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Abstract. Social, technical and business connections can all give rise to
security risks. These risks can be substantial when individual compro-
mises occur in combinations, and difficult to predict when some connec-
tions are not easily observed. A significant and relevant challenge is to
predict these risks using only locally-derivable information.
We illustrate by example that this challenge can be met if some general
topological features of the connection network are known. By simulat-
ing an attack propagation on two large real-world networks, we identify
structural regularities in the resulting loss distributions, from which we
can relate various measures of a network’s risks to its topology. While de-
riving these formulae requires knowing or approximating the connective
structure of the network, applying them requires only locally-derivable
information.
On the theoretical side, we show that our risk-estimating methodology
gives good approximations on randomly-generated scale-free networks
with parameters approximating those in our study. Since many real-
world networks are formed through preferential attachment mechanisms
that yield similar scale-free topologies, we expect this methodology to
have a wider range of applications to risk management whenever a large
number of connections is involved.
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1 Introduction

Networks arise from many different type of real world connections. Computers,
for example, are connected by physical and logical links; businesses provide ser-
vices to one another; and individuals make friends and acquaintances encompass-
ing various implicit levels of trust. While these networks can be very beneficial,
their members may also increase their exposure to risks through participation.
For example, phishing attacks against individuals on Facebook leverage the fact
that you are more likely to click on a link that originates from a friend. Such
attacks leverage the existing trust relation represented by the connections in the
social-networking platform. Online social networks are especially vulnerable to
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this type of attack, because the information accessible to our connections can be
collected and used in subsequent attacks.

Businesses and organizations may increase their risk exposure from networks
too. For example, Autonomous Systems (ASs) controlled by Internet Service
Providers (ISPs) routinely form peering relationships in which they agree to
provide transit service to their peers’ customers. These connections enable each
ISP to provide better service to its customers, but the connections also entail
added risk in case one of their peers’ customers is subject to a Denial of Service
(DoS) attack. This was exactly the case when Spamhaus, a major player in
the network security business, received an enormous DoS attack that affected
the upstream ISPs providing Internet access to the company [1]. Fortunately,
Spamhaus was able to combat this attack with the help of the ISPs.

Due to the ubiquity and magnitude of risks related to participation in net-
works, especially computer networks, businesses have become increasingly inter-
ested in the availability of insurance policies to mitigate against such risks. Un-
fortunately, the emergence of a market for cyber-insurance over the last decade
has been painfully slow, motivating calls for a better understanding of risk prop-
agation in networks [2].

To understand the nature of these types of risks, we need to understand
both the risk propagation mechanism that affects two connected entities, and
the topological structure of the connective network. For many networks, this
latter problem is quite challenging. To give a sense of the complexity from an
insurer’s perspective, suppose that an insurer wants to provide insurance cover-
age to a subset of the nodes within a network, covering all risks that arise within
this network. She may obtain data from all the nodes in the subset including
connections between these nodes. However, because the risk exposure includes
connections outside this subnetwork, in order to calculate the insurance premi-
ums, an insurer would have to know the topology of a much larger part of the
network [3]. This is obviously a very challenging task in practice, as the insurer
would have to collect risk assessment data regarding entities to which she has
no business connection at all.

Our goal in this paper is to find general rules for calculating the risk expo-
sure of sets of nodes within a connected system, that can apply to a wide-range
of networks that emerge in practice. To accomplish this goal, we analyze the
topological structure of two independent real-world networks – one based on
the business relationships between the Internet’s autonomous systems, and the
other based on a subnetwork of the Facebook friendship network. We also gener-
ate random scale free networks with evolutionary parameters set to approximate
these real-world networks. Finally, we simulate propagation attacks on each net-
work and analyze the resulting loss distributions. We find structural regularities
that apply to all four networks and that can be used to predict the risk very
well. Moreover, we find ways to generate the parameters for these regularities by
only using data collected from small samples of the network. This implies that
these results can be applied in contexts with little information, as long as the
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network in question has similar scale-free properties to the networks examined
in our study.

The rest of the paper is organized as follows. In Section 2, we review related
work. In Section 3, we describe the network risk propagation model, the two real-
world networks, and the methodology used in our analysis. Section 4 contains
numerical illustrations and results. We discuss these results in Section 5. Finally,
we conclude in Section 6.

2 Related work

We review related work in the areas of interdependent security, scale-free net-
works, and cyber-insurance. Interdependent security literature addresses ways in
which risks propagate within a network; and our risk propagation model is taken
from this literature. We use randomly-generated scale-free networks – in addition
to real networks – to validate our structural formulae. Finally, cyber-insurance
serves as a key motivation for our goal of understanding the risk portfolio of
networks in general.

Interdependent Security The prevalence of risk correlation in network sys-
tems can be extended to include a better understanding of the underlying inter-
dependent nature of networks. That is, the mere vulnerability of a large number
of systems to a particular attack is less significant if an attacker cannot eas-
ily execute a sufficiently broad attack and/or propagation is limited. Interde-
pendence has been considered in different ways in the academic literature [4].
Varian, for example, studied security compromises that result from the failure
of independently-owned systems to contribute to an overall prevention objective
(i.e., a public good) [5]. In this model, security compromises are often the result of
misaligned incentives. Grossklags et al. extend this work to allow for investments
in system recovery (i.e., self-insurance) and find that it can serve as a viable in-
vestment strategy to sidestep such coordination failures [6, 7, 8]. However, the
availability of system recovery will further undermine incentives for collective
security investments. Johnson et al. add the availability of cyber-insurance to
this modeling framework, and identify solution spaces in which these different
investment approaches may be used as bundled security strategies [9]. However,
due to the fact that those models capture primarily two security outcomes (i.e.,
everybody is compromised, or nobody is compromised), they can only serve as
approximate guidance for realistic insurance models.

A second group of economic models derives equilibrium strategies for the
partitioning of a network in order to contain a propagation. For example, the
models by Aspnes et al. as well as Moscibroda et al. would be applicable to the
study of loss distributions, however, several simplifying assumptions included in
those models would limit the generality of the results [10,11]. Those limitations
include the assumption that every infected node deterministically infects all
unprotected neighbors.
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A third class of propagation models is the class of epidemic models, which
describe how a virus spreads or extinguishes in a network. The results of Kephart
and White [12] are the closest to our analysis. They study one of the simplest of
the standard epidemic models, the susceptible-infected-susceptible (SIS) model,
using various classes of networks. For Erdős-Rényi random graphs, they ap-
proximate both the expected value and the variance of the number of infected
nodes using formulae. For the more realistic hierarchical network model, they
show that the expected number of infected nodes does not increase with the
size of the graph. This indicates that, even though variance is typically very
high in this case, catastrophic events are unlikely as the magnitude of losses
is low. Pastor-Satorras and Vespignani analyze real data from computer virus
infections in order to define a dynamical SIS model for epidemic spreading in
scale-free networks [13]. Egúıluz and Klemm study the spreading of viruses in
scale-free networks with large clustering coefficient and degree correlation, which
they model as highly clustered scale-free graphs [14]. Pastor-Satorras and Vespig-
nani study epidemic dynamics in finite-size scale-free networks, and show that,
even for relatively small networks, the epidemic threshold is much smaller than
that of homogeneous systems [15].

Finally, a popular approach to model interdependent risk is taken by Kun-
reuther and Heal, and forms the basis for our analysis [16, 17, 18]. The basic
premise of this work is to separately consider the impact of direct attacks and
propagated attacks. We explain the propagation details of this model in Section
3.1. The model has been generalized to consider distributions of attack proba-
bilities [19] and strategic attackers [20]. Similarly, Ogut et al. proposed a related
model that allows for continuous (rather than binary) security investments [21].
Our analysis draws from these extensions by implicitly considering a continuum
of risk parameters to study the distribution of outcomes.

Scale-Free Networks Many real-world networks are believed to be scale-free,
including social, financial, and biological networks, and the Internet at the AS
level [22]. A scale-free network’s degree distribution is a scale-free power law
distribution, which is generally attributed to robust self-organizing phenomena.
Recent interest in scale-free networks started with [23], in which the Barabási-
Albert (BA) model is introduced for generating random scale-free networks.
The BA model is based on two concepts: network growth and preferential node
attachment. We discuss this model in detail in Section 4. Li et al. introduce a new,
mathematically more precise, and structural definition of “scale-free” graphs [24].
Their approach promises to offer rigorous and quantitative alternatives to many
sensational qualitative claims found in the literature. The networks discussed in
our paper satisfy this definition as well.

One important questions addressed by our paper is whether small samples
can be used to predict systematic risks in scale-free networks. Stump et al. show
that the degree distributions of randomly sampled subnets of scale-free networks
are not scale-free [25]; thus, subnet data cannot be näıvely extrapolated to every
property of the entire network.



Estimating Systematic Risk in Real-World Networks 5

Cyber-Insurance A key objective of our work is to allow for a better as-
sessment of the insurability of a networked resource. A functioning market for
cyber-insurance and a good understanding of the insurability of networked re-
sources both matter, because they signal that stakeholders are able to manage
modern threats [26, 27]. However, the market for cyber-insurance is developing
at a frustratingly slow pace due to several key challenges [2].

First, a group of defenders might appear as a particularly appealing target
to an attacker because of a high correlation in their risk profiles. For example,
even though systems may be independently owned and administrated, they may
exhibit similar software configurations leading to so-called monoculture risks
[28, 29]. Böhme and Kataria study the impact of correlation which is readily
observable for an insurer and found that the resulting insurance premiums to
make the risks insurable would likely endanger a market for cyber-insurance [30].
Chen et al. study correlated risks by endogenizing node failure distribution and
node correlation distribution [31]. In their work, they allow for different risk
mitigation measures, but do not consider the impact on the insurability of risks,
different cases of interdependence, or whether an insurer would be able to collect
the necessary data to infer a distribution of failures (i.e., sampling).

Related work on insurance pricing models also informs our analysis of network
insurability. Basic pricing literature points to some simple premium calculation
principles [32, 33]. The simplest premium calculation principle is the net pre-
mium principle (or pure risk premium), which gives the risk premium as exactly
the expected loss. This principle is commonly used in the literature [32], because
actuaries assume that there is no risk if enough independent and identically-
distributed policies are sold. Obviously, the pure risk premium without any (di-
rect or indirect) loading is impractical, as it leads to unacceptably high prob-
abilities of ruin. The expected value premium principle, the variance principle,
and the standard deviation principle all build on the net premium principle by
adding a constant fraction of the relevant metric (expected value, variance, or
standard deviation, respectively) to the premium. The quantile premium for a
risk threshold ε is the premium required to ensure that the probability of ruin
is at most ε. More modern treatments of insurance often employ the capital
asset pricing model, in which additional time-relative considerations such as re-
investment of premiums in a risk-free market are considered [34]. As our network
model is not time-sensitive, we do not use capital asset pricing, but rather rely
primarily on the more intuitive quantile premium principle.

3 Network Risk Model and Methodology

In this section, we describe our model and methodology. We begin by intro-
ducing the network risk model grounding our analysis. Then, we introduce two
large real-world networks and two additional generated networks. We proceed
to discuss two methods for selecting subsets of nodes from these networks; and
finally, we address computational aspects of the node loss distributions.
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3.1 Network Risk Model

Our risk propagation model builds on the framework for interdependent secu-
rity games introduced by Kunreuther and Heal [16, 17]. This model gives loss
probabilities for each node in a network based on a simple risk transfer process.

Risk Propagation Consider a network of N nodes. Each node is subject to
some direct risk of compromise from outside the network. Node i is directly
compromised with probability pi. If node i becomes directly compromised, this
failure can propagate at most one hop within the network to i’s direct neigh-
bors. If node i is compromised, this failure propagates indirectly to node j with
probability qij . A node that is not directly compromised, but only indirectly
compromised, cannot propagate failure to its neighboring nodes.

Loss Outcomes A loss outcome is an event in which some nodes are com-
promised and others are not. This loss outcome can be specified by listing the
compromised nodes; and a complete distribution over loss outcomes is a prob-
ability distribution over the subsets of nodes. To make the analysis tractable,
we focus on the projection of this distribution onto the number of compromised
nodes.

To make things more formal, let N be the number of nodes, and suppose
that the model is in a fixed configuration with given probabilities pi and qij
for i, j = 1, . . . N . Let TL be the random variable which counts the number
of compromised nodes in an outcome of the model. Then, a loss distribution
(over the number of compromised nodes) is a set of N + 1 probabilities giving
Pr[TL = k] for k = 0, . . . , N .

3.2 Real-World Networks

Network of Autonomous Systems In the context of the Internet, an au-
tonomous system (AS) is a collection of IP routing prefixes having a clearly-
defined routing policy. By analyzing these routing policies, it is possible to con-
struct a network in which each autonomous system is a node, and edges of various
types correspond to traffic-sharing relationships between ASes.

One focus of our study is the network whose nodes consists of autonomous
systems, and whose edges consist of business relationships between them. The
graph is obtained from the Cooperative Association for Internet Data Analysis
(CAIDA) [35]. This network consists of 41 thousand nodes and 121 thousand
links, which results in an average degree of 5.9.

It can be useful to associate autonomous systems with Internet Service Providers
(ISPs), although the comparison is not perfect, as some autonomous systems are
controlled by more than one entity, and some ISPs control multiple autonomous
systems. Nevertheless, the AS network structure has been studied by many re-
searchers, largely because it serves as a good approximation of the connective
architecture of the Internet at the organizational level.
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Network of Facebook Friends Facebook is a social-networking platform that
was founded in 2004, and it is the largest of its kind today. A second focus of
our study is the network whose nodes consist of an anonymized collection of
1.2 million Facebook users, where the edges of the network represent friend
relationships between these users [36,37]. The sample was constructed in a way
to ensure that it is an approximately uniform sample of the entire network. There
are a total of 29.8 million edges between the 1.2 million users, which results in
an average degree of 50.

Random Scale-Free Networks To frame our network analysis in the greatest
possible generality, we also study randomly-generated scale-free networks whose
parameters are chosen to approximate the two real-world networks described
above. Prior work has established that many real-world networks have scale-free
properties, meaning roughly that their degree distributions satisfy a power law.
The two real-world networks under our consideration can be easily shown to
have this property. Our generated networks behave in some ways similar to the
real-world networks, although they differ in their construction and in a few key
measures. We use these generated networks as additional validation tools for test-
ing the feasibility of our risk prediction formulae. To generate random networks,
we use the Barabási-Albert (BA) model, which we describe in Appendix A.

3.3 Subsets of Nodes

We study the risk of node subsets in two contexts. First, we assume that, in
practice, we are able to measure the risk of a small number of nodes. For example,
we can use incident reports to this end, which originate from only these nodes.
Second, based on the measured risks of small subsets of nodes, we aim to reliably
predict the risk of larger subsets of nodes, including the whole network.4 We
consider two types of node subsets: random samples and geographical subsets.

We focus primarily on uniform random samples of nodes. These types of
samples can model voluntary incident reports originating from a few nodes, or
they can model the selected clients of an insurance provider. In both cases, we
assume that the underlying network structure does not affect the node selection.
Consequently, we choose a random sample of n nodes in a very straightforward
way: we draw n nodes without replacement from the set of all nodes, in such a
way that each node has the same probability of being drawn.

Unfortunately, random sampling does not model every scenario. For example,
companies that are located in the same country, or persons with some common
attribute, are more likely to choose the same insurer. In the autonomous systems
network, there is a country identifier for each node. We use these identifiers to
select country subsets, which consist of all the nodes from a single country. In

4 Note that we intentionally do not refer to these subsets of nodes as subnetworks.
The reason for this distinction is that the term subnetwork would suggest that the
links inside the subset inherently play a more important role than links connecting
to the outside, or that these subsets are isolated from the rest of the network.
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the Facebook network, there are no such attributes, as the dataset has been
thoroughly anonymized. Thus, we restrict our analysis to random samples in the
Facebook network.

3.4 Computing the Loss Distributions

We determine the probability that a given number of nodes is lost by counting
the number of losses in an outcome of the propagation model many times, and
continuing until the probability for each such number approaches a fixed limit
(for details, see Appendix A). While prior work has established that directly
computing the probability of total network loss for an arbitrary network is NP-
hard [3], the probabilities in our simulation converge efficiently for both the
real-world networks and their theoretical approximations. Correctness of these
probabilities then follows from the law of large numbers.

We also compute the loss distributions of subsets of nodes. In this case,
we simulate the propagation model for the entire network, but only count the
compromised nodes in the subset. Note that this differs from computing the loss
distribution of the subnetwork induced by the subset, which would incorrectly
assume that the given subset is isolated from the rest of the network.

4 Analysis and Results

In this section, we analyze each of the two real-world networks (denoted CAIDA
and Facebook, respectively) and the random scale-free networks described in
the previous section (denoted BA CAIDA and BA Facebook, respectively). We
simulate the loss distribution for each network using the Kunreuther-Heal model
with pi = 0.005 for each i, and qij = 0.1 for each i and j. In [3] it is shown that the
loss distributions retain similar structural properties when varying homogeneous
parameters, with the differences being quantitative rather than qualitative.

We provide a variety of graphs for numerical illustration to facilitate maxi-
mum understanding of risks, but we concentrate our attention in the discussion
on features most relevant to insurance. We focus on the right hand side of the
distribution which indicates the probability of realizing large catastrophic net-
work losses, and for the values of parameters in the charts we concentrate on
the safety loading parameter which shows how much additional capital must be
set aside by the insurer to cover a maximum number of compromised nodes up
to a certain tolerable amount of risk.

We use the binomial distribution as a baseline compared to the loss distri-
butions, for the purpose of measuring the risk of networks. The binomial dis-
tribution serves as a good baseline because this distribution has no correlation
between loss events, and consequently no non-diversifiable risk. Non-diversifiable
risks are caused by correlated events, where the probability of some nodes being
compromised depends on whether another set of nodes has been compromised.
The binomial distribution appears as the loss distribution of a network in which
there are no connections, because in such a system, loss events are independent.
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For a fair comparison, we compare each network’s or subset’s loss distribution to
the binomial distribution that has the same size and the same expected number
of compromised nodes.

4.1 Overall Network Loss Distributions
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Fig. 1. Loss distribution of the whole network (solid red) compared to the binomial
distribution that has the same expected number of compromised nodes (dotted green).

We begin with studying the loss distributions for the complete networks.
These distributions can be seen in Figure 1. We find that, for every network,
the loss distribution differs substantially from the binomial distribution with the
same mean. Recall that a binomial distribution would arise if the propagation
probabilities were all zero, so that risks to individual nodes were independent.

Table 1. Statistics of the Loss Distributions Compared to Binomial Distributions

CAIDA BA CAIDA Facebook BA Facebook
actual binom. actual binom. actual binom. actual binom.

Mean 319 319 322 322 34149 34149 34506 34506
Standard deviation 67.3 17.8 45.9 17.9 723.1 182.1 794.5 183.0
Quantile Q(0.999) 740 375 508 379 36414 34712 37487 35071
Safety loading for 0.999 421 56 186 57 2265 563 2981 565
Variance-to-mean ratio 14.23 0.993 6.53 0.992 15.31 0.971 18.29 0.971

Table 1 compares the networks’ loss distributions to the binomial distribu-
tions having the same expected values. For every network, we see a substantial
risk that a large number of nodes is compromised, compared to the binomial dis-
tributions. This indicates that the individual node compromise events are highly
non-independent, resulting in correlations that are not non-negligible even for
large networks. It is also interesting to note that the randomly-generated scale-
free network’s statistics are surprisingly close to the two real-world networks,
especially for the Facebook network.

To illustrate the effect of this additional risk, consider an insurance premium
for the Facebook network based on the näıve assumption of independent events.5

Suppose that the insurance provider would like to keep her probability of ruin
(i.e. the probability that the number of compromised nodes exceeds its expected

5 As we will later show, this assumption could be wrongly justified by the loss distri-
bution measured on small sample.
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value by more than her safety loading) below 0.1%. Thus, she wants to compute
the insurance premium based on the quantile Q(0.999), which means that her
safety loading should be 2265. However, if she uses the binomial distribution
instead, her safety loading is only 563. This has very severe consequences, as her
probability of ruin with this safety loading is two orders of magnitude higher
at 30.6%.

4.2 Loss Distributions of Subsets of Nodes

In the following, we study characteristic properties of our distributions based
on subsets of varying size. Recall that we are not computing loss distributions
on induced subnets, but are rather considering how risk propagation from the
entire network affects a subset of nodes.

Table 2. Measured Constants for the Networks

CAIDA BA CAIDA Facebook BA Facebook

Average risk constant C = 0.0077 0.0078 0.0287 0.0290
Dispersion constant A = 0.000322 0.000134 0.000012 0.000015
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Fig. 2. Expected number of compromised nodes as a function of the number of nodes
for random samples (red +) and countries (green x), and trendlines based on the
formulae (solid blue line).

Number of Compromised Nodes Versus Number of Nodes We begin
our analysis with the first moment of the loss distribution, the expected value of
the number of compromised nodes. For the binomial distribution with parameter
C, the expected number of compromised nodes is a linear function of the number
of nodes, with linear slope C. In Figure 2, we analyze the relationship between
the expected number of compromised nodes and the number of nodes in the
subset. We find that if the nodes are chosen either as a random sample, or on
a per country basis, then there is still a direct linear relationship similar to the
relationship for the binomial distribution with the same mean. In particular, the
ratio between the number of compromised nodes and the number of nodes is a
constant, denoted by C, whose value for each network can be found in Table 2.
We refer to C as the average risk constant. Formally,

µloss(n) = Cn . (1)
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For random samples, there is very little deviation from this constant in every
network. This shows that the average risk of random samples is an unbiased
estimator of the average risk of the entire network. Recall that an unbiased
estimator is an estimator whose expected value is equal to the parameter that
it estimates.

For countries, however, there is some variation in average risk. This variation
depends primarily on the average degree of the nodes in the country, and it is not
correlated to the number of nodes in the country. This can be explained by the
close relationship between a node’s degree and risk due to indirect compromise.
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Fig. 3. Variance in the number of compromised nodes as a function of the number
of nodes for random samples (red +), countries (green x), and trendlines for random
samples (solid blue line) and for countries (dotted blue line) based on the formulae .

Variance in Number of Compromised Nodes Versus Number of Nodes
The variance of the binomial distribution with probability C and size n is
σ2
binomial = C(1 − C)n. We analyze the relationship between the variance in

the number of compromised nodes and the number of nodes in the subset using
Figure 3. We find that for random samples, variance is a quadratic function of
the sample size. The function is given by

σ2
loss(n) = ACn2 + C(1− C)n , (2)

where C is the average risk constant defined above, and A is another constant,
which we refer to subsequently as the dispersion constant, whose value for each
network can be found in Table 2.

Notice that the right hand side of Equation (2) consists of two terms, and that
the second term is equal to the variance of a binomial distribution with the same
mean. This means that the variance of a random sample can be decomposed
into two parts: a quadratic term and the variance of a binomial distribution.
The second one is the inherent variance arising from having multiple nodes in
the sample. This is a baseline variance, which we would see if the nodes were
independent. Since, for risk-mitigation, this is the optimal case where all the risk
is diversifiable, we will refer to this as the diversifiable part of the variance. The
first part, on the other hand, is an extra quadratic term, which is a result of the
risk correlations caused by the network structure. Hence, we will refer to this as
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the non-diversifiable part of the variance. Formally,

σ2
loss(n) = ACn2︸ ︷︷ ︸

non-diversifiable risk

+ σ2
binomial(n)︸ ︷︷ ︸

diversifiable risk

. (3)

The relationship between variance in the number of compromised nodes and
the number of nodes in country samples does not follow the same trend. These
relationships are more noisy, and are better approximated by a power law of the
form

DnE , (4)

where
D ≈ 0.0022971091 and E ≈ 1.3504067782.

Variance-to-Mean Ratio The variance-to-mean ratio (VMR) (also called the
index of dispersion) is a normalized measure of the dispersion (i.e., variability
or spread) of a probability distribution. Normalization means that the measure
is independent of the expected value for many distributions (e.g., binomial or
negative binomial distributions), and even independent of any parameters for
some distributions (e.g., Poisson distribution). The variance-to-mean ratio of
the binomial distribution with probability parameter C is VMRbinomial = 1−C,
regardless of the size of the distribution.
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Fig. 4. Variance-to-mean ratio as a function of the number of nodes for random samples
(red +), countries (green x), and trendlines for random samples (solid blue line) and
for countries (dotted blue line) based on the formulae.

In Figure 4, we analyze the relationship between the variance-to-mean ra-
tio and the number of nodes in the subset. We find that for random samples,
the relationship is affine (but non-constant) with slope A and intercept 1 − C.
Formally, the variance-to-mean ratio for random samples of size n is given by

VMRloss(n) = An + 1− C (5)

= An︸︷︷︸
non-diversifiable risk

+ VMRbinomial︸ ︷︷ ︸
diversifiable risk

, (6)

where C and A are the average risk constant and the dispersion constant, re-
spectively.

For country samples, the relationship between VMR and the number of nodes
in the country is again noisy and the relationship is again best approximated by
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a power function. Formally, the variance-to-mean ratio for countries of n nodes
is approximated by

D

C
nE−1 , (7)

where C is the average risk constant, and D, E are the constants defined in
Section 4.2 above.

4.3 Quantifying Insurability

Safety Loading Let µ be the expected number of compromised nodes, and
let Q(0.999) denote the number of compromised nodes such that with 99.9%
probability, fewer or equal losses occur. Recall that the safety loading Q(0.999)−
µ is the minimum amount of excess capital required to ensure that the probability
of ruin is at most 0.001. Thus, safety loading is a good measure of how expensive
a subset of nodes is to insure.
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Fig. 5. Safety loading (for 0.999) as a function of size for random samples (red +) and
for binomial distributions having the same average risk (blue x).

Figure 5 shows the value of safety loading as a function of the number of
nodes in a subset of the network. Note that the safety loading increases, since
the larger the subset, the more expensive it is to insure.

2.5

5

10

100 1000 10000 100 1000 10000

2.5

5

10

3000 30000 300000 3000 30000 300000

CAIDA BA CAIDA Facebook BA Facebook

Fig. 6. Ratio of safety loading (for 0.999) to standard deviation for random samples
(red +) and countries (green x).

Safety Loading Versus Standard Deviation In Figure 6, we analyze the
relationship between the number of nodes in the subset and the ratio of safety
loading to standard deviation. The results suggest that we can get a reasonable
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approximation of safety loading by considering only the standard deviation and
multiplying it by a constant.

In the CAIDA network, the multiplicative constant is between 4 and 6.5 for
all random samples and it is between 5 and 10 for countries. The average ratio
is about 4.9 for random samples and about 6.5 for countries. In the Facebook
network, the ratio is less noisy, the constant is between 3.1 and 3.3 for all samples
sizes.

Since standard deviation is simply the square root of variance, its formula
can be obtained from Equation (2) and is given by

σloss(n) =
√
ACn2 + C(1− C)n , (8)

and hence we can estimate safety loading by multiplying this value by an experimentally-
determined constant K (that also depends on the maximum tolerable probability
of ruin).

The safety loading can thus be estimated by the formula:

[Q− µ]loss(n) = K
√
ACn2 + C(1− C)n . (9)

0.1

1

10

100 1000 10000 100 1000 10000
0.01

0.1

1

3000 30000 300000 3000 30000 300000

CAIDA BA CAIDA Facebook BA Facebook

Fig. 7. Relative safety loading (for 0.999) as a function of size for random samples (red
+) and for binomial distributions having the same average risk (blue x).

Relative Safety Loading Relative safety loading is defined as the ratio of
safety loading to the expected number of compromised nodes. Relative safety
loading is a normalized measure of how expensive the subset is to insure. Figure 7
compares the relative safety loading for 0.999 of random samples and of binomial
distributions.

We can see that the relative safety loading for binomial distributions is
steadily decreasing. For random samples, on the other hand, relative safety load-
ing starts to decrease at the same rate as for the binomial distribution, but the
curve flattens out after the sample size reaches about 2.5% of the complete
network. The reason is that for smaller sample sizes, the dispersion of the loss
distributions is dominated and determined by the diversifiable terms; however,
as the sample size increases, the non-diversifiable terms – which have higher
exponents – become relatively larger and cause substantial “extra” risk.
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5 Discussion

The goal of our analysis is to show how to estimate risk in large networks, using
information from small subsets of the network. We focused on cyber-insurance
as the primary application, but our results can be applied to risk assessment
and mitigation in general. While we analyzed only two real-world networks, the
ubiquity of scale-free properties in many networks suggests our results yield
additional applications.

We confirm the results of [3], which showed that the systematic risk estimated
from even moderately-sized samples in scale-free networks is substantially lower
than that of the complete network; so that näıve extrapolation underestimates
the network’s risk. In this paper, we study the problem in more detail for specific
networks and find structural regularities that can aid in predicting the risk of a
complete network (or larger subsets of it) from information that can be obtained
from smaller samples.

Specifically, applying the formula for safety loading requires approximating
the constants C, A, and K in Equation (9). The average risk constant C can
be approximated from a small number of random samples, because the average
risk in a random sample is an unbiased estimator of average risk in the whole
network. The dispersion constant A can be determined experimentally from a
small number of random samples using any two different sample sizes, since
it is the slope of the trendline for the variance-to-mean ratio as a function of
sample size. Finally, the constant K can also be estimated from a small number
of random samples because the ratio of safety loading to standard deviation is
roughly constant for all sample sizes. In summary, to estimate safety loading for
any desired number of nodes, first estimate C, A, and K using small random
samples, and then substitute these values into Equation (9).

From a cyber-insurance provider’s point of view, our findings can be sum-
marized as follows. First, extreme care has to be taken when estimating the
systematic risk of networks. Learning a complete network’s topology is in prac-
tice impossible as this would require collecting data not only from the insured
nodes, but also from their neighbors, with whom the insurer has no business
relationship. Thus, one has to resort to predicting risk from small samples of
historical data, such as incident reports. We show that this is very challenging,
but nevertheless possible. Second, the insurer’s portfolio should be chosen as
close to a random sample as possible. For example, in the AS network example,
this means that the insurer should aim for a geographically diverse portfolio.

6 Conclusions and Future Work

Our goal in this paper was to identify general rules practitioners can use to better
estimate risks in networks. To achieve this goal, we used the connective struc-
ture of both real-world and randomly-generated scale-free networks to simulate
attacks in which risk propagates subsequently through connections. The real-
world networks – one involving social connections between users of Facebook,
and the other involving business connections between the Internet’s autonomous
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systems – had a known structure, but could otherwise be considered somewhat
general representation of real-world networks. We identified structural regular-
ities in these distributions, that allowed us to give predicting formulae for a
variety of network risk measures; and we showed how to apply these formulae
to estimate several risk measures for a large network even when one has only
limited information about the network.

In this paper, our primary analysis of networks was limited to random sam-
ples. In future work, we intend to expand this study to other kinds of samples, for
example, breadth-first search or other forms of grouping similar to our country
samples. We would also like to expand our analysis to consider additional types
of real-world networks whose structure differs from the scale-free variety used in
our study. Finally, we intend to investigate the computability of additional risk
metrics for networks.
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A Methodology

B-A Model We generate our scale-free networks using the Barabási-Albert
(BA) model, which is based on two concepts: network growth and preferential
attachment [23]. Network growth means that the number of nodes increases
over time, while preferential attachment means that when a node is added to
the network, it is more likely to connect to nodes that already have a lot of
connections. More formally, given parameters N , m0, and m, the BA model
generates random scale-free networks as follows. First, an initial clique is created
by connecting the first m0 nodes to each other. Then, the remaining N − m0

nodes are added to the network one by one. Each new node is connected to m
existing nodes, each of which is chosen with a probability proportional to its
degree.

Empirical Loss Distribution In a nutshell, an empirical loss distribution F̂TL

can be efficiently computed as follows:

– Generate n independent loss outcomes TL1, . . . , TLn, each using the follow-
ing simulation:
• For each node i, decide randomly whether node i is directly compromised

(or not) according to pi.
• For each directly compromised node i, iterate over all of its non-compromised

neighbors. For each non-compromised neighbor j, decide randomly whether
there is a propagation from node i to node j according to qij .

• The loss outcome is the number of compromised nodes.
– Compute the empirical loss distribution as
F̂TL(k) = the number of outcomes in which at most k nodes are compromised

n .

By the strong law of large numbers, we have that the estimator F̂TL(k) converges
to the true distribution FTL(k) for every k almost surely as n→∞.
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