in the first round is used to recover a possible value for
another four key bytes. The suggested value for these eight key bytes can then
be tested by exhaustive search over the remaining two unknown key bytes. There
are about 217 · (217 − 1)/2 ≈ 233 ways to choose two plaintext pairs, and each
one requires about 216 work, so with work equivalent to about 249 encryptions
we can recover the key.

The computational complexity could be reduced using alternative techniques
if more texts are available. We can form 237 plaintext pairs from 219 chosen plain-
texts, and count on the last-round subkey. About 221 pairs survive filtering and
so incrementing the counters requires work equivalent to about 237 computa-
tions of G. The right counter will be suggested about 25 +25 times, whereas the
wrong counter will be suggested 25 times on average (with standard deviation
22.5). Only about 32 wrong counters will exceed their mean value by 22.5 ≈ 5.66
standard deviations or more, so only about 33 values for the last-round subkey
will survive. Similarly, we can find 33 possibilities for the first-round subkey with
another 237 computations of G, so after time equivalent to (237 + 237)/16 = 234

trial encryptions we can recover 332 possibilities for 64 key bits. Finally, those
332 possibilities can be tested with an exhaustive search over the remaining
two unknown key bytes. The total computational complexity is equivalent to
234 + 332 × 216 ≈ 234 trial encryptions with 219 chosen plaintexts and 232 space.

Dependent subkeys. When the subkeys used in the first and 16th rounds
are the same5, several optimizations may be applied to the truncated differential
attack. In this case, the total amount of offline work required for the attack is
roughly comparable to that needed for 234 offline trial encryptions.

4.2 The middle sixteen rounds

It is interesting to observe that there is a very efficient way to break the middle
16 rounds of Skipjack, i.e. a version of Skipjack consisting of eight B-rounds

4 Space requirements can be reduced to about 249 × 8 = 252 bytes by using a hash
table or sorted list to store the suggested key values, but this is still too large.

5 This holds for Skipjack. However, we feel that this is somewhat artificial since it
is highly likely that any designers of such a Skipjack variant would change the key
schedule to avoid this eventuality.
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followed by eight A-rounds. Of course Skipjack has many more rounds than the
sixteen we are attacking here, but our work is interesting for two reasons.

First it demonstrates that there is an asymmetry in how the A-rounds and
the B-rounds might combine together to resist the attacker. This might help pro-
vide some insight into the design rationale behind Skipjack. Second, the attack
outlined makes use of the structure of the G computation, and most impor-
tantly, of the internal Feistel structure. As in the earlier attacks, the S-box itself
is completely immaterial to our discussions, but the byte-wise nature of the G
computation provides a real benefit to the attacker. It is possible that attacks
depending on the word-oriented structure of Skipjack could be aided by also con-
sidering the byte-oriented structure of the G computation. As a demonstration
of this, we show that with two chosen texts, we can break this reduced cipher
with work equivalent to about 247 trial encryptions; with three chosen texts, the
complexity of the attack drops to about 230 encryptions. This is surprisingly
close to Skipjack’s unicity distance (1.25 texts).

We shall number the rounds from 1 to 16, so that the first round uses
k0, . . . , k3 and so on. In this attack, we use the 12-round truncated differential
(2) of probability one to cover rounds 1 to 12 of the reduced cipher.

First we obtain n independent pairs following the truncated differential by
making n + 1 chosen-plaintext queries6 with the first, third, and fourth words
of the input fixed. The rest of this section describes how to analyze those n
pairs. We will describe our attack in general terms, leaving the number n of
pairs unspecified until the end. Afterwards, we will optimize over n to obtain
the best possible results.

The analysis consists of seven phases. In each phase, we recover some portion
of the key material, either by guessing or by deriving it from known quantities
inside the cipher. We describe each of the seven phases in turn.

1. Guess k0, . . ., k3. For each pair, peel off the 16th round to learn the value of
h that this key guess suggests.

2. Recover k9. A naive approach is to simply guess k9; reversing three layers of
the computation of G in round 13 (using k1, k0, k9) will give the right half
(low byte) of h in each pair if our guess for k9...3 was correct. This gives a
filtering condition on 8n bits. In practice, this can be implemented efficiently
using a precomputed lookup table; see Section 4.1 or [4,5] for more details.
With proper implementation, the work factor of this phase will be about
232, and we expect 240−8n values of k9...3 to remain.

3. Recover k8. We can use the same technique as in the second phase, this time
reversing a fourth layer of the G transformation in round 13. We predict that
the exclusive-or of the values obtained should be the same as the left half
(high byte) of h in each pair if our guess was correct. This gives a filtering

6 One could use structures to obtain n pairs from
√

2n + 1 queries, but the resulting
pairs would not be independent, and we do not expect the extra “dependent” pairs
to provide any useful extra information. Furthermore, typically we only need n = 2
pairs, so the difference would be negligible in any case.
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condition on 8n bits, so 248−16n possibilities for k8, . . ., k3 will remain. With
proper implementation, this phase takes about 240−8n work.

4. Guess k4 and k5. Now decrypt through the computation of G in round 14
(using k2, . . ., k5) to learn g. This will suggest 264−16n values for k8, . . ., k5,
with a similar work factor.

5. Recover k7. The outputs of the G transformation in round 10 are now known,
and the inputs have known difference a. We can decrypt two layers of G in
round 10 (using k8 and k9), and then derive k7 (which is used in the next
layer) with a precomputed lookup table, as above. With proper implemen-
tation, this phase takes 264−16n work, and we expect that about 272−24n

possibilities for k7, . . ., k5 will remain at the conclusion of this phase.
6. Recover k6. Complete the analysis of the computation of G in round 10

by deriving k6 from its known outputs and its known input difference a.
With proper implementation, this phase takes 272−24n simple operations,
and about 280−32n suggested values for the entire key k0, . . ., k9 will be left.

7. Check suggested values. We can check each suggested value for the key in any
of a number of ways. One simple way is to do a full trial decryption on a few
of the texts. Alternately, one could encrypt through the G transformations
in rounds two, three, and six to check the result against the known input to
G in round 10. This will require only four G computations and thus can be
quite a bit faster than a full trial decryption. We expect that this final phase
will quickly eliminate all incorrect keys.

The work required is about

232 + 232 + 240−8n + 264−16n + 264−16n + 272−24n + 4 × 280−32n

simple operations. For n = 1 this gives 251 steps and 234 steps for n = 2. Of
course, each step requires just a single G computation (often quite a bit less),
so this is equivalent to about 247 (respectively 230) trial encryptions. The result
is a very sharp attack against the middle 16 rounds of Skipjack.

4.3 The last twenty-eight rounds

In this section we consider Skipjack reduced to the last 28 rounds and the fol-
lowing 28-round differential:

(a, b, 0, c) 4rA−→ (d, e, 0, 0) 8rB−→ (f, g, 0, h) 8rA−→ (i, i, 0, 0) 8rB−→ (j, k, l, 0),

where (a, b, 0, c) −→ (d, e, 0, 0) is a four-round differential that starts in the fifth
round, ends in the eighth round, and holds with probability 2−16. The follow-
ing eight-round differential has probability 2−16, the next has probability 2−32,
and the final eight-round differential has probability 1. This gives a truncated
differential over the last 28 rounds of Skipjack which holds with probability 2−64.

To start the attack, choose 241 plaintexts where the values of the third words
are fixed to some arbitrary value. From these plaintexts we can form about 281

pairs of which 217 will be expected to follow the specified differential. Using the
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rightmost word of the ciphertexts we can filter out wrong pairs, leaving 265 pairs.
The extraction of key material that follows is similar to that given in Section 4.1.

Independent subkeys. First we assume that the keys in the first round of
the differential (the fifth round of Skipjack) are independent of the keys in the
last round. For each surviving pair we check which keys in the last round result
in a difference that follows the differential after decryption by one round. About
216 values of the 32-bit key will be suggested by this test for each pair. Similarly,
for each surviving pair we check which keys result in differences that follow the
differential after encryption by one round. With an efficient implementation, the
suggested key values can be found in time comparable to 217 evaluations of G
(see Section 4.1 or [4,5]). Overall we will find that 265+16+16 = 297 values for 64
bits of key material will be suggested. The expected value of the counter for a
wrong value of the key is 233, whereas the expected value of the counter for the
correct value of the key will be 233 + 217 since each of the 217 right pairs will
include the correct key value among the set of 232 values suggested. This would
mean that with a high probability the correct value of the key is among the
16% most suggested values. The total time for the analysis stage of this attack
amounts to 265+17 = 282 G computations, a work effort that is equivalent to
about 277 encryptions. Thus, this attack is just faster than an exhaustive search
for the key but the work effort required and the need for 264 counters makes the
attack totally impractical.

Dependent subkeys. If we assume that this reduced-round variant of Skip-
jack uses the key schedule specified in Skipjack then the attack will improve. The
subkeys used in the fourth round are key bytes k2, k3, k4, and k5. The subkeys
used in the last round are key bytes k4, k5, k6, and k7. The two sets of subkeys
have a total entropy of only 48 bits. When taking this into account analysis of
the data will suggest 265+16 = 281 values for a 48-bit key. The rest of the analysis
is the same but the memory requirements have been reduced to 248 counters.

We anticipate that similar attacks on Skipjack with fewer than 28 rounds will
be much more efficient and that they can be used to find more information about
the secret key. Furthermore, it might be possible to attack versions of Skipjack
by counting on 64 key bits when the subkeys in the first two rounds and the last
two rounds together have an entropy of 64 bits. We note that such a fortuitous
key-scheduling coincidence occurs in the full 32-round Skipjack cipher.

5 Boomerang attacks

Here we consider the feasibility of boomerang attacks [17] on reduced-round vari-
ants of Skipjack. Boomerang attacks may be considered to be a close relative
of miss-in-the-middle attacks [5], although these techniques were developed in-
dependently. Boomerang attacks on Skipjack are interesting because they allow
us to improve on some of the existing miss-in-the-middle attacks by a factor of
23.5–28.5. However, miss-in-the-middle attacks currently penetrate more rounds
of Skipjack than boomerang attacks.
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Boomerang attacks are chosen-plaintext, adaptive chosen-ciphertext attacks
that work from the outside in. They use differential techniques to create a quartet
structure inside the cipher by working from both ends of a cipher (the plaintext
and ciphertext inputs) towards the middle. This quartet consists of four plain-
texts P, P ′, Q, Q′, along with their respective ciphertexts C, C ′, D, D′ chosen as
follows. We use a truncated differential ∆ → ∆∗ for the first half of the cipher,
as well as the truncated differential ∇ → ∇∗ for the inverse of the last half of
the cipher. The cryptanalyst picks P, P ′ so that P ⊕ P ′ ∈ ∆, encrypts to obtain
C, C ′, then picks D, D′ so that C ⊕ D ∈ ∇ and C ′ ⊕ D′ ∈ ∇. The cryptanalyst
then asks for the decryption of D, D′ to obtain Q, Q′. We hope that the pair
P, P ′ follows the differential ∆ → ∆∗, and that the pair C, D and the pair C ′, D′

both follow the differential ∇ → ∇∗. If so, we have a quartet structure halfway
through the cipher. If we have chosen ∆∗,∇∗ well, with good probability we
obtain a difference of ∆∗ halfway through the decryption of D, D′, which lets us
cover the remainder of the decryption with the backward differential ∆∗ → ∆.
As a result, in a right quartet we will have the recognizable condition Q⊕Q′ ∈ ∆.
Many details have been omitted; a full description of the boomerang attack may
be found in [17].

5.1 The middle twenty-four rounds

Consider a simplified 24-round Skipjack variant obtained by deleting four rounds
from both ends of the real Skipjack cipher. This variant is intended to be rel-
atively representative of a Skipjack cipher weakened to 24 rounds, in that it
retains the symmetry between encryption and decryption.

Observe that there is a truncated differential of probability one through four
A-rounds and eight B-rounds: ∆ = (0, a, 0, 0) 4rA−→ (b, b, 0, 0) 8rB−→ (c, d, e, 0) = ∆∗.
Due to the fact that the structure of an A-round is almost the inverse of the
structure of a B-round, we also obtain a truncated differential of probability
one for decryption through four B-rounds and eight A-rounds, specifically ∇ =

(f, 0, 0, 0)
4r−1

B−→ (g, g, 0, 0)
8r−1

A−→ (i, h, 0, j) = ∇∗. (Here a, b, . . . , j can take on any
non-zero value.) Finally, we use the backward differential ∆∗ → ∆ of probability
2−32 for decrypting through the first half of the cipher. This gives a success
probability7 of Pr[∆ → ∆∗] × Pr[∇ → ∇∗]2 × 2−16(1 − 2−16)2 × Pr[∆∗ → ∆] =
1 × 12 × 2−16(1 − 2−16)2 × 2−32 ≈ 2−48.

To mount a boomerang attack first construct a plaintext pair P, P ′ with
P ⊕ P ′ ∈ ∆. Denote the ciphertexts C, C ′. Next obtain 216 ciphertexts D by
varying the first word in C, and in a similar manner obtain 216 ciphertexts D′

7 Here the factor of 2−16 comes from the requirement that we get a difference of ∆∗

halfway through the decryption of D, D′, which happens when the fourth words of
the two ∇∗ differences are equal. In other words, if the ∇∗-difference is (i, h, 0, j)
in the C, D pair and (i′, h′, 0, j′) in the C′, D′ pair, we require that j = j′ so that
(i, h, 0, j) ⊕ (i′, h′, 0, j′) ⊕ (c, d, e, 0) will take the form of a ∆∗ truncated difference.
Finally, one must add a correction factor of (1 − 2−16)2, because the differential
∆∗ → ∆ is not valid when i ⊕ i′ ⊕ c = 0 or h ⊕ h′ ⊕ d = 0.
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by modifying C ′. Note that the truncated differentials ∇ → ∇∗ for C, D and
∇ → ∇∗ for C ′, D′ are simultaneously obeyed, so we get 232 possible quartets,
of which 232 × 2−16(1 − 2−16)2 ≈ 216 have a difference of the form ∆∗ halfway
through the decryptions of D, D′.

Each structure of 217 texts contains a right quartet with probability 216 ×
2−32 = 2−16. Right quartets can be recognized by the difference ∆ in the plain-
texts Q, Q′. This allows us to filter out all but 2−48 of the wrong quartets and
after repeating the attack 216 times, we expect to obtain one right quartet and
one wrong quartet.

To reduce the number of texts required we can choose 28.5 plaintexts by
varying the second word and holding the first, third, and fourth words fixed;
then for each of the 28.5 resulting ciphertexts, we generate 216 more variant
ciphertexts and decrypt. Each pair of plaintexts then gives a structure, so 216

structures can be obtained from this pack of 28.5 plaintexts, and thus we expect
to see the first right quartet after only 224.5 chosen texts.

While we cannot recover key information from this 24-round version of Skip-
jack using these techniques, we are able to distinguish this version from a random
cipher with about 28.5–29.5 chosen plaintexts and 224.5–225.5 chosen ciphertexts.
The same ideas can be applied to the inverse cipher to get a similar attack that
uses 224.5–225.5 chosen ciphertexts and 28.5–29.5 chosen plaintexts.

5.2 The middle twenty-five rounds

Consider a Skipjack variant obtained by deleting the first three and last four
rounds from the real Skipjack. We can use 234.5 chosen texts to break 25 rounds
of Skipjack with a 261.5 work factor. One can use structures to bypass the first
round subkey: vary the first and fourth words, and hold the middle two words
fixed. With 218.5 such plaintexts, one expects to find 220 pairs of plaintexts which
satisfy the desired relationship after the first round. After another 234.5 chosen
ciphertexts, one should find about 16 right quartets.

We then guess the first round subkey, and peel off the first round, checking
for right quartets in the same way as in our 24-round attack. In this way, for each
guess at the subkey we expect only about 16 of the wrong quartets to survive
the filtering phase. This allows us to distinguish a right guess at the first round
subkey from a wrong guess with good probability. In the former case 32 quartets
will survive the filtering phase and in the latter only 16 quartets are expected to
survive, which is a difference of four standard deviations. The analysis procedure
can be performed with about 234.5 × 232 = 266.5 computations of G, which is a
workload roughly equivalent to 261.5 trial encryptions. In all, the attack recovers
32 key bits after 261.5 work; the remaining 48 key bits can be found by trial
decryption.

5.3 Comparison with miss-in-the-middle attacks

It is interesting to compare the complexity of boomerang attacks to Biham et al.’s
miss-in-the-middle attacks [5] on the same reduced-round variants of Skipjack.
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For 24 rounds, a boomerang attack needs 224.5–225.5 chosen texts to distinguish
the cipher from a random permutation, whereas the miss-in-the-middle attack
needs 233–235 chosen texts. For 25 rounds, our boomerang attack uses 234.5 texts
and 261.5 work to recover the key, whereas the miss-in-the-middle attack [5] uses
238 chosen texts and 248 work. With regards to the data requirements, it ap-
pears that boomerang attacks compare favorably to miss-in-the-middle attacks
for these reduced-round variants of Skipjack. However Biham et al. have demon-
strated that miss-in-the-middle attacks can be used to analyze 31 rounds of
Skipjack whereas boomerang attacks are currently restricted to no more than
25 rounds.

The boomerang attacks were aided by the fact that the (4A, 8B) round struc-
ture (as found in the first half of the 24-round cipher) is weaker against truncated
differentials in the encryption direction than in the decryption direction, while
the (8A, 4B) structure is weaker in the reverse direction. This property makes
it easy to probe the (4A, 8B, 8A, 4B) cipher from both ends at once with a
boomerang attack. We suspect for similar reasons that a (16B, 16A) structure
might be easier to analyze with boomerang techniques than a (16A, 16B) struc-
ture, which suggests that the ordering of the A-rounds and B-rounds may be
quite important to the security of the Skipjack cipher.

6 Conclusion

In this paper we have described several interesting truncated differentials for
Skipjack. These can be used in a variety of attacks, including particularly efficient
attacks on reduced-round versions of Skipjack. The existence of such attacks
and the effectiveness of truncated differentials demonstrates that Skipjack has
unusual and surprising structural features. We also demonstrate the effectiveness
of boomerang attacks on Skipjack. While they cannot be extended to attack
31 rounds of Skipjack like miss-in-the-middle attacks, for those reduced-round
versions of Skipjack that can be compromised using both techniques, boomerang
attacks are typically more effective than miss-in-the-middle attacks. We feel that
attempts to extend existing boomerang attacks to more rounds could lead to
more efficient attacks on Skipjack than are currently available. We leave it as a
challenge to use our findings to find more efficient attacks on 16- to 31-round
variants of Skipjack. Currently, an attack on the full 32 rounds of the cipher
(other than by a brute force search for the key) remains elusive.
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