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Abstract—A common development task is to take a behavior
exercised in a single function (e.g., a failing unit test), and to
produce an input to the entire program (a system test) with
the same behavior. In security, when the behavior is a potential
vulnerability, this is constructing a proof-of-concept exploit. This
task is challenging because it requires precise reasoning over an
entire program. To automate instances of this task, our approach
uses symbolic execution to generate program inputs that undergo
transformations before they are used. Using information about
the relationship of data structures and transformations in a
program, our approach works backward, one transformation at
a time, and applies optimized symbolic execution to search for
transformation pre-images. Our techniques out-perform standard
symbolic execution by several orders of magnitude, and construct
exploits against two vulnerable document-processing applications
without using source code.

I. INTRODUCTION

Software tests can be broadly classified into unit tests, which
test a minimal unit of functionality, and system tests, which
test a complete program. A given bug might revealed either by
a unit test or a system test, but each type of test has its own
advantages and applications. Given a system test that reveals
an interesting behavior such as a bug or security vulnerability
in a unit, the process of generating a corresponding unit
test that reproduces the same bug is mostly mechanical, and
previous work discusses techniques for making it completely
automatic (e.g., [1], [2]). The opposite problem of producing
a system test that illustrates the same behavior as a unit test is
more difficult, as illustrated by the observation that in general
it may not even be possible: some unit behaviors may be
unreachable within a particular larger system. Such system test
generation is more challenging to automate because it requires
precise reasoning that can span across an entire large program.

One instance of the system test generation problem that is
of particular importance occurs when the interesting behavior
is a (potential) vulnerability: for instance, a buffer that might
potentially be overrun under some circumstances. The system
test in this case is a called a proof-of-concept (POC) exploit,
since it proves that the potential vulnerability is a real one (but
is not weaponized into a full attack). Determining whether an
vulnerability is real, and if so producing a proof-of-concept
exploit, is a critical task in security analysis, but in current

practice it requires significant, expert, manual attention. (In
accord with the concerns of this security application area,
in this work we concentrate on program behaviors whose
incorrectness is easy to identify, such as crashes. We elide the
problem, important in other kinds of testing, of constructing
an oracle to determine whether a test result is correct. As
such our “test generation” task is more explicitly “test input
generation”.)

Many aspects of a large program can make system test
generation challenging, but this paper focuses on a single one:
the presence of complex data transformations that lie between
the program input and the unit that displays interesting be-
havior. In order to generate system tests efficiently in the
presence of transformations, we describe enhancements that
build transformation-aware symbolic execution by extending
standard symbolic execution. We give search strategies tailored
for producing transformation pre-images, and a divide-and-
conquer approach that inverts sequences of transformations
by inverting each component transformation in reverse se-
quence. Our approach uses a new program representation
called a hybrid information- and control-flow graph (HI-
CFG) to represent a program’s transformation structure. We
implement these new techniques in FuzzBALL, a symbolic
execution tool for binary programs that has a number of
security applications. In a direct comparison, out techniques
improve the performance of symbolic execution over a state-
of-the-art but non-transformation-aware tool (KLEE [3]), often
by two orders of magnitude or more. In case studies of binary
exploit generation, our system generates exploits against two
document processing programs without requiring source code.

The primary contributions of this paper are the following:

• We introduce pruning and prioritization search strategies
for symbolic execution to allow it to find transformation
pre-images more quickly.

• We introduce a divide-and-conquer strategy for pre-image
computation of composed transformations based on a HI-
CFG.

• We evaluate these improvements by comparing an en-
hanced version of FuzzBALL with both a vanilla
FuzzBALL and another state-of-the-art tool KLEE.



For conceptual completeness, we also summarize the con-
cept of the HI-CFG, and a dynamic analysis approach for
building a HI-CFG from instruction-level traces, and describe
the security implications of the exploit generation case studies.
However these areas are the contributions of another paper
which describes them in detail [4]; more information about
them is also available in a related technical report [5].

II. OVERVIEW

In this section we give a technical overview of our technique
for transformation-aware symbolic execution, and in particular
define the kinds of transformations for which it is effective.

A. Transformations

Speaking generally, a transformation is code within a pro-
gram whose purpose is to read as input data values in one
format, and write as output data values in a different format
that in some sense encode roughly the same meaning as the
input values. We adopt the perspective that the transformation
has one important input and one important output. Generally
its behavior will also depend on other aspects of the program
state, which we can describe as parameters or meta-data, but
the important relationship is between the main input and main
output.

Because of the eternal demand for software to be more
functional and flexible, one of the main directions of increasing
complexity comes in supporting an ever-wider variety of data
formats, generally by transforming between them. Examples of
such transformations include compression and decompression,
encryption and decryption, conversion of text between charac-
ter sets, and the conversion of documents and images between
formats. In fact many modern document formats, such as PDF
and Microsoft Office documents, incorporate sub-objects (such
as embedded images) that can themselves take many different
formats.

Because data transformations are so common, our hypoth-
esis is that we can build more effective tools by taking
advantage of the special structure of transformations. In this
paper we focus on building transformation-awareness into
symbolic execution as applied to the task of finding pre-images
for transformations: given an output, finding a corresponding
input. This task is motivated by the problem of creating
(system) test inputs for programs that use transformations, but
we expect that transformation-awareness would improve other
applications of symbolic execution as well.

B. Approach Overview

Our approach makes symbolic execution transformation-
aware in two ways. First, we propose modifications to the
search strategies and related mechanisms of symbolic execu-
tion that make it more effective at finding pre-images within
the large search space of possible transformation inputs and
executions. These techniques allow symbolic execution to
prune path prefixes that could not produce the desired pre-
image, learn which areas of the search space are productive,
and reason efficiently about lookup tables and other constructs

implemented with symbolic memory indexing. Second, when
a program includes multiple transformations, we observe that
it is often much more efficient to take each component
transformation separately than to treat them as a single large
transformation. To support this approach, we describe analysis
techniques to automatically infer the structure of transforma-
tions with a program, together with the data structures that
hold intermediate values. With this information our system
can then compute pre-images for each step of a chain of
transformations separately, in reverse sequence.

C. Supported Transformations

We have designed our transformation-awareness mecha-
nisms to target a class of transformations that are common
and important across many application domains. However,
this choice necessarily excludes some other kinds of trans-
formations for which our techniques would be unhelpful or
incompatible. Here we list the key properties of the trans-
formations that our approach supports; later Section VIII
discusses directions for future research to further broaden the
set of supported transformations.

a) Surjective: A function is surjective, right-invertible,
or onto its co-domain, if every element in its co-domain is
the image under the function of some input. In other words,
surjectivity guarantees that a pre-image exists mathematically
for any value we pick from the output space. Of course our
computational problem of finding a pre-image is only well-
posed if a pre-image exists for the particular output we query.
But even if we knew through other means that a pre-image
exists, having each transformation in a sequence surjective
makes the search process easier because it implies that there
is possibility of getting stuck or needing to backtrack between
transformations. Once we have found a single pre-image of a
transformation, we never need to consider that transformation
again. A broad class of transformations that decode general
data are surjective, including decryption, decompression, and
the inverses of transformations that add redundancy or escape
certain sequences.

b) Sequential output: We say a transformation has se-
quential output if it produces its output as a sequence of values
in a predictable format, so that it is unambiguous at the point a
value is produced that it constitutes output, and the value never
subsequently changes. (Any transformation could satisfy this
property in a trivial way if declared its output to be available
only when it finishes executing, but doing so would conflict
with the next property.) In other words, a transformation with
sequential output never “revises” output values after producing
them.

For our techniques to apply, our system must further be able
to recognize in an automated way when a value constitutes
transformation output. Our current implementation focuses on
the case where a transformation produces output by storing
values (such as bytes or words) to a contiguous memory area
(such as an array). In this case the sequential output property
requires that once a location is written, the transformation
never later overwrites it with a different value. The common



case we observe is also for the written locations to be
sequential in these sense of having adjacent and increasing
addresses (i.e., writing left-to-right in an array), though this is
not a fundamental requirement.

c) Streaming: We say a transformation is streaming if its
inputs and outputs are interleaved and the transformation keeps
only a limited amount of internal state. Streaming is a very
implementation approach for transformations, when it applies,
because it generally allows a transformation to be imple-
mented efficiently without excess memory requirements. Unix
pipelines are a well-known example of a streaming paradigm,
and streaming is also very common in multimedia algorithms.
The streaming property is important to the effectiveness of our
technique’s pruning, because a transformation that produces
output values early allows our system to discover high in the
search tree that a particular input prefix will never produce the
desired output.

III. STRATEGIES FOR PREIMAGE SEARCH

Our approach uses symbolic execution to search for trans-
formation pre-images. We start by giving a brief introduction
to the use of symbolic execution for program exploration
(Section III-A), then describe three features and optimiza-
tions that make the preimage search efficient: (i) pruning in
Section III-B, (ii) prioritization in Section III-C, and (iii) the
handling of symbolic memory accesses in Section III-D.

A. Background: Symbolic Exploration

Symbolic execution is a program analysis technique that
combines features of dynamic and static analysis by consid-
ering families of executions that follow the same execution
path. Certain inputs to a program or code fragment under test,
rather than taking concrete values such as particular integers,
are replaced by symbolic variables. As the code executes,
computations on these values produce more complex symbolic
expressions, capturing all possible concrete values. When a
symbolic expression occurs in a branch condition, we can use
a decision procedure such as STP [6] or Z3 [7] to determine
which directions for future execution are feasible. Symbolic
execution is useful because the symbolic execution of a single
path can correspond to a large number of concrete executions,
but still be precise: no approximation is involved in computing
the symbolic expressions. Another advantage is that arbitrary
additional conditions can be conjoined with the formulas (as
if they were additional branches in the program) and checked
in the same way.

One common application of symbolic execution is to ex-
plore within the space of all feasible executions of a code
fragment, which we refer to as symbolic exploration. Our
system explores one execution path at a time, starting with
no constraints on the symbolic variables. Each time execution
reaches a branch that depends on symbolic values, the tool is
free to explore either side of the branch, subject to a feasibility
check (ensuring the choice is compatible with the earlier
branches taken). The tool keeps track of which sequences of
branch choices lead to parts of the execution space that have

been fully explored, and avoids them. We describe a further
basis it uses for deciding between branch directions below in
Section III-C; when all else is equal, it chooses randomly. A
more in-depth discussion of symbolic execution techniques is
found in the form of a survey [8], or in papers describing
tools [3], [9].

If it were allowed to run forever, a symbolic exploration
tool would eventually explore every possible execution path
through a code fragment. But for all but the smallest frag-
ments, the number of paths is so large (even infinite) that this
is not a practical strategy. The key to effective use of symbolic
exploration is to guide the search towards execution paths that
are more likely to be interesting, which will be the focus of
the next two subsections.

B. Search Pruning

The most important technique for reducing the size of the
space that must be searched for a preimage is to prune prefixes
of the input buffer contents that produce the wrong prefix of
the output buffer contents. This is a very common pattern for
transformations that can apply to an unbounded input, but keep
only a limited-size internal state.

While exploring the execution of the transformation, at each
point at which the code writes a value to the output buffer,
we check whether it is possible that the written value can be
equal to the desired output value at that position. If it cannot be
equal, then no extension of the currently explored path could
create the desired output, so the search can be pruned at that
point, and no extensions are explored. If the values can be
equal but are not necessarily equal, such as if the written value
is an unconstrained symbolic variable, we add the constraint
that they match to the path condition, which can also prune
the search space by making some future paths infeasible.

An indication of the power of this pruning is that if the
number of reads between consecutive writes is bounded, it
will typically reduce the number of paths that can be explored
from exponential in the input size to linear in the input size.
However applying just this technique the linear factor can still
be quite large, which can be further addressed by the two
optimizations we describe next.

C. Search Prioritization

Another optimization that can take advantage of checking
if the code produces the desired output is to bias the search
toward paths that have produced the most correct output values
so far. Intuitively, this approach directs the exploration to
spend more of its time attempting to extend paths that have
already proved promising, as opposed to paths that have not
shown results yet. This approach can be described in terms of
an utility function for states in the exploration space. For our
preimage computation this is a lexicographically ordered pair
whose more significant element is the ratio of correct output
bytes produced input bytes read, and whose less significant
element is the number of correct output values produced by
the path up to that point. To implement this approach, our
tool records, before each branch point in the search space,



maximum utilities of all of the states that have been explored
beyond that point. When returning to a branch point that has
been visited before, the search will prefer the branch direction
with the higher maximum utility.

As in any search process, our search for a preimage has
a tension between local and global search. Prioritizing states
that have proved effective so far will speed the search if
the search space is well behaved. But one would not want
to unconditionally prefer the already-proven states, because
the search space might have dead ends that appear initially
promising, but cannot be extended to give the complete desired
output. We do not want a search process that is required to
explore such dead ends exhaustively before trying another
path. To strike this balance, our system’s search prioritization
is not absolute. Instead, each time the search reaches a state
with a utility-based preference, we flip a biased coin. If the
coin comes up heads, we follow the preference, otherwise we
fall back to a random choice strategy. For the experiments
in this paper, we have set the probability of the biased coin
to follow the utility-based preference with probability 0.95.
This probability works well for our case studies and follows a
greedy strategy that ensures that we first search the depth of
the tree before backing up and searching more in the breadth.

D. Symbolic Array Accesses

A final aspect of our use of symbolic execution is not
specific to exploring transformations, though it often applies
to them. As previously mentioned, an advantage of symbolic
execution is that a single symbolic path can correspond to
multiple concrete paths. A trade-off with respect to how many
concrete paths a symbolic path represents occurs, for instance,
when the code uses a load from memory to implement a
lookup table.

This trade-off arises when the address value used in a load
from memory is symbolic (e.g., val = array[i];), so
that the load might refer to multiple locations. How should
the symbolic execution system implement this load?

One approach, which is the default in our symbolic exe-
cution tool, is to treat the selection of which address to load
like a multi-way branch. The tool chooses one feasible value
for the address (thereby concretizing the value), and continues
execution subject to this choice. Later, when it returns to the
branch point, it can choose a different feasible value. Since
choosing a value for the address effectively makes it concrete,
this approach tends to create simple symbolic formulas which
can be evaluated efficiently. On the other hand, if many address
values are possible, the number of paths to explore can quickly
become large.

An alternative approach is to represent all the possible
values from the load in the symbolic expression, e.g., May-
hem [10] uses a similar approach. This approach makes sense
for the case in which the possible loaded values represent a
lookup table, though it need not be limited to that case. The
formula representing the symbolic results of the load will itself
have the structure of a lookup table (or, equivalently, a circuit
representing a ROM). The main limitation is that the number

of possible addresses and loaded values cannot be too large,
otherwise the symbolic formula become unmanageable.

The trade-off that comes with the lookup table approach is
that the number of execution paths to be explored will be much
smaller, but at the cost of the symbolic formulas for each path
becoming much larger and slower to reason about. Essentially
this approach delegates more of the exploration to the decision
procedure. It can improve performance overall because the
decision procedure can use many of its own optimizations,
though representing and reasoning about large formulas can
increase memory usage.

The table lookup approach is perhaps more natural in
source-level symbolic execution systems that know when a
variable has an array type. In binary-level symbolic execution,
the first challenge is to recognize when a table lookup is oc-
curring. Our system detects a table lookup when the effective
address of a load is the sum of a constant value and a symbolic
one, when the constant value is in the range of a memory
address, and the symbolic value (treated as the table index) is
bounded. For loads, we use a power-of-two bound, matching
the construction of the lookup formula. For stores we compute
an exact upper bound, since imprecise stores would introduce
spurious symbolic values that hurt performance. In some cases
the bound on the index expression is evident from its syntax
(for instance, if it is zero-extended from a byte value); if not,
our tool uses additional decision procedure queries in a binary
search to find the tightest bound. The maximum allowed table
size is configurable; for this paper, it was 216.

IV. USING TRANSFORMATION STRUCTURE

The previous section described how to speed up symbolic
execution when applied to inverting a single transformation.
This section describes a more fundamental improvement:
performing symbolic execution separately for each layer of a
multi-step transformation, by using dynamic or static analysis
to recover information about the structure of transformations.
First we describe the data structure we use to represent this
information (Section IV-A), then how to recover structural
information either dynamically from a binary (Section IV-B)
or statically using source code (Section IV-C). Finally we
describe our step-by-step approach to constructing pre-images
(Section IV-D).

A. The HI-CFG

In previous work [5], [4] we proposed a program represen-
tation called a Hybrid Information- and Control-Flow Graph
(“HI-CFG” for short, pronounced “high-C-F-G”). A HI-CFG
includes information about control flow, as in a control-flow or
call graph, with nodes that represent program code blocks and
edges that represent the executes-after relationship between
them. A HI-CFG also includes information about data: nodes
that represent data structures, and edges that represent the
flow of information between them. Last but not least a HI-
CFG captures the connection between control and data with
producer and consumer edges between data nodes and code
nodes. Specifically a consumer edge runs from a data structure



to code that reads it, and a producer edge runs from code to a
data structure it writes. A more detailed definition of the HI-
CFG, as well as examples, are found in our previous work [4].

For purposes of the present work, the key feature of the HI-
CFG is that it contains just the right information for finding
a sequence of transformations and the code that implements
them. Specifically, some of the data-structure nodes in the
HI-CFG represent parts of the program that hold the inputs
to or outputs from transformations, with the effect of the
transformation itself showing up as an information-flow edge
from the input to the output. Given the identity of the code
that exhibits interesting behavior (i.e., the function in which a
vulnerability occurs), the source of the transformed data values
that trigger the behavior will be one of the consumer edges
of that code. By following a chain of information-flow edges
backward to a program input, we can recover the chain of
transformations the data underwent. The HI-CFG’s producer-
consumer and control-flow edges also highlight the code that
implements each transformation. For a transformation from
data-structure node A to data-structure node B, the closest
call-graph ancestor of the consumers of A and the producers
of B will be the function whose execution performs the
transformation: this function will be our target for symbolic
execution.

B. Dynamic Binary Analysis

In security applications, it is often necessary to analyze
vulnerabilities in software for which we do not have source
code. With such applications in mind, our first approach for
inferring transformation structure in a HI-CFG is a dynamic
analysis based on an instruction-level trace. The full descrip-
tion of this analysis appears in previous work [5], [4], but for
completeness we summarize the key aspects here.

A key challenge for binary analysis is determining the
boundaries of data structures: inherently a binary treats mem-
ory simply as a large unstructured array of bytes, so we must
re-infer which bytes constitute a single data structure. We
focus on contiguous structures, which usually correspond to
source-level arrays (we previously used the term “buffer”).
Our system uses a combination of two approaches: one that
groups memory accesses for the same indexed instruction, and
another that groups accesses that occur in a linear pattern of
addresses over time. Together with these inferred groupings,
our system also follows the hierarchical structure of memory
at a coarser granularity, for instance tracking stack frames and
dynamic allocations so that it is aware when data structures
are released.

Our system infers information-flow edges using a taint
analysis which uses a unique taint marker for each data
structure node. It also tracks the effect of tainted data on
branches at the function level to over-approximate implicit
flows. It infers call and return edges primarily from call
and ret instructions, but also retains a shadow stack to handle
non-local exits and tracks jumps to addresses that were also
call targets to handle tail-call optimizations.

We implement the system for instruction traces, generated
by the BitBlaze [11] Tracecap tool, for Linux/x86 binaries.
The analysis system is implemented primarily in Python, but
links to the XED2 library (also used in Pin [12], [13]) for
instruction decoding. The tool can operate on stripped binaries
without symbol tables or debugging information, with the sole
exception that its tracking of dynamic allocations requires the
user to specify the address of malloc and related functions.

C. Static Source Analysis

If source code is available, then static analysis of that source
is also an appealing possibility for recovering transformation
structure information. Source-level type information provides
a good starting point for the layout of data structures and
producer/consumer relations, which we can refine (or correct,
for a type-unsafe language like C) with standard points-
to analysis techniques, particularly for dynamically-allocated
structures. Static data-flow analysis also naturally provides
information-flow edges, and a static intra-procedural CFG can
be used to more precisely bound implicit flows. Finally static
techniques for call graph analysis are also well known.

The key difference in usage between a dynamically and
statically constructed HI-CFG is that a dynamic HI-CFG
represents only those data structures and transformations that
occurred on one or more sample executions, whereas a static
HI-CFG contains all possible transformation chains. Creating
such a sample execution adds another step when using a
dynamic approach, though we expect that often an existing
test suite would provide a suitable sample input. This step is
not needed with a static HI-CFG, though it might be useful
to provide tools uses with another mechanism for specifying
a desired transformation sequence if desired.

In the future, we have plans to build a static analysis of the
kind described above based on the LLVM framework [14],
[15] and its Data Structure Analysis [16]. However the ex-
periments in this paper use the previously-described dynamic
analysis.

D. Sequential Pre-image Search

After recovering the sequence of chained transformations
that produces a value, our approach then uses that structure to
more efficiently search for program inputs that are pre-images
of that combination of transformations. Instead of treating
all the transformations as a single unit, our approach is to
invert each transformation separately, starting with the final
one and working back until we reach the program input. We
compute pre-images for each separate transformation using
symbolic execution and the enhancements described above in
Section III.

The key reason this divide-and-conquer approach is valuable
is that allows our system to better skirt some of the scalability
limitations of symbolic execution. If there are m feasible
execution paths through one transformation, and n feasible
paths through a second transformation, and every combination
of the two paths is feasible, then there will be mn paths
for symbolic execution to explore through the composition



of the two transformations. Usually some combinations of
paths are not feasible, but we still observe that the number
of feasible paths through composed transformations grows
multiplicatively. By contrast, when computing pre-images for
the two transformations separately, the effort required by the
two separate symbolic execution searches grows additively,
like m+ n.

Our system currently implements a simple sequencing be-
tween the pre-image computation steps for each transfor-
mation. Suppose that the program has two transformations:
F followed by G. Given a value z that triggers interesting
behavior such as a crash, our system will first search for a pre-
image y1 such that G(y1) = z. After succeeding there, it will
then search for a further pre-image x1 such that F (x1) = y1.
This simple sequencing works well in the common case when
the transformation F is surjective, but if it is not, there is
a possibility the search can get stuck: it could compute a y2
which G(y2) = z, but for which there does not exist a x2 with
F (x2) = y2. In such a case the second search will fail. We
discuss possible enhancements for dealing with this situation
in Section VIII-A.

V. FUZZBALL IMPLEMENTATION

FuzzBALL is a highly-configurable symbolic execution en-
gine that builds on top of the BitBlaze Vine library [17], [11] to
support binary applications. It has been developed (primarily
by the first author) since 2009, and applied to a number of
applications including static-guided test generation [18] and
analysis of CPU emulators [19].

FuzzBALL takes the form of an emulator for standalone
binary code or Linux user-mode programs, into which the
user can introduce symbolic variables in place of the machine
state. FuzzBALL will automatically explore the execution
paths feasible by choosing values for the symbolic variables,
and can check for user-specified logical conditions over the
machine state as well as (relevant for this paper) the production
of particular outputs. One notable simplification compared to
systems such as KLEE is that FuzzBALL does not “fork” to
explore paths in parallel; it instead runs one path to completion
before starting another.

FuzzBALL consists of about 18,000 lines of code in
the object-oriented/functional language OCaml (also used by
Vine). Both programs code and symbolic expressions are rep-
resented in the “Vine IL” intermediate language, symbolic ex-
pressions in the purely-functional expression subset. OCaml’s
pattern matching features facilitate transformations and op-
timization of these representations. OCaml’s compile-time
“functor” polymorphism (somewhat similar to C++ templates)
is used so that the same interpreter code can be instantiated
in either concrete or symbolic versions. FuzzBALL translates
binary code into the Vine IL on the fly, much like a dynamic
binary translation system, so no static disassembly is required.
Because binary code can access memory at varying granularity
(e.g. first as a word and then as four bytes), FuzzBALL’s
symbolic memory representation uses the granularity of the
last write, but split or reassemble values as needed. FuzzBALL

generates bitvector constraints from symbolic branches and
solves them by using an external decision procedure, currently
STP [6] or Z3 [7].

The source code for FuzzBALL and the parts of the Vine
library it uses are available under an open-source license [20].

VI. PRE-IMAGE TECHNIQUE EVALUATION

This section evaluates the performance of different config-
urations of FuzzBALL and KLEE for two different transfor-
mations (HEX decoding and RLE – Run Length Encoding –
decoding) with different lengths of input and output.

We evaluate the following four different program configu-
rations:
KLEE the most current version of KLEE [3] (r178863, re-

leased on Apr-05 2013) with the supplied uclibc and
posix-runtime using the random-path search strategy de-
scribed in [3]. In addition, we modified KLEE to termi-
nate symbolic execution when the first match was found
(instead of exploring the complete symbolic path). We
use this configuration to compare FuzzBALL to other
symbolic execution engines;

FuzzBALL the current version of FuzzBALL without
transformation-guiding heuristics or sequential pre-image
searching using HI-CFG information. This configuration
is used to show performance of naive, unguided symbolic
execution;

FuzzBALL-heuristic the current version of FuzzBALL with
active transformation-guiding heuristics as introduced in
Section III;

FuzzBALL-HI-CFG the most optimized version of
FuzzBALL with all search optimizations and active usage
of the HI-CFG to split sequences of transformations to
compute sequential pre-images.

For these experiments we evaluate two different transfor-
mations, HEX decoding and RLE decoding as implemented
and used, e.g., in PDF document viewers. HEX decoding
takes an ASCII string that may only contain (i) an even
number of the numbers 0-9 and letters a-f and A-F and (ii)
any number of white-space characters (e.g., newline, tab, or
space). Always letter/number characters are decoded into a
byte in the output stream. RLE decoding describes a simple
transformation where the first byte either describes the number
of verbatim copied bytes or the number of repetitions of the
next byte. An RLE encoded stream always ends with an 0x80
byte. PDF files may contain different (nested) objects with
different encodings and a specific object might be RLE and
HEX encoded, i.e., the data is first compressed using RLE
and non-printable characters are then escaped using HEX
encoding.

For our performance study we use two sample programs
that use the before-mentioned transformations. RLE uses one
simple RLE transformation (i.e., FuzzBALL-HI-CFG has the
same performance as FuzzBALL-heuristics because there is
only one transformation). The second experiment uses first a
HEX transformation followed by a RLE transformation.
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Fig. 1. Different RLE configurations for different symbolic execution con-
figurations; runtime is in seconds on a logarithmic scale, lower is better.

We execute all benchmarks on an Intel Xeon CPU X5670
at 2.93GHz with 12 physical cores, 24 threads, and 32GB of
main memory. Every individual benchmark configuration is
executed 5 times and we report the average of these 5 runs.

A. RLE decoding

In this setting we evaluate a simple program that takes an
input stream and RLE decodes the given input stream. We use
KLEE and the different FuzzBALL configurations to evaluate
the performance of symbolic execution. Table I shows the
different configurations of the RLE decoding experiment. The
input bytes are symbolic and symbolic execution computes a
concrete version of the input for a given output.

TABLE I
LIST OF CONFIGURATIONS FOR THE RLE PROGRAM THAT USES ONE RLE

DECODE TRANSFORMATION. SYMBOLIC INPUT (IN BYTES) IS
TRANSFORMED TO AN OUTPUT STRING.

Configuration Input [b] Output [b] Output
RLE-1 3 3 “AAA”
RLE-2 3 4 “AAAA”
RLE-3 3 6 “AAAAAA”
RLE-4 4 2 “AB”
RLE-5 5 3 “ABC”
RLE-6 5 6 “AAAAAB”
RLE-7 5 7 “AAAAAAB”
RLE-8 5 12 “AAAAAABBBBBB”
RLE-9 7 9 “AAAAAABCD”

Figure 1 shows the different configurations and the corre-
sponding runtime. For KLEE the experiments show that the
runtime primarily depends on the length of the input string
(the number of symbolic input bytes) and secondarily the
number of output bytes (the number of bytes that depend
on the input string and are produced using a computation of
the input bytes). With longer inputs we see an exponential
increase of the runtime due to the state explosion with which
the random-path search strategy cannot cope with. The results
of FuzzBALL without heuristics are comparable to KLEE.
FuzzBALL-heuristics on the other hand ranges from 5.1s to
15.0s and scales to larger input and output sizes as well.

B. HEX RLE decoding

In this setting we evaluate a program that uses two trans-
formations that are chained (i.e., the input flows through one
transformation and is then passed to a second transformation).
Looking at the input the first transformation takes the input and
HEX decodes a given input string. The HEX decoded values
are then decompressed using RLE decoding. A symbolic exe-
cution engine that does not use the HI-CFG targets a specific
output and reverses both the RLE and the HEX decoding
as one complex transformation. The HI-CFG configuration
splits this large task into two sequential transformations and
first reverses the RLE decoding, effectively RLE encoding
the given output. The second transformation of the HI-CFG
configuration then HEX encodes the given RLE string from
the first transformation.

Table II shows the different configurations for the HEXRLE
binary. Monolithic symbolic execution engines (e.g., the KLEE
and FuzzBALL-heuristics configuration) mark the input bytes
symbolic and computes a pre-image for both transformations
in one step, thereby directly targeting the output using the
given symbolic input bytes. A sequential symbolic execution
engine (i.e., FuzzBALL-HI-CFG) on the other hand splits the
single large computation into a sequence of transformations
and first uses an intermediate (Inter. in Table II) amount
of symbolic bytes to first reverse the second transformation.
Using the result from this step the first transformation is
reversed using a given input of symbolic bytes.

TABLE II
LIST OF CONFIGURATIONS FOR THE HEXRLE PROGRAM THAT USES TWO

TRANSFORMATIONS: INPUT IS FIRST HEX DECODED AND THEN RLE
DECODED AND MATCHED AGAINST A GIVEN OUTPUT STRING. THE

ORIGINAL INPUT IS MARKED SYMBOLIC.

Configuration In. [b] Inter. [b] Out. [b] Output
HEXRLE-1 10 5 12 “AAAAAABBBBBB”
HEXRLE-2 14 7 9 “AAAAAABCD”
HEXRLE-3 16 8 10 “AAAAAABCDE”
HEXRLE-4 18 9 11 “AAAAAABCDEF”
HEXRLE-5 125 60 57 “This is a longer test

for symbolic execution
and FuzzBall”

HEXRLE-6 250 120 114 twice HEXRLE-6

Figure 2 shows the different configurations for the symbolic
execution engines and the corresponding runtimes on a log-
arithmic scale. With an increasing number of symbolic input
bytes monolithic symbolic execution reaches its limit and both
KLEE and FuzzBALL-heuristic run into timeouts for larger
inputs.

The longer running experiments show that regular symbolic
execution cannot cope with the large amount of possible states
and KLEE was stopped after 10 hours of computation without
producing any results. Even for FuzzBALL with heuristics
the longer experiments were not feasible. Only when using
a combination of sequential transformations and heuristics
symbolic execution is able to reverse multiple transformations.
FuzzBALL-HI-CFG on the other hand is still able to compute
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Fig. 2. Different HEXRLE configurations for different symbolic execution
configurations; runtime is in seconds on a logarithmic scale, lower is better.

pre-images for individual transformations and to efficiently
reverse chained transformations with up to 250 symbolic bytes.

VII. EXPLOIT GENERATION CASE STUDIES

In this section we look at two applications (Poppler in
Section VII-A and AbiWord in Section VII-B) with different
security vulnerabilities. The vulnerabilities are hidden “deep”
in the program and are only triggered after a set of transfor-
mations from the original input.

The security implications of these results are discussed in
more detail in [4], which also includes performance measure-
ments of the HI-CFG construction tool; here we focus on the
transformation pre-image computation.

As a first step one can use FuzzBALL and a guess of a
potentially vulnerable function to construct a “unit exploit”: a
set of parameters passed to a function which cause it to crash
in a dangerous way. We omit the details because they are not
relevant to the present paper, but they can be found in the
technical report [5]. Then the second step is to turn that unit
test into a system test: a proof-of-concept exploit. Using the
unit exploit and a HI-CFG generated from a benign input (one
that does not trigger the bug), we use transformation-aware
symbolic execution to build a program input that triggers the
same dangerous crash as the unit exploit. This proves that
vulnerability is a real problem, and can be used as a starting
point for debugging and fixing it.

Both programs are open-source and we use the source-code
to verify both the presence of the bugs and the correctness of
our results. In the automatic analysis and HI-CFG construction
our system does not use the source-code but uses only the
binary itself to construct an exploitable input.

A. Poppler

Poppler is an open-source PDF library used in several
applications, e.g., in viewers like Evince. In this case study
we generate a vulnerability for CVE-2010-3704 [21] which
allows arbitrary memory writes.

PDF documents may contain many different objects and one
type of objects is used for embedded Type 1 fonts. Type 1 fonts
are derived from PostScript and allow character descriptions
in a flexible text format. Poppler includes a simple font parser
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Fig. 3. Path to the vulnerable function in the HI-CFG.

that recovers the character encoding by mapping byte values
to character glyphs. The standard allows unsigned integers
between 0 and 255 inclusive. These integers may be specified
as decimals or as octals with a prefix of 8#.

The bug described in CVE-2010-3704 is an incorrect con-
version from octal to decimal which does not check for
negative numbers. The check in the code which ensures that
values are smaller than 256 is a signed comparison and allows
numbers smaller than 0. Malicious fonts may specify large
integer values that when interpreted as signed values have the
sign bit set and pass the range check. This vulnerability allows
a malicious font to overwrite any 4-byte aligned memory
location relative to the decompressed font object in memory.
The unit exploit contains the string “ 8#0027777774674”
(where the first character is a space) as a character index which
trigger the vulnerability.

We use our system to create a proof of concept exploit
for the described vulnerability by automatically constructing
a compressed Type 1 font in a PDF that triggers the vulnera-
bility.

In a first phase the HI-CFG of the Poppler library is
constructed by executing pdftoppm (a sample program that
uses Poppler to render PDFs as PPM images) with a benign
PDF that contains a valid font. The benign PDF is generated
with pdftex by rendering a small TEX file that contains
a FlateDecode-compressed Type 1 version of the Computer
Modern Roman 10 point font.

Figure 3 highlights the subset of the HI-CFG of Poppler that
shows a path from the input to the vulnerable function. The
input passes through a sequence of four transformations: the
first two transformations are due to input buffering in C/C++
where data is copied from one buffer to the other; the third
transformation is a flate decompression step where the Type
1 input font is decompressed; the forth step is again a copy
from the decompression object to the Type 1 font object.

Using this HI-CFG information and the vulnerable condition
the symbolic execution engine trivially reverses the fourth
transformation and continues with the deflate compression.
The symbolic execution engine then spends most of its time
computing the pre-image for the third transformation. This
non-trivial inversion computes a compressed font that decom-
presses to the attack font. The second and first transformation
are again trivially inverted by just copying the data between
the buffers. The symbolic exploration phase took less than 2
hours (6755.54s) on an Core 2 Duo E8400.



We also repeated the experiment with two other transfor-
mation chains (indicated with two other benign input files and
the corresponding HI-CFGs).

Another commonly used transformation of streams in PDF
files is RC4 encryption, used for password protection. Though
some cryptographic functions are designed to be difficult to
invert, RC4 stream encryption is this context is not difficult
because RC4 is a stream cipher and the key is fixed: con-
structing a new ciphertext simply requires XORing the desired
plaintext with the keystream. With no branching required,
this is a nearly ideal case for symbolic execution: only one
symbolic path needs to be explored, requiring 20 seconds
mostly devoted to program startup.

Two further transformations supported in PDF files are the
run-length encoding and hexadecimal encoding introduced in
Section VI: in fact we were inspired to use the transformations
for that experiment after seeing them in Poppler. Poppler’s
implementation is different from the one we used in Sec-
tion VI, but the performance of transformation-aware symbolic
execution is similar: the preimage computation requires 143
seconds and 315 symbolic paths.

B. AbiWord

AbiWord is a word processor that is able to import many
different document formats. In this case study we examine
the Office Open XML input filter that is used to parse
documents from recent versions of Microsoft Word. Office
Open XML documents are structured as a compressed Zip file
that contain multiple XML documents which in turn represent
the document contents and metadata.

Recent versions of AbiWord (we use 2.8.2) suffer from a
crash in the XML processing library that is triggered when
a shading tag occurs outside of a paragraph tag. The
code tries to fetch the top element of a C++ STL stack which
contains pointers to enclosing document objects. When the
shading tag occurs outside of the expected areas this stack is
empty and an invalid pointer is dereferenced. We have not yet
determined if this crash is exploitable.

The generated HI-CFG contains 5139 functions and 7816
groups. Looking at the sequence of buffers in the HI-CFG,
the document data starts in a standard-IO input buffer, and
is then decompressed by the inflate function. The de-
compressed buffer is then copied unchanged via memmove
into a structure called the parser context, which is used by
xmlParseDocument; the function containing the vulnera-
bility is a callback from this parser.

This vulnerability is located behind the Zip decompression
transformation (which uses a related algorithm to the Deflate
compression in PDF, though with an independent implementa-
tion). In our experiment the pre-image computation happened
to run faster than in the Poppler example because we used
a benign input file with a smaller Huffman tree and smaller
decoding tables. On average the pre-image search required 237
seconds and 92 symbolic paths.

VIII. DISCUSSION AND FUTURE WORK

In this section we further discuss some of the observed and
predicted limitations of our current approach and implemen-
tation, and how they might be addressed in the future.

A. Non-Surjective Transformations

Our current sequential backward processing through trans-
formations (Section IV-D) takes advantage of the assumption
that each transformation will be surjective, so it suffices to
generate a single pre-image. If applied with non-surjective
transformations, our approach could get stuck by producing
a pre-image from one transformation that is not a possible
image of the preceding transformation. For instance, consider
inverting the transformation of Latin-1 to UTF-8 conversion.
This transformation is not surjective: specifically only byte
values 0x00 through 0xc3 will appear in the UTF-8 encoding
of Latin-1 bytes. Thus if the inversion of a following transfor-
mation produced a preimage containing 0xdd, the search for
a corresponding Latin-1 string would be guaranteed to fail.
(The Latin-1 to UTF-8 encoding process is simple enough
that the search would fail quickly, but for a more complex
transformation the fruitless search might be very long.)

Two general search techniques that might be applied to deal
with this challenge would be to backtrack from a failed search
and go back to search for another pre-image from a previous
transformation; or to generate a set of multiple pre-images at
each step. However these techniques would only be effective
if the chance that an arbitrarily selected value is an image of a
transformation is large, which is not guaranteed in general. For
instance if one generates a 76-byte string uniformly at random,
the chances that it contains no bytes larger than 0xc3 are
about one in a billion. A more sophisticated approach would
be to infer a regular language or context-free grammar that
captured (some of) the constraints on a transformation output
(compare [22]), and then to add this grammar as a constraint
on the symbolic execution process [23].

B. Transformation-level Path Explosion

Another potential challenge related to the high-level struc-
ture of our search across multiple transformations is that
there might be a large number of possible sequences of
transformations that connect the program input to a vulnerable
or otherwise interesting function. If the user of our tools
is interested in only one such path, they can specify it, for
instance via the choice of test inputs for a dynamic analysis.
Also we expect that in many cases, many of the possible
sequences of transformations would be equally effective in
building a system test, as for instance in our Poppler case
study. But one could imagine a case in which many sequences
of transformations appear possible at the level of the HI-CFG,
while only a small fraction of these are actually feasible to
create a system test for a particular behavior. In such a case,
the search for the correct chain of transformations could be in
a large space, so we would techniques to guide it as well.



C. Recognizing Transformation Outputs

Not all transformations write their outputs to a contigu-
ous array (as currently assumed by our symbolic execution
strategies) in sequential order (as recognized by one part of
our dynamic data-structure analysis). One natural direction for
generalizing our approach would be to recognize more styles
of transformation output. More sophisticated data-structure
analysis could help generalize our system to linked data
structures such as lists and trees. Another common pattern in
streaming transformations (which we observed for instance in
Poppler) is for each output value to appear as the return value
of a function call. One convenient aspect of this pattern for
our techniques is that automatically enforces that the output
is sequential.

D. Multi-threaded Subject Programs

One of the current practical limitations of FuzzBALL is
that it does not support multi-threaded subject programs. For
instance this is the most fundamental obstacle keeping us from
extending the Poppler results to Adobe Reader (admittedly
Reader is also noticeably larger). However such support is
independent of the approaches in this paper, and our dynamic
analysis has already been designed with multi-threaded pro-
grams in mind.

IX. RELATED WORK

We concentrate here on related approaches to inversion
and symbolic execution. A comparison with related program
representations [24], [25], exploit generation techniques [26],
[27], and binary structure inference systems [28], [29], [30],
[31] can be found in the companion technical report [5].

The “decomposition and restitching” work of Caballero et
al. [32] also tackles the problem of creating a transformed pro-
gram input that triggers a vulnerability (there in malware), but
they focused on transformations such as decryption functions
which cannot be effectively be inverted by symbolic execution:
instead they searched for inverse functions within a binary. The
Inspector Gadget system [33] computes pre-images of transfor-
mation functionality extracted from a binary using a technique
called “gadget inversion”. Gadget inversion uses only concrete
executions, but it records input-output dependencies which
can be seen as a subset of symbolic execution. Our approach
of working backwards through a program’s information flow
is analogous to previous program analysis approaches that
worked backwards through control-flow [34], [35] to trigger
program behavior. Instead of computing a single pre-image,
symbolic execution techniques can also be used as part of
synthesizing a complete inverse program [36]. Though more
general when possible, this is currently less scalable: it applies
to compression algorithms similar to Deflate, but expressed as
25 lines of high-level code, and it requires a human assistance
in producing a template.

MAYHEM [10] is a binary symbolic execution system based
on a library and techniques similar to Vine and FuzzBALL,
and aimed at exploit generation. In particular MAYHEM intro-
duces a index-based memory model which provides similar

benefits to our treatment of symbolic memory accesses in
Section III-D (developed independently). Though MAYHEM is
demonstrated discovering a number of exploits, none appear
to involve input transformations as we concentrate on here.

X. CONCLUSION

Generating a system test from a unit test is difficult, in part
because program inputs may undergo complex transformations
before reaching a unit that has interesting behavior (such as a
bug or security vulnerability). To tackle this challenge we in-
troduce transformation-aware symbolic execution techniques,
which optimize the search for transformation pre-images and
apply a divide-and-conquer approach based on the inferred
composition structure of transformations. We implement these
new techniques in a sophisticated binary-level symbolic ex-
ecution system FuzzBALL. In a direct comparison, these
enhancements improved the performance of our symbolic
execution tool above both the baseline tool and an independent
state-of-the-art system, often by multiple orders of magnitude.
Applied in a case study of vulnerable document processing
applications, our system generated crashing program inputs
from unit crash information, using only a binary program
without source code.
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