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ABSTRACT
Software model checking based on abstraction-refinement
has recently achieved widespread success in verifying API
conformance in device drivers, and we believe this success
can be replicated for the problem of buffer overflow detec-
tion. This paper presents a publicly-available benchmark
suite to help guide and evaluate this research. The bench-
mark consists of 298 code fragments of varying complex-
ity capturing 22 buffer overflow vulnerabilities in 12 open
source applications. We give a preliminary evaluation of
the benchmark using the SatAbs model checker.

Categories and Subject Descriptors: D.2.4 [Software
/ Program Verification]: Model Checking

General Terms: Security, Verification, Performance, Mea-
surement.

Keywords: Buffer overflow, array bounds checking, bench-
mark, model checking.

1. INTRODUCTION
Buffer overflows are widespread in both legacy and mod-

ern systems, accounting for nearly half of all known security
vulnerabilities [15]. They affect the security of programs
written in languages that are neither type- nor memory-
safe, such as C, enabling an attacker to gain control of a
program and execute arbitrary code with elevated privi-
leges. As a result, there has been much recent interest in
developing static analysis tools to detect buffer overflows in
C code, e.g., [8, 15, 17]. However, many of these tools suf-
fer from poor precision and thus either report many false
alarms or miss errors.
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Software model checking (SMC) is a family of automated
techniques which have achieved success in finding errors in
critical systems [14] and in verifying their absence [1]. A
primary feature of SMCs is that they aim to provide sound
analysis in both cases. As a result, a well-implemented
SMC will neither give false alarms nor miss errors, but
may instead fail to terminate on programs that are too
complex for it to analyze. Software model checkers based
on abstraction-refinement [1] (we call them CEGAR SMCs)
have recently achieved widespread success in verifying API
conformance in device drivers, and we believe this success
can be replicated for the problem of finding buffer overflows
or proving their absence; however, CEGAR SMCs typically
do not yet perform well when checking code for buffer over-
flows [12].

To help us guide our own work in developing CEGAR
SMCs for buffer overflows, we looked for a suitable bench-
mark. Such a benchmark can provide a set of examples on
which tool developers can test new algorithms and a lan-
guage for communicating research results, enabling quan-
titative measures as to how much improvement a new al-
gorithm brings. In order to be useful, such a benchmark
should be realistic (so that testcases correspond to buffer
overflows found “in the wild”) and at least partially solvable
by existing tools, while still leaving room for improvement.

Zitser et al. [18] present a benchmark suite derived from
real programs containing buffer overflow vulnerabilities. Their
benchmark is realistic and contains a combination of cor-
rect and faulty programs. However, the technical, or “front-
end”, limitations prevent existing CEGAR SMC tools such
as BLAST [9] and SatAbs [5] from running on the bench-
mark programs; the tools crash or behave unexpectedly on
too many cases to yield useful results. In addition, algo-
rithmic, or “back-end”, limitations prevent the tools from
analyzing the rest of the cases within reasonable resource
limits. While the Zitser suite could be parameterized (for
example, by buffer size, which significantly affects tool per-
formance), the size and complexity of the examples make
it difficult to determine which parts of a testcase are the
analysis bottlenecks.

Kratkiewicz et al. [11] present a benchmark consisting of
small synthetic programs with systematically varying syn-
tactic constructs. Similarly, the benchmark of Wilander
et al. [16] is comprised of a set of yet smaller programs,
each containing a single call to a standard C library func-



tion. Both suites were designed as correctness tests for
lightweight static analyses. Whereas Zitser’s suite is too
hard for current CEGAR SMCs, these suites are too easy,
as we saw in our internal evaluation of BLAST and SatAbs
on the Kratkiewicz benchmark; Chaki [2] reports similar
results running ComFoRT on it. Barring implementation
errors, each tool quickly terminated with a correct answer
on every example. These benchmarks thus fail to challenge
current CEGAR SMCs and, furthermore, lack realism and
configurability.

Since neither approach was suitable for CEGAR SMCs,
we have developed a special-purpose benchmark for buffer
overflows, presented in this paper, in which we also report
on a preliminary application of the benchmark to SatAbs.

The rest of the paper is organized as follows. After a
short background on CEGAR SMCs in Section 2, we dis-
cuss and illustrate the benchmark construction methodol-
ogy in Section 3, evaluate it in Section 4, and conclude in
Section 5 with a discussion and an outline of future research
directions.

2. SOFTWARE MODEL CHECKING
Model checking takes a state transition system represent-

ing some behaviors of a system, in our case, a program, and
a property P to be checked against the system. In the case
of buffer overflows, P is a property indicating that every
access to a specified buffer is safe. Using standard compiler
analyses, all pointer dereferences and array accesses are in-
strumented with bounds checks, so that the system goes to
a line labelled ERROR if a bound is violated. For example,
the instrumentation for the program in Figure 1(a) appears
on lines 6 and 7. The buffer overflow problem then reduces
to checking the reachability of the line labelled ERROR.

Models must be finite-state. Counterexample-guided abst-

raction-refinement (CEGAR) [3] is an automated technique
for iteratively constructing a finite predicate abstraction [7]
of a program in which concrete data (variable values) are
replaced with predicates (boolean expressions) over pro-
gram variables. It begins with an initial overapproxima-
tion of the system without any predicates. For example,
Figure 1(b) shows the initial abstraction for the program
in Figure 1(a); unknown values are represented by the spe-
cial variable NONDET. The abstraction is then checked to re-
veal a counterexample, i.e., a path to ERROR, going through
lines 1–7. Simulating this path on the concrete program
shows that the counterexample is spurious: the first iter-
ation of the loop cannot overflow dest[]. Learning from
this, CEGAR adds a predicate q = dest. A new model
tracking this predicate is built, and the process continues
until either an answer is found or the system runs out of
resources. The answer can be that ERROR is reachable, in-
dicating an error, or that ERROR is not reachable, which
corresponds to a proof that the program is free of buffer
overflows. The system can run out of resources because
the size of each successive model and the cost of its corre-
sponding check are effectively exponential in the number of
predicates used to build it.

For the example in Figure 1(a), to show that the ERROR is
reachable, the model checker needs a separate predicate to
track the relationship between q and the upper bound, dest

(a)

1 char ∗ s r c = ”TOOBIG” ;
2 char des t [ 4 ] ;
3 char ∗p = sr c ;
4 char ∗q = dest ;
5 while (∗p != ’ \0 ’ ) {
6 i f (q >= dest+4)
7 ERROR: ;
8 ∗q++ = ∗p++;
9 }

(b)

1 char ∗ s r c ;
2 char des t [ 4 ] ;
3 char ∗p ;
4 char ∗q ;
5 while (NONDET) {
6 i f (NONDET)
7 ERROR: ;
8 ;
9 }

Figure 1: Basic buffer overflow example augmented
with a bounds check. (a) The original program; (b)
Initial CEGAR abstraction.

Program Domain # Vulns # Testcases

Apache Server 2 36
edbrowse App 1 6
gxine App 1 2
LibGD Library 1 8
MadWifi Driver 1 6
NetBSD libc Library 1 24
OpenSER Server 2 102
Samba Server 1 4
SpamAssassin App 1 2
BIND Server 2 22
WU-FTPD Server 3 24
Sendmail Server 7 63

Table 1: Suite Composition.

+ 4, in each of the five iterations of the loop: q = dest,
q = dest+1, ..., q = dest+4. This is effectively unrolling
the loop, so in this particular case, the running time of a
CEGAR SMC is exponential in the size of the buffer, dest.
This is not always the case, as we will see in Section 4.

3. BENCHMARK DESIGN
The benchmark is composed of testcases derived from

a variety of buffer overflow vulnerabilities in open source
programs, summarized in Table 1. We analyzed 22 vulner-
abilities in 12 programs, producing 298 testcases (half of
these are faulty versions and the other half are patched).
Most of the vulnerabilities come from the Common Vulner-
abilities and Exposures (CVE) database [6] while the rest
appear in prior publications [12,18]. Different types of pro-
grams use buffers in different ways, so we selected programs
from a variety of domains.

Scope. Our benchmark is designed to evaluate the abil-
ity of CEGAR SMCs to detect buffer overflows and verify
their absence. Ultimately, we aim to use our benchmark
to evaluate a variety of CEGAR tools employing a range
of core algorithms and optimizations, e.g., [9, 10, 12, 13].
In the short term, however, we were limited by the avail-
ability of effective tools. For example, we found that the
currently available releases of two popular CEGAR SMCs,
SLAM [1] and BLAST [9], do not soundly model arrays.
Aside from CBMC [4], we were unable to find any non-
CEGAR tools, such as explicit-state SMCs, with adequate
support for buffer overflow analysis. Our experiments in
this paper are therefore limited to SatAbs [5]. However, we
have done preliminary experiments, not reported in this
paper, with CBMC and ComFoRT [2].

Methodology. We first examine the source code for
each vulnerability and, after understanding the reason for
the error and the corresponding patch, we identify the func-
tion in which the overflow occurs and slice away code out-
side its calling context. We parameterize all buffer size
declarations so that we can control the bounds of buffer-
dependent loops.



CEGAR generates predicates in order to track dependen-
cies between data and control-flow. As such, we derive test-
cases from the source material by removing and simplifying
these dependencies. Briefly, data-dependencies arise when
a variable is used (evaluated) whereas control-dependencies
arise from branch constructs.

Data-dependency simplifications include, for example, re-
placing pointer expressions with array indexing, thereby
avoiding the generation of predicates relating a pointer to
the buffer(s) into which it points. Other simplifications in
this category include inlining functions, removing assign-
ments, and performing constant and variable propagation.

Control-dependency simplifications include, for example,
removing branch statements from a program to avoid the
generation of branch condition predicates. Other such sim-
plifications involve removing subexpressions in branch con-
ditions and replacing functions whose return values are used
in branch conditions with nondeterministic stubs.

The choice of simplifications to apply to a given pro-
gram comes from our observations, as CEGAR SMC users
and developers, of source code constructs that affect tool
performance. However, we restricted the simplifications to
those that preserve the intrinsic nature of the vulnerability.
That is, the simplifications retain existing attack inputs,
but may create new ones. For example, removing a branch
which aborts execution if the input is malformed allows
previously rejected input to produce an overflow. The sim-
plification process continues until the programs are reduced
to a form which we believe current CEGAR SMCs can ef-
fectively handle. We then review the generated testcases
and remove redundant and uninteresting ones. Finally, we
apply the official source code patch, possibly modified for
compatibility with our simplifications, to obtain a safe vari-
ant of each testcase.

Each vulnerability is accompanied by the following doc-
umentation: a link to the original source code of the as-
sociated program, the file(s) in the original source code
containing the vulnerability, the names of the source files
of our testcases (listed in order of complexity), an expla-
nation of how the vulnerability works and how the patch
removes the vulnerability, and definitions of the simplifica-
tions used in each testcase. In general, each vulnerability
required between one and four days for a single person to
understand, slice, and process into testcases.

Example. Figure 2 shows an example buffer overflow we
extracted from a module of the Apache web server (CVE-
2006-3747). The function takes as input a Uniform Re-
source Indicator (URI), checks it for valid syntax, and ex-
tracts some tokens from the URI if the URI starts with
ldap:// (Lightweight Directory Access Protocol). The out-
of-bounds write is on line 16: c is used to index into the
array token[], but the bounds checking is incorrect. Since
c is incremented after the check (c < TOKEN SZ), c can be
equal to TOKEN SZ when it is subsequently used to index
into token[], thus exceeding array bounds. The patched
version changes the check (c < TOKEN SZ) on line 14 to
(c < TOKEN SZ-1).

We constructed six cases containing vulnerabilities from
this program, along with the corresponding six patched
testcases. The first testcase is identical to Figure 2, mod-
ulo formatting. The second has a data-dependency simpli-

1 void e s c a pe ab s o l u t e u r i ( char ∗uri , int scheme ) {
2 char ∗cp ; char ∗ token [TOKEN SZ ] ;
3 i f ( scheme == 0 | | s t r l e n ( u r i ) < scheme ) return ;
4 /∗ S k i p p a s t h t t p : / / , m a i l t o : / / , e t c . ∗/
5 cp = ur i + scheme ;
6 i f ( cp [ −1] == ’/ ’ ) {
7 while (∗ cp != ’\0 ’ && ∗cp != ’ / ’ ) ++cp ;
8 i f (∗ cp == ’ \0 ’ | | ∗(++cp ) == ’ \0 ’ ) return ;
9 scheme = cp − ur i ;

10 i f ( strncmp( uri , LDAP, LDAP SZ) == 0) {
11 int c = 0 ;
12 /∗ E x t r a c t t o k e n s i n t o t o k e n [ ] ∗/
13 token [ 0 ] = ur i ;
14 while (∗ cp != ’\0 ’ && c < TOKEN SZ) {
15 i f (∗ cp == ’ ? ’ ) {
16 token [++c ] = cp + 1 ; /∗ UNSAFE ∗/
17 ∗cp = ’\0 ’ ;
18 } ++cp ;
19 } return ; } } }

Figure 2: Buffer overflow in Apache.

fication, replacing the pointer cp with an explicit integer
index into the array uri[]. The four other testcases also
use explicit array indexing and furthermore have control-
dependency simplifications. The simplest testcase includes
only the while loop in lines 14–19. The next simplest adds
line 10. The other two omit line 10, but include line 3, and
lines 3 and 6–9, respectively. All testcases preserve the orig-
inal attack inputs while allowing more inputs to produce an
overflow.

4. PRELIMINARY EVALUATION
The testcases were constructed to obtain a wide variation

in performance when applied to a CEGAR SMC. To test
how well they meet this requirement, we ran SatAbs [5]
on each testcase in the suite. We chose SatAbs because
it provides automatic instrumentation of potential buffer
overflows and thorough handling of the C language, partic-
ularly arrays and pointer arithmetic which are heavily used
in our testcases. We used version 1.6 with the default model
checker, Cadence SMV. For the evaluation, we configured
SatAbs to check all relevant buffer overflow assertions. We
used 600s timeouts.

The tests were run with minimal buffer sizes, 1 and 2, in
order to separate the effect of the simplifications from that
of the loops. Analysis time quickly explodes as the buffer
size increases, so in evaluating the testcases it was essential
to limit the bounds of the buffer-dependent loops.

Some of the results are presented in Figure 3. Each bar
indicates the difficulty of a testcase as the average number
of predicates generated per overflow assertion (a testcase
can contain more than one such assertion). The results for
buffer size 1 are shown by the bottom bar; results for buffer
size 2 are shown by the top bar and are cumulative. For ex-
ample, the rightmost bar indicates that the most complex
of the testcases shown for NetBSD generated 68 predicates
at buffer size 1, and 108 predicates at buffer size 2. The
bars are clustered by vulnerability and sorted from left to
right by order of testcase difficulty. We only include the
results for at most four of the simplest unpatched testcases
from each vulnerability. Cases which failed to produce use-
ful results (due to crashes and runtime exceeding the 600s
timeout) are omitted from the chart. In total, at base buffer
size 1, SatAbs found an overflow in 71.4% of our testcases.

The results show that, for each vulnerability, the test-
case construction methodology produces a series of cases
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Figure 3: SatAbs performance variation over test-
cases with vulnerabilities, buffer sizes 1 and 2.

of gradually increasing difficulty. They also show that dif-
ferent vulnerabilities generate testcases with distinct diffi-
culty bounds. For example, at buffer size 1, the most diffi-
cult case in MadWiFi requires only 42 predicates, whereas
the comparable case in NetBSD needs 108. Finally, as ex-
pected, buffer-dependent loop bounds are shown in many
cases to have a significant impact on analysis difficulty.
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Figure 4: Plots for patched versions of testcases
from the Apache example (Figure 2).

Interestingly, dependency on buffer size is less pronounced
for the patched versions of the testcases which check a
tool’s ability to prove that a buffer overflow cannot oc-
cur. Figure 4 shows the number of predicates generated
for the patched testcases from the Apache example in Fig-
ure 2, with one line representing each testcase, plotting the
number of predicates generated as a function of the base
buffer size. The lines are flat: once CEGAR finds the pred-
icate (c < TOKEN_SZ-1), it is able to prove that accesses to
token[] are safe, regardless of the size of the buffer. How-
ever, the analysis remains sensitive to our simplifications,
with the more complex testcases resulting in an increase in
the number of predicates. The most complicated testcases
(not shown) exceed the timeout even at small buffer sizes.

Unfortunately, this trend only holds for patched testcases
in which buffer accesses are protected by inequality checks
on pointers or array indices. In programs such as those us-
ing strcpy() to (safely) copy the contents of one array into
a sufficiently large target array, the number of predicates
needed to prove safety roughly equals the number needed
to find an error, and grows linearly with target buffer size.

5. CONCLUSION
We have described a buffer overflow benchmark for CEGAR

SMCs. In examining 22 buffer overflow vulnerabilities, we

found that the code examples in which these overflows ap-
pear differ considerably—we could not have come up with
similar examples synthetically. We believe this diversity
will be very useful in evaluating new techniques.

Prior to starting this project, our näıve intuition had
been that strcpy()-type loops were the “base” case for
evaluating buffer overflow analysis, and CEGAR’s poor per-
formance on them discouraged us. We were pleasantly sur-
prised to find, in the wild, buffer overflows in array accesses
meant to be protected by inequality checks, and to see that
CEGAR could efficiently verify their safe equivalents.

We plan to test our benchmark with other CEGAR SMCs,
and with explicit-state and bounded model checkers. Since
our simplifications were made with CEGAR in mind, they
would need to be re-examined to appropriately evaluate
these paradigms. We are continuing to add to the suite
and we encourage others to add their examples as well.
More information about the benchmark is available at
http://www.cs.toronto.edu/~kelvin/benchmark.
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