
Oblivious Transfer with Adaptive Queries

Moni Naor? and Benny Pinkas??

Dept. of Computer Science and Applied Mathematics
Weizmann Institute of Science

Rehovot 76100, Israel
{naor,bennyp}@wisdom.weizmann.ac.il

Abstract. We provide protocols for the following two-party problem:
One party, the sender, has N values and the other party, the receiver,
would like to learn k of them, deciding which ones in an adaptive manner
(i.e. the ith value may depend on the first i− 1 values). The sender does
not want the receiver to obtain more than k values. This is a variant of
the well known Oblivious Transfer (OT) problem and has applications
in protecting privacy in various settings.
We present efficient protocols for the problem that require an O(N) com-
putation in the preprocessing stage and fixed computation (independent
of k) for each new value the receiver obtains. The on-line computation in-
volves roughly log N invocations of a 1-out-2 OT protocol. The protocols
are based on a new primitive, sum consistent synthesizers.

1 Introduction

Oblivious Transfer (abbrev. OT) refers to several types of two-party protocols
where at the beginning of the protocol one party, the Sender (or sometimes
Bob or B), has an input and at the end of the protocol the other party, the
receiver (or sometime Alice or A), learns some information about this input in
a way that does not allow the sender Bob to figure out what she has learned. In
particular, in 1-out-of-N OT (OTN

1) protocols the sender’s input consists of N
strings X1, X2, . . . , XN ; the receiver can choose to get one element XI and does
not learn any information about any other string, and the sender does not learn
anything about I.

Recently Naor and Pinkas [23] suggested efficient constructions of OTN
1 based

on protocols for OT2
1. In particular the overhead of the initialization work of the

sender is O(N) invocations of a pseudo-random function (which can be realized
by a block cipher) and the transfer requires only logN invocations of OT2

1. This
low overhead makes the OTN

1 protocol rather efficient even if N is very large
(say, even if there are a billion elements for Alice to choose from).

Many applications might require the receiver to obliviously obtain several
elements held by the sender. It is very inefficient to invoke independent runs
? Research supported by grant no. 356/94 from the Israel Science Foundation admin-

istered by the Israeli Academy of Sciences.
?? Research supported by an Eshkol Fellowship of the Israeli Ministry of Science.

Michael Wiener (Ed.): CRYPTO’99, LNCS 1666, pp. 573–590, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

574 M. Naor, B. Pinkas

of a OTN
1 protocol because of the O(N) overhead of the initialization phase

(remember, N might be very large). An efficient protocol for k-out-of-N OT
(OTN

k) was described in [23], with complexity which is O(N) for the initialization
phase and O(k) OT’s for the transfer phase (we omit small logarithmic factors).
However, that protocol required the receiver to get all k elements simultaneously.
That is to say that she had to decide in advance which k elements to get, and
was unable to adaptively pick the elements to be transfered to her1.

We present several efficient protocols for k successive (possibly adaptive)
oblivious transfers, an operation which we denote as OTN

k×1. The sender has
to perform a single initialization of his input, which requires O(N) work. Each
transfer requires only about logN OT2

1’s. In some of the protocols the parameter
k does not affect the complexity, and the protocol can even be used for N
successive transfers.

1.1 Motivation

OTN
k×1 protocols are useful whenever the following three properties are required:

– A large database should be queried in an adaptive fashion.
– The privacy of the the party which performs the queries should be preserved.
– The owner of the database does not want to reveal to the other party more

than a minimal amount of information.

We describe below three applications of this type:

Oblivious search: Bob owns a database which Alice wants to search. Suppose
first that the database is sorted and Alice is using binary search. The two parties
can invoke a OTN

log N×1 protocol to perform this search without revealing to Bob
the element that Alice is searching for, and while limiting Alice’s knowledge to
logN elements. Alternatively, the data elements can be ordered by a two-level
hash, using two hash functions. The first function maps data elements into bins
and the second function further maps the elements that were mapped to the
same bin (this is how perfect hash functions [15] are constructed). Our protocols
can be used to let Alice obliviously determine whether an element is is in the
table. It first computes by herself the bin to which the element should have been
mapped, then performs an oblivious transfer to get the (second) hash function
that is used in that bin, and then another oblivious transfer to check the final
location into which the element should have been mapped.
1 The protocol uses several random mappings of the data elements to cryptographic

keys. It consists of several stages, and the receiver learns the ith mapping only after
stage i − 1 is complete. For every k data elements that the receiver wishes to learn
the protocol guarantees that the probability (taken over the mappings) that she is
able to learn another element, is small. However once she knows all the mappings
she is able to ask for k data elements that enable her to learn more elements. If this
protocol were used for adaptive OT the receiver would have been able to learn all
the mappings after the first transfer phase.

Oblivious Transfer with Adaptive Queries 575

Patent or legal databases: Suppose that Bob holds a patent database. He does
not want to give the whole database to other parties, but is willing to let other
people search the database using a World-Wide-Web interface. Alice has a bright
idea which she wants to patent and as a first step she wants to conduct a search
for related patents. She is afraid that if she conducts the search on Bob’s database
he might learn what she is interested in and might reveal her idea. Alice and
Bob can use OTN

k×1 to enable Alice to search Bob’s database without revealing
her queries to him. This solution also applies to searches in legal databases such
as Lexis-Nexis or Westlaw.

Medical data: Suppose that Bob holds a database of medical information. For
proprietary or privacy reasons Bob does not want to reveal the whole database
to other parties but he is willing to let them use it for their research. Alice
wants to conduct a research about a certain disease and has a list of patients
that have this disease. She wants to search Bob’s database for records related to
these patients, but cannot reveal their identities to Bob. Alice and Bob can use
OTN

k×1 to enable Alice to gather the relevant information from Bob’s database.

1.2 Protocol Structure

OTN
k×1 protocols contain two phases, for initialization and for transfer.
The initialization phase is run by the sender (Bob) who owns the N data

elements. Bob typically computes a commitment to each of the N data elements,
with a total overhead of O(N). He then sends the commitments to the receiver
(Alice).

The transfer phase is used to transmit a single data element to Alice. At the
beginning of each transfer Alice has an input I, and her output at the end of
the phase should be data element XI . The transfer phase typically involves the
invocation of several OTm

1 protocols, where m is small (either constant or
√

N).
In these OT’s Alice obtains keys which enable her to open the commitment to
XI (the protocol uses commitments rather than simple encryptions in order to
prevent Bob from changing the data elements between invocations of transfers).
An OTN

k×1 protocol supports up to k successive transfer phases.

1.3 Correctness and Security Definitions

The definition of correctness is simple: The sender’s input is X1, X2, . . .XN . At
each transfer phase j (where 1 ≤ j ≤ k) the receiver’s input is 1 ≤ Ij ≤ N
which may depend on all the previous information she learned. At the end of
this transfer phase the receiver should obtain XIj . Note that this implies that
the sender essentially commits to his inputs at the beginning of the protocol and
cannot change the X’s between transfers2 .
2 Our protocols enable the sender to prevent the receiver from obtaining certain data

elements at certain times (of course, independently of the items which were previ-
ously transferred). It is possible to amend our protocols to ensure an “all or nothing”

576 M. Naor, B. Pinkas

The definition of security is separated into two issues: protecting the receiver
and protecting the sender.

The Receiver’s Security - Indistinguishability: Given that under normal opera-
tion the sender gets no output from the protocol the definition of the receiver’s
security in a OTN

k×1 protocol is rather simple: for any step 1 ≤ t ≤ k, for any pre-
vious items I1, . . . , It−1 that the receiver has obtained in the first t−1 transfers,
for any 1 ≤ It, I

′
t ≤ N and for any probabilistic polynomial time B′ executing

the sender’s part, the views that B′ sees in case the receiver tries to obtain XIt

and in case the receiver tries to obtain XI′
t
are computationally indistinguishable

given X1, X2, . . .XN .
The Sender’s Security - Comparison with Ideal Model: Here the issue is a bit

trickier, since the receiver (or whatever machine is substituted for her part) gets
some information and we want to say that the receiver does not get more or
different information than she should. We make the comparison to the ideal
implementation, using a trusted third party Charlie that gets the sender’s in-
put X1, X2, . . .XN and the receiver’s requests and gives the receiver the data
elements she has requested. Our requirement is that for every probabilistic
polynomial-time machine A′ substituting the receiver there exists a probabilis-
tic polynomial-time machine A′′ that plays the receiver’s role in the ideal model
such that the outputs of A′ and A′′ are computationally indistinguishable. This
implies that except for XI1 , . . . , XIk that the receiver has learned the rest of
X1, X2, . . .XN are semantically secure.

1.4 Previous Work

The notion of 1-out-2 OT (OT2
1) was suggested by Even, Goldreich and Lem-

pel [16] as a generalization of Rabin’s “oblivious transfer” [26] (oblivious transfer
was also developed independently by Wiesner in the 1970’s, but not published
till [28]). For an up-to-date and erudite discussion of OT see Goldreich [18]. 1-out-
of-N Oblivious Transfer was introduced by Brassard, Crépeau and Robert [3,4]
under the name ANDOS (all or nothing disclosure of secrets). They used infor-
mation theoretic reductions to construct OTN

1 protocols from N applications of
a OT2

1 protocol (lately it was shown that such reductions must use at least N
OT2

1’s in order to preserve the information theoretic security [12]). Our work
builds upon the simple OTN

1 and OTN
k protocols of [23], which are based on

efficient computationally secure reductions to OT2
1.

1.5 Comparison to Private Information Retrieval (PIR)

Private Information Retrieval (PIR) schemes [8] allow a user to access a database
consisting of N elements X1, X2, . . .XN and read any element she wishes without
the owner learning which element was accessed. Compared to Oblivious Transfer

behavior or the sender, i.e. that in each transfer phase he either lets the receiver learn
any data element she chooses, or quits the protocol. Note that in any two-party pro-
tocol it is impossible to prevent a party from quitting the protocol.

Oblivious Transfer with Adaptive Queries 577

protocols, the emphasis in PIR is on the communication complexity which must
be o(N). On the other hand, PIR schemes do not protect the owner of the
database and do not prevent the user from learning more than a single element.

The first constructions of PIR schemes were based on using separate databases
which do not communicate, but more recent constructions [20,5] use only a sin-
gle database. More recently attention was given to the question of protecting
the database as well, i.e. that the user will not learn more than a single data
element. A PIR scheme that enjoys this property is called SPIR (for Symmetric
PIR). In [17] an information theoretic transformation of any PIR scheme into a
SPIR scheme was proposed at the cost of increasing the number of servers (and
introducing the assumption of a separation between the servers). The OTN

1 pro-
tocols of [23] enable a straightforward and efficient transformation of any PIR
scheme into a SPIR scheme without increasing the number of database servers.
In [7] PIR schemes with more involved queries (such as keyword retrieval) are
discussed.

The OTN
k×1 protocols that we introduce would enable even more efficient

future transformations from PIR to SPIR. They can be used to transform a pro-
tocol for k adaptive invocations of PIR to a protocol for k adaptive invocations
of SPIR (currently there are no adaptive PIR protocols, but when such a pro-
tocol is introduced it would be possible to immediately transform it to a SPIR
protocol).

On a more practical level, we believe that it is preferable to use the computa-
tion efficient OTN

1 and OTN
k×1 protocols rather than the communication efficient

PIR protocols. The OTN
k×1 protocols require O(N) communication at the end

of the initialization phase and before the transfer phases begin, and the commu-
nication overhead of the transfer phases is negligible. For many applications the
communication in the initialization phase is not an issue, and can be done using
devices such as DVD’s, jaz drives, or a fast communication network. In contrast,
single server PIR protocols [20,5] are very costly to implement since each trans-
fer requires O(N) exponentiations (which must be done after the receiver sends
her query).

2 Cryptographic Tools

The protocols use three cryptographic primitives, sum consistent synthesizers
which are introduced in Section 2.1, 1-out-of-2 Oblivious Transfer, and commit-
ments.

Protocols for 1-out-of-2 Oblivious Transfer (OT2
1) can be constructed

under a variety of assumptions (see e.g. [3,16,1]). Essentially every known sug-
gestion of public-key cryptography allows also to implement OT, (but there is no
general theorem that implies this state of affairs). OT can be based on the exis-
tence of trapdoor permutations, factoring, the Diffie-Hellman assumption (both
the search and the decision problems, the latter yields more efficient construc-
tions) and the hardness of finding short vectors in a lattice (the Ajtai-Dwork
cryptosystem). On the other hand, given an OT protocol it is a simple matter

578 M. Naor, B. Pinkas

to implement secret-key exchange using it. Therefore from the work of Impagli-
azzo and Rudich [19] it follows that there is no black-box reduction of OT from
one-way functions.

Commitment schemes are used to make sure that the sender does not
change values between rounds. In a commitment scheme there is a commit phase
which we assume to map a random key k and a value x to a string commitk(x),
and a reveal phase which in our case would simply be revealing the key k which
enables to compute x. The commitment should have the properties that given
commitk(x) the value x is indistinguishable from random, and that it is infeasible
to generate a commitment yielding two different x’s. The commitment protocols
we use are those of Chaum et al. [6] in Section 4, and of Naor [22] in Section 5.

2.1 Sum Consistent Synthesizers

Our constructions of OTN
k×1 protocols are based on committing to the data

elements using pseudo-random synthesizers with a special property, which we call
sum consistency. Each transfer phase reveals information which is sufficient to
reveal just one data element, but cannot be used in conjunction with information
from other transfer phases. Sum consistent synthesizers can be constructed based
on the Decisional Diffie-Hellman assumption or based on a random oracle. We
present in Section 4 a OTN

k×1 protocol which uses synthesizers based on the
Decisional Diffie-Hellman assumption. In Section 5 we present a construction of
a OTN

k×1 protocol based on any sum consistent synthesizer.

Pseudo-random Synthesizers: Pseudo-random synthesizers were introduced
by Naor and Reingold in [24]. A pseudo-random synthesizer S is an efficiently
computable function of ` variables x1, . . . , x`, that satisfies the following prop-
erty: given polynomially-many uniformly distributed assignments to each of its
input variables, the output of S on all the combinations of these inputs is pseudo-
random. Consider for example a synthesizer S(x, y) with two inputs. Then for
random sets of inputs 〈x1, . . . , xm〉, 〈y1, . . . , ym〉, the set {S(xi, yj) |1 ≤ i, j ≤ m}
(which contains m2 elements) is pseudo-random. That is to say that this set is
indistinguishable from a truly random set3 .

We use this property of synthesizers in order to encrypt the data elements.
For example, the elements can be arranged in a square and a random key could
be attached to every row and every column (say, key Ri to row i, and key Cj to
column j). The element in position (i, j) can be committed to using the combined
key S(Ri, Cj). It is ensured that the values of any set of combined keys do not
leak information about the values of other combined keys.

We require an additional property from the pseudo-random synthesizers that
we use: they should have the same output for any two input vectors for which
the sum of the input variables is the same. For example, for a two dimensional
3 This is a special property which does not hold for any pseudo-random generator G,

since it involves inputs which are not independent.

Oblivious Transfer with Adaptive Queries 579

synthesizer S this implies that for every x1, y1, x2, y2 that satisfy x1+y1 = x2+y2

it holds that S(x1 , y1) = S(x2 , y2). More formally, the requirement is as follows:

Definition 1 ((sum consistent synthesizer)). A function S (defined over `
inputs in a commutative group) is a sum consistent synthesizer if the following
two conditions hold:

– S is a pseudo-random synthesizer.
– For every x1, . . . , x`, and every y1, . . . , y` that satisfy

∑`
1 xi =

∑`
1 yi, it holds

that
S(x1 , x2, . . . , x`) = S(y1 , y2, . . . , y`)

The sum consistency property does not contradict the pseudo-randomness of
the synthesizer. Suppose that S is a two dimensional sum consistent synthesizer,
and let 〈x1, . . . , xm〉 and 〈y1, . . . , ym〉 be two random sets of inputs, whose size
is polynomial in the security parameter of the synthesizer. Then there is an
exponentially small probability that there is a pair (xi, yj), (x′

i, y
′
j) for which

xi + yj = x′
i + y′j . If ` is large enough then an ` dimensional synthesizer might

contain such pairs with non-negligible probability. However then the range of
possible `-tuple inputs is exponentially large, and the probability of sampling
such a pair is exponentially small.

Construction 1 (Randomoracle based sum consistent synthesizer) Let
RO be a random oracle. A sum consistent synthesizer can be realized as

S(x1, x2, . . . , x`) = RO(x1 + x2 + · · ·+ x`)

This simple construction means that (1) it is plausible to assume that such func-
tions exist, and (2) suggests a heuristic approach for constructing such functions
using a “complex” function (e.g. MD5). We prefer the number-theoretic con-
struction that we present next, but on the downside it requires modular expo-
nentiations which are more complicated to compute than common realizations
of “complex” functions.

Another construction of sum consistent synthesizers is based on the synthe-
sizers of [25] whose security relies on the Decisional Diffie-Hellman assumption
(the DDH assumption is introduced and discussed in Section 4.1 below)4.

Construction 2 (DDH based sum consistent synthesizer) Let 〈Gg, g〉 be
a group and a generator for which the Decisional Diffie-Hellman assumption
holds. Let the input values x1, . . . , x` be elements in {1, . . . , |Gg|}. A sum con-
sistent synthesizer can be realized as

S(x1, x2, . . . , x`) = gx1x2···x`

4 In fact, in the usual representation it seems that these synthesizers have the same
output for input vectors for which the multiplication of the input elements is equal.
It is possible to look at a different representation of the inputs which results in the
same outputs for sum consistent inputs. Both representations are sufficient for our
purposes.

580 M. Naor, B. Pinkas

We use sum consistent synthesizers S in the following way which is depicted
in Figure 1. Suppose that the elements are arranged as entries in a square and
are committed to using S(Ri, Cj), as described above. Then for each transfer
phase Bob can choose a random value r, and let Alice obtain one of the values
〈R1 + r, R2+ r, . . . , R√

N + r〉, and one of the values 〈C1− r, C2− r, . . . , C√
N − r〉.

Alice can compute S(Ri + r, Cj − r) = S(Ri, Cj) and obtain the key that hides
data element (i, j). We should also make sure that Alice is unable to combine the
values she obtains in different transfer phases, and this requirement complicates
the protocols a little.

TransferInitialization

Cm
R1

Ri

Rm

C1

+r

Rm

Cj -r-r

+r

-r
+r

Cm

m=sqrt(N)
CjC1

R1

Ri

S(Ri+Cj)
with
commit

Fig. 1. The stages of the protocol.

3 The New OTN

k�1 Protocols

We present two types of OTN
k×1 protocols of the above flavor, protocols whose se-

curity depend on the Decisional Diffie-Hellman assumption, and protocols which
can be based on any sum consistent synthesizer. We start with two DDH based
protocols. These protocols are somewhat simpler than the general construction,
since the hardness of the discrete log problem prevents some attacks which are
possible in the general case. The DDH based protocols can be used to transfer
any number of elements. That is, they are good for OTN

k×1 with any k < N ,
and their efficiency does not depend on k. We then present a OTN

k×1 protocol
based on any sum consistent synthesizer. This protocol is secure for at most k
transfers, where k is a parameter which affects (logarithmically) the complexity
of the protocol.

Oblivious Transfer with Adaptive Queries 581

4 Protocols Based on the Decisional Diffie-Hellman
Assumption

Following we present two protocols which are based on the Decisional Diffie-
Hellman assumption. The protocols are very efficient, except that the basic op-
eration they use is an exponentiation in a group in which the DDH assumption
holds.

4.1 The Decisional Diffie-Hellman Assumption

The Decisional Diffie-Hellman assumption (DDH assumption) is used as the
underlying security assumption of many cryptographic protocols (e.g. the Diffie-
Hellman key agreement protocol [11], the ElGamal encryption scheme [14], the
Naor-Reingold pseudo-random functions [25], and the Cramer-Shoup construc-
tion of a cryptosystem secure against chosen ciphertext attacks [10]). This as-
sumption is very appealing since there is a worst-case average-case reduction
which shows that the underlying decision problem is either very hard on the
average case or very easy in the worst case [25,27].

The DDH assumption is thoroughly discussed in [2]. The assumption is about
a cyclic group Gg and a generator g. Loosely speaking, it states that no effi-
cient algorithm can distinguish between the two distributions 〈ga, gb, gab〉 and
〈ga, gb, gc〉, where a, b, c are randomly chosen in [1, |Gg|].

Our protocols essentially commit to the data elements using a key which is
the output of the DDH based pseudo-random function or synthesizer of [25].
They are defined for a group Gg which is generated by a generator g, and for
which the Decisional Diffie-Hellman assumption holds. It is very attractive to
use in these protocols the non-interactive OT2

1 protocols of Bellare and Micali
[1]. The combination of these protocols with the proof techniques of [9] yields
a very efficient OT2

1 protocol which is based on the Decisional Diffie-Hellman
assumption.

4.2 A Two-Dimensional Protocol

The following protocol arranges the elements in a two-dimensional structure
of size

√
N × √

N . It uses OT
√

N

1 as a basic primitive (which can be efficiently
implemented using [23]). In Section 4.3 we present a protocol which arranges the
elements in a log N dimensional structure and uses OT2

1 as its basic primitive.

Protocol 1 B’s input is X1, X2, ...XN, where N = 2`. Rename these inputs as
{xi,j|1 ≤ i, j ≤ √

N}. In each invocation of the protocol the receiver A should
learn a different element Xi,j.

1. Initialization:
(a) B prepares 2

√
N random keys

(R1, R2, . . . , R√
N) (C1, C2, . . . , C√

N)

582 M. Naor, B. Pinkas

which are random integers in the range 1, . . . , |Gg|.
For every pair 1 ≤ i, j ≤ √

N , B prepares a commitment key Ki,j =
gRiCj , and a commitment Yi,j of Xi,j using this key, Yi,j =commitKi,j (Xi,j).

(b) B sends to A the commitments Y1,1, . . . , Y√
N,

√
N .

2. Transfer (this part takes place when A wants to learn Xi,j).
For each Xi,j that A wants to learn the parties invoke the following protocol:
(a) B chooses random elements rR, rC (rR is used to randomize the row keys,

and rC is used to randomize the column keys).
(b) A and B engage in a OT

√
N

1 protocol for the values 〈R1·rR, R2·rR, . . . , R√
N ·

rR〉. If A wants to learn Xi,j she should pick Ri ·rR.
(c) A and B engage in a OT

√
N

1 protocol for the values 〈C1·rC, C2·rC, . . . , C√
N ·

rC〉. If A wants to learn Xi,j she should pick Cj ·rC.
(d) B sends to A the value g1/(rRrC).
(e) A reconstructs Ki,j as Ki,j = (g1/(rRrC))(RirR)·(CjrC), and uses it to open

the commitment Yi,j and reveal Xi,j .

The receiver can clearly obtain any value she wishes to receive in the above
protocol (the sum consistency ensures that she reconstructs the same key that
was used by B for the commitment).

As for the complexity of the protocol, the initialization phase requires B
to compute all N commitment keys, i.e. to compute N exponentiations (see in
protocol 2 a discussion on how to efficiently implement these exponentiations
by utilizing the structure of the exponents). Each transfer phase requires two
invocations of an OT

√
N

1 protocol (which each requires O(
√

N) initialization work
by B).

The privacy of A is guaranteed by the security of the OT
√

N

1 protocols which
do not disclose to B information about A’s choices. The use of commitments
ensures that B cannot change the Xi’s between transfers.

The security of B is guaranteed by the Decisional Diffie-Hellman assumption.
To show this we compare A to a party A′ who instead of running the transfer
phases simply asks and receives the keys for k commitments. We prove that A
does not gain more information than A′. To complete the proof of security it is
required to simulate A′ and show that she does not learn more than k committed
values. We present a theorem which states the security property and a sketch of
its proof. The formal proof of this property turns out to be rather subtle since
it involves the problem of selective decommitment which is described below.

Theorem 1 In k invocations of the above protocol A does not learn more in-
formation than a party A′ which can adaptively ask and obtain the commitment
keys of k elements.

Proof sketch: The security of the OT
√

N
1 protocol ensures that in each invo-

cation of the transfer phase A can only learn a triplet of the following form
V1 = (g1/r1r2 , Rir1, Cjr2), where r1, r2 were chosen at random by B. This is
equivalent to A learning a triplet V2 = (gRiCj/r1r2 , r1, r2). A can easily compute
from this information the following tuple V3 = (gRiCj , gRiCj/r1r2 , r1, r2) which

Oblivious Transfer with Adaptive Queries 583

of course does not contain more information than the key gRiCj alone (the key
enables A to generate tuples in the same distribution as that of V3). The pseudo-
randomness of the output of the synthesizer ensures that A does not gain from
k such keys more information about other keys than is available to A′ which
simply asks and receives k keys. It is left to prove that A does not learn any-
thing from the commitments that she is given. This proof involves the selective
decommitment problem, which we describe below.

The Selective Decommitment Problem and Its Resolution: Consider
the following seemingly benign problem. A party A receives N commitments to
N values. She then chooses k of the commitments, receives their keys, and opens
them. It seems obvious that A does not gain information on the unopened values.
A should therefore be simulated in the ideal model by a party who can ask and
get k of the committed values and sees nothing else. Although there does not
seem to be any obvious way for A to take advantage of the fact that she sees the
commitments before asking for the keys, it is not known how to prove that this
is indeed the case. The problem is that it is hard to simulate the operation of A
since it is unknown at the time of generating the commitments which of them
she would ask to open. The number of the possible subsets of k commitments
whose keys A might request is exponential. Note that it is possible to prove
that A does not learn information about any other single element (or about
a constant number of elements) since the simulation can with high probability
“guess” the identity of this element. The selective decommitment problem is
discussed in [13].

To enable the simulation it should be possible to open in the simulation any
commitment to any value. Luckily, in the scenario of the OTN

k×1there is an easy
way to enable this. We describe below the solution for the DDH based protocol,
which uses the trapdoor commitments of Chaum et al [6]. The solution for the
protocols which use any sum consistent synthesizer is more complex and uses
the commitments of Naor [22]. We do not describe it here.

In the case of DDH based OTN
k×1 the protocol should be amended as follows

(but for the sake of clarity we do not describe these modifications in the body of
the protocols in the paper): (1) In the beginning of the protocol A should send
to B two values g1, g2 ∈ G and prove (in zero-knowledge) that she knows the
discrete log of g2 to the base g1. (In the simulation we would extract logg1

g2 of
the g1, g2 that would be used there). (2) B would use trapdoor commitments of
the form ga

1gb
2 (which can be opened in an arbitrary way in the simulation, where

logg1
g2 is known). B commits to the value XI in the following way, suggested

in [6]: (i) chooses a random YI and computes CI = gXI

1 gYI

2 ; (ii) takes the output
of the synthesizer and uses it as a key to encrypt (XI , YI) by xoring it, and sends
these two results to A.

When the output of the synthesizer is computed it can be used to compute
XI and the commitment can be used to verify the result. In the simulation it is
possible given XI to find a YI which would be consistent with it, and give an
output of the synthesizer which “decrypts” these values.

584 M. Naor, B. Pinkas

4.3 A Protocol Using OT2
1:

The following protocol uses simple OT2
1 in a straightforward manner.

Protocol 2 B’s input is X1, X2, ...XN, where N = 2`. In each invocation of the
protocol the receiver A would like to learn a different element XI .

1. Initialization:
(a) B prepares ` random pairs of keys

(a0
1, a

1
1), (a

0
2, a

1
2), . . . (a

0
` , a

1
`)

where for all 1 ≤ j ≤ ` and b ∈ {0, 1} each ab
j is a random integer5 in

the range 1, . . . , |Gg|.
For all 1 ≤ I ≤ N let 〈i1, i2, . . . i`〉 be the bits of I. B prepares a com-

mitment key KI = gΠ`
j=1a

ij
j , and a commitment YI of XI using this key,

YI = commitKI (XI).
(b) B sends to A the commitments Y1, Y2, . . . YN .

2. Transfer: For each XI that A wants to learn the parties invoke the following
protocol:
(a) B chooses random elements r1, . . . , r`. Element ri will be used to ran-

domize the keys of the i’th coordinate.
(b) For each 1 ≤ j ≤ `, A and B engage in a OT2

1 protocol for the values
〈a0

jrj , a
1
jrj〉. If A wants to learn XI she should pick a

ij

j rj.
(c) B sends to A the value g1/r1r2···r` .
(d) A reconstructs KI as KI = (g1/(r1r2···r`))(a

i1
1 r1)···(ai`

`
r`), and uses it to

open the commitment YI and reveal XI .

The receiver can clearly obtain any value she wishes to receive in the above
transfer protocol.

The initialization phase requires B to compute all N commitment keys. This
can be done with exactly N exponentiations if the order in which the keys are
computed follows a Gray code (i.e. the Hamming distance between each two
consecutive words is 1). The computation can be further improved by using
efficient techniques for raising the same number to many powers, or for raising
many numbers to the same exponent (see [21] for a survey of such techniques).
It is an interesting problem to find a way to utilize the special structure of the
exponents (being the multiplications of all the subsets of ` elements) to compute
the N = 2` commitment keys more efficiently.

The transfer part of the protocol requires ` = logN invocations of an OT2
1

protocol. In addition A and B should each compute a single exponentiation.
The privacy of A is guaranteed by the privacy of the OT2

1 protocols. A is also
ensured by the security properties of the commitments that B cannot change
the values of the XI ’s between transfers.

The security of B is guaranteed by the Decisional Diffie-Hellman assumption,
and is proven in a similar way to the security of protocol 1.
5 Note that B can set every a0

j to be equal to 1 without affecting the security of the
system. This results in a reduction in the size of the keys that B needs to keep.

Oblivious Transfer with Adaptive Queries 585

5 Protocols Based on Any Sum Consistent Synthesizer

We describe an insecure OTN
k×1 protocol which can be based on any sum con-

sistent synthesizer, examine it, and transform it to a secure protocol.

5.1 An Insecure Protocol

The following protocol is insecure.

Protocol 3 (an insecure protocol)
B’s input is {xi,j|1 ≤ i, j ≤ √

N}. Let S(x, y) be a sum consistent synthesizer
with two inputs.

1. Initialization:
(a) B prepares 2

√
N random keys

(R1, R2, . . . , R√
N) (C1, C2, . . . , C√

N)

For every pair 1 ≤ i, j ≤ √
N , B prepares a commitment key Ki,j =

S(Ri, Cj) and uses the key to generate a commitment Yi,j of Xi,j , Yi,j =
commitKi,j (Xi,j).

(b) B sends to A the commitments Y1,1, . . . , Y√
N,

√
N .

2. Transfer:
The parties invoke the following protocol for each Xi,j that A wants to learn:
(a) B chooses random elements rR, rC, such that rR + rC = 0 (rR is used to

randomize the row keys, and rC is used to randomize the column keys).
(b) A and B engage in a OT

√
N

1 protocol for the values 〈R1 + rR, R2 +
rR, . . . , R√

N + rR〉. If A wants to learn Xi,j she should pick Ri + rR.
(c) A and B engage in a OT

√
N

1 protocol for the values 〈C1 + rC, C2 +
rC, . . . , C√

N + rC〉. If A wants to learn Xi,j she should pick Cj + rC.
(d) A reconstructs Ki,j as Ki,j = S(Ri + rR, Cj + rC)), and uses it to open

the commitment Yi,j and reveal Xi,j .

The security problem: The above protocol enables A to learn any value she wishes
and protects her privacy. However the protocol is insecure for B because A can
combine information she learns in different transfers, and use linear relations
between the keys to learn more keys than she is entitled to. For example she can
use the relation (Ri + Cj) + (Ri′ + Cj′) = (Ri′ + Cj) + (Ri + Cj′). She can thus
ask to learn the keys that generate Ki,j, Ki′,j, and Ki,j′ and use the information
she receives to illegally compute the key Ki′,j′.

5.2 Fixing the Protocol

In order to transform the above protocol to be secure we use the following
construction of a set of matrices. It is used to ensure the non-linearity of the
information that A learns.

586 M. Naor, B. Pinkas

Construction 3 (k-out-of-N relation free matrices) .

– Let M1, . . . , Mt be t matrices of size
√

N × √
N , each containing a permu-

tation of all the elements 1, . . . , N .
– Consider a collection of N vectors, which each have 2t

√
N coordinates cor-

responding to the rows and columns of each of the matrices. Denote the
coordinates as {(i, j, k) | 1 ≤ i ≤ t, 1 ≤ j ≤ 2, 1 ≤ i ≤ √

N} (i.e. i represents
the matrix, j is either a row or a column, and k is the row (column) index).

– For each element 1 ≤ x ≤ N define a vector vx. Denote the row and column
of x in matrix i as Ri(x), Ci(x). The coordinates in vx that correspond to the
locations of x in the matrices are set to 1. I.e. the 2t coordinates (i, 1, Ri(x))
and (i, 2, Ci(x)) are 1 and all other coordinates are 0.

– The t matrices are k-out-of-N relation free if the vectors corresponding to
any k + 1 elements are linearly independent.

For simplicity assume that the non-linearity is defined over the field GF (2).
The following lemma suggests a random construction of a k-out-N relation free
set.

Lemma 1 A random mapping of N elements to t matrices, where

t ≥ log(N/(k + 1))
log(

√
N/(k + 1))

,

is with high probability k-out-of-n relation free.

Proof: The vectors contain 2t
√

N coordinates. Call the coordinates that cor-
respond to the row (or column) keys of a certain matrix a region. The vectors
contain 2t regions, each with

√
N coordinates. Each vector has in each region a

single coordinate with a ‘1’ value.
Consider a set of k+1 linearly dependent vectors. Then each coordinate either

has no vectors in which it is set to 1, or it is set to 1 in at least two vectors.
Therefore in each region the 1 values of all k + 1 vectors are concentrated in at
most (k + 1)/2 coordinates.

Since the mapping to matrices locations is random the probability that
this property holds for a single region is at most (k+1

2
√

N
)(k+1)/2. The probabil-

ity that it holds for all regions is therefore bounded by (k+1
2
√

N
)(k+1)t. We ap-

ply the probabilistic method and require this probability to be smaller than
the inverse of the number of subsets, 1/

(
N

k+1

) ≈ (k+1
eN)k+1. This holds for t ≥

(log(N/(k + 1))/ log(
√

N/(k + 1)). 2

Note that this randomized construction is good for every k = o(
√

N). In
particular, if k < N1/4 then t = 3 satisfies the condition of the theorem, and for
k < N1/3 it suffices to use t = 4. It should be interesting to come up with an
explicit construction of k-out-n relation free matrices (the problem seems to be
related to the minimal weight of linear codes).

The transformation of protocol 3 is based on mapping the data elements to
keys using a set of k-out-of-n relation free matrices. This ensures that the receiver

Oblivious Transfer with Adaptive Queries 587

can learn at most k linear equations which correspond to k relevant synthesizer
inputs. The full description of the secure protocol appears in Section 5.3. We
first describe only the differences from protocol 3.

In the initialization phase B uses a k-out-of-N relation free construction of
t matrices and maps the N elements to entries in the t matrices. Namely, the
element whose index is x is mapped in each matrix to the entry which contains x.
The sender publishes the mapping and makes it available to A. B chooses random
keys for every row and column from each matrix (a total of 2t

√
n keys). The

commitment key for each element is the output of a sum consistent synthesizer
with 2t inputs, which are the keys corresponding to the rows and columns to
which the element is mapped in each of the matrices.

In each transfer phase B chooses 2t random hiding elements ri whose sum is
0. A and B run 2t OT

√
N

1 protocols, which let A learn all the relevant inputs to
the synthesizer, each summed with the corresponding random element ri. The
sum of these values equals the sum of the synthesizer inputs that generated the
key to the commitment, and so A is able to open it.

The following theorem states that this protocol is secure if enough matrices
are used (fortunately, if k is not too close to

√
N very few matrices are needed).

Theorem 2 The above OTN
k×1 protocol with a set of k-out-of-N relation free

matrices is secure.

Proof sketch: The properties of the OT
√

N

1 protocol ensure A’s privacy. It is
required to prove that A cannot use the information she obtained in k invocations
of the transfer protocol to learn more than k elements.

The protocol is run with t matrices which are k-out-of-n relation free. B uses
in each transfer phase a new set of 2t random hiding elements, ri, which sum to
0. Therefore A can learn in each transfer phase at most a single linear equation
which does not involve the hiding elements. This equation is the sum of one key
from each row and from each column.

In order to avoid the selective decommitment problem we present the proof
assuming that B generated N encryptions of the data items, and not commit-
ments. The proof for a protocol which uses commitments is more involved and
uses the commitments of [22].

First assume that in each transfer phase A follows the protocol and learns an
equation which corresponds to a key which was used to encrypt a data element.
The relation freeness ensures that the k equations that A learns do not span any
key which was used for encrypting another data element.

Note that for every synthesizer output that A obtains she also learns the
sum of its inputs. In order to handle this in the simulation the encryptions there
should be done with a different set of keys for each data element. I.e. instead of
using 2t

√
N keys there would be N sets of 2t keys, so that the Ith set is used

for encrypting to XI . When A asks in the simulation for element XI she receives
the sum of the keys in the Ith set. The pseudo-randomness of the synthesizer
ensures that she cannot distinguish this view from the real distribution.

Consider now the case in which A does not play by the rules and in some
transfer phases asks to learn linear equations which do not correspond to any

588 M. Naor, B. Pinkas

of the encryption keys. Then in some later transfer phase she might learn an
equation which, together with the previous equations she learned, reveals several
keys. This might pose a problem in the simulation since it would be required to
supply A with a single value which agrees with all the keys that she is supposed
to learn in this phase. However observe that the j equations that A learns in the
first j transfer phases span a subspace of dimension j of the N equations that
were used for the encryptions. The value that A obtains in the jth phase of the
simulation could be set to correspond to a new vector of this subspace which is
learned by A in this phase . 2

5.3 A Protocol Based on Any Sum Consistent Synthesizer

The following protocol is a secure version of protocol 3.

Protocol 4 B’s input contains the N elements {xi,j|1 ≤ i, j ≤ √
N}. B maps

the inputs into a set of k-out-of-N relation free matrices, which contains t ma-
trices. Let xm

R
and xm

C
denote the row and column into which x is mapped in

matrix m.
Let S(x1 , . . . , x2t) be a sum consistent synthesizer with 2t inputs.

1. Initialization:
(a) B prepares 2t

√
N random keys

(R1
1, R

1
2, . . . , R

1√
N) (C1

1 , C1
2 , . . . , C1√

N), . . . , (Rt
1, R

t
2, . . . , R

t√
N) (Ct

1, C
t
2, . . . , C

t√
N)

For every pair 1 ≤ i, j ≤ √
N, B prepares a commitment key

Ki,j = S(R1
(xi,j)1R

, C1
(xi,j)1C

, . . . , Rt
(xi,j)t

R
, Ct

(xi,j)t
C
)

That is, the output of the synthesizer for the row and column keys that
correspond to the locations of the input in each of the matrices. B pre-
pares a commitment Yi,j of Xi,j using this key, Yi,j = commitKi,j (Xi,j).

(b) B sends to A the commitments Y1,1, . . . , Y√
N,

√
N .

2. Transfer: for each Xi,j that A wants to learn the parties invoke the following
protocol:
(a) B chooses random elements r1

R, r1
C, . . . , rt

R, rt
C, such that their sum is 0.

(rm
R is used to randomize the row keys of matrix m, and rm

C is used to
randomize the column keys of matrix m).

(b) For every matrix 1 ≤ m ≤ t, A and B engage in the following protocols:
– A OT

√
N

1 protocol for the values 〈Rm
1 + rm

R , Rm
2 + rm

R , . . . , Rm√
N

+ rm
R 〉.

If A wants to learn Xi,j she should pick Rm
(xi,j)m

r
+ rm

R .

– A OT
√

N

1 protocol for the values 〈Cm
1 + rm

C , Cm
2 + rm

C , . . . , Cm√
N

+ rm
C 〉.

If A wants to learn Xi,j she should pick Cm(xi,j)m
c + rm

C .
(c) A reconstructs Ki,j as

Ki,j = S(R1
(xi,j)1

R
+ r1

R
, C1

(xi,j)1C
+ r1

C
, . . . , Rt

(xi,j)t
R

+ rt
R
, Ct

(xi,j)t
C

+ rt
C
)

and uses it to open the commitment Yi,j and reveal Xi,j.

Oblivious Transfer with Adaptive Queries 589

References

1. M. Bellare and S. Micali, Non-interactive oblivious transfer and applications, Proc.
Advances in Cryptology - Crypto ’89, Springer-Verlag LNCS 435 (1990), 547-557.

2. D. Boneh, The Decision Diffie-Hellman Problem, Proc. of the Third Algorithmic
Number Theory Symposium, Springer-Verlag LNCS 1423 (1998) 48–63.

3. G. Brassard, C. Crépeau and J.-M. Robert Information Theoretic Reduction Among
Disclosure Problems, 27th Annual Symposium on Foundations of Computer Science,
1986, 168–173.

4. G. Brassard, C. Crépeau and J.-M. Robert, All-or-Nothing Disclosure of Secrets,
Proc. Advances in Cryptology - Crypto ’86, Springr-Verlag LNCS 263 (1987), 234–
238.

5. C. Cachin, S. Micali and M. Stadler, Computationally Private Information Retrieval
With Polylogarithmic Communication, Proc. Advances in Cryptology – Eurocrypt
‘99, Springr-Verlag LNCS 1592 (1999), 402–414.

6. D. Chaum, E. van Heijst, and B. Pfitzmann, Cryptographically strong undeniable
signatures, unconditionally secure for the signer, Proc. Advances in Cryptology –
Crypto ’91.

7. B. Chor, N. Gilboa, and M. Naor, Private information retrieval by keywords,
manuscript, 1998.

8. B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, Private Information Retrieval,
JACM 45 (1998), 965–981. Preliminary version appeared in Proc. 36th IEEE Sym-
posium on Foundations of Computer Science, 1995.

9. R. Cramer, I. Damgrd, B. Schoenmakers, Proofs of partial knowledge and simplified
design of witness hiding protocols, Proc. Advances in Cryptology – Crypto ’94,
Springr-Verlag LNCS 839 (1994), 174–187.

10. R. Cramer and V. Shoup, A practical public key cryptosystem provably secure
against adaptove chosen ciphertext attacks, Proc. Advances in Cryptology – Crypto
’98, Springr-Verlag LNCS 1462 (1998), 13–25.

11. W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inform.
Theory, vol. 22(6), 1976, 644–654.

12. Y. Dodis and S. Micali, Lower bounds for oblivious transfer reductions, Proc. Ad-
vances in Cryptology – Eurocrypt ’99, Springr-Verlag LNCS 1592 (1999), 42–54.

13. C. Dwork, M. Naor, O. Reingold and L. Stockmeyer, Magic functions, manuscript,
1999.

14. T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, Proc. Advances in Cryptology – Crypto ’84, Springr-Verlag LNCS 196
(1985), 10–18.

15. M. L. Fredman, J. Komlos and R. Szemeredi, Storing a sparse table with O(1)
worst case access time, JACM 31 (1984), 538–544.

16. S. Even, O. Goldreich and A. Lempel, A Randomized Protocol for Signing Con-
tracts, Communications of the ACM 28, 1985, 637–647.

17. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, Protecting Data Privacy in
Private Information Retrieval Schemes, Proc. of the 30th ACM Symp. on the Theory
of Computing, 1998.

18. O. Goldreich, Secure Multi-Party Computation (working draft) Version 1.1, 1998.
Available at http://philby.ucsd.edu/books.html

19. R. Impagliazzo and S. Rudich, Limits on the Provable Consequences of One-Way
Permutations, Proc. of the 20th ACM Symp. on the Theory of Computing, 1988.

590 M. Naor, B. Pinkas

20. E. Kushilevitz and R. Ostrovsky, Replication Is Not Needed: Single Database,
Computationally-Private Information Retrieval, Proc. 38th IEEE Symp. on Foun-
dations of Computer Science, 1997

21. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

22. M. Naor, Bit Commitment Using Pseudo-Randomness, Journal of Cryptology, vol.
4, 1991, 151–158.

23. M. Naor and B. Pinkas, Oblivious Transfer and Polynomial Evaluation, Proc. 31th
ACM Symp. on Theory of Computing, 1999, 245–254.

24. M. Naor and O. Reingold, Synthesizers and their application to the parallel con-
struction of pseudo-random functions, Proc. 36th IEEE Symp. on Foundations of
Computer Science, 1995, 170–181.

25. M. Naor and O. Reingold, , Number-Theoretic constructions of efficient pseudo-
random functions, Proc. 38th IEEE Symp. on Foundations of Computer Science,
1997, 458–467.

26. M. O. Rabin, How to exchange secrets by oblivious transfer, Tech. Memo TR-81,
Aiken Computation Laboratory, 1981.

27. M. Stadler, Publicly verifiable secret sharing, Proc. Advances in Cryptology – Eu-
rocrypt ’96, Springr-Verlag LNCS 1070 (1996), 190–199.

28. S. Wiesner, Conjugate coding, SIGACT News 15, 1983, 78–88.

	Introduction
	Motivation
	Protocol Structure
	Correctness and Security Definitions
	Previous Work
	Comparison to Private Information Retrieval (PIR)

	Cryptographic Tools
	Sum Consistent Synthesizers

	The New {${rm OT}^{N}_{ktimes 1}$} Protocols
	Protocols Based on the Decisional Diffie-Hellman Assumption
	The Decisional Diffie-Hellman Assumption
	A Two-Dimensional Protocol
	A Protocol Using {${rm OT}^2_1$}:

	Protocols Based on Any Sum Consistent Synthesizer
	An Insecure Protocol
	Fixing the Protocol
	A Protocol Based on Any Sum Consistent Synthesizer

