
Performance Analysis of Broadcasting Algorithms

on the Intel Single-Chip Cloud Computer

John Matienzo, Natalie Enright Jerger

Department of Electrical and Computer Engineering

University of Toronto

Toronto, Ontario, Canada

{matienz1, enright}@eecg.toronto.edu

Abstract—Efficient broadcasting is essential for good perfor-
mance on distributed or multiprocessor systems. Broadcasts are
commonly used to implement message passing synchronization
primitives, such as barriers, and also appear frequently in the
set up stage of scientific applications. The Intel Single-Chip Cloud
Computer (SCC), an experimental processor, uses synchronous
message passing to facilitate communication between its 48
cores. RCCE, the SCC’s message passing library, implements
broadcasting in a traditional way: sending n−1 unicast messages,
where n is the number of cores participating in the broadcast.
This implementation can hinder performance as the number of
cores participating in the broadcast increases and if the data being
sent to each core is large. Also in the RCCE implementation, the
broadcasting core is blocked from doing any useful work until
all cores receive the broadcast.

This paper explores several broadcasting schemes that take
advantage of the resources of the SCC and the RCCE library.
For example, we explore a scheme that propagates a broadcast
to multiple cores in parallel and a scheme that parallelizes off-
chip memory accesses which would otherwise need to be done
sequentially. Our best broadcast scheme achieves a 35× speedup
over the RCCE implementation. We also demonstrate that
our improved broadcasting substantially reduces the time spent
on communication in some benchmarks. While the broadcast
schemes presented in this paper are implemented specifically for
the SCC, they provide insight into the more general problem of
broadcast communication and could be adapted to other types
of distributed and multiprocessor systems.

I. INTRODUCTION

Throughout the last decade, the computing industry has
seen an increasing number of cores integrated on a chip thanks
to Moore’s Law. Recently, core counts have numbered in the
dozens [1]–[3] and we are rapidly approaching systems with
hundreds of cores on a single die. For example, the Single-
Chip Cloud Computer (SCC) experimental processor [1] is a
48-core ‘concept vehicle’ created by Intel Labs as a platform
for many-core software research. Systems such as this allow
researchers to explore application development and better un-
derstand hardware and software bottlenecks that could impact
the performance of future many-core systems. The SCC has
48 cores, arranged as 24 tiles connected via a 2D mesh
on-chip network (OCN). Notably, the SCC does not have
hardware support for cache coherence. Like many distributed
systems, the Intel SCC uses message passing as its primary
programming paradigm.

Many-core platforms such as the SCC promise tremendous
compute power that can be leveraged by splitting computation

across multiple processors. Ideally, this division would result
in speedup equivalent to the number of nodes in the system.
However, as the number of cores scale, the performance of
the raw compute can be overshadowed by overheads such as
inter-core communication. In addition to the already non-trivial
task of writing correct parallel applications, programmers must
now focus on optimizing and/or minimizing communication to
ensure acceptable program run time.

The two prevalent programming paradigms for multipro-
cessor systems are shared memory and message passing. As
scalable cache coherence remains an open problem [1], [4]–[6],
it is worthwhile to consider the implementation of alternatives.
The SCC uses message passing to facilitate communication
between cores. The library provided with the SCC is called
RCCE; RCCE implements a subset of MPI features [7].
We focus on broadcasting as it can represent a significant
bottleneck in application performance; for example, once all
cores have reached a barrier, we would want a very fast
broadcast to enable all cores to move past the barrier and
resume useful work. Although RCCE provides programmers
with straightforward methods to communicate among cores,
the current broadcasting scheme implemented by RCCE is
slow. It uses n− 1 unicasts (where n is the number of cores)
to replicate a message to all cores [8]. This broadcasting
scheme does not scale well as the time for a message to
reach all cores increases linearly as the number of broadcast
participants increase. Thus, we present and evaluate several
new broadcasting protocols, each with two goals: (1) to provide
better performance than the current RCCE broadcast, and (2) to
scale well if the number of cores participating in the broadcast
increases.

The main strategy for four of our implemented broadcasts
is to utilize cores that have already received the broadcast. This
allows the original broadcasting core to be responsible for only
sending the message to a few processors (as opposed to all
of them). The cores that have received the message are then
responsible for forwarding the message to the other processors,
which happens in parallel. Sections III-B to III-E describe
these broadcasting algorithms in more detail. The remaining
broadcasting protocols presented utilize concurrent accesses to
a specific memory location (the memory location that contains
the message) as the main implementation strategy. The best
broadcast implemented achieves an overall speedup of 35×
over the RCCE broadcast for large messages.

(0,0)

 0

(1,0)

 1

(2,0)

 2

(3,0)

 3

(4,0)

 4

(5,0)

 5

(6,0)

 6

(7,0)

 7

(8,0)

 8

(9,0)

 9

(10,0)

 10

(11,0)

 11

(0,1)

 12

(1,1)

 13

(2,1)

 14

(3,1)

 15

(4,1)

 16

(5,1)

 17

(6,1)

 18

(7,1)

 19

(8,1)

 20

(9,1)

 21

(10,1)

 22

(11,1)

 23

(0,2)

 24

(1,2)

 25

(2,2)

 26

(3,2)

 27

(4,2)

 28

(5,2)

 29

(6,2)

 30

(7,2)

 31

(8,2)

 32

(9,2)

 33

(10,2)

 34

(11,2)

 35

(0,1)

 36

(1,3)

 37

(2,3)

 38

(3,3)

 39

(4,3)

 40

(5,3)

 41

(6,3)

 42

(7,3)

 43

(8,3)

 44

(9,3)

 45

(11,3)

 47

(10,3)

 46

P54c

Core

P54c

Core

16KB Message

Passing Bu!er

Router

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r
0

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r
1

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r
3

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r
2

Fig. 1. Intel SCC Tile Layout.

II. BACKGROUND

This section provides a high-level overview of the Intel
SCC architecture, relevant details on Intel’s Message Passing
Interface (MPI) library, RCCE, and gives an overview of how
RCCE handles messages.

A. Intel SCC

The Intel SCC’s 48-core architecture is arranged in a 24-
tile mesh, as depicted in Figure 1. Each tile (shaded in grey)
contains two P54c cores, with 16KB of L1 instruction and data
cache, 256KB of L2 cache per core, special on-chip memory
known as the message passing buffer (MPB), and a router. The
MPB on each tile is 16KB, for a total of 384KB of on-chip
memory on the SCC [1]. There are four memory controllers
that the SCC uses to access off-chip memory. Specifically, tiles
are divided into four quadrants, and each quadrant has one
designated tile that communicates with the memory controller.

B. RCCE

There are several message passing libraries implemented
for the Intel SCC. One such library provided by Intel is
RCCE [7]. RCCE is a synchronous message passing library
that contains most MPI functionality. To facilitate fast
communication of messages between cores, RCCE has cores
communicate with each other by writing to and reading from
the MPB. Messages are sent/received using a “pull” based
method [9].

When a core wants to send a message to another core:

1) The message is copied from the sending core′s private
off-chip memory to its portion of the MPB

2) The sending core notifies the receiving core of the
message by setting a flag that is local to the receiving
core (receiving core waits until the flag is set)

3) Receiving core copies message from the sending the
core’s MPB to its own private off-chip memory

4) Receiving core notifies the sending core once copying
is complete by setting a flag that is local to the
sending core

If the message is too big to fit in the sending core’s MPB,
the above process is repeated until the whole message is sent.

RCCE provides a simple MPI interface and a more ad-
vanced interface for programmers to use1. One of the main
differences is that the advanced interface exposes the MPB to
the user while the simple interface only exposes the traditional
sending/receiving MPI functions. In the simple interface, the
library takes care of the intricacies of the MPB. This paper uses
the advanced interface, as some manipulation of the message
passing buffer is needed for certain broadcasts.

III. BROADCASTING ALGORITHMS

This section describes: (1) the current broadcast implemen-
tation in RCCE, and (2) the new broadcasting algorithms that
have been implemented using RCCE.

A. RCCE Broadcast

The broadcasting algorithm implemented in RCCE simply
sends a unicast message to each core participating in the
broadcast. This is highly inefficient, especially for synchronous
message passing. Since the sending core must block, the last
core will have to wait (n − 1) × TLatency to receive the
broadcasted message (where n is the number of cores in the
broadcast and TLatency is the average time to send a message
through the on-chip network to a single core).

B. Parallel Broadcast

Our first implementation, the parallel broadcast

algorithm takes advantage of cores that have already received
the broadcasted message. This allows the broadcasted mes-
sage to propagate to other cores in parallel. Specifically,
the parallel broadcast scheme has the sending core
broadcast the message to adjacent cores (see Figure 2 (a)).
Once adjacent cores receive the message, each adjacent core
then sends the message to cores that are adjacent to it (see
Figure 2 (b)). Adjacent cores are defined as those cores located
north, south, east and west of the sending core. Messages
are sent through the network in an XY fashion; for example,
a message received from an adjacent core to the south will
forward the message north but not east and west. This ensures
that each core only receives one copy of the broadcast. This
forwarding process repeats until all cores receive the message.

C. Optimized Parallel Broadcast

The optimized parallel broadcast is similar to
the parallel broadcast, except that it takes cores located at the
edge of the mesh into special consideration. These edge cores
have fewer adjacent cores to send their broadcast to which
results in less parallelism. As a result, it takes fewer parallel
hops to propagate a broadcast that originates in the center of
the mesh compared to a broadcast that originate from a core
located in the corner of the mesh. For example, it takes 8
parallel hops if the message is broadcast from a center core
compared to 15 parallel hops if the message is sent from
the left corner core. To address this discrepancy, if an edge
core wishes to send a broadcast, the optimized parallel

broadcast has that core first send the message to a center
core (see Figure 3). Once the center core receives the message,

1These interfaces are referred to as non-gory and gory respectively in the
SCC documentation.

(a) Message propagation at

Time = 0

(b) Message propagation at

Time = 1

(c) Message propagation at

Time = 2

(d) Message propagation at

Time = 3

(e) Message propagation at

Time = 4

(f) Message propagation at Time

= 5

(g) Message propagation at

Time = 6

Fig. 2. Parallel Broadcast Propagation. The broadcast source node is shown
in grey. The number of cores shown is simply for illustration purposes.

Fig. 3. Optimized Parallel Broadcast sending message to a more efficient
center core.

it is then responsible for initiating the parallel broadcast. The
location of this center core is determined based on the set of
cores participating in the broadcast.

D. Tiled Parallel Broadcast

Each tile on the SCC has two cores and a MPB. The
MPB in each tile is 16KB. RCCE divides the MPB equally
among the two cores in each tile (8KB per core). Normally,
when messages are sent, 4KB of the sending core’s 8KB
MPB are used for the message (the other 4KB are reserved
for sending and receiving synchronization flags). Instead of
only using 4KB for sending a broadcast message, the tiled
parallel broadcast implementation allows the sending
core to use 8KB. It uses its own 4KB and borrows 4KB from
the adjacent core’s MPB. The main advantage for utilizing
more space in the MPB is that there is less blocking/stalling

(a) Message propagation at

Time = 0

(b) Message propagation at

Time = 1

(c) Message propagation at

Time = 2

(d) Message propagation at

Time = 3

(e) Message propagation at

Time = 4

Fig. 4. Tiled Parallel Broadcast Propagation. Tiles are shown in grey. Once
one core in a tile receives the broadcast, it first forwards the message to the
adjacent tile and then sends the message to the adjacent core within its own
tile.

Fig. 5. MPB Broadcast Propagation.

when sending large messages, compared to the parallel and
optimized parallel broadcasts.

The tiled parallel broadcast has a similar
broadcast pattern to the parallel broadcast pattern, except that
messages are sent to adjacent tiles, instead of adjacent cores.
Specifically, the left core of each tile sends the message
only to the left core of each adjacent tile. Once a tile has
broadcast the message to adjacent tiles, it then sends the
message to the other core in its tile (in this case the right core).
The tiled parallel broadcast pattern is depicted in
Figure 4. The tiled parallel broadcast increases
the parallelism of the broadcast (compared to the parallel
broadcast) and reduces overall mesh traffic by leveraging intra-
tile communication.

E. Optimized Tiled Parallel Broadcast

The optimized tiled parallel broadcast is
similar to the tiled parallel broadcast. However,
like the optimized parallel broadcast, it gives spe-
cial consideration to edge tiles by forcing them to first send
their message to a center tile in order to increase the amount
of parallelism.

Core #:

 0

 1

 2

 3

 4

Copy part of message from private

memory to my MPB

send ready !ag

to all cores

Copy contents of core 0’s MPB to

my private memory

send "nish !ag

to core 0

Copy contents of core 0’s MPB to

my private memory

send "nish !ag

to core 0

Copy contents of core 0’s MPB to

my private memory

send "nish !ag

to core 0

Copy contents of core 0’s MPB to

my private memory

send "nish !ag

to core 0

Copy part of message from private

memory to my MPB

send ready !ag

to all cores

Copy contents of core 0’s MPB

my private memory

Copy contents of core 0’s MP

my private memory

Copy contents of core 0’s M

my private memory

Copy contents of core 0’s

my private memory

(a) Sending core copies message

from its private memory to its MPB.

(b) Receiving cores copy message from

sending core’s MPB to their private

memories.

(c) Process repeats until whole message is re-

ceived.

Fig. 6. MPB Broadcast Timing Diagram.

F. Message Passing Buffer (MPB) Broadcast

Recently, Chandramowlishwaran et al. [10] proposed a
broadcasting optimization that we refer to as the MPB

broadcast. The MPB broadcasting scheme has all receiving
cores read the sending core’s MPB at the same time, as
depicted in Figure 5. A timing diagram is shown in Figure 6.
Figure 6(a) shows the sending core copying the message from
its private memory to the MPB. It then signals the receiving
cores that there is a message to be received. Figure 6(b)
depicts the receiving cores copying the message from the
sending core’s MPB to their own private memories. We
have reimplemented this MPB broadcast as it provides an
interesting point of comparison. Furthermore, we propose two
broadcasting algorithms that leverage similar insights as the
MPB broadcast and provide further optimization.

G. Off-Chip Broadcast

The off-chip broadcast is similar to the MPB
broadcast; again each core reads the broadcast message at the
same time. However, instead of the sending core copying the
message to its MPB, it copies the entire message from its
private memory to shared off-chip memory. Receiving cores
then copy the entire message from off-chip shared memory
to their own private memory. The main strategic advantage
of this broadcast is that there is no need for extra handshak-
ing/blocking for large messages since the messages do not need
to be split into 4KB chunks to accommodate the small MPB
size.

H. Modified MPB Broadcast

The modified MPB broadcast or ModMBP is sim-
ilar to the MPB broadcast, but it has two distinguishing
features:

1) Temporary broadcasting cores are created to off-load
network traffic from the broadcasting core

2) Receiving cores’ MPBs are utilized (normally only
the sending core’s MPB is utilized) to allow paral-
lelization of off-chip memory writes (done by the
receiving cores) with off-chip memory reads (done
by the original sending core)

(a) Message propagation at

Time = 0

(b) Message propagation at

Time = 1

Fig. 7. ModMPB Broadcast Propagation.

The total number of broadcasting cores (including the
original) is ⌈n/12⌉, where n is the number of cores in the
broadcast. The number of broadcasters is optimized for the
case where all 48 cores on the SCC are enabled, which
translates to 4 broadcasting cores, one for each row of cores.
These broadcasting cores are located near memory controllers
0 and 1, or the leftmost core of each row. Experiments showed
that the placement of the broadcasting cores did not have any
impact on the performance of the broadcast. Increasing the
number of broadcasting cores past 4 starts to negatively impact
performance. Figure 7(a) shows the original broadcasting core
sending the message to designated temporary broadcasting
cores and to a subset of cores. Figure 7(b) shows the
temporary cores sending the messages to the subset of cores
that they are responsible for.

Figure 8(c) illustrates how this broadcast is able to hide
off-chip memory writes done by the receiving core with off-
chip memory reads done by the sending core. Essentially,
because the receiving cores copy the message to their MPB
first before copying data to private memory, the sending core
can start copying new parts of the message to its MPB once
the receiving cores’ have finished copying the message to their
MPB. This is a key feature in this broadcast implementation.

IV. EVALUATION

We have implemented all of the broadcasting schemes
described in the previous section on the Intel SCC. We use
the default configuration of cores running at 533MHz and

Core #:

0 (broadcaster)

1

2

.

.

12 (temp.

 broadcaster)

13

14

Copy part of message from private

memory to my MPB

send ready !ag to

all temp. bcasters

send ready !ag

to cores 1 to 11

copy contents of core

0’s MPB to my MPB

send "nish

!ag to core 0

send ready !ag

to cores 13 to 23

copy contents of my MPB to my

private memory

copy contents of core

0’s MPB to my MPB

send "nish

!ag to core 0

copy contents of my MPB to my

private memory

Copy part of message from private

memory to my MPB

copy contents of core

0’s MPB to my MPB

send "nish

!ag to core 0

copy contents of my MPB to my

private memory

send ready !ag to

all temp. bcasters

send ready !ag

to cores 1 to 11

copy contents of core

12’s MPB to my MPB

send "nish

!ag to core 12

copy contents of my MPB to my

private memory

copy contents of core

12’s MPB to my MPB

send "nish

!ag to core 12

copy contents of my MPB to my

private memory

copy contents

0’s MPB to my

copy content

0’s MPB to m

copy contents of core

0’s MPB to my MPB

send "n

!ag to c

(a) Sending core copies message

from its private memory to its

MPB and notifies temp. cores

(plus a subset of other receiving

cores) that a message is ready

(b) Temporary broadcasting

cores plus a subset of cores

copy message from sending

core’s MPB to their MPBs

(c) Off-chip memory writes are

parallelized with off-chip mem-

ory read

(d) Process repeats until whole

message is received

Fig. 8. ModMPB Broadcast Timing Diagram

off-chip memory running at 800MHz. RCCE version 1.4.1.3
was used to implement, compile, and run our benchmarks. We
use four micro-benchmarks to assess the performance (latency)
of the broadcasts. We focus much of our analysis on micro-
benchmarks as they enable us to tease out subtle differences
between the broadcasting schemes. These micro-benchmarks
are presented in Table I. However, understanding the impact
of broadcast latency on real applications is also important. We
present results for three benchmarks: matrix multiply, n-body
and bucket sort. For these benchmarks, we compare RCCE
against the best performing broadcast implementation for large
messages as determined by the micro-benchmarks. We use
execution time as the metric for comparison. In addition, we
also compare average power for these two implementations.

TABLE I. DESCRIPTION OF MICRO-BENCHMARKS

Benchmark Description

Message Size Vary message size from 1B to 1MB

Message Source Vary the location of the core sending the broadcast, with

1MB messages

Destinations Vary the number of receiving cores, with 1 MB messages

Background traffic Inject additional unicast traffic into the network

A. Impact of Message Size

Figure 9 shows the latency results as we increase the size
of the broadcast message. The sending core for this benchmark
is the left corner core (core 0 in Figure 1) and the number of
participants in the broadcast is 48. The ModMPB implementa-
tion achieves the lowest latency with larger message sizes. For
1MB messages, ModMPB achieves a 35× speedup compared
to RCCE. The MPB broadcast achieves a speedup of 32×
for 1MB messages (compared to RCCE). The off-chip

broadcast does well for message sizes smaller than 64
bytes, but performs poorly for larger messages. Based on our
experiments, we speculate that this behaviour is caused by
contention of the sending core’s MPB. All the other broadcasts

0.0004883

0.0009766

0.0019531

0.0039063

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

1

2

4

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

T
im

e
 (

s
e

c
o

n
d

s
)

Message Size (bytes)

Offchip

MPB

ModMPB

Tiled-Opt

Tiled

Parallel-Opt

Parallel

RCCE

Fig. 9. Microbenchmark results: Broadcast latency when varying message
size from 1B to 1MB.

except the off-chip one use the sender’s MPB to get the mes-
sage and also use the same MPB for synchronization flags. The
off-chip broadcast uses the on-chip MPB for synchronization,
but uses off-chip memory for the broadcasted message; thus,
there are fewer accesses to the sender’s MPB.

B. Impact of Message Source Location

Figure 10 shows the latency results for each broadcasting
scheme when using a different core to initiate the broadcast.
Physical placement in the network can have an impact on both
latency and congestion [11]; a broadcasting core can produce a
hot-spot in the network. Therefore, it is interesting to evaluate
the impact of source placement. For this test, the message size
is 1MB and the number of cores participating in the broadcast
is 48.

The results for this micro-benchmark shows that most
broadcasts achieve similar latency regardless of source lo-
cation. The only exception is the Tiled Parallel and
Parallel broadcasts. For these broadcasts, we see that cores

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e
 (

s
e

c
o

n
d

s
)

Core Number

Offchip

MPB

ModMPB

Tiled-Opt

Tiled

Parallel-Opt

Parallel

RCCE

Fig. 10. Microbenchmark results: Broadcast latency when varying broad-
casting source core.

with higher latency are those not located in the center of the
mesh. This is the problem that the optimized versions fix.
By redirecting edge broadcast to the center of the mesh, the
optimized versions have fewer parallel hops leading to lower
latency. Our results show that a well-designed broadcast can
be placement agnostic which will lead to more predictable
performance in these systems.

C. Impact of the Number of Participating Cores

Figure 11 shows the latency results when each broadcast
has a varying number of participants. The message size is
1MB and core 0 is the source of the broadcast. This micro-
benchmark indicates that neither RCCE nor the off-chip

broadcast scale well as the number of cores increases. In
contrast, the ModMPB and MPB broadcasts are fairly stable.
Both these broadcasts exhibit small fluctuations between values
of 0.05 and 0.06 seconds. Their stable latencies indicate that
they will scale well to even larger systems.

Figure 11 reveals a peculiar pattern for the optimized

tiled parallel and optimized parallel broad-
casts. These broadcasts see an increase in latency as the
number of cores increases and then reveal periodic decreases in
latency. This phenomenon is attributed to how these broadcasts
choose the “center” core before parallelizing the broadcast.
When the optimized broadcast selects a center core, it does
so by determining the maximum perfect rectangle in the
system. An example for an 18-core broadcast is shown in
Figure 12. The maximum perfect rectangle is shaded in grey
in Figure 12(a). Cores in this rectangle receive the broadcast

0

0.5

1

1.5

2

2.5

3

3.5

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e
 (

s
e

c
o

n
d

s
)

Number of Cores

Offchip

MPB

ModMPB

Tiled-Opt

Tiled

Parallel-Opt

Parallel

RCCE

Fig. 11. Microbenchmark results: Broadcast latency when varying number
of participating cores.

(a) Corner core sends to its broadcast to center core of
largest perfect rectangle.

(b) Parallel Broadcast happens within perfect rectangle.

(c) Cores outside this rectangle receive the message via
unicasts.

Fig. 12. Optimized Parallel Broadcast with 18 active cores. The maximum
perfect rectangle is shown in light grey. Cores not participating in the broadcast
are marked with a “x”.

via the parallel method (Figure 12(b)). However, any cores
outside the rectangle receive the message via unicasts from
the broadcasting core (Figure 12(c)).

D. Impact of Background Traffic on Broadcasts

Figure 13 shows the effect of background traffic on each
broadcasting scheme. For this test, each core writes 1MB of
data to off-chip memory at an interval of x microseconds.
Core 18 is chosen to be the broadcaster since the router
associated with its tile’s is subjected to the smallest amount of
on-chip network traffic when the traffic pattern is dominated
by off-chip requests. Core 18 (and other center cores) will
experience less interference because the SCC is divided into
four quadrants; the cores of each quadrant access the off-chip
memory controller attached to that quadrant [12].

Intuitively, the broadcasts should perform better when there

0

5

10

15

20

25

1 10 100 1000 10000 100000 1000000 10000000

T
im

e
 (

s
e

c
o

n
d

s
)

Injection Interval (microseconds)

Mod-MPB

Off-Chip

MBP

Tiled-Opt

Tiled

Parallel-Opt

Parallel

RCCE

Fig. 13. Microbenchmark results: Impact on broadcast latency of background
traffic in network.

0

10

20

30

40

50

60

70

80

R
C

C
E

M

o
d

M
P

B

P
2

P
R

C
C

E

M
o

d
M

P
B

P

2
P

R
C

C
E

M

o
d

M
P

B

P
2

P
R

C
C

E

M
o

d
M

P
B

P

2
P

R
C

C
E

M

o
d

M
P

B

P
2

P
R

C
C

E

M
o

d
M

P
B

P

2
P

R
C

C
E

M

o
d

M
P

B

P
2

P
R

C
C

E

M
o

d
M

P
B

P

2
P

R
C

C
E

M

o
d

M
P

B

P
2

P
R

C
C

E

M
o

d
M

P
B

P

2
P

T
im

e
 (

s
e

c
o

n
d

s
)

Communication

Compute

100x100 200x200 300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000

Fig. 14. Matrix multiply execution time broken down into time spent on
compute and communication for various input matrix sizes.

is less background traffic (a longer interval period). This
assumption is validated looking at the right-hand side of Fig-
ure 13. Interestingly, the off-chip broadcast is almost
impervious to background traffic. In addition, when studying
the effects of the broadcasts on the latency of the back-
ground traffic (not shown), results revealed that the off-chip
broadcast affected background traffic the most. The stable
performance of the off-chip broadcast comes at the cost of
increased latency for background traffic, which is caused by the
significant pressure being placed on the memory controllers.

Based on these evaluations, we determine that the ModMPB
broadcast implementation has superior performance. In the
following subsections, we will compare the performance of
ModMPB to RCCE for three applications.

E. Matrix Multiply

The integer matrix multiply benchmark is implemented
using the following algorithm:

1) Matrix A and Matrix B are broadcast to all cores by
the master core

2) Each core calculates 1/48 rows of the resultant matrix
(the master core is responsible for any left over rows)

3) Each core sends their results back to the master core

Figure 14 shows the execution time of calculating the
product of two matrices on the SCC for various matrix sizes,
using the ModMPB, and RCCE broadcasts. A point-to-point
(P2P) implementation modifies step 1 of the above algorithm
slightly. Matrix B is still broadcast to all cores using ModMPB,
but for Matrix A, only elements needed by a remote core are
sent to that core.

For this benchmark, the bottleneck is communication.
Between the ModMPB, RCCE and P2P implementations,
compute time remains the same for a given matrix size.
However, due to communication overheads, matrix multiply
using the RCCE broadcast takes up to 74 seconds to multi-
ply two 1000x1000 matrices, while ModMPB takes only 20
seconds. For the P2P implementation, communication latency
slightly outperforms ModMPB. For the 1000x1000 product
matrix, P2P communication latency is better than ModMPB by
0.04 seconds. ModMPB’s highly optimized design results in
performance that is competitive with the P2P implementation.

0

100

200

300

400

500

600

R
C

C
E

M
o

d
M

P
B

R
C

C
E

M
o

d
M

P
B

R
C

C
E

M
o

d
M

P
B

R
C

C
E

M
o

d
M

P
B

R
C

C
E

M
o

d
M

P
B

R
C

C
E

M
o

d
M

P
B

R
C

C
E

M
o

d
M

P
B

R
C

C
E

M
o

d
M

P
B

T
im

e
 (

s
e

c
o

n
d

s
)

Communication

Compute

 512 1024 2048 4096 8192 16384 32768 65536
Number of Particles

Fig. 15. N-Body execution time broken down into time spent on compute and
communication for varying numbers of particles (each particle is 32 bytes).

F. N-Body Problem

The N-Body benchmark is implemented in a brute-force
fashion using the following algorithm:

1) Master broadcasts all particle data to other cores
2) Each core performs calculations on a subset of parti-

cle data
3) Each core sends their results back to the master

Figure 15 shows the execution time of running the N-Body
problem for 10 iterations. Unlike for matrix multiply, the N-
Body problem is bottlenecked by compute, not communication
(which makes it an excellent algorithm for the SCC). However,
communication latency is still non-trivial. For 65K particles,
there is a difference of ∼50 seconds between the RCCE and
ModMPB implementations, which is attributed to communi-
cation latency.

G. Bucket Sort

When sending data to a subset of cores, using a broadcast
can sometimes be simpler than using several point-to-point
messages because the programmer does not need to determine
which cores are the recipients. But can broadcasting provide
competitive performance? We use the bucket sort benchmark
to answer this question.

Unlike the brute-force version of the N-Body problem,
bucket sort does not necessarily need the master core to
disseminate all of the data to each core. However, calculating
what data each peer needs is complicated and redundant. So,
instead of the master core performing those calculations, the
programmer could simply send all data to all peers, allowing
the destination peer to determine whether the data it received
is useful. For the bucket sort algorithms presented, there are
48 buckets and each core is responsible for a certain bucket.
Each bucket is representative of a predetermined range, e.g. a
bucket could hold numbers ranging from 256-511. Table II
presents two possible algorithms for bucket sort.

In Figure 16, we compare the latency of point-to-point
communication (Algorithm 1: Step 1) to initially broadcasting
all data (Algorithm 2: Step 1). For Algorithm 2, we compare
both RCCE and ModMPB. Using RCCE to broadcast the
data severely limits scalability; for even a small number of
elements, the programmer would be better off implementing
Algorithm 1. However, with ModMPB, Algorithm 2 becomes
a feasible option. Thus, with ModMPB, if using a broadcast

Algorithm 1 (No broadcast required):

1. Master core sends a subset of unsorted numbers to each
core

2. Cores place the numbers given to them in their respective
buckets

3. Each core sends the buckets to the respective core that
owns that bucket

4. Once a core receives all of its buckets from the other cores,
it combines the buckets and sorts all the numbers within
the combined bucket

5. All cores send their sorted buckets to the master core

Algorithm 2:

1. Master core broadcasts all unsorted numbers to all cores
2. Cores take ownership of 1/48 of the unsorted array and

places those numbers into buckets
3. Each core sends the buckets to the respective core that

owns that bucket
4. Once a core receives all of its buckets from the other cores,

it combines the buckets and sorts all the numbers within
the combined bucket

5. All cores send their sorted buckets to the master core

TABLE II. PSEUDOCODE FOR TWO BUCKET SORT ALGORITHMS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1000 10000 100000 1000000 10000000

T
im

e
 (

s
e

c
o

n
d

s
)

Number of Elements

P2P

RCCE

ModMPB

Fig. 16. Bucket sort communication latency (comparing bucket sort al-
gorithms that use broadcasts to an algorithm that uses only point-to-point
communication).

would substantially reduce the burden placed on the program-
mer to produce optimized code, this is an option. Efficient
broadcasting can simplify programming with negligible perfor-
mance loss in this case compared to smaller, less bandwidth-
intensive point-to-point messages. Although this example is
straightforward, one could imagine scenarios where efficiently
partitioning the data is more difficult.

H. Average Power

Figure 17 shows the average power for the SCC including
memory controllers, on-chip network and cores for both the
RCCE and ModMPB broadcasts when sending a 1MB message
from core 0 to an increasing number of recipient cores. Power
readings were taken from the time the broadcast was initiated
up to the point when last core received the message. The results
show that ModMPB is more power efficient than the RCCE
broadcast for large numbers of cores. In addition, as ModMPB
executes the broadcast faster, it will consume less energy.

0

10

20

30

40

50

60

70

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

P
o

w
e

r
(W

)

Number of Cores

RCCE

ModMPB

Fig. 17. Power consumption for RCCE and ModMPB broadcasts.

V. DISCUSSION

We have presented results for several broadcasting imple-
mentations on the Intel SCC. Using both microbenchmarks and
real applications, we study the impact of various broadcasting
algorithms on performance. In general, we found that the
ModMPB broadcast results in superior performance for a range
of experiments. However, to optimize the full range of message
sizes, one could employ a hybrid approach that selects between
the off-chip implementation for small messages, MPB for
medium sized messages and ModMPB for larger messages
sizes. We have not included results for this hybrid approach
but found them to be consistent with the performance for each
algorithm in their optimal operating range.

Although we have focused on the SCC platform and have
leveraged specific hardware features of this platform, the in-
sights from this work can be extended to other types of shared
memory and distributed systems. For example, forwarding the
message from an edge core to a center core before initiating a
broadcast would likely improve performance on any network
topology that lacks edge symmetry. By studying the impact
of message sizes on broadcast performance, we see that the
amount of on-die message passing buffer storage is important.
This analysis has implications for future hardware design
decisions.

Finally, we demonstrate that efficient broadcasting may
have an impact on how algorithms are implemented on
many-core platforms. We demonstrate that an algorithm using
broadcasting requires less programmer effort and is able to
achieve comparable performance to one with only point-to-
point messages using our optimized broadcasting strategy,
ModMBP. Although broadcasts may occur infrequently, they
have significant performance impacts. Efficient broadcast sup-
port may result in an increased use of broadcasting to ease the
burden on programmers.

VI. RELATED WORK

In this section, we discuss related work in communication
and broadcasting on the SCC, optimizations to broadcasting in
other message passing systems and on-chip network optimiza-
tions for broadcasts.

A. Broadcasting on the SCC

The SCC represents an interesting communication architec-
ture in the space of many-core chips. As such, there has been
interest in studying the behaviour of communication within the
on-chip network and utilizing the message passing hardware.

Performance analysis of RCCE focusing on varying message
sizes and message buffer availability has been explored [13].
Optimizations that exploit the special SCC hardware and focus
on very small messages including collective operations have
been proposed [14].

Broadcast and gather performance [15] focusing on a small
number of message sizes and the number of cores involved
in the broadcast have been analyzed. Their characterization of
RCCE broadcast performance is consistent with ours. Furst and
Coskun analyze power and performance of the RCCE message
passing library [16]. In this work, they consider a broadcast
scheme similar to the RCCE broadcast; they measured the IPC
and execution time of sending a broadcast message and found
the IPC peaked at 8 cores, which is substantially fewer than the
cores provided by the SCC. Clearly, optimizing broadcasting
is important to achieve desirable levels of performance and
scalability.

OC-BCast [17] is another efficient broadcasting algorithm;
this algorithm is similar to ModMPB as it also has the receiving
cores copy the message from the sending core’s MPB to their
own MPBs. However, there are a couple distinct differences
between the two broadcasts. In OC-Bcast, each core is respon-
sible for k children while the ModMPB only uses 4 temporary
cores to propagate the message. The other difference is the
handling of large messages. OC-Bcast uses a double-buffer
scheme that pipelines message propagation; this pipelining is
not favorable for parallelizing off-chip memory writes and
off-chip memory reads done by the broadcasting core. This
overlapping is a key feature of ModMPB.

Petrovic et al. also implement an asynchronous broadcast
using interrupts on the SCC [18]. They adapt their OC-BCast
to an asynchronous implementation and then compare it to
their synchronous implementation. Although their work only
examines small message sizes (i.e. only messages that can
fit into the MPB), their work reveals that their asynchronous
broadcast performs better than its synchronous counterpart
with messages 32 bytes or smaller.

In our results, we compare against the MPB

broadcast [10]. The authors report a 22× speed-up
compared to Intel’s current broadcasting implementation. In
our evaluation, a 32× speedup was achieved. This discrepancy
is likely due to the fact that the broadcast message sizes in
the original work are not as large as the broadcast message
sizes that we evaluate.

B. MPI Broadcasts

There has been significant previous research on optimizing
MPI libraries. Prior to the emergence of many-core archi-
tectures, MPI optimizations focused on distributed comput-
ing clusters [19]. One broadcast enhancement proposed by
Barnett et al. is a scatter-gather type approach; information
from the broadcasting core is scattered rather than broadcast,
after which a gather is done by all cores [20]. While this
optimization works on clusters, we suspect that the latency
of confirming that each core received the initial scattered
information followed by each core doing a gather would be
higher compared with an on-chip network that had cores
simply read from one core’s on-chip memory location (even
with network contention).

MPI optimizations have also targeted the Tilera Tile64
architecture [20]. Kang et al. implement a tree-like MPI broad-
cast on the Tile64. This broadcast bears some similarity to
our Parallel broadcast and would likely have similar
performance. Both of these broadcast could be implemented
on either the SCC or the Tile64 since they do not leverage
architecture-specific features.

C. On-Chip Network Support for Broadcasting

Software optimizations for efficient broadcasting can sig-
nificantly improve performance. In addition to these tech-
niques, there has been significant recent research into adding
hardware support for broadcasting to the on-chip net-
work [21]–[23]. By propagating fewer messages and making
intelligent decisions about where to replicate messages in
the network, these optimizations reduce latency by lowering
contention in the network; they can also save power relative
to the multiple unicast approach. Although not implemented
in the SCC hardware, these types of techniques would likely
further enhance the performance and may open up opportu-
nities for hardware/software co-design. Hardware support for
other collective communication mechanisms such as reduction
operations have also received recent attention [22], [24]; these
techniques reduce hotspots and power consumption in the
network. Software optimizations on the SCC for reduction
operations is left as future work.

VII. CONCLUSION

We present several novel broadcasting algorithms with
two goals in mind: (1) providing better performance than
the current RCCE broadcast, and (2) scaling well as the
number of participating cores in the broadcast increases. Most
of the broadcast strategies presented fulfill these two goals.
In particular, the best performing broadcast, ModMPB shows
significant speedups over the RCCE broadcast, especially
with large messages. ModMPB also improves latency when
varying the number of cores participating in the broadcast.
However, ModMPB is not the best performing for all messages
sizes; as a result, we see an opportunity to combine multiple
broadcast implementations. Based on our results, one should
use the off-chip implementation for small messages, MPB
for medium-sized messages and ModMPB for larger messages
sizes. Broadcasts such as ModMBP are tailored to exploit the
specialized hardware on the SCC. Other broadcasts that we
propose are not architecturally dependent on features of the
SCC. We believe these algorithms could be extended and
applied to other systems and networks in order to improve
performance.

ACKNOWLEDGEMENTS

We would like to thank Intel for generously providing us
with access to the SCC platform and associated support. This
research has been supported in part by Natural Sciences and
Engineering Research Council of Canada (NSERC) and the
University of Toronto. We thank the anonymous reviewers for
their valuable feedback on improving this work. We also thank
Sam Vafaee and Steven Gurfinkel for their helpful suggestions.

REFERENCES

[1] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-
Larsen, S. Steibl, S. Borkar, V. K. De, and R. van der Wijngaart, “A
48-core IA-32 processor in 45nm CMOS using on-die message-passing
and DVFS for performance and power scaling,” IEEE Journal of Solid-

State Circuits, vol. 46, no. 1, pp. 73–183, January 2011.

[2] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, J. Brown, and A. Agarwal, “On-Chip Intercon-
nection Architecture of the Tile Processor,” IEEE Micro, vol. 27, no. 5,
pp. 15–31, 2007.

[3] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar, “An 80-tile 1.28TFLOPS network-on-chip
in 65nm CMOS,” in IEEE Int’l Solid-State Circuits Conference, Feb
2007.

[4] M. Martin, M. Hill, and D. Sorin, “Why on-chip cache coherence is
here to stay,” Communications of the ACM, vol. 55, no. 7, pp. 78–89,
2012.

[5] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: An adaptive hybrid memory model for accelerators,” IEEE

Micro, vol. 31, no. 1, pp. 42–55, January/February 2011.

[6] B. Choi, R. Komuravelli, H. Sung, R. Bocchino, S. Adve, and V. Adve,
“DeNovo: Rethinking hardware for disciplined parallelism,” in In Pro-

ceedings of the Second USENIX Workshop on Hot Topics in Parallelism

(HotPar), 2010.

[7] T. Mattson and R. v. d. Wijngaart, “RCCE: a small library for many-core
communication,” Intel, Tech. Rep., January 2010. [Online]. Available:
http://communities.intel.com/servlet/JiveServlet/previewBody/5628-
102-3-22522/RCCE Specification.pdf

[8] R. van der Wijngaart, “Broadcast functions,” http://marcbug.scc-
dc.com/svn/repository/trunk/rcce/src/RCCE bcast.c, December 2010,
[Online; accessed 11-October-2011].

[9] M. Konow, “Single-chip cloud computer - an experimental
many-core processor from Intel labs,” http://communities.
intel.com/servlet/JiveServlet/previewBody/5902-102-1-9037/SCC
Sympossium Mar162010 GML final1123.pdf, March 2010,

presented at the Intel Labs Single-chip Cloud Computer Symposium.

[10] A. Chandramowlishwaran, K. Madduri, and R. Vuduc,
“Performance evaluation of the 48-core SCC processor,”
http://iccs.lbl.gov/assets/docs/ICCS 2011 Talks/34%20Aparna%20
Chandramowlishwaran.pdf, January 2011, presented at the LBNL
ICCS 2011 Workshop.

[11] D. Abts, N. Enright Jerger, J. Kim, D. Gibson, and M. Lipasti,
“Achieving predictable performance through better memory controller
placement in many-core cmps,” in Proceedings of the International

Symposium on Computer Architecture, 2009, pp. 451–461.

[12] Intel., “SCC external architecture specification,”

http://communities.intel.com/servlet/JiveServlet/downloadBody/5852-
102-1-9012/SCC EAS.pdf, Intel, Tech. Rep., November 2010.

[13] T. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core
SCC processor: The programmer’s view,” in Proceedings of the 2010

ACM/IEEE Conference on High Performance Computing, Networking,

Storage and Analysis (SC10), 2010, pp. 1–11.

[14] R. Rotta, T. Prescher, J. Traue, and J. Nolte, “In-memory communica-
tion mechanisms for many-cores–experiences with the Intel SCC,” in
TACC-Intel Highly Parallel Computing Symposium (TI-HPCS), 2012.

[15] P. Gschwandtner, T. Fahringer, and R. Prodan, “Performance analysis
and benchmarking of the Intel SCC,” in IEEE International Conference

on Cluster Computing, 2011, pp. 139–149.

[16] J.-N. Furst and A. K. Coskun, “Performance and power analysis of
RCCE message passing on the Intel single-chip cloud computer,” in
Proceedings of the 4th Many-core Applications Research Community

(MARC) Symposium. Marc Symposium, 2012, pp. 27–32.

[17] D. Petrovic, O. Shahmirzadi, T. Ropars, and A. Schiper, “High-
performance RMA-based broadcast on the Intel SCC,” in Proceedings

of the 24th ACM Symposium on Parallelism in Algorithms and Archi-

tectures, 2012, pp. 121–130.

[18] D. Petrovic, O. Shahmirzadi, T. Ropars, and A. Schiper, “Asynchronous
broadcast on the Intel SCC using interrupts,” in Proceedings of

the 5th Many-core Applications Research Community (MARC)

Symposium, 2012, pp. 24–29. [Online]. Available: http://hal.archives-
ouvertes.fr/docs/00/71/90/22/PDF/MARC6 Asynchronous-Broadcast-
on-the-Intel-SCC-using-Interrupts.pdf

[19] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High

Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[20] M. Kang, E. Park, M. Cho, J. Suh, D.-I. Kang, and S. P. Crago, “MPI
performance analysis and optimization on Tile64/Maestro,” in Workshop

on Multi-core Processors for Space - Opportunities and Challenges,
July 2009.

[21] N. Enright Jerger, L.-S. Peh, and M. Lipasti, “Virtual Circuit Tree Multi-
casting: A case for on-chip hardware multicast support,” in Proceedings

of the International Symposium on Computer Architecture, Jun. 2008,
pp. 229 –240.

[22] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt, “Towards
the ideal on-chip fabric for 1-to-many and many-to-1 communication,”
in Proceedings of the International Symposium on Microarchitecture,
2011, pp. 71–82.

[23] L. Wang, Y. Jin, H. Kim, and E. J. Kim, “Recursive Partitioning
Multicast: A bandwidth-efficient routing for networks-on-chip,” in In-

ternational Symposium on Networks-on-Chip, May 2009, pp. 64 –73.

[24] S. Ma, N. Enright Jerger, and Z. Wang, “Supporting efficient collective
communication in NoCs,” in International Symposium on High Perfor-

mance Computer Architecture, 2012, pp. 165–176.

