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Abstract. Siegenthaler proved that an n input 1 output, m-resilient
(balanced mth order correlation immune) Boolean function with alge-
braic degree d satisfies the inequality : m + d ≤ n − 1. We provide a
new construction method using a small set of recursive operations for
a large class of highly nonlinear, resilient Boolean functions optimizing
Siegenthaler’s inequality m + d = n − 1. Comparisons to previous con-
structions show that better nonlinearity can be obtained by our method.
In particular, we show that as n increases, for almost all m, the nonlin-
earity obtained by our method is better than that provided by Seberry
et al in Eurocrypt’93. For small values of n, the functions constructed by
our method is better than or at least comparable to those constructed
using the methods provided in papers by Filiol et al and Millan et al in
Eurocrypt’98. Our technique can be used to construct functions on large
number of input variables with simple hardware implementation.
Keywords: Stream Cipher, Boolean Function, Algebraic Degree, Corre-
lation Immunity, Nonlinearity, Balancedness.

1 Introduction

In stream cipher cryptography, the message is considered to be a stream of
bits. The cipher is obtained by bitwise XORing (addition over GF(2)) the mes-
sage with a sequence of bits called the key stream. In most common models of
stream ciphers the key stream is produced by using a Boolean function to com-
bine the output sequences of several Linear Feedback Shift Registers (LFSRs).
If the combining Boolean function is not properly chosen, then the system be-
comes susceptible to several kinds of cryptanalytic attacks. An important class
of divide-and-conquer attacks on such systems was proposed by Siegenthaler [18].
Moreover, Siegenthaler [17] himself introduced a class of Boolean functions, the
set of correlation immune functions, which can resist such attacks. However, it
is not sufficient to use functions with only correlation immunity, since certain
types of correlation immune functions are susceptible to other kinds of attacks.
For example, it is well known that the linear functions are correlation immune
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but not suitable for use in cryptography. There are two measures for nonlinearity
of Boolean functions. The algebraic degree is the degree of the algebraic normal
form of a Boolean function. Having a high algebraic degree ensures a high linear
complexity of the produced key stream and hence better immunity against the
Berlekamp Massey shift register synthesis algorithm [9]. A second measure of
nonlinearity is the distance from the set of affine functions. A high value of this
parameter ensures that the best affine approximation [4] attack will fail. Siegen-
thaler in [17] proved a fundamental inequality relating the number of variables
n, order of correlation immunity m and algebraic degree d of a Boolean function:
m + d ≤ n. Moreover, if the function is balanced then m + d ≤ n − 1. Also, a
balanced mth order correlation immune function is said to be m-resilient. Since
it is natural to use balanced functions in stream cipher systems we concentrate
only on resilient functions. A resilient Boolean function is said to be optimized
if m + d = n − 1. The maximum possible nonlinearity (distance from the set
of linear functions) for this class of functions is not known. Here we provide
construction methods for optimized functions having high nonlinearities. The
functions are built using a small set of recursive operations and hence functions
on large number of variables are easy to implement using nominal hardware.

Construction procedures for correlation immune (CI) functions were first de-
scribed by Siegenthaler in [17]. The methods described in [17] are recursive,
where a function of (n + 1) variables is built from two functions of n variables.
Siegenthaler considered two different kinds of constructions, one where the or-
der of correlation immunity remains constant and the other where the order of
correlation immunity increases by one at each step. An important spectral char-
acterization of correlation immunity, based on Walsh transform of a Boolean
function, was given in [6].

Further attempts at construction was made by Camion et al. in [1], where
construction procedure for a certain subset of correlation immune functions were
described. In [2], the construction procedure for bent functions is modified to
get correlation immune functions. Seberry et al. [16], also provided a method of
constructing the same subset as in [1] of correlation immune functions. They also
separately considered the algebraic degree, nonlinearity and propagation char-
acteristics of their construction method. The functions constructed in [16] has
good nonlinearity for non optimized functions. However, for optimized functions
the nonlinearity of [16] decreases. We interpret the direct construction method
proposed in [16] in a simpler manner (see Section 5) as a concatenation of linear
functions. This interpretation simplifies the proofs related to correlation immu-
nity and nonlinearity.

Evolutionary techniques are applied in [11] to design first order correlation
immune balanced functions with high nonlinearity. The technique considers the
output column of the function as a string and applies genetic algorithm to ma-
nipulate this string. Therefore this technique is difficult to apply to construct
functions on n variables for even moderate values of n. Moreover, it is not clear
whether these functions optimize the Siegenthaler’s inequality. To be precise,
by relaxing the optimization criterion of the Siegenthaler’s inequality, we can
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achieve better nonlinearity than in [11]. Favorable results can also be found
using construction procedure in [16].

In another approach to the problem, Filiol and Fontaine [5, Section 5] de-
scribe a method to construct functions which achieve a good trade-off between
nonlinearity, balancedness, degree and correlation immunity. They identify a 7
variable function f with nonlinearity 56 and degree 6. Using f , in [5, Section 5],
they construct a balanced 9 variable function g with nonlinearity 224, correlation
immunity of order 2 and degree 6, where they use a technique which was first
introduced in [17, Section VI], and later in [1, Corollary 4.1]. The function g is
optimized with respect to Siegenthaler’s inequality. The function g is so far the
best known optimized function on 9 variables with correlation immunity of order
2. The key of this construction is the existence of f .

We use concatenation techniques and introduce generic construction func-
tions (see Definition 5), which recursively build a correlation immune function
of (n + 1) variables from two correlation immune functions of n variables. We
initially start with bent functions which are modified a little to get optimized
algebraic degree. A sequence of such constructors is applied to build correla-
tion immune functions of desired orders from non correlation immune balanced
Boolean functions with high nonlinearity. The degree of the resulting function
is same as that of the initial function. The method can easily be extended to
design functions with moderate to large number of input variables using a spe-
cial representation of the constructed Boolean functions (see Definition 6). The
actual trade-off between nonlinearity and correlation immunity is explicit (see
Theorem 11). Also Theorem 11 provides a lower bound on the nonlinearity of a
function optimized with respect to Siegenthaler’s inequality [17].

Both our technique as well as the technique of [16] can be used to construct
highly nonlinear, balanced, n variable, mth order correlation immune (m re-
silient) functions having algebraic degree n − m − 1. We show that for all m
such that m + 2 log2(m + 3) + 3 < n, the nonlinearity obtained by our method
for optimized functions is better than that of [16]. Thus as n increases, for
almost all m, we obtain a better nonlinearity. Conversely, if we fix an m, then
there exists an N , such that for all n ≥ N , the nonlinearity obtained by our
method is better. As examples, using our techniques one can construct
1. 10 variable balanced functions with degree 8, order of correlation immunity 1
and nonlinearity 476 and
2. 50 variable balanced functions with degree 20, order of correlation immunity
29 and nonlinearity 249 − 239 − 230.
None of the currently known methods can be used to construct such optimized
functions. Moreover, there are widely different functions in the constructed class
(see Example 1 in Section 6).

Next we provide a list of notations.
1. For strings S1, S2 of same length λ, we denote by #(S1 = S2) (respec-
tively #(S1 6= S2)), the number of places where S1 and S2 are equal (respec-
tively unequal). The Hamming distance between S1 , S2 is denoted as D(S1, S2),
i.e. D(S1 , S2) = #(S1 6= S2). The Walsh Distance is defined as, wd(S1, S2) =
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#(S1 = S2) − #(S1 6= S2). Note that, wd(S1, S2) = λ − 2 D(S1, S2). Also the
Hamming weight or simply the weight (number of 1s in S) of S is denoted as
wt(S).
2. By Ωn, we denote the set of all Boolean functions on n variables, i.e., the set
of all binary strings of length 2n. If f, g ∈ Ωn−1, then F = fg is a function in
Ωn whose output column is the concatenation of the output columns of f and g.
Given the truth table of a function f of n input variables {X1, X2, . . . , Xn}, we
also interpret f as a binary string of length 2n, the output column of the truth
table. The first half of the string f is denoted as fu and the second half is de-
noted as f l. If f ∈ Ωn, then fu, f l ∈ Ωn−1 and are given by fu(Xn−1, . . . , X1) =
f(0, Xn−1, . . . , X1) and f l(Xn−1, . . . , X1) = f(1, Xn−1, . . . , X1). In the truth ta-
ble the column corresponding to an input variable Xj occurs to the left of the
column corresponding to the input variable Xi, if j > i. Note that a function
f ∈ Ωn may be a non degenerate function of i variables for i < n.
3. The reverse of the string S is denoted by Sr . The bitwise complement of
a string S is denoted as Sc. If f is a Boolean function, then fr , the func-
tion obtained by reversing the output column of the truth table is given by
fr(Xn, . . . , X1) = f(1⊕Xn , . . . , 1⊕X1), where ⊕ denotes the XOR operation.
Similarly, the function fc obtained by complementing each bit of the output
column of f is given by fc(Xn, . . . , X1) = 1 ⊕ f(Xn , . . . , X1).
We next define the important cryptographic properties of Boolean functions for
stream cipher applications. These also appear in [5,16,12,17].

Definition 1. A Boolean function f of n variables is said to be linear/affine if

f can be expressed as f =
n⊕

i=1

aiXi ⊕ b, where ai, b ∈ {0, 1} for all i. The set of

linear/affine functions of n variables is denoted as L(n). A Boolean function f of
n variables is said to be nonlinear if f is not linear/affine. We denote the measure
of nonlinearity of an n variable function f as nl(f) = ming∈L(n)(D(f, g)).

Note that L(n) = {H | H = hh or hhc, h ∈ L(n − 1)}. Let h ∈ L(n) be a non
degenerate function of m (1 ≤ m ≤ n) variables. If m is even then hr = h else
if m is odd, hr = hc. The linear function h ∈ L(n) is degenerate if m < n.
A high nonlinearity ensures that the best affine approximation cryptanalytic
attack will fail. (See [4] for a description of this method). It is known [13] that for
even n, the maximum nonlinearity achievable by a Boolean function is nl(f) =
2n−1 − 2

n
2 −1. Such functions are called bent functions and their combinatorial

properties have been studied [3,4,13]. A simple construction method for bent

functions from [13] is h(X1, . . . , Xp, Y1, . . . , Yp) =
p⊕

i=1

XiYi⊕g(Y1 , . . . , Yp) where

g ∈ Ωp is arbitrary. For odd n, the corresponding class of functions have not
been characterized. (See [15] for some best known examples). Moreover, bent
functions are known to be unbalanced and are not correlation immune. Meier
and Staffelbach [10] have described a procedure to construct balanced nonlinear
functions from bent functions. So if one is looking for functions which optimize
Siegenthaler’s inequality, one cannot hope to attain the maximum value of nl(f).
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Another important criterion is algebraic degree, since it determines the linear
complexity of the output sequence of the function (see [4]). The relationship of
algebraic degree to the order of correlation immunity was studied in [17,6].

Definition 2. The algebraic degree or simply the degree of f ∈ Ωn, denoted by
deg(f), is defined to be the degree of the algebraic normal form of f. See [17] for
definition of algebraic normal form and its degree.

Siegenthaler [17] was the first to define correlation immune functions from infor-
mation theoretic point of view using the concept of mutual information.
A function f(X1 , X2, . . . , Xn) is mth order correlation immune [17] if the mu-
tual information I(Xi1 , Xi2 , . . . , Xim ; Z) = 0 for all possible choices of m distinct
variables Xi1 , Xi2, . . . , Xim ∈ {X1, X2, . . . , Xn}, with 1 ≤ m ≤ n−1. From [7],
this is equivalent to Prob(Z = 1 | Xi1 = Ci1 , Xi2 = Ci2 , . . . , Xim = Cim) =
Prob(Z = 1) for each of the combinations Ci1, Ci2 , . . . , Cim ∈ {0, 1}.
A characterization of correlation immunity based on Walsh transform of Boolean
functions was obtained in [6]. We first provide the definition of Walsh transform.

Definition 3. Let X = (X1, . . . , Xn) and ω = (ω1, . . . , ωn) be n-tuples on
GF(2) and X.ω = X1ω1⊕ . . .⊕Xnωn. Let f(X) be a Boolean function whose do-
main is the vector space over GF(2)n. Then the Walsh transform of f(X) is a real
valued function over GF(2)n that can be defined as F (ω) =

∑

X

(−1)f(X)⊕X.ω,

where the sum is over all X in GF(2)n.

The following result provides the relationship between Walsh distance and Walsh
transform.

Proposition 1. F (ω) = wd(f,

i=n⊕
i=1

ωiXi).

The following characterization of correlation immunity, based on Walsh trans-
form, was given in [6].

Theorem 1. ([6]) A function f(Xn , Xn−1, . . . , X1) is mth order correlation im-
mune iff its Walsh transform F satisfies F (ω) = 0, for 1 ≤ wt(ω) ≤ m .

Proposition 2. Let h, f ∈ Ωn. Then (a) wd(h, f) = −wd(hc, f) and
(b) wd(h, fr) = wd(hr, f). Consequently, wd(h, f) = 0 iff wd(h, fc) = 0.

We use the following definition of correlation immunity which follows from
Proposition 1, Theorem 1 and Proposition 2.

Definition 4. A function f(Xn , Xn−1, . . . , X1) is said to be mth (1 ≤ m ≤
n− 1) order correlation immune if wd(f, h) = 0 where h ∈ L(n) and h is a non
degenerate function of i variables with 1 ≤ i ≤ m. Moreover, if f is balanced
then f is called m-resilient.
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From this definition it is clear that if a function is mth order correlation immune,
then it is kth order correlation immune for 1 ≤ k ≤ m. We define,

1. Cn(m) = {f ∈ Ωn | f is correlation immune of order m but not correlation
immune of order m + 1}.

2. An(m) =
⋃

m≤k≤n−1

Cn(k), is the set of all correlation immune functions of

order m or more.
3. A function is called correlation immune if it is at least correlation immune of

order one. Also An = An(1), is the set of all correlation immune functions
of n variables.

Let f be a balanced function of degree d, and f ∈ Cn(m). Then f is optimized
with respect to balancedness, degree and order of correlation immunity if m +
d = n − 1. The maximum value of nl(f) for such functions is not known. In
Theorem 11 we describe methods to construct such optimized functions with
sufficiently large values of nl(f). We next define three constructions P, Q, R as
follows. These constructions have also been used in [8] to obtain the currently
best known lower bounds on (balanced) correlation immune Boolean functions.

Definition 5. 1. P : Ωn−1 × Ωn−1 → Ωn, P (f, g) = fuguglf l.
2. Q : Ωn−1 × Ωn−1 → Ωn, Q(f, g) = fg = fuf lgugl.
3. R : Ωn−1 × Ωn−1 → Ωn, R(f, g) = fuguf lgl.

Later we will use these constructions to recursively build correlation immune
functions. The construction Q appears in [17], although in a different form. Note
that, the generic construction functions P, Q, R should not be viewed as linear
combination of two Boolean functions. As example, if we consider the Boolean
function Q(f, fr), then the nonlinearity of Q(f, fr) will be twice that of f and
the number of terms with highest algebraic degree will increase. We discuss it
elaborately in the next section.

2 Nonlinearity, Algebraic Degree, and Balancedness

We provide a few technical results in this section related to nonlinearity, algebraic
degree and balancedness.

Theorem 2. Let f, g ∈ Ωn−1 and F = Ψ(f, g) where Ψ ∈ {P, Q, R}. Then
nl(F ) ≥ nl(f) + nl(g). Moreover, if g = f, g = fc or g = fr, then nl(F ) =
nl(f) + nl(g) = 2nl(f).

Next we state without proof the following result on the degree of the constructed
function. The proof consists in checking the different cases.

Theorem 3. Let f ∈ Ωn and F = Ψ(f, fτ ), where Ψ ∈ {P, Q, R} and τ ∈
{c, r}. Then, deg(F ) = deg(f).
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The special case of Theorem 3 with Ψ = Q and τ = c was mentioned in [5].
The importance of this result lies in the fact that the degree of the constructed
function is equal to the degree of the original function. It is known [13] that
the degree of bent functions of n variables for n ≥ 4 is at most n

2 . We propose
the following simple but powerful method to improve the degree. Note that,
X1 . . .Xn means logical AND of X1 to Xn.

Theorem 4. Let h ∈ Ωn be of degree less than n and f = h ⊕ X1 . . .Xn.
Then deg(f) = n and nl(f) ≥ nl(h) − 1. Moreover, if h is a bent function then
nl(f) = nl(h) − 1.

Proof. Let, g ∈ L(n). Then D(f, g) is either D(h, g) − 1 or D(h, g) + 1. If h is
bent, nl(f) ≤ nl(h), and so nl(f) = nl(h) − 1. ut
If we start with a bent function h ∈ Ω8 and use the above theorem then we can
get a function f ∈ Ω8 of degree 8 and nonlinearity 119. Using this f , one can
get F = Ψ(f, fc) ∈ Ω9, which is balanced, has degree 8 and nonlinearity 238.
Generalizing, we can get balanced functions F ∈ Ω2p+1 having degree 2p and
nonlinearity 22p − 2p − 2. We now discuss the following negative results which
can be obtained from Siegenthaler’s inequality. Let f ∈ Ωn.
1. If deg(f) = n − 1, then f is not both correlation immune and balanced.
2. If deg(f) = n, then f is neither correlation immune nor balanced.
Both 1 and 2 follow from Siegenthaler’s inequality m + d ≤ n − 1 for balanced
functions f ∈ Cn(m) having degree d. To see that if deg(f) = n, then f is not
balanced, suppose the converse, i.e., deg(f) = n and f is balanced. Since f is
balanced, using Theorem 8 in the next section, Q(f, fc) = ffc ∈ Cn+1(1). Also,
ffc is balanced and has degree n. Thus, Siegenthaler’s inequality is violated for
ffc ∈ Ωn+1.
Note that item 2 shows that a function of n variables cannot both have degree
n and be balanced. Thus it relates two simple properties of Boolean functions.
However, it requires the use of correlation immunity, which is a much more
specialized property. This shows that there cannot exist balanced functions F ∈
Ωn of degree n. Filiol and Fontaine [5] provided examples of balanced F ∈ Ω9

having nonlinearity 240 but degree upto 7. It is interesting to find out whether
there exists balanced F ∈ Ω9, having degree 8 and nonlinearity 240.

Theorem 4 shows that the degree can be increased significantly with insignif-
icant change in nonlinearity. Moreover, it can be checked that though f in the
above theorem has only one term of degree n, the number of terms of degree n
in Ψ(f, fr) ∈ Ωn+1 is more than one. We state one specific result regarding this.

Proposition 3. Let f ∈ Ωn with degree n. Then Q(f, fr) ∈ Ωn+1 contains n
terms of degree n.

The linear complexity of the output sequence produced by the Boolean func-
tion depends on the algebraic normal form of the function and the lengths of
the input LFSRs [14,4]. Having more terms of degree n ensures that the linear
complexity of the output sequence is higher. See Example 1 in the last section
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for further illustration regarding the number of high degree terms. Proper use of
this technique will ensure that the functions designed using Construction 1 (see
later), will have this property. This has direct implication towards the stability
of the generated sequence [4]. We would like to point out that this phenomenon
does not hold for the construction Q(f, fc) given in [17,5]. Next, we list a few
simple results on balancedness.

Proposition 4. (a) A function of the form ffc is balanced. (b) If f is a balanced
function then both fr and fc are balanced. (c) Let f, g ∈ Ωn be two balanced
functions, and F = Ψ(f, g), where Ψ ∈ {P, Q, R}. Then F is also balanced.

3 Correlation Immunity

Here we provide generalized construction methods for correlation immune func-
tions. First we state the following two results which have been proved in different
forms in [12,1] and [17] respectively.

Proposition 5. Let h ∈ Ωn. Then Q(h, hr) = hhr ∈ An+1.

Proposition 6. Let f ∈ Ωn. Then Q(f, fc) = ffc ∈ An+1 iff f is balanced.

Next we state without proof the following basic result.

Lemma 1. Let f ∈ An(m) (respectively Cn(m)). Then fr , fc ∈ An(m) (respec-
tively Cn(m)).

In [17, Section IV] Siegenthaler proposed a construction of F ∈ An+1(m)
from f, g ∈ An(m) as follows.

Theorem 5. ([17]) If Z1 = f1(X1, X2, . . . , Xn) and Z2 = f2(X1 , X2, . . . , Xn)
are mth-order correlation immune functions of n binary variables such that
Prob(Z1 = 1) = Prob(Z2 = 1), then the binary-valued function f of n + 1
random variables defined by the GF(2) expression
f(X1, X2, . . . , Xn+1) = Xn+1f1(X1, X2, . . . , Xn)+(Xn+1+1)f2(X1 , X2, . . . , Xn)
is also mth order correlation immune.

The condition Prob(Z1 = 1) = Prob(Z2 = 1) is equivalent to the condition
wt(f1) = wt(f2). Note that the construction in the above theorem corresponds
to our construction Q. We further generalize the construction to include P, R
also.

Lemma 2. Let f, g ∈ An(m) and F be of the form F = P (f, g) = fuguglf l. If
(a) m = 1 or (b) m > 1 and wt(f) = wt(g), then F ∈ An+1(m).

Proof. Let f, g be functions of {X1, X2, . . . , Xn} and F be a function of
{X1, X2, . . . , Xn+1}. We use the characterization of correlation immunity given
in Definition 4. Let us consider any linear/affine function H ∈ L(n + 1), where
H is a non degenerate function of k variables (1 ≤ k ≤ m).

Now we will have four cases.
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1. If H contains k variables from {X1, X2, . . . , Xn−1} then H is of the form
hhhh. Now, wd(F, H) = wd(fuguglf l , hhhh) = wd(f, hh) + wd(g, hh) = 0,
as f, g are mth order correlation immune.

2. If H contains Xn and the remaining k−1 variables from {X1, X2, . . . , Xn−1}
then H is of the form hhchhc. Then, wd(F, H) = wd(fuguglf l , hhchhc) =
wd(f, hhc) + wd(g, hch) = 0.

3. If H contains Xn+1 and the remaining k − 1 variables from
{X1, X2, . . . , Xn−1} then H is of the form hhhchc.
Now, wd(F, H) = wd(fuguglf l, hhhchc) = wd(f, hhc) + wd(g, hhc) = 0.

4. If H contains Xn, Xn+1 and the remaining k − 2 variables from
{X1, X2, . . . , Xn−1} then H is of the form hhchch. Now two cases arise.
(a) If k − 2 > 0, then wd(F, H) = wd(fuguglf l, hhchch) = wd(f, hh) +
wd(g, hchc) = 0.
(b) If k − 2 = 0, then H is of the form 0n−11n−11n−10n−1 and hence,
wd(F, H) = wd(fuguglf l, 0n−11n−11n−10n−1) = wd(f, 0n) + wd(g, 1n) = 0,
if wt(f) = wt(g). Note that the weight condition is not required if m = 1.

Hence by Definition 4, F is mth order correlation immune. ut
The case for the construction R is similar. Hence we get,

Theorem 6. Let f, g ∈ An(m), with wt(f) = wt(g) and F = Ψ(f, g), where
Ψ ∈ {P, Q, R}. Then F ∈ An+1(m).

In [17] only a construction with two correlation immune functions f, g of same
order was considered. However, if the correlation immunity of f, g are of different
orders then we get the following result.

Theorem 7. Let f ∈ Cn(m1) and g ∈ An(m2) with m1 < m2. Then F ∈
Cn+1(m1) if (a) Ψ = P and m1 = 1 or (b) Ψ = P, Q or R and wt(f) = wt(g).

Proof. The proof that F belongs to An+1(m1) is similar to the above theorem.
It can be checked that if m1 = 1 then the weight condition wt(f) = wt(g)
is not required for P . To see that F ∈ Cn+1(m1), note that there exists a
function h ∈ L(n), which is non degenerate of (m1 + 1) variables such that
wd(f, h) 6= 0 but wd(g, h) = 0. Depending on Ψ we can use this h to build a
linear function H ∈ L(n+1) which is non degenerate of (m1 +1) variables such
that wd(F, H) 6= 0. Hence F is not correlation immune of order (m1 + 1). ut
Next we consider construction of (m + 1)th order correlation immune function
from mth order correlation immune functions.

Proposition 7. Let f be an n variable balanced function with mth order corre-
lation immunity. Then F = Q(f, fc) = ffc is an (n + 1) variable function with
(m + 1)th order correlation immunity.

In a different form, this was first observed in [17] and later in [1]. This is the
basic technique of construction used in [5]. We show that the same result can be
achieved using R also.
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Theorem 8. Let f ∈ Cn(m) and F = Ψ(f, fc) where Ψ ∈ {Q, R}. Then F ∈
Cn+1(m + 1) iff f is balanced. Moreover, F is balanced.

Proof. We prove this theorem for Ψ = R, the other case being similar. Let us
consider any linear/affine function H ∈ L(n+1) which is a non degenerate func-
tion of k variables (1 ≤ k ≤ m+1). For (1 ≤ k ≤ m) the proof that wd(F, H) = 0
is similar to that of Lemma 2. If H is a non degenerate function of (m+1) vari-
ables then H can be of the forms hhhh, hhhchc, hhchhc and hhchch. Let H
be of the form hhchhc, where h ∈ L(n − 1) is non degenerate of m variables.
So, wd(R(f, fc), H) = wd(R(f, fc), hhchhc) = wd(f, hh) + wd(fc, hchc) =
2wd(f, hh) = 0 as f ∈ Cn(m) and hh is a non degenerate function of m vari-
ables. It can be checked that for the other cases also wd(R(f, fc), H) = 0. This
shows that F ∈ An+1(m + 1).

The resulting R(f, fc) will not be in An+1(m + 2). We show a function
H ∈ L(n + 1) which is a non degenerate function of (m + 2) variables, such
that wd(R(f, fc), H) 6= 0. Since f is not correlation immune of order (m + 1),
there exists a non degenerate function h1 ∈ L(n) of (m+ 1) variables such that
wd(f, h1) 6= 0. Now two cases arise.
Case 1: h1 is of the form hh, where h ∈ L(n − 1). Then h is nondegener-
ate of (m + 1) variables and let H ∈ L(n + 1) be of the form hhchhc. Then,
wd(R(f, fc), H) = wd(fu(fu)cf l(f l)c, hhchhc) = wd(f, hh) + wd(fc, hchc) =
2wd(f, hh) 6= 0.
Case 2: h1 is of the form hhc, where h ∈ L(n − 1). In this case h is non degen-
erate of m variables and take H ∈ L(n + 1) to be of the form hhchch. Now,
wd(R(f, fc), H) = wd(fu(fu)cf l(f l)c, hhchch) = wd(f, hhc) + wd(fc, hch) =
2wd(f, hhc) 6= 0. ut
The above result does not in general hold for the construction P . If h1 in the
above proof is of the form hhc, and we choose H to be of the form hhchhc, which
is non degenerate of (m + 1) variables, then
wd(P (f, fc), H) = wd(fu(fu)c(f l)cf l, hhchhc) = wd(f, hhc) + wd(fc, hch) =
2wd(f, hhc) 6= 0. However, the following result holds.

Lemma 3. Let f ∈ Ωn − An be such that wt(fu) = wt(f l). Then P (f, fc) ∈
An+1 and is balanced.

If f is a correlation immune function of even order then we can use fr instead
of fc in Theorem 8.

Theorem 9. Let f ∈ Cn(m) and Ψ ∈ {Q, R}.
1. Let F = Ψ(f, fr). Then, F ∈ Cn+1(m + 1) iff m is even. Moreover, F is
balanced iff f is balanced.
2. Let F = Ψ(f, (fr)c). Then, F ∈ Cn+1(m + 1) iff m is odd. Moreover, F is
balanced.

Proof. We only prove (1) for Ψ = R. We show that if H ∈ L(n+1), and H is a non
degenerate function of k (1 ≤ k ≤ m + 1) variables, then wd(R(f, fr), H) = 0.
The case where 1 ≤ k ≤ m is similar to Lemma 2. Now for k = m + 1 four cases
arise.
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1. H is of the form hhhh. Then h ∈ L(n−1) and h is a non degenerate function
of (m+1) variables. Since m is even, (m+1) is odd and so hr = hc. Therefore,
wd(R(f, fr), hhhh)) = wd(f, hh) + wd(fr , hh) = wd(f, hh) + wd(f, hrhr) =
wd(f, hh) + wd(f, hchc) = wd(f, hh) − wd(f, hh) = 0.

2. H is of the form hhchhc. Then hhc is a non degenerate function of (m + 1)
variables and hence h is a non degenerate function of m variables. Therefore,
wd(R(f, fr), hhchhc) = wd(f, hh) + wd(fr, hchc) = 0 + 0 = 0 as f, fr ∈
Cn(m).

3. H is of the form hhhchc. Then hh is a non degenerate function of m vari-
ables and hence hhc is a non degenerate function of (m + 1) variables.
Therefore, wd(R(f, fr), hhhchc) = wd(f, hhc) + wd(fr, hhc) = wd(f, hhc) +
wd(f, (hhc)r) = wd(f, hhc) − wd(f, hhc) = 0.

4. H is of the hhchch. Then h is a non degenerate function of (m−1) variables
and so hhc is a non degenerate function of m variables.
Hence, wd(R(f, fr), hhchch) = wd(f, hhc) + wd(fr , hch) = 0 + 0 = 0.

Hence wd(R(f, fr), H) = 0 and so R(f, fr) ∈ An+1(m + 1). The proof that
R(f, fr) /∈ An+1(m + 2) is similar to Theorem 8.
If m is odd, then it can be checked that F /∈ Cn+1(m + 1). ut
Camion et al. [1] had earlier proved one side of both (1) and (2) of the above
theorem for Ψ = Q only.

Remark 1. In Theorem 8 and Theorem 9 we can obtain a weaker result by
replacing Cn(m) and Cn+1(m + 1) by An(m) and An+1(m + 1) respectively.

We also have the following result which is similar to Lemma 3.

Lemma 4. Let f ∈ Ωn − An be such that wt(fu) = wt(f l). Then P (f, fr) ∈
An+1.

We will be using the results of Section 2 and Section 3 to design cryptographically
strong Boolean functions in the next section.

4 Generalized Construction

Here we describe a recursive procedure to design highly nonlinear Boolean func-
tions which optimizes balancedness, degree and order of correlation immunity.
Such functions are ideally suited for stream cipher applications since they can
resist all known types of attacks. First we require the following definition. We
use the convention that frc = (fc)r = (fr)c.

Definition 6. Let (Si)1≤i≤q be a finite sequence, where,
Si ∈ {Q, R} × {c, r, rc}. Given a function h ∈ Ωk and a sequence Si of length
q we define a function F ∈ Ωq+k as follows.
F0 = h and Fi = Ψi(Fi−1, F

τi

i−1)
where Si = (Ψi, τi), for i ≥ 1, and F = Fq. We say that F is represented by
(h, S1, . . . , Sq) and the length of the representation is q.
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First we observe that given a function h ∈ Ωk it is easy to design a linear time
(on the number of inputs to the function) algorithm that generates a function
F ∈ Ωq+k represented by (h, S1, . . . , Sq). Though the size of the function F may
be large, we need not store the whole truth table for F . Using the representation
of F , the storage space required is not much larger than h. The penalty is that
we require an algorithm to calculate the output of F . This can be done in O(q)
time (specifically, q clocks in hardware circuit) if h is implemented as a truth
table. However, very low cost pipelined circuit (using flip flops) can be developed
which produces a output at each clock pulse after an initial latency period of q
clocks. Both the hardware and the algorithm are interesting which we omit here
due to space constraint. Now we state some important properties of functions
constructed by the above procedure.

Theorem 10. Let h ∈ Ωk and F ∈ Ωm+k+1 be represented by
(h, S1, . . . , Sm+1) where Si = (Ψi, τi), τ2i+1 ∈ {c, rc} and τ2i+2 ∈ {c, r} for
i ≥ 0. Then F is balanced and (1) nl(F ) = 2m+1nl(h) (2) deg(F ) = deg(h),
(3) If m ≥ 1, then F ∈ Am+k+1(m). Moreover, if degree of h is k, then
F ∈ Cm+k+1(m).

Proof. (1) Follows from Theorem 2. (2) Follows from Theorem 3. (3) Follows
from Theorem 8, Theorem 9 and Remark 1. Moreover, if degree of h is k, then F
can not be correlation immune of order m+1 due to the Siegenthaler’s inequality.

ut
Note that there are four possible options of Si for i > 0. Moreover, the construc-
tion P can also be used in the first step S1, since the purpose of the first step is
to attain balancedness. This generalizes the construction method of [5, Section
5], which uses the sequence Si = (Q, c) for all i ≥ 1.

Corollary 1. Let h ∈ Ωk be balanced and F ∈ Ωm+k be represented by
(h, S1, . . . , Sm), where Si = (Ψi, τi), τ2i+1 ∈ {c, r} and τ2i+2 ∈ {c, rc}
for i ≥ 0. Then F is in Am+k(m). Moreover, if degree of h is (k − 1), the
maximum degree attained for a balanced function, then F ∈ Cm+k(m).

It is important to realize that there are different trade-offs involved among the
parameters, algebraic degree deg(.), order of correlation immunity m, nonlin-
earity nl(.), balancedness and the number of input variables n. The first result
from [17], is that for any Boolean function f , deg(f) + m ≤ n and for balanced
Boolean functions, deg(f)+m ≤ n−1. The next result is that the maximum value
of nonlinearity for even n is achieved for bent functions and it is known [13] that
for n ≥ 4, the degree of such functions cannot exceed n

2
. Let us now consider the

following construction which provides a good trade-off among the parameters.
Construction 1. On input n, m we provide a method to construct a balanced
n variable mth order correlation immune function with algebraic degree k =
n − m − 1. Let h ∈ Ωk of degree k be as follows.
If k is even, then h is formed by adding the term X1 . . .Xk (logical AND of
X1 to Xk) to a bent function g of k variables. If k is odd then h is formed by
adding the term X1 . . .Xk to a function g of k variables, where g is formed by
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concatenating two bent functions of (k − 1) variables.
Let F ∈ Ωn where n = m+k+1 and m ≥ 1. F is represented by (h, S1, . . . , Sm+1)
where Si = (Ψi, τi), Ψi ∈ {Q, R}, τ2i+1 ∈ {c, rc} and τ2i+2 ∈ {c, r} for i ≥ 0.

It is clear from the above discussion that Construction 1 provides functions
which optimize Siegenthaler’s inequality. We now find out the exact expression
of nonlinearity obtained by the above construction. The result follows from The-
orem 10, Corollary 1 and the nonlinearity of bent functions.

Theorem 11. Consider F ∈ Cn(m) as in Construction 1.
(1) If n 6≡ m mod 2, then nl(F ) = 2n−1 − 2

n+m−1
2 − 2m+1.

(2) If n ≡ m mod 2 then nl(F ) ≥ 2n−1 − 2
n+m

2 − 2m+1.

Proof. (1) We take a bent function g of k = n − m − 1 variable and h = g ⊕
X1X2 . . .Xn−m−1. Thus by Theorem 4, nl(g) = 2n−m−2−2

n−m−1
2 −1−1. Then we

apply our method of Definition 6 to get nl(f) = 2m+1 (2n−m−2−2
n−m−1

2 −1−1).
(2) We take a bent function g1 of n−m−2 variables. Then we use bent concate-
nation to get g of n−m−1 variables with nonlinearity nl(g) = 2n−m−2−2

n−m−2
2 .

Now, h = g ⊕ X1X2 . . .Xn−m−1. Thus, nl(h) ≥ 2n−m−2 − 2
n−m−2

2 − 1. Hence,
nl(f) ≥ 2m+1 (2n−m−2 − 2

n−m−2
2 − 1). ut

This also shows that by varying the order of correlation immunity, one can adjust
the nonlinearity of the optimized functions.

5 Direct Construction

Here we provide a simpler interpretation of the construction method provided
in [16] and show that this also gives simpler proofs for the order of correlation
immunity and nonlinearity of the constructed functions. Let L(n, k) be the set
of all f ∈ L(n), which are the sum modulo 2 (XOR) of exactly k variables
and MU(n, k) = L(n, k) ∪ L(n, k + 1) ∪ . . . ∪ L(n, n). Also let ML(n, k) =
L(n, 1)∪ L(n, 2) ∪ . . . ∪ L(n, k).

Definition 7. Let n = n1 +n2 and choose 2n1 functions f0, . . . , f2n1−1 from the
set MU(n2, m + 1). Let f = f0 . . . f2n1−1, and denote by Γ (n, n2, m) the set of
all such functions. Clearly Γ (n, n2, m) ⊆ Ωn.

We first state a simple result which is crucial to understand the cryptographic
properties of the construction provided by Definition 7. The proof is a simple
consequence of the fact that the XOR of two linear functions is also a linear
function.

Proposition 8. Let l1, l2 ∈ L(n). (a) If l1 = l2 then D(l1 , l2) = 0. (b) If l1 = lc2
then D(l1 , l2) = 2n and (c) If l1 6= l2 or lc2 then D(l1 , l2) = 2n−1. Consequently,
the Walsh distances are respectively, 2n, −2n and 0.

The following result is easy to see.
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Proposition 9. The construction provided in Definition 7 is same as that given
by Equation 5 of [16].

This proves (using [16, Corollary 8]) that any function in Γ (n, n2, m) is an mth
order CI function. Here we provide a much simpler direct proof as follows.

Theorem 12. Γ (n, n2, m) ⊆ An(m).

Proof. Let f ∈ Γ (n, n2, m). We show that for any l ∈ L(n, k), wd(f, l) = 0 for all
1 ≤ k ≤ m. We write f = f0 . . . f2n1−1, where each fi ∈ MU(n2, m+1). It is not
difficult to see that l can be written as l0 . . . l2n1−1, where each li ∈ ML(n2, m).
Now wd(f, l) = wd(f0 . . . f2n1−1, l0 . . . l2n1−1) =

∑2n1−1
i=0 wd(fi, li) = 0, using

Proposition 8, since fi, li ∈ L(n2) and fi 6= li or lci . ut
Visualizing the construction as above, it is easy to obtain the nonlinearity as
follows.

Theorem 13. Let f ∈ Γ (n, n2, m) be of the form f0 . . . f2n1−1, where each fi ∈
MU(n2, m+1). Then nl(f) ≥ 2n−1−t2n2−1, where t is the maximum number of
times a function h or its complement hc are together repeated in the construction
f0 . . . f2n1−1 for some h ∈ MU(n2, m + 1).

Proof. Let l ∈ L(n). We have to show that D(f, l) is at least as large as the
given bound. Note that l can be written as l0 . . . l2n1−1, where each li is either g
or gc for some g ∈ L(n2). Then at most t of the li’s and fi’s can be equal. Using
Proposition 8, it follows D(l, f) ≥ (2n1 − t)2n2−1 = 2n−1 − t2n2−1. ut
Theorem 13 is first proved in [16, Theorem 14]. However, our proof is much
shorter and clearer. One can show as in [16, Theorem 12], that the degree of
such functions is n − n2 + 1, provided there are at least two functions g1, g2

among the fi’s of Theorem 13, such that g1 6= g2 or gc
2 and there is a variable

which occurs in an odd number of these fi’s. Thus maximum degree is attained
if n2 = m + 2, in which case the constructed function optimizes Siegenthaler’s
inequality.

Let us now estimate the nonlinearity of functions constructed using the
method of [16], for functions which optimize Siegenthaler’s inequality.
Let Ωk,n = MU(n, k + 1). By nld(n), we denote the lower bound on nonlin-
earity of n-variable optimized functions achieved by the direct construction of
Definition 7 (see also [16]). Note that Siegenthaler’s inequality is optimized if
n2 = m + 2 and in this case,
| Ωm,m+2 | =

(
m+2
m+1

)
+

(
m+2
m+2

)
= m + 3. Since one has to choose 2n1 functions

from Ωm,m+2 , the repetition factor t is at least d2n−m−2

m+3 e and hence the nonlin-
earity obtained is
nld(n) = 2n−1 − d2n−m−2

m+3
e 2m+1.

Remark 2. The construction method provided in Section 4 is a recursive con-
catenation of highly nonlinear Boolean functions. On the other hand, the con-
struction provided in Definition 7 is a direct concatenation of linear functions.
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6 Results and Comparison to Previous Research

First we compare nld(n), the nonlinearity of [16], with our method. For n variable
functions, let the lower bound of nonlinearity obtained by our recursive construc-
tion be nlr(n).

1. When n 6≡ m mod 2.

nlr(n) = 2n−1 − (2
n−m−3

2 + 1) 2m+1. nld(n) = 2n−1 − d2n−m−2

m+3
e 2m+1 . So,

our method works favorably when
d2n−m−2

m+3 e > 2
n−m−3

2 + 1. (I)

We consider it more conservatively, i.e., we replace (2
n−m−3

2 + 1) by 2
n−m−2

2 .
Hence, our method performs better when,
d2n−m−2

m+3 e > 2
n−m−2

2 , i.e., d 2n−m−2

2log2(m+3) e > 2
n−m−2

2 , i.e., n−m− 2− log2(m + 3) >
n−m−2

2 , i.e., when,
n > m + 2 log2(m + 3) + 2. (IA)

2. When n ≡ m mod 2.
nlr(n) = 2n−1 − (2

n−m−2
2 + 1) 2m+1. nld(n) = 2n−1 − d2n−m−2

m+3 e 2m+1 . So,

our method works favorably when d2n−m−2

m+3 e > 2
n−m−2

2 + 1. (II)

We consider it more conservatively, i.e., we replace (2
n−m−2

2 + 1) by 2
n−m−1

2 .
Hence, our method performs better when,
d 2n−m−2

2log2(m+3) e ≥ 2
n−m−1

2 , i.e., d 2n−m−2

2log2(m+3) e > 2
n−m−1

2 , i.e., n−m−2− log2(m+3) >
n−m−1

2 , i.e., when
n > m + 2 log2(m + 3) + 3. (IIA)
One can look at (I) and (II) in two ways.
1. If we fix a particular value of m, then there is a certain N , such that nlr(n) >
nld(n) for all n ≥ N . For example for m = 1, our method performs better for
all n ≥ 8.
2. Similarly, if we fix a value of n, we get an upper bound M(n) on m, such that
for all m ≤ M(n), we have nlr(n) > nld(n). Moreover, from (IA) and (IIA), it
is clear that this upper bound M(n) becomes close to n, as n increases.
This clearly shows that in a majority of cases the functions obtained by our
method are better than those obtained using [16]. It should also be noted that
if we take m = 1, then nld(n) = 2n−1 − 2n−3. Whereas,
(1) If n even, then nlr(n) = 2n−1 − 2

n
2 − 4. (2) If n odd, then nlr(n) ≥ 2n−1 −

2
n+1
2 − 4.
It should be noted that high nonlinearity can be obtained by the direct

construction provided in [16] without optimizing the Siegenthaler’s inequality.
Currently no known general method can provide balanced CI functions with such
nonlinearity. However, the nonlinearity of this method decreases when the opti-
mization criterion is considered. From [16, Theorem 12, 14], if one does not want
to optimize the Siegenthaler’s inequality, then the nonlinearity for first order
correlation immune functions is (we denote it as nlx(n) for n variable function)
nlx(n) = 2n−1−min3≤r<n(d 2n−r

2r−r−1e2r−1) with algebraic degree n−r+1. In the
following table we compare nonlinearities of first order CI functions. In second,
third and fourth columns we respectively provide nonlinearities of nonoptimized
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(m+ d < n− 1) functions constructed using the method of [16], optimized func-
tions constructed using the method of [16] and optimized functions constructed
using our recursive method. Each of the entries are <nonlinearity, algebraic
degree>. Note that the Equations (IA), (IIA) provides a clear analysis of when
our nonlinearity is better than that of [16]. The table only illustrates this point
for small values of n.

n nlx(n) nld(n) nlr(n)
8 112, 5 96, 6 108, 6
9 240, 5 192, 7 220, 7
10 480, 6 384, 8 476, 8

n nlx(n) nld(n) nlr(n)
11 992, 7 768, 9 956, 9
12 1984, 7 1536, 10 1980, 10
13 4032, 7 3072, 11 3964, 11

Let us consider the class of all optimized functions constructed using the method
of [16] for each n. Then also the maximum (lower bound on) nonlinearity achieved
is 96, 208, 448, 896, 1792, 3584 for n from 8 to 13 respectively. Column 4 of the
table shows that the nonlinearities obtained by our method are better.

Example 1. The class of functions constructed by our recursive method contains
significantly different functions. As a simple example for n = 10, and m = 1,
let f1 = (h, (Q, c), (Q, r)) and f2 = (h, (R, c), (R, r)), where h ∈ Ω8 and is
modified from bent functions as in Construction 1. As a concrete example, h =⊕4

i=1 XiYi ⊕ X1X2X3X4 ⊕ X1 . . .X4Y1 . . . Y4. Then both f1, f2 contains 8 terms
of degree 8. Moreover, the function f1⊕f2 is nondegenerate and contains 14 terms
of degree 8. The algebraic normal forms of f1, f2 and f1 ⊕ f2 are complicated
and too long to be written down here.

Next we compare the performance of our construction with [5]. In [5, Section 5],
balanced g ∈ Ω9 with nl(g) = 224, correlation immunity of order 2 and degree
6 has been reported. The function is optimized with respect to Siegenthaler’s
inequality. The function g has the representation (f, (Q, c), (Q, c)), where f ∈
Ω7 and has degree 6 (only one term) and nonlinearity 56. It was remarked
in [5, Example 5] that g is the representative of all such functions obtained
which are well-suited for stream cipher application. Using this function f as
our initial function, one can construct more functions of the form (f, S1, S2) as
in Corollary 1, with the same parameters as g above. As an example one can
construct a function of the form (f, (Q, r), (Q, c)), which contains 6 terms of
degree 6. However, it seems difficult to get such good functions f for a larger
number of input variables. The particular function f ∈ Ω7 reported in [5, Section
5] was obtained by exhaustive search over a particular subset (the idempotents)
of Boolean functions. It seems infeasible to carry out such an exhaustive search
for functions of larger number of input variables. Using our method from scratch,
if one starts with a bent function f1 ∈ Ω6 and apply Construction 1, we get
a balanced, second order correlation immune function g1 with degree 6 and
nl(g1) = 216. The direct construction method in [16] provides a nonlinearity
29−1 − d29−2−2

2+3 e 22+1 = 200.
We next compare the nonlinearities obtained in [11] with the following simple

construction. Algebraic degree and optimization criteria is not considered in [11]
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and hence we also do not consider it for this comparison. For n even, we start
with a bent function h of (n − 2) variables and construct F represented by
(h, S1, S2) as in Theorem 10. Then F is a balanced correlation immune function
of order 1 and nl(F ) = 4nl(h). For n odd, we start with a best known example
of balanced nonlinear function h of (n − 1) variables as in [11, Table 1] and
construct F represented by any sequence of length one. Then by Corollary 1,
F is a balanced first order correlation immune function with nl(F ) = 2nl(h).
We compare the result using 3 tuples (n, Nonlinearity [11], Our Nonlinearity) :
(8, 112, 112), (9, 232, 232), (10, 476, 480), (11, 976, 984), (12, 1972,
1984). Note that, better nonlinearity for functions of 10 variables and onwards
can be found using a deterministic technique compared to an evolutionary one.

The recursive method proposed here can be used effectively to construct
functions with large number of variables. As an example, if we take a bent
function h ∈ Ω20 and consider a F represented by a sequence (f, S1, . . . , S30)
satisfying Theorem 11, then F ∈ A50(29) with nonlinearity 249 − 239 − 230

and deg(F ) = 20. Currently, there are no known methods which can construct
such an optimized function with better or even equal nonlinearity. Direct im-
plementation of F using truth table will take 250 bits, which is not feasible
to store. However, using the representation of F as (f, S1, . . . , S30), it is pos-
sible to implement F using 1 Megabit, i.e., 128 Kilobytes by implementing
f by truth table. Moreover, if f is of the form f(X1 , . . . , X10, Y1, . . . , Y10) =
10⊕

i=1

XiYi ⊕ g(Y1, . . . , Y10) ⊕ X1 . . .X10Y1 . . . Y10, implementation of f requires

1 Kilobit (128 bytes) of memory as we need to represent g by truth table only.
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