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Abstract
Hypervisors have been proposed as a security tool

to defend against malware that subverts the OS kernel.
However, hypervisors must deal with the semantic gap
between the low-level information available to them and
the high-level OS abstractions they need for analysis.
To bridge this gap, systems have proposed making as-
sumptions derived from the kernel source code or sym-
bol information. Unfortunately, this information is non-
binding – rootkits are not bound to uphold these assump-
tions and can escape detection by breaking them.

In this paper, we introduce Patagonix, a hypervisor-
based system that detects and identifies covertly execut-
ing binaries without making assumptions about the OS
kernel. Instead, Patagonix depends only on the proces-
sor hardware to detect code execution and on the binary
format specifications of executables to identify code and
verify code modifications. With this, Patagonix can pro-
vide trustworthy information about the binaries running
on a system, as well as detect when a rootkit is hiding or
tampering with executing code.

We have implemented a Patagonix prototype on the
Xen 3.0.3 hypervisor. Because Patagonix makes no as-
sumptions about the OS kernel, it can identify code from
application and kernel binaries on both Linux and Win-
dows XP. Patagonix introduces less than 3% overhead on
most applications.

1 Introduction

Malicious software, otherwise known as malware, con-
tinues to be a serious problem in today’s computing en-
vironment. Malware is becoming increasingly difficult to
detect and remove because it commonly comes bundled
with a rootkit [12], which abuses administrative privi-
leges to hide the execution of malware binaries and their
resource usage from the system administrator. Rootkits
accomplish this by attacking the administrator’s ability to

obtain information about a system. For example, rootkits
will subvert execution-reporting utilities, such as ps and
lsmod on Linux systems and the task manager and
Process Explorer [27] on Windows, which admin-
istrators rely on to query the operating system (OS) about
running binaries and kernel modules. Rootkits may also
subvert the OS kernel itself so that any queries to the ker-
nel will receive a response that has been appropriately
distorted by the rootkit. In this way, rootkits have been
able to elude even the most experienced system admin-
istrators and sophisticated malware detection tools [11].
Even if the rootkit’s presence is discovered, it is difficult
to determine whether an attempted removal is success-
ful or not, as the rootkit’s ability to hide executing code
enables it to trick the administrator into believing that it
has been removed. As a result, best practice states that
when a rootkit is even suspected to be present, the ad-
ministrator must re-install the entire system from scratch
to be sure that the rootkit is removed – a costly and un-
desirable solution. Trustworthy execution-reporting util-
ities, which would enable a system to detect hidden mal-
ware processes and determine if an attempted removal
was successful or not, would save administrators a great
deal of effort and reduce system downtime.

In this paper, we present Patagonix, a system that de-
nies rootkits the ability to hide executing binaries from
the system administrator. Patagonix does this by address-
ing two shortcomings of current execution-reporting util-
ities. First, these utilities all depend on the integrity of
the kernel, both as a source of information and for protec-
tion against tampering. However, since rootkits can sub-
vert the kernel, the trust that these utilities and the admin-
istrator invest in the kernel is misplaced. Second, these
utilities do not verify the integrity of the binaries they re-
port as executing. This shortcoming allows a rootkit to
covertly execute code by injecting malicious code into
a running binary or by tampering with the binary image
on disk. Utilities that monitor binaries on disk, such as
Tripwire [17], may detect tampering of on disk binaries,
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but will miss tampering of binaries once they are loaded
in memory.

Unlike existing execution-reporting utilities, Patago-
nix does not depend on the OS. Instead, Patagonix uses
a hypervisor, allowing it to retain its integrity even if the
rootkit has compromised the OS kernel. The challenge to
implementing an execution-reporting utility in a hypervi-
sor is the semantic gap [6] between the information avail-
able to the hypervisor and the actual state of the system.
Other work has bridged this gap by using and trusting in-
formation about the OS kernel, such as the kernel source
code or kernel symbol information [3, 10, 13, 23, 25].
However, such information cannot be trusted because it
is non-binding – the rootkit is not bound to maintain the
semantics implied by source and symbol information, al-
lowing it to escape detection. For example, if the hyper-
visor uses non-binding information about the format or
location of kernel data structures, the rootkit may evade
detection by adding fields to the data structures or mov-
ing the data structures to a memory location that is not
being monitored. Similarly, assumptions about the code
structure of the kernel can be exploited by a rootkit that
modifies OS kernel execution to avoid code paths moni-
tored by the hypervisor. Patagonix does not rely on any
non-binding information about the OS kernel and relies
only on the behavior of the hardware, which cannot be
altered by malware.

Patagonix also verifies the integrity of all executing
binaries before giving their identity to the administrator.
Rather than verifying the contents of binaries on disk, Pa-
tagonix inspects the code as it executes in memory. As a
result, Patagonix cannot be fooled by rootkits that avoid
tampering with files on disk by injecting malicious code
into binaries as they run. On the other hand, systems
make modifications to code at run-time, causing it to dif-
fer from its image on disk when it is executed. Patagonix
can differentiate legitimate modifications from malicious
ones. The executing code is identified using a trusted ex-
ternal database that contains cryptographic hashes of bi-
naries, such as the National Software Reference Library
(NSRL) [20].

In this paper we make three main contributions:

• Patagonix Prototype. We have implemented a Pa-
tagonix prototype that leverages the capabilities of
a hypervisor and the non-executable (NX) bit of the
Memory Management Unit (MMU) to detect and
identify all executing binaries regardless of the state
of the OS kernel. Our prototype, built on the Xen
3.0.3 hypervisor [4], makes no assumptions about
the OS kernel. As a result, with the exception of
the binary format information, which differs from
OS to OS, it can be used to neutralize rootkits on
Windows XP, Linux 2.4 and Linux 2.6 OSs without
modification.

• Identity Oracles. The semantic gap between the
hypervisor and the OS requires special support to
differentiate legitimate modifications made to run-
ning code by the OS from malicious ones made
by a rootkit. To differentiate legitimate modifica-
tions from malicious tampering, we introduce the
concept of an identity oracle, which when given a
page of code in memory and a database of binaries,
will either identify the binary from which the code
page originated, or indicate that the code page is not
from any of the binaries in the database. We have
designed an oracle construction framework and im-
plemented identity oracles for ELF binaries, PE bi-
naries, the Linux kernel, the Windows XP kernel,
and Windows driver interrupt handlers.

• System Usage and Evaluation. We present two
complementary usage modes for Patagonix. In re-
porting mode, Patagonix serves as a trusted replace-
ment for the standard execution-reporting utilities
of an OS, allowing the administrator to see all exe-
cuting processes even if hidden by a rootkit. This
augments the administrator’s ability to audit the
state of the system during regular inspections and
after an attempted rootkit removal. In lie detection
mode, Patagonix compares the executing binaries
reported by the OS with the executing binaries it
identifies and reports any discrepancies to the ad-
ministrator [10]. We tested Patagonix on 9 rootkits
and found that it was able to identify code hidden by
every one of them. In addition, our Patagonix proto-
type introduces less than 3% performance overhead
on most applications.

We do not claim that Patagonix can detect all rootkits
since Patagonix focuses on detecting covertly executing
binaries – a rootkit that does not hide executing binaries,
but only hides files and network connections, would not
be detected. Fortunately, techniques to detect such rootk-
its, which do not depend on non-binding information, al-
ready exist. For example, using direct access to a raw
disk image can detect hidden files [13] and a network-
based intrusion detection system can detect hidden net-
work connections. However, to the best of our knowl-
edge, all techniques to detect hidden processes depend
on non-binding information, making Patagonix useful in
those circumstances.

In Section 2, we describe the problem with trusting
non-binding information, the assumptions that Patago-
nix relies on, and the guarantees and limitations it has.
Section 3 gives an overview of the Patagonix architec-
ture, while Sections 4 and 5 detail our identity oracles
and our prototype implementation. In Section 6 we de-
scribe the two usage modes of Patagonix: reporting and
lie detection. Section 7 evaluates Patagonix’s effective-
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ness at detecting covert processes and performance over-
head. Section 8 discusses related work and we conclude
in Section 9.

2 Security Model

2.1 Problem Description
Systems that monitor OS-level events from a hypervi-
sor must wrestle with the semantic gap between the state
of the OS and the information available to the hypervi-
sor. Previous systems have bridged this gap using non-
binding information derived from source code and sym-
bol information, but acknowledge that in doing so they
make themselves vulnerable to a rootkit that is aware
of their monitoring technique [3, 10, 13, 23, 25]. For in-
stance, if the hypervisor monitors the system call table
by using location information derived from non-binding
sources, the rootkit can evade detection by altering the
kernel’s system call dispatch handler to use a table placed
at a different location, and filled with pointers to mali-
cious system call handlers. The hypervisor-based mon-
itor would continue to monitor the original, unchanged
system call table, which is no longer being used by the
kernel. Unfortunately, preventing this attack by sim-
ply disallowing modification of kernel code will cause
false positives because kernels employ self-modifying
code. Manipulating the dispatch handler is only one
example; similar assumptions based on non-binding in-
formation about data types or function entry-points are
equally prone to subversion. More sophisticated tech-
niques take a systematic approach to analyzing the Linux
kernel memory state for tampering by malware, but they
require ad hoc rules written with expert knowledge [24]
or source code annotations that provide only partial pro-
tection [25]. Further, all the aforementioned approaches
use a sampling approach, creating a window of vulnera-
bility that may be exploited by malware to remain unde-
tected.

Patagonix securely addresses the semantic gap prob-
lem by avoiding reliance on non-binding information.
Rather it relies only on information from the proces-
sor hardware about pages containing executing code. In
addition, Patagonix detects and validates run-time code
modification and ensures that they conform to the modi-
fications permitted in the binary format specification. Fi-
nally, by utilizing the processor MMU hardware, Patago-
nix provides continuous monitoring and detection with
very little overhead.

2.2 Assumptions and Guarantees
To provide security guarantees, Patagonix relies on two
properties of the hypervisor. First, Patagonix assumes

that the hypervisor will protect both itself and Patagonix
from tampering by a rootkit that has subverted the OS
kernel. This assumption is consistent with the guaran-
tees that hypervisors aim to provide. Second, Patagonix
relies on the hypervisor to provide a secure communi-
cation channel between it and the user. Patagonix uses
this channel to inform the user of what binaries it detects
are running. Because the hypervisor is the only principal
with direct access to the hardware, this channel can be
provided in a straightforward way by providing separate
consoles for the OS and Patagonix.

Patagonix identifies executing binaries by the crypto-
graphic hash of the executing code. To convey this infor-
mation to the administrator in a useful way, these hashes
must be mapped to the name of a file or application. Ex-
tracting this mapping from the disk image is not trust-
worthy since a rootkit can tamper with the disk. Instead,
Patagonix relies on a trusted database to provide such a
mapping. This database is assumed to contain the names
of all legitimate software binaries that the administrator
has installed on the machine and can also optionally con-
tain mappings of known malicious binaries. Any exe-
cuting binary that does not match one in the database is
identified as “not present” and should be scrutinized by
the administrator. Publicly available databases currently
exist – for example, our prototype uses the NSRL [20].
We note that the labeling of binaries as legitimate or ma-
licious is made available purely for the convenience of
the administrator and is not used by Patagonix. His-
tory has shown that such labeling may be flawed – there
have been many documented cases of trojaned, vulner-
able, or patently malicious binaries being distributed by
reputable entities [11]. Patagonix correctly handles situ-
ations where malware is executing on the OS because it
was incorrectly labeled as legitimate in the database. For
example, Patagonix can be used to confirm that the in-
correctly labeled application is no longer executing after
an attempted removal.

Even with malware in control of the OS, Patagonix
guarantees that it is able to identify and report all execut-
ing binaries. Rootkits may try to hide malware binaries
from the administrator by either appropriating the name
of a legitimate application, or by trying to make it invis-
ible. Patagonix prevents the former by using mappings
from the trusted database. This also defeats any attempts
to inject malicious code into legitimate binaries on disk
or in memory since this will alter the contents of the code
when it executes. If the rootkit tries to hide the execution
of a binary by subverting the OS kernel or execution-
reporting utilities, Patagonix will still identify and report
the executing binary to the administrator since Patagonix
monitors the processor hardware for executing code, not
the OS kernel. With these guarantees, Patagonix can re-
port the identities of all executing binaries to the user in
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reporting mode. Correspondingly, in lie detection mode,
it can notify the administrator of any discrepancies be-
tween the code it detects and that reported by the OS.

2.3 Limitations
The goal of Patagonix is to provide a trustworthy alter-
native to traditional OS execution-reporting utilities, thus
denying rootkits the ability to hide executing binaries
from the administrator. However, detecting and prevent-
ing the exploitation of vulnerabilities is outside the scope
of Patagonix. For example, Patagonix does not detect at-
tacks that do not inject new code, but instead alter the
control flow of an application, such as in a return-to-libc
attack [32]. More generally, neither Patagonix nor tradi-
tional execution-reporting utilities prevent legitimate ap-
plications from taking malicious actions as a result of
malicious inputs. For example, the attacker can cause a
legitimate interpreter or a just-in-time (JIT) compiler to
perform malicious actions by using it to run a malicious
script. Despite this, Patagonix provides strong and use-
ful guarantees. While Patagonix cannot tell if a script is
malicious or not, it guarantees that the administrator will
be aware of all executing interpreters and JITs.

Identifying and verifying the integrity of interpreters is
the same as other binaries because all the machine level
instructions that can be executed by the interpreter are
known a priori. However, this is not the case for JITs be-
cause they dynamically generate and execute code whose
content can be heavily dependent on the workload and
run-time state. Thus, once Patagonix identifies a pro-
gram as a JIT, it will ignore pages it observes executing
in the JIT address space that are not present in the trusted
database (JITs must always execute code from their bi-
nary before any dynamically generated code, so Patago-
nix is always able to identify the process first). While a
rootkit may exploit this to inject arbitrary code into the
JIT and escape any sandboxing enforced by the JIT, Pa-
tagonix’s guarantees still hold because the rootkit will
not be able to hide the execution of the JIT, nor can the
rootkit cause Patagonix to misidentify the JIT as another
application.

Finally, as mentioned earlier, Patagonix used in lie de-
tection mode is not a generic rootkit detector: it focuses
on rootkits that hide executing binaries.

3 System Architecture

3.1 Overview
The architecture of Patagonix is illustrated in Figure 1.
The majority of Patagonix is implemented in the Pata-
gonix VM, while a small amount of functionality that
requires kernel mode privileges is implemented in the

hypervisor. The Monitored VM contains the Monitored
OS for which the administrator wants trustworthy binary
execution information and the hypervisor protects Pata-
gonix from tampering by the monitored VM. While im-
plementing Patagonix entirely within the hypervisor may
reduce performance overhead, splitting the functionality
of Patagonix into hypervisor and VM components has
the benefits of increased modularity, ease of portability
to a different hypervisor, and a reduction on the size of
the code being added to the security critical hypervisor.
As we shall see in Section 7, the boundary crossings be-
tween the hypervisor and VM components of Patagonix
have a minimal impact on overall performance.

The Patagonix VM contains three components. First,
several identity oracles, one for each type of binary in
the monitored VM, enable Patagonix to identify pages of
code that are executed in the monitored VM. The iden-
tity oracles use cryptographic hashes of binaries from the
trusted database to identify binaries executing in the Pa-
tagonix VM. Second, a management console implements
the interface between the user and Patagonix. Finally,
the control logic coordinates events between the manage-
ment console, the oracles and the hypervisor component
of Patagonix.

Only the identity oracles are OS-specific as one must
be written for every binary format used by the OS in the
monitored VM. All other components, which we collec-
tively refer to as the Patagonix Framework, are OS ag-
nostic.

3.2 Patagonix Framework

The Patagonix framework has three main responsibili-
ties. First, the framework must detect when code is be-
ing executed in the monitored VM. Second, when code
execution is detected, it invokes the identity oracles to
identify the code and maintain a list of executing code.
The identity oracles will either match the executing code
to an entry in the trusted database, or will indicate that
the identity of the code is not present in the database. Fi-
nally, the framework is responsible for conveying these
results to the user in a way that is free of tampering by
malware in the monitored VM.

Detecting code execution is performed by the Pata-
gonix hypervisor component using the non-executable
(NX) page table bit, which is available on all recent
AMD and Intel x86 processors. When set on a virtual
page, this bit causes the processor to trap into the hyper-
visor component whenever code is executed on that page.
The hypervisor component then informs the control logic
in the Patagonix VM by sending it a virtual interrupt.

Frequent traps into the hypervisor will hurt perfor-
mance so Patagonix uses the processor to only inform it
when either code is executed for the first time, or code it
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Figure 1: The Patagonix architecture.

has already identified changes and is executed. To iden-
tify code when it executes for the first time, the hypervi-
sor component initially sets the NX-bit on all pages in the
monitored VM so that it will receive a trap from the pro-
cessor when a code page is executed. When it receives
such a trap, the hypervisor component invokes the Pata-
gonix VM to identify the code and then clears the NX-
bit on the page, making it executable. At the same time,
to detect if the identified code is subsequently modified,
the hypervisor component makes the page read-only by
clearing the writable bit in the page table. As long as the
page remains unchanged, subsequent executions of code
on that page do not cause a trap. If the identified code
is modified, the processor will trap into the hypervisor,
at which time the hypervisor component will make the
page writable but non-executable again. If the modified
code is executed, the hypervisor component will again
receive a trap, at which point it will use the Patagonix
VM to re-identify the code. To eliminate the possibility
of a race where the rootkit alters the code page after it
is identified, but before it is made executable, the mon-
itored VM is paused while the Patagonix VM identifies
the executing code. Setting executable or writable priv-
ileges on entire pages at a time is fairly straightforward.
However, pages that contain mutable data and code re-
quire the ability to prevent writes to the code portions of
the page and execution for the data portions of the page.
While this can be implemented with additional hardware,
we have been able to emulate such support in software.
We defer the details of the solution to Section 5.2.

To identify code in memory, the identity oracles re-
quire the contents of the code page being executed, the

virtual address at which the page is located, and the pro-
cess the code comes from. The control logic retrieves
this information via new hypercalls, which are hypervi-
sor analogs of OS system calls we have added to Xen.
The control logic then passes this information to each of
the identity oracles, which either return the identity of the
binary from which the code originated, or indicate that
the identity of the originating binary is not in the trusted
database. We note that Patagonix does not use OS pro-
cess IDs to identify processes as these are controlled by
the OS and can be subverted by a rootkit. Instead, Pa-
tagonix identifies a process by its virtual address space,
which is an equivalent hardware proxy since by defini-
tion there is a one-to-one relationship between OS pro-
cesses and address spaces. A process’ address space is
denoted by the base address of its page table hierarchy,
which is maintained in a dedicated register on x86 pro-
cessors.

Because the hardware only reports when code is exe-
cuting, rather than when it is not going to be executed any
more, the control logic records the most recent time it ob-
served each binary execution and periodically instructs
the hypervisor to perform a refresh, i.e., set all pages as
non-executable. Code that is no longer executing will
not trigger any more traps. Patagonix does not infer pro-
cess termination by observing when a page table does not
contain any valid mappings like Antfarm [14] because
malware that controls the OS can toggle the page table
bits between valid and invalid without actually removing
the process from memory, thus circumventing this pro-
cess termination heuristic.

The control logic uses the management console to se-
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curely report the list of observed executing binaries and
times they were last observed executing. Because the hy-
pervisor has control over the hardware, it is able to pro-
vide the management console in the Patagonix VM with
an interface separate from that of the monitored VM, thus
ensuring that the monitored VM cannot tamper with the
output of the Patagonix VM.

3.3 Identity Oracles

Executable binaries are mapped from disk into memory
by a binary loader, whose behavior is governed by the bi-
nary format that it loads. The task of the identity oracles
is to use the information provided to them to reverse the
transformations that the loader applies to binaries, and
identify which binary in the trusted database (if any) the
page of code being executed originates from.

Aside from the information provided to the oracles by
the hypervisor component, the oracles also require infor-
mation about the binaries in the database they are try-
ing to match against. For example, information such as
hashes of each individual code page in the file and in-
formation about relocations are required depending on
the particular format of the binary. While current binary
databases generally only contain hashes of binary files,
additional information can be extracted from files on
disk after they have been authenticated using the trusted
database. Each oracle initially collects such information
by searching the disk of the monitored VM for all exe-
cutable binaries. The authenticity of an executable file is
verified when its hash is found in the database, and the
oracle can then proceed to extract additional information
from the file. Patagonix needs to rescan the disk each
time binaries are added, or alternatively, a program in the
OS can be used to gather information about new binaries
as they are introduced into the system. If an executable
file is hidden from Patagonix by a rootkit, Patagonix will
not have the necessary information to identify executing
code from this binary and thus will not be able to match
code originating from these binaries against entries in the
database. As a result, such code will be identified as “not
present”, thereby indicating to the administrator that a
rootkit is likely on the system. In either case, access
to the trusted database itself must be free of tampering
by the rootkit. We implement our prototype database by
combining hashes from the NSRL database, hashes from
signed RPM packages and hashes computed from pris-
tine binaries directly into the Patagonix VM image. Had
the database been maintained remotely, it would need to
be accessed over a secure, authenticated channel such as
one offered by SSL.

Once the information about the binaries is acquired,
the main challenge for the oracles is to reverse the trans-
formations done by the loader without trusting informa-

tion from the OS. Formally, each binary loader can be
modeled as a function L(B,S) = (M,A), which maps
a particular binary B, and the state of the OS at the
binary load-time S, to a set of memory pages M and
a set of addresses A. M denotes the set of possible
executable pages that the loader may transform the bi-
nary into and A denotes the possible virtual addresses
at which the loader may place the transformed binary.
The oracle for a particular binary format is a function
OL(M,A,P ) = B, which given a page M detected as
executing by the hypervisor, the virtual address of the
executing code A, and the process it was executing in
P , produces a set of binaries B, from which the page
could have originated. Since M and A are produced
by the loader, they are elements of sets M and A re-
spectively. One cannot implement OL by only relying
on S, since a rootkit can subvert S. This inability to
safely infer S represents the semantic gap that the iden-
tity oracles bridge. Since we do not know S, OL’s task
can be generalized to searching the set MA′ for the ob-
served code page and address (M,A), where MA′ con-
tains all code page/address combinations that the loader
could have generated for all binaries and all legitimate
OS states.

MA′ can be very large, making the performance cost
of a naı̈ve search impractical. For example, in Windows,
a code page can be mapped at 220 possible locations (for
a 32-bit address space when using 4KB pages) and its
contents will be different for each of those possible loca-
tions. If applied to code pages in all binaries in an aver-
age Windows installation, this would result in an MA′

several terabytes in size, which would be overly expen-
sive to search. To reduce these costs, we exploit two
characteristics that every binary format we have exam-
ined exhibits. The first is that these formats specify that
code sections should be mapped to contiguous regions
of memory. As a result, once the binary that occupies
a memory region in a process is known, the oracle only
needs to check that other code executing in the same re-
gion is the appropriate page in the same binary, elim-
inating the need to search MA′ in these instances (in
this case, binary can refer to a program binary or a dy-
namically linked library). Knowing the address where
a binary is mapped also enables the oracle to reverse
run-time modifications and derive the original code page,
eliminating the need to store all versions of the page. To
establish what binary occupies a region, the oracle ex-
ploits the second characteristic: binary executables have
only a few entry-points (usually only one), which are
executed before any other code in the binary. As a re-
sult, if code executes in a memory region where the or-
acle has not identified a binary before, the oracle only
has to check for code at pages containing entry-points
in MA′. This reduces the search space, and also adds
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Figure 2: Identity Oracle framework. The functions and
databases that are loader specific have been underlined.

a desirable security check since the oracle will identify
code as “not present” if the malware tries to jump into
a binary at any point other than a legitimate entry-point.
We use these assumptions about binaries as hints to im-
prove the performance of Patagonix. However, Patago-
nix does not trust these hints, so its security guarantees
are not affected – tampering with the binaries that vio-
lates these assumptions will result in the tampered binary
being identified as “not present”.

Figure 2 illustrates our oracle construction framework.
Four components in the framework are binary loader spe-
cific. The first is an entry-point database, which contains
information on the entry-points of known binaries. This
database is searched using an entry-point search func-
tion. The other two components are the code database,
which contains information on the rest of the code sorted
by binary, and the code check function which checks
code against the code database. An oracle invocation
begins with the control logic forwarding the page con-
tents, faulting virtual address and process to the oracle.
The oracle first checks whether the virtual address and
process of the code are from a region where the binary
is known. If not, then the binary has just started exe-
cuting because no code has been observed executing at
this location before. The oracle searches the entry-point
database for a match to identify the binary. If a match is
found, it records the binary’s name and memory range it
should occupy and returns the name of the binary. Oth-
erwise, the oracle identifies the code as “not present” in
the database.

If the address is from a memory region whose binary
has been previously identified, then the oracle checks
that the executing page is from the associated binary. If
it is, the oracle returns the name of the binary. If it is not,
then the binary no longer occupies that memory range
in that process. The memory region record is removed
and the oracle searches for the page in the entry-point
database.

We have observed cases of related binaries containing
identical code pages. If there have not been enough pages
executed to uniquely identify the binary, the identity ora-
cles return a list of candidate binaries until a unique page
of code is executed. Should a page contain a mix of data
and code, the oracles also return the sub-page range of
the code.

4 Oracle Implementation

In this section, we describe the oracles we have con-
structed for various binary formats and their loaders. We
find that while binary formats may differ, the operations
performed by the loaders of these formats have similari-
ties, allowing common techniques to be used across the
oracles for different formats. We classify our oracles into
two categories based on the type of binaries they iden-
tify. The first category consists of oracles for application
code in Linux and Windows. We discuss support for the
two main methods for dynamic code loading: position
independent code and run-time code relocation, both of
which are represented in the ELF and PE formats used
by Linux and Windows respectively. The other category
consists of kernel code in Linux and Windows. This code
poses some extra challenges because both kernels con-
tain self-modifying code. However, our oracles are able
to verify that they are applied correctly. Finally, we fin-
ish this section with a discussion on the generality of our
identity oracles.

4.1 Application Binary Oracles

ELF Oracle. The Executable and Linkable Format
(ELF) [33] is used by Linux, as well as other OSs such as
Solaris, IRIX and OpenBSD. An ELF file is divided into
segments and contains a program header table that speci-
fies the address at which each segment should be mapped
into memory. ELF segments in the binary are identical to
the segments that will be loaded in memory and no run-
time modifications are required from the loader. Code
in executable segments can either be relocatable, mean-
ing it can be loaded at any address in memory, or non-
relocatable, meaning that it must be loaded at a particular
address. All references to absolute addresses in relocat-
able code go through indirection tables, which are filled
in by the run-time linker. ELF shared libraries are typi-
cally relocatable, while executable binaries are typically
non-relocatable.

Since ELF shared libraries use position independent
code, both ELF libraries and ELF applications are map-
ped from disk into memory without any modifications,
making this our simplest oracle. To populate the entry-
point database for the ELF oracle, pages containing
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entry-points are placed in the database – all shared ob-
jects have an init subroutine that is run when the
shared object is loaded and executables always begin
execution in start. To save space, the ELF oracle
does not store the entire page contents in the database,
but instead stores a cryptographic hash (SHA-256) of the
page instead. The hashes are stored in a sorted list and
the entry-point search function computes the hash of the
page where code execution was detected and searches the
entry-point database for a match.

The code database stores hashes of all pages for each
binary in a two dimensional array that is indexed first
by binary and second by page offset from the beginning
of the binary. The check function uses the binary name
attached to the memory region to compute the first index
in a look up and the offset of the executing page from
the start of the memory region to compute the second
index. A hash of the executing page is then compared to
the hash from the code database. Because SHA-256 is
collision-resistant and difficult to invert, any tampering
of the binary will result in the binary being identified as
not present.

PE Oracle. The Portable Executable (PE) format [19]
is used in all versions of Windows after Windows NT
3.1. Similar to ELF files, PE files have a header table
that describes how sections in the file should be mapped
in memory. However, code in PE files contains absolute
addresses, and thus is not position independent. All PE
files have an image base, which indicates the preferred
address for loading the file. If an application needs to
load two or more Dynamically Linked Libraries (DLL)
that occupy overlapping preferred address regions, the
OS must relocate one or more of the binaries. To do
this, the absolute addresses in the executable must be ad-
justed by adding the offset between the preferred address
and the actual address where the binary is loaded. This
relocation operation is performed by the OS using the
information stored in the binary header.

PE binaries pose two challenges. First, because the OS
may adjust the absolute addresses in a binary, one cannot
directly use page contents to identify code pages in the
entry-point database. Instead, the PE oracle exploits the
fact that the PE loader only relocates binaries by 4KB
page offsets, meaning that the offset of the entry-point
from the top of the page (i.e. the page-offset) is always
the same. Thus, the entry-point database is indexed by
the page-offset of the entry point and contains the loca-
tions of the absolute addresses in each candidate page, as
well as a hash of its contents. The search function then
searches the entry-point database for the page-offset of
the faulting address to determine the binary.

In some cases, several binaries may have the same
entry-point offset, so the search function must find the
matching page within a set of more than one candidate

pages. For each candidate, the search function undoes
the absolute address adjustments made by the OS during
relocation. This is accomplished by making a copy of
the executed page and subtracting the relocation offset
from each absolute address. This offset is the difference
between the entry-point address of the executed page and
the entry-point address of the candidate if it were mapped
at its preferred address. A hash of the copy can then be
compared against the hash of the candidate.

The second challenge is that some PE binaries have
memory pages that contain both code and mutable data.
For example, the Import Address Table (IAT), which is
used to dynamically link DLLs against an application, is
typically put in the code section by the Microsoft com-
piler. As a result, the search function only uses the por-
tions of these pages that contain code to identify them,
and will notify the control logic, which in turn will in-
struct the hypervisor to make only the identified por-
tions of the pages executable. Naturally, the entry-point
database entries for these pages must also contain infor-
mation listing what portions of the page contain code.

The rest of the PE oracle is straightforward. The
code database and check function are also similar to the
ELF oracle except that they must undo any relocations
before comparing the page contents and they must ac-
count for pages that only partially contain executable
code. Thus, the code database also stores the preferred
address with each binary, and the locations of all abso-
lute addresses and sub-page code ranges (if necessary)
with each page entry. To undo the relocations, the check
function uses the actual address the binary was mapped
in at, which is given by the start address of the memory
region record, and then uses the same technique as the
entry-point search function. In this way, the PE oracle
provides the same guarantees as the ELF oracle.

4.2 Kernel Binary Oracles

Linux Kernel Oracle. The Linux kernel’s code pages in
memory are not always identical to their on-disk repre-
sentation. Recent versions of the Linux kernel customize
their binaries at run-time depending on the availability of
more efficient instructions for the CPU the kernel is exe-
cuting on. For example, the kernel will implement mem-
ory barriers with LFENCE and MFENCE instructions if
running on newer x86 processors with SSE2 extensions.
Altering these instructions at run-time allows a single
kernel binary to be used on different CPUs. In addition,
the Linux kernel can dynamically load and unload kernel
modules at run-time.

The aspects of the Linux kernel that differentiate it
from application code are self-modifying code and the
ability to dynamically load modules. However, both of
these can be handled with the techniques used in the PE
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oracle. In the Linux kernel, the locations of customiz-
able instructions, the instructions they can be replaced
with, and the conditions to permit replacement are stored
in special sections of the kernel binary. Using this infor-
mation, the search and check functions make a copy of
the page, verify that the substitutions are legitimate, and
then undo them by replacing them with the default on-
disk instructions. The pages are then hashed and com-
pared against the entries in the databases.

Linux kernel modules can be loaded at any location
in memory and have both relocations and customizations
that are adjusted at load-time. They also contain an ini-
tialization function that can serve as an entry-point for
the module, making their loader very similar to that of
a PE DLL. As a result, much like in the PE oracle, the
Linux kernel oracle uses an entry-point database consist-
ing of entry-point offsets. Once a kernel module is iden-
tified, the memory range it occupies is recorded.

Windows Kernel Oracle The Windows kernel ex-
hibits behavior similar to the Linux kernel, where some
of its code pages are customized at run-time by patch-
ing the kernel code. In addition, Windows also permits
run-time loading of kernel modules and drivers.

Unlike the Linux kernel, the Windows kernel’s re-
placements are not specified in the kernel binary, but
are applied in an ad hoc fashion by various functions
throughout the kernel. However, since these customiza-
tions are deterministic for a given hardware platform and
occur early during boot, it is possible to record the cus-
tomizations from a pristine kernel and use these to verify
the customizations in the monitored VM. While this ap-
proach cannot guarantee completeness (for example, we
do not know what replacements will take place for other
hardware), we believe that a developer with more infor-
mation about the Windows kernel customizations would
be able to exhaustively enumerate the transformations
the kernel performs at run-time. The Windows kernel
oracle handles the run-time loading of drivers in exactly
the same way as the Linux kernel oracle.

Both the Linux kernel oracle and the Windows kernel
oracle provide the same guarantees as the ELF and PE
oracles. While the PE oracle validates relocations by us-
ing the difference between the actual address and the pre-
ferred address, the kernel oracles perform an equivalent
validation for run-time customizations by ensuring that
modified instructions are replaced with legitimate substi-
tutes.

Windows Interrupt Handler Oracle. To allow
drivers to register interrupt service routines, the Windows
kernel provides an interrupt object abstraction. To al-
low for driver portability, when such an interrupt object
is initialized by the driver, 106 bytes of kernel-specific
code is copied from an interrupt handling template into
the object, and will be executed whenever an interrupt

associated with the object occurs [28].
While this appears to be a form of dynamic code gen-

eration, it is actually very easy to write an oracle that
identifies the Windows Interrupt Handler. The code is
shorter than a page, so it can be efficiently identified and
validated in its entirety with one oracle invocation. As a
result, the Interrupt Handler oracle does not need a code
database or check function. Furthermore, the code is ex-
actly the same every time it is copied except for an 8
byte field that contains run-time parameters and absolute
addresses, which is customized for each driver. As a re-
sult, no entry-point database exists for this oracle, and the
search function simply performs a byte-by-byte compar-
ison of the code starting at the faulting address with the
106 byte template. If there is a match, the code is iden-
tified as a Windows Interrupt Handler and only the 106
byte region is made executable and non-writable.

Our prototype oracle currently does not perform fur-
ther checks on the 8 bytes that are modified dynamically
by the kernel. This means that an attacker can arbitrar-
ily modify these bytes. However, this is a small amount
of memory, and these bytes are not contiguous. A more
sophisticated oracle could also validate the contents of
these bytes.

4.3 Discussion

To better understand the generality of the approaches we
have employed for our prototype oracles, we examined
descriptions of other common binary formats and load-
ers. We found that for application code, the main reason
for run-time code modifications is to support the need
to be able to dynamically load libraries at any base ad-
dress. Nearly every binary format we examined, which
included common formats such as the Mac OS X Mach-
O format, the COFF format used by SysV, and a.out, uses
either position independent code or rebasing – both of
which we are able to handle.

Another interesting class of loaders are executable
packers. They incorporate code into a compressed bi-
nary to decompress the code just before execution. As a
result, the compressed binary needs to be unpacked first
before the oracle gathers information from it. This ex-
tra step is conducted when Patagonix adds a packed bi-
nary to the code database. Our prototype currently only
handles binaries that have been packed using the popular
UPX [21]. To support additional packers, Patagonix only
needs to be provided with an unpacker. For example, Pa-
tagonix could use PolyUnpack [26] to automatically sup-
port a large number of executable packers.

Finally, we observed two non-JIT binaries that dynam-
ically generate code: winlogon.exe, which authenti-
cates users, and the Windows Genuine Advantage appli-
cation, which checks the Windows OS for evidence of
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piracy. No formal specification exists for the code gen-
erated by these applications and there is evidence that
the code is generated to obfuscate self-integrity-checking
operations. Without more information (like we had for
the Windows interrupt handlers) or reverse engineering
(which would violate the EULA), we cannot build an or-
acle that validates the legitimacy of the generated code.
Thus, these binaries are treated as JITs – we can identify
that they are executing, but do not examine other code
pages in their address space.

5 Framework Implementation

We used the Xen 3.0.3 hypervisor as a basis for building
our Patagonix prototype. When used in Hardware Vir-
tual Machine (HVM) mode, Xen utilizes virtualization
support in x86 processors to run unmodified operating
systems, including both Linux and Windows. With the
exception of our emulated sub-page privileges support,
our implementation of Patagonix can run on both AMD
and Intel processors. In implementing Patagonix, we
found that while the MMU provides a way to efficiently
detect code execution, care needs to be taken to ensure
that all code execution in the monitored VM is detected.
Another shortcoming of the processor support was the
inability to allow or deny execution or write pages at a
sub-page granularity. Finally, we discuss a performance
optimization that reduces the number of Patagonix VM
invocations the hypervisor must make.

5.1 Detecting Code Execution

The non-executable permission bit was primarily imple-
mented to allow an OS to prevent unauthorized code ex-
ecution. When this mechanism is virtualized, there are
two issues that must be taken into account to ensure that
all instances of new code execution are detected by the
hypervisor.

The first issue arises from the fact that page permission
bits apply to a virtual page mapping and not to a physical
page. Since there can be more than one virtual mapping
for a physical page, our hypervisor modifications must
ensure that there cannot be writable and executable map-
pings of a physical page simultaneously. Otherwise, the
rootkit could use one mapping to modify the page and
the other to execute it. We accomplish this by leverag-
ing Xen’s frame map, which maintains a count of the
number of mappings of each physical page. Whenever a
page changes from writable to executable or vice versa,
Xen consults the count in the frame map to see if any
other virtual mappings need to be updated appropriately.
Xen’s frame map only maintains a count of the number
of mappings, and is not a reverse frame-map; as a result,

we must walk the page tables to find and change all other
mappings.

This issue could also be fixed by upcoming nested-
page table (NPT) support, which provides full hard-
ware virtualization support for page tables. NPTs add a
shadow page table, which allows the hypervisor to spec-
ify a second translation between the guest physical frame
numbers and the actual machine frame numbers. With
this, the hypervisor could simply control the permissions
for the machine frames, removing the need to track the
number of guest virtual mappings for each physical page.
To be notified when new code is executed, Patagonix
marks pages as non-executable in the shadow page ta-
ble, and then makes them executable after they have been
identified. We do note that in doing this, Patagonix will
negate one of the possible advantages of NPTs, which is
to allow superpage mapping of a contiguous set of guest
physical frames with a single NPT entry.

The second issue stems from the fact that the virtual
Direct Memory Access (DMA) unit in Xen runs in a sep-
arate protection domain (the privileged domain0) and
thus is not constrained by the page access restrictions
placed on the rest of the monitored VM. Malware that is
aware of this could abuse the virtualized DMA to mod-
ify memory pages that have been marked as executable
and read-only. To make sure that memory content was
always checked before being executed, we modified the
emulated DMA devices to inform the hypervisor when
they write to any pages. If any of these pages are marked
as executable, Xen makes these pages non-executable
again.

5.2 Sub-page support

Sub-page permissions are necessary when a memory
page contains a mix of identified code and mutable
data: the code must be made non-writable, and the data
must be made non-executable. Ideally, sub-page support
would be provided in hardware using a scheme such as
Mondrian memory [35] or Transmeta’s Crusoe proces-
sor [8]. However, because such support is not available
on x86 processors, we devised a method to emulate this
support based loosely on a technique that Van Oorschot
et al. used to circumvent code tampering detection [34].
The technique takes advantage of the separate Transla-
tion Lookaside Buffers (TLB) for instructions (ITLB)
and data (DTLB) present in x86 processors.

Our solution maps an execute-safe version of the page
to a virtual address for instructions, and the original to
the same virtual address for data. The execute-safe ver-
sion is a copy of the mixed page where the data sections
have been made non-executable by replacing them with
trap instructions. A mapping to this version is loaded
into the ITLB by temporarily setting the shadow page
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table entry to be executable, pointing it to the execute-
safe version and executing a single instruction from that
page. After that, the shadow page table entry is switched
back to the original page and made writable and non-
executable. This emulates the sub-page permission con-
trol we require since any attempt to execute at an address
from the data regions will go through the ITLB and re-
sult in a trap, and any modifications to the code region
will go through the DTLB and will not be applied to the
page that instructions are being fetched from. To ensure
that the execute-safe page is not accidentally loaded into
the DTLB by an unintended load or store while setting
up the TLBs, Patagonix disables interrupts for the moni-
tored VM during this operation.

The emulation has some drawbacks over native hard-
ware support. First, the emulation does not trap into
the hypervisor when a write is attempted to a code re-
gion. Such functionality would be needed to deal with
run-time modifications to a mixed page, but we have not
found this necessary in practice. Second, this TLB ma-
nipulation needs to be undertaken every time to correctly
load the ITLB mapping for this page, ITLB misses for
such pages are transformed into page faults that require
two traps into the hypervisor. Finally, this functionality
cannot be emulated on Intel processors because, at the
time of writing, Intel processors flush both TLBs on ev-
ery crossing between the hypervisor and the VM.

5.3 Performance Optimizations

The dominant source of overhead in Patagonix is the
page faults that occur when the monitored VM executes
pages marked non-executable by Patagonix and the sub-
sequent Patagonix VM invocation to identify the newly
executing code. Some of these page faults are unnec-
essary because the executing code is on a physical page
that has already been identified when it was executed in
another process. Thus, we added an optimization that
avoids the extra page fault and Patagonix VM invocation
for pages whose identities are already known. This is ac-
complished by maintaining a list of physical pages that
have been identified and whose virtual mappings are all
executable and non-writable. When the monitored VM
attempts to map such a page as executable in a new pro-
cess, Patagonix preemptively makes the new mapping
executable and non-writable.

The hypervisor must log each time this optimization is
applied for two reasons. One reason is because this in-
formation is required to maintain the consistency of the
memory region information for the oracles. The second
reason is that this information is required by the Patago-
nix VM to maintain an accurate record of when pages
from each binary were observed executing. To avoid ex-
tra domain crossings but keep the Patagonix VM’s view

of the monitored VM current, this log is read by the Pa-
tagonix VM whenever it is invoked by the hypervisor to
identify a page, whenever it requests the hypervisor to
perform a refresh and whenever the user requests a list of
executed binaries through the management console. As
a result, this optimization has no effect on how current
the Patagonix VM’s information on executing binaries
is, and thus has no impact on the security guarantees of
Patagonix.

6 Usage

Patagonix has two usage modes. In reporting mode, Pa-
tagonix provides trustworthy execution-reporting infor-
mation and is functionally similar to utilities such as ps,
lsmod and the task manager. This gives the sys-
tem administrator a trustworthy alternative information
source when evaluating if their system has processes hid-
den by a rootkit, or whether an attempted rootkit removal
has been successful. In lie detection mode, Patagonix
compares the list of executing binaries reported by the
monitored OS with what it detects is executing. Differ-
ences mean that the OS is lying and indicate that a rootkit
is present on the system.

When in reporting mode, Patagonix displays a list of
all executing binaries on the management console. This
is semantically similar to the list displayed by utilities
such as top or the task manager. Patagonix also
displays the times they were last observed executing. The
administrator can also use Patagonix to terminate or sus-
pend the execution of all instances of a binary by issuing
commands to the management console, creating a trust-
worthy version of the UNIX kill utility. To terminate
a binary, Patagonix sets all pages of that binary to non-
executable. When an execution fault occurs on one of
the code pages, Patagonix replaces the instruction at the
faulting address with an illegal instruction. This makes
it appear to the monitored OS that the binary tried to ex-
ecute an illegal instruction, causing the monitored OS to
terminate it. Suspending execution is achieved by replac-
ing the code with an empty loop instead of replacing it
with an illegal instruction. Thus, the binary is still ex-
ecuting from the OS’ point of view, yet no code from
the actual binary is being executed. A more efficient, but
OS-specific implementation could inject code that causes
the application to sleep.

In lie detection mode, Patagonix compares execution
information reported by the monitored OS with its own
list of executing binaries. Patagonix obtains execution
information from the monitored OS via an agent in the
monitored VM. The agent is a program that queries the
monitored OS via standard interfaces to obtain a list of
executing processes. Previous systems that performed
lie detection in this way can suffer from false positives
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Target OS Rootkits
Linux 2.4 Adore, Adore-ng, Knark, Synapsys
Linux 2.6 Adore-ng-2.6, Enyelkm
Windows XP Fu, Hacker Defender, Vanquish

Table 1: Rootkits detected by Patagonix. In reporting
mode, Patagonix is able to identify processes hidden by
these rootkits and/or detect tampering of processes by
these rootkits. In lie detection mode, Patagonix detects
that the OS is under reporting the binaries that are run-
ning.

due to asynchrony between the measurement of running
processes taken from within the monitored OS and the
measurement taken from the hypervisor – a new process
may begin executing and be detected by the hypervisor
before the OS has had a chance to update the information
it exports to the agent [10,13]. To avoid this, Patagonix’s
agent registers a function with the OS kernel that syn-
chronously informs Patagonix of process creation via a
hypercall. Both Linux and Windows provide facilities
for this.

Patagonix’s lie detection detects both OS under-
reporting (hiding executing binaries) and over-reporting
(reporting binaries that are not actually executing). Usu-
ally, rootkits under-report to hide the execution of mali-
cious binaries, but over-reporting could also be used ma-
liciously. For example, a rootkit may wish to lead the ad-
ministrator to believe that a critical program (such as an
anti-virus scanner) is still running when it is not. Over-
reporting requires the administrator to specify a thresh-
old which dictates how long Patagonix will allow a bi-
nary that is reported as executing by the OS to be not
observed running any code before declaring it as being
over-reported.

7 Evaluation

We evaluate two aspects of Patagonix: its effectiveness
at detecting and identifying hidden processes and rootk-
its and the performance overheads introduced by adding
Patagonix to the hypervisor.

All experiments were carried out on a machine with
an AMD Athlon 64 X2 Dual Core 3800+ processor run-
ning at 2GHz, with 2GB of RAM. We used the Xen 3.0.3
hypervisor and allocated 512MB of RAM to the mon-
itored VM and 1GB of RAM to the domain 0 VM,
which also doubles as the Patagonix VM. Unless stated
otherwise, the monitored VMs contain either Windows
XP SP2 or Fedora Core 5 with a 2.6.19 Linux kernel.

7.1 Effectiveness

To evaluate the effectiveness of Patagonix at identify-
ing covertly executing binaries, we used Patagonix to
monitor VMs containing the nine rootkits listed in Ta-
ble 1. These rootkits target the Windows kernel and
Linux kernel versions 2.4 and 2.6. For this experiment,
they were installed in VMs running Windows XP SP2,
version 2.4.35.4 of the Linux kernel, and version 2.6.14.7
of the Linux kernel (The rootkits that targeted Linux 2.6
kernels did not work with version 2.6.19 of the kernel).
We evaluated Patagonix in both reporting and lie detec-
tion mode.

First, we ran Patagonix on monitored VMs that have
been infected with the rootkits. Each rootkit (except Van-
quish) was configured to hide a process on the monitored
OS: an instance of Freecell on Windows and an in-
stance of top on Linux. We then verified that the hid-
den processes were not visible to the standard execution-
reporting utilities on the respective OSs. In reporting
mode, Patagonix was able to neutralize all the rootkits
and report the execution of the covert code to the ad-
ministrator, as illustrated in Figure 3. Likewise, in lie
detection mode Patagonix is able to detect the tamper-
ing performed by each of the rootkits without fail. The
Vanquish rootkit does not hide processes like the other
rootkits. Instead, it tampers with applications by inject-
ing code into the address space of executing processes.
In these cases, the executing code of the tampered bi-
naries is correctly identified as “not present” since it no
longer matches any binary in the database. This warn-
ing should be interpreted as a likely rootkit infection by
the administrator since the only other cause would be a
missing binary in the trusted database.

Second, we ran Patagonix on VMs that did not have
any rootkits installed to see if Patagonix reports any false
positives. We exercise the VMs using the various appli-
cation and microbenchmarks described in the following
sections. During these tests, all executing code was cor-
rectly identified. When run in lie detection mode on an
uninfected VM, Patagonix reported no discrepancies be-
tween the processes reported by the monitored OS and
that detected by Patagonix.

7.2 Microbenchmark

To understand the overheads introduced by Patagonix,
we devised chain, a microbenchmark that touches a new
page of code on every instruction by chaining together a
series of jumps, each targeting the beginning of the next
page. Chain represents the worst case scenario for Pa-
tagonix: every instruction requires Patagonix to identify
the new page of executable code. We instrumented our
prototype to break down the page identification process
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Figure 3: Output of both Patagonix and the Task Manager when the FU rootkit is used to hide freecell.exe.
Patagonix identifies all processes including freecell.exe, while the Task Manager does not display the hidden
process. Patagonix identifies “System” as ntkrnlpa.exe, the name of the Windows XP kernel binary.
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Figure 4: Execution time for various components of the
identification operation. The total height of the bars rep-
resents the average time required to identify the origin of
an executing code page.

into its different components. Figure 4 details the over-
head incurred when identifying one page of code; the
values presented are the average of 10,000 Patagonix in-
vocations, and the standard deviations for each compo-
nent were consistently less than 5% of the average.

When reaching a new page of code, a page fault is
triggered by the MMU. This results in an unavoidable

hardware cost due to the VMexit and VMenter opera-
tions in and out of the hypervisor. After a VMexit, a
software page fault handling cost is incurred that is spe-
cific to Xen’s shadow page table implementation; we ex-
pect it to change with other hypervisor implementations.
The Patagonix’s hypervisor code is then executed; run-
ning this code is extremely brief (approximately 0.3µs),
attesting to its minimal impact on the hypervisor. This
code triggers a context switch into the Patagonix VM,
where a hypercall is executed to retrieve the executing
page information. These two operations cost a total of
40µs, but enable 2080 out of a total 3544 lines of code
to be implemented in the Patagonix VM instead of the
hypervisor. The hash computation necessary for all ora-
cles accounts for 73µs, nearly half of the page identifica-
tion time. As expected, the PE oracle logic takes slightly
more time than the ELF oracle logic. We note that the
case in which the PE search function has to match an
entry-point page against several candidates will be more
expensive, as each candidate binary requires a hash com-
putation; we have observed times as high as 538µs. For-
tunately, this only happens very rarely and the search is
only performed once per binary mapped in memory.
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Benchmark Linux (%) WinXP (%) WinXP-hw (%)
Apache Build 1.68 2.62 1.99
Boot 2.05 30.39 10.63
SPECINT 2006 0.03 2.32 0.25
perlbench 2.06 23.01 1.42
gcc 13.75 12.43 3.48

Table 2: Application benchmark results. Results are the
average of ten runs and are given in percent overhead
over vanilla Xen. All standard deviations were less than
3% of the mean. WinXP-hw is estimated performance
with hardware support for sub-page permissions.

7.3 Application Benchmarks

Since Patagonix is only invoked when code is executed
for the first time, we expect this to coincide with page
faults that load code from the disk. Because disk oper-
ations are expensive to begin with, we expect Patagonix
overhead to be minimal in practice. To confirm this, we
ran several application benchmarks in both the Linux and
Windows VMs in our prototype. Computationally inten-
sive applications are represented by the benchmarks from
the SPECINT 2006 suite. For workloads with larger code
footprints, we also measured the time Patagonix takes to
boot Windows and Linux, as well as to build Apache. We
compare the execution time for each benchmark against
a vanilla Xen system running the same benchmark on the
same monitored VM and report the overheads in Table 2.
Since the PE oracle uses sub-page emulation, we also ran
benchmarks without the emulation and sub-page checks
(WinXP-hw column) to approximate what the perfor-
mance might be if hardware support were available.

We report the SPECINT benchmarks as an aggre-
gate because overheads for all benchmarks where less
than 3% for the three configurations except for gcc and
perlbench, whose performance we report separately.
The Windows boot and gcc have large code footprints
in comparison to their execution time: Windows initial-
izes several services, drivers and interrupt handlers dur-
ing boot, while SPEC drives gcc with a set of tests that
exercises a large number of code paths. perlbench
does not experience high overhead except in the WinXP
configuration because it spends a high portion of its time
running code on mixed code/data pages, motivating ar-
chitectural support for sub-pages in such cases. As ex-
pected, the overhead for all other benchmarks is low.
This is because their code footprint is small relative to
their execution time.

Finally, the Patagonix VM needs to request periodic
refreshes from the hypervisor. A shorter refresh interval
means more accurate information about when a process
was last observed executing, but also incurs more over-
head. Figure 5 plots the additional overhead the Apache
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Figure 5: Overhead and Invalidations vs. Refresh Pe-
riod. Apache Build on Linux. Averages of five runs with
standard deviations below 2% of the average.

build benchmark in Linux experiences for various refresh
periods, as well as the number of executable pages that
are invalidated (set non-executable) each time. More fre-
quent refreshes mean less time for the application to ex-
ecute various pages, resulting in fewer invalidations.

8 Related Work

The problems associated with the semantic gap between
the hypervisor and guest VMs were first identified in
a seminal paper by Chen and Noble [6]. Since then,
there have been several attempts to bridge this gap us-
ing non-binding information derived from source code
and symbol information. For example, Livewire [10],
Copilot [23] and SBCFI [25] rely on symbol informa-
tion in kernel binary or System.map file, while As-
rigo et al. [3] and VMWatcher [13] rely on information
derived from kernel source code. Because they make as-
sumptions based on non-binding information, they are all
prone to evasion by a rootkit that breaks those assump-
tions. Patagonix does not rely on any non-binding infor-
mation.

The principle of lie detection – comparing two views
of the same data for discrepancies – has been used in the
literature. For example, Rootkit Revealer [7] and Strider
GhostBuster [5] compare high-level and low-level views
of the same system information. However, since both
views are still derived from within the infected system,
a thorough rootkit can make both high-level and low-
level views agree, thus eluding these systems. Like Pa-
tagonix, other systems compare views taken from both
within (i.e. in-the-box) the infected system, and outside
(out-of-the-box) the infected systems. For example, both
Livewire [10] and VMWatcher [13] compare views of
executing processes derived from the VMM with those
gathered from within the monitored system. However,
unlike Patagonix, these systems do not deal with asyn-
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chrony between the measurement times of the in-the-box
and out-of-the-box views and will thus suffer from false
positives. Lycosid [15] also does lie detection by count-
ing the number of address spaces in a VM. However, be-
cause Lycosid does not identify which binaries the pro-
cesses are executing and the hypervisor’s measurements
contain noise, it can only probabilistically detect when
the number of address spaces does not match the num-
ber of processes reported by the OS. Because Patago-
nix identifies processes and registers callbacks with the
OS, Patagonix is able to both precisely detect hidden pro-
cesses, as well as identify which process is being hidden.

Like Patagonix, remote attestation systems also must
identify and report executing binaries on a system. In ad-
dition, they may also report the integrity of the data in a
system, and are often used to report this information to a
remote party instead of the system administrator. How-
ever, these systems in general assume a weaker attack
model since they in general rely on the integrity of the
OS. For example, IMA [29], implements such function-
ality directly in the OS kernel, and thus depends on the
integrity of the OS kernel to report correct results. An al-
ternative is Terra [9] which performs attestation in a hy-
pervisor. Terra attests the identity of the virtual disk used
to initialize a “closed box” to a remote party. Closed
boxes are VMs that are fully managed by a third party
and usually cannot be extended in any significant way.
Since Patagonix allows the monitored OS to be arbitrar-
ily extended as long as the hashes of any new legitimate
code are in the trusted database. A combination of Pata-
gonix and Terra’s abilities could enable support for attes-
tation of open, extensible systems as well as individual
programs executing in these systems.

Hypervisors have long been used as a means for im-
plementing a secure trusted computing base, with which
untrusted OS images could be made secure [16, 31].
While our prototype was implemented in the Xen hyper-
visor [4], the functionality required from the hypervisor
is generic enough to allow Patagonix to be implemented
on any virtualization system. To explore this point, we
have obtained a source code license for VMware Work-
station and are currently working on a port of Patago-
nix. We have found that VMware-specific functionality,
such as its page table entry caching [2] and dynamic code
translation [1], have not impeded the necessary function-
ality from being added.

Finally, Patagonix uses or extends ideas presented in
other work. Patagonix is based on our earlier work called
Manitou, which also uses hashes to identify running ap-
plications from a hypervisor [18]. However, Manitou is
only able to identify applications for Linux guest OSs,
making its treatment of the problem overly simplistic. It
also does not perform synchronous lie detection. Inde-
pendent to our work and using a similar low-level mech-

anism to detect code execution, SecVisor [31] restricts
what code can be executed by a modified Linux kernel.
SecVisor focuses solely on code that is executed in ker-
nel mode. It uses a custom-made hypervisor, showing
that execution control can be achieved with a small TCB.
In contrast, Patagonix provides comprehensive guaran-
tees for unmodified Linux and Windows OSs as well
as the applications they execute, and demonstrates that
these guarantees can be obtained by small extensions to
a general-purpose hypervisor. Other projects have ma-
nipulated the page tables used by the X86 MMU. For ex-
ample, the PaX project [22] proposes manipulating these
page tables to emulate the NX bit on older CPU that
do no have hardware support for the feature. Finally,
computer forensics experts [30] have demonstrated that
PE binaries can be reconstructed by analyzing memory
dumps. The PE identity oracle described in this paper
uses similar techniques to identify binaries online.

9 Conclusions

Current OSs are vulnerable to subversion by rootkit and
thus cannot be relied upon to provide trustworthy infor-
mation about what code is executing on a system. Pata-
gonix solves this problem by using the processor MMU
to detect executing code from a hypervisor. It then uses
identity oracles, which leverage information from the bi-
nary format specifications and loaders to identify the ex-
ecuting code. In this way, Patagonix is able to bridge the
semantic gap between the hypervisor and the OS with-
out having to trust non-binding information, which is
vulnerable to subversion by the rootkit. We have found
that binary formats across different OSs have similari-
ties, enabling the creation of a universal oracle construc-
tion framework and the use of common techniques across
various binary formats. Aside from the binary-specific
formats, the Patagonix framework does not use any in-
formation about the OS, allowing the same framework to
be used on diverse OSs such as Windows XP, Linux 2.4
and Linux 2.6, without any modification. Through the
combined use of writable and non-executable page table
bits, Patagonix is only invoked when code is executed for
the first time, and as a result, has a modest performance
overhead of less than 3% on most applications.
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