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Abstract. Recent results of Ajtai on the hardness of lattice problems
have inspired several cryptographic protocols. At Crypto ’97, Goldreich,
Goldwasser and Halevi proposed a public-key cryptosystem based on the
closest vector problem in a lattice, which is known to be NP-hard. We
show that there is a major flaw in the design of the scheme which has
two implications: any ciphertext leaks information on the plaintext, and
the problem of decrypting ciphertexts can be reduced to a special closest
vector problem which is much easier than the general problem. As an
application, we solved four out of the five numerical challenges proposed
on the Internet by the authors of the cryptosystem. At least two of those
four challenges were conjectured to be intractable. We discuss ways to
prevent the flaw, but conclude that, even modified, the scheme cannot
provide sufficient security without being impractical.

1 Introduction

Historically, public-key cryptosystems have almost without exception been built
on the assumed hardness of one of the three following problems: knapsacks,
discrete logarithms in some groups, and integer factorization. Despite the NP-
completeness of the knapsack problem, all knapsack-based systems have been
broken (see the survey [24]), mainly due to the connection between lattice prob-
lems and knapsacks arising from cryptography. The narrowness of the remaining
options has often been cited as a potential fragility of public-key cryptogra-
phy. Recently, Ajtai [1] found a surprising worst-case/average-case connection
for certain lattice problems, which caused a revival of knapsack-based cryptog-
raphy [3,16,15,19,5]. In particular, two lattice-based public-key cryptosystems
have received wide attention: the Ajtai-Dwork cryptosystem (AD) [3] and the
Goldreich-Goldwasser-Halevi cryptosystem (GGH) [16].

The AD scheme has a fascinating property: it is provably secure unless some
worst-case lattice problem can be solved in probabilistic polynomial time. The
problem is a variant of the famous shortest vector problem (SVP), which refers
to the question of computing a lattice vector with minimum non-zero Euclidean
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length. The GGH scheme relies on the non-homogeneous analog of SVP, the so-
called closest vector problem (CVP) in which one has to find a lattice vector min-
imizing the distance to a given vector. GGH has no proven worst-case/average-
case property, but it is much more practical than AD. Specifically, for security
parameter n, key-size and encryption time are O(n2) for GGH, vs. O(n4) for
AD. For RSA and El-Gamal systems, key size is O(n) and computation time
is O(n3). The authors of GGH argued that the increase in size of the keys was
more than compensated by the decrease in computation time.

Ajtai’s work [1] initiated a substantial amount of research [7,2,22,13,9,6,17]
on the hardness of SVP, CVP, and related problems. We now know that SVP is
NP-hard for polynomial random reductions [2], even up to some constant [22].
CVP is NP-hard [11], and approximating CVP to within almost-polynomial
factors is also NP-hard [9]. In fact, SVP cannot be harder than CVP: it was
recently shown [17] that one can approximate SVP to any factor in polynomial
time given an approximation CVP-oracle for the same factor and dimension.
On the other hand, approximating SVP or CVP to

√
n/ log(n) are unlikely

to be NP-hard [13] (n denotes the lattice dimension). Furthermore, there exist
polynomial-time approximation algorithms [20,4,25,27], such as the celebrated
LLL algorithm, that can achieve exponential bounds. And it is well-known that
these reduction algorithms behave much better in practice than theoretically
expected. Therefore, the practical security of AD and GGH had to be assessed.

In the case of AD, such an assessment proved to be deadly: Nguyen and
Stern [23] showed that any realistic implementation of the AD scheme was in-
secure. However, the attack was specific to AD, and had no implications on the
security of GGH. Moreover, since GGH is much more efficient than AD, it has
larger security parameters: breaking GGH apparently meant solving hard lattice
problems in dimensions much higher than what had previously been done, such
as in cryptanalyses of knapsack systems. Based on numerous experiments, the
authors of GGH conjectured that the closest vector problem arising from their
scheme was intractable in practice for dimension 300 or so. To bring confidence
in their scheme, they published on the Internet a series of five numerical chal-
lenges [14], in dimensions 200, 250, 300, 350 and 400. In each of these challenges,
a public key and a ciphertext were given, and the challenge was to recover the
plaintext.

To our knowledge, all previous attempts to solve these challenges have failed,
except in dimension 200. The most successful attempts used the so-called embed-
ding technique, which (heuristically) reduces CVP to a shortest vector problem
in a lattice of similar dimension. By applying high-quality reduction algorithms,
one hopes to recover the closest vector. Using this technique, Schnorr et al. [26]
were able to decrypt ciphertexts up to dimension 150. And Nguyen used the NTL
package in Oct. 97 to solve the 200-challenge in a few days (see the documen-
tation of NTL [28]) with the improved algorithm of [27]. But higher dimensions
seemed to be out of reach, confirming the predictions of the authors of GGH.

In this paper, we show that there is dangerous flaw in the GGH cryptosys-
tem. More precisely, we observe that each encryption leaks information on the
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cleartext, and this information leakage allows an attacker to reduce the problem
of decrypting ciphertexts to solving particular CVP-instances which are much
easier than the general problem. Namely, for these instances, the given vector
is very close to the lattice, which makes it possible in practice to find the clos-
est vector by standard techniques. As an application, we solved four out of the
five Internet GGH challenges from dimension 200 to 350, in a reasonable time.
In dimension 400, we obtained 1/8th of the plaintext. This proves that GGH
is insecure for the parameters suggested by Goldreich, Goldwasser and Halevi.
Learning the result of our experiments, one of the authors of GGH declared the
scheme as “dead” [12]. We suggest modifications to fix the encryption process,
but estimate that, even modified, the scheme cannot provide security without
being impractical, compared to existing schemes.

The rest of the paper is organized as follows. We first review necessary mate-
rial about lattices in section 2. Then we briefly describe the GGH cryptosystem.
In section 4, we explain how the encryption process leaks information, using a
basic observation. In section 5, we show how to exploit the information leakage
to simplify the problem of decrypting ciphertexts. Section 6 presents the exper-
iments done on the Internet challenges. And in section 7, we discuss ways to
repair the scheme.

2 Background on Lattices

In the sequel, we denote vectors by bold-face lowercase letters (e.g. b, c, r); we
use capital letters (e.g. B, C, L) to denote matrices or sets of vectors. If b is a
vector in R

n, then dbc denotes the vector in Z
n which is obtained by rounding

each entry in b to the nearest integer.

2.1 Definitions

In this paper, we only care about integral lattices of full rank, so the definitions
below only deal with those. Let M be a non-singular n×n integral matrix. Denote
by b1, . . . ,bn the row vectors of M . The lattice L spanned by (b1, . . . ,bn) (or
M) is the set L(M) of all integral linear combinations of the bi’s. The set of bi’s
is called a basis of L. We identify a basis with the square matrix whose rows are
the basis vectors (note that the convention of [16] used columns instead of rows).
Naturally, a lattice is a set L ⊂ Z

n for which there exists a non-singular matrix
M such that L = L(M). For a given lattice L, there exist many bases, which
all differ by multiplication with some unimodular matrix. Thus, all bases have
the same determinant in absolute value, which is called the lattice determinant
det(L). In every lattice L, there is a non-zero vector whose Euclidean length is
O(

√
n det(L)1/n). In a “random” lattice, one generally assumes that there are no

non-zero vectors with substantially shorter length. The goal of lattice reduction
is to find a reduced basis, that is, a basis consisting of reasonably short vectors.
Define the lattice gap as the ratio between the second successive minimum (the
smallest real number r such that there are two linearly independent lattice points
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of length at most r) and the length of a shortest non-zero vector. Experiments
suggest that the larger the lattice gap is, the easier reduction becomes.

2.2 Algorithmic Problems

We recall that the shortest vector problem (SVP) is: given a lattice basis, find a
non-zero lattice vector with minimal Euclidean length. The closest vector prob-
lem (CVP) is: given a lattice basis and a vector c ∈ Z

n, find a lattice vector
which minimizes the distance to c. A related problem is the smallest basis prob-
lem (SBP): given a lattice basis, find a basis which minimizes the product of the
lengths of its elements. All these problems are NP-hard. And no polynomial-time
algorithm is known for approximating either SVP, CVP or SBP in Z

n to within
a polynomial factor in n. In fact, the existence of such algorithms is an impor-
tant open problem. The best polynomial time algorithms achieve exponential
factors, and are based on the LLL algorithm [20]. The LLL algorithm can be
viewed as an approximation algorithm for both SVP and SBP. Variants [25,27]
of LLL achieve better approximation factors for SVP, but with slower running
time. More precisely, Schnorr defined a family of algorithms (BKZ [25]) whose
performances depend on a parameter called the blocksize. These algorithms use
some kind of exhaustive search which is exponential in the blocksize. So far, the
best reduction algorithms in practice are variants [27] of those BKZ-algorithms,
which apply a heuristic to reduce exhaustive search.

Babai [4] showed how to use a reduced basis to approximate CVP. The more
reduced the basis is, the better the approximation is. For an LLL-reduced basis,
this yields an exponential factor. But in practice, the best method to solve CVP
is the so-called embedding technique (see [16]), which reduces the problem to
a shortest vector problem. Let (b1, . . . ,bn) be a basis of a lattice L, and c the
given vector corresponding to a CVP-instance. The embedding technique builds
the lattice in Z

n+1 spanned by the rows of the following matrix:

L′ =




− b1 − 0

− ... − 0
− bn − 0
− c − 1




L′ and L have the same determinant and almost the same dimension, therefore
one would expect that the shortest lattice vector of L′ has about the same
length than the shortest lattice vector of L. Now, assume that the vector v ∈ L
minimizes the distance to c. One can see that the vector (c − v, 1) ∈ Z

n+1 is
short and belongs to L′. In fact, one hopes that it is the shortest vector of L′, so
that one solves the CVP-instance from the SVP-instance defined by L′. Clearly,
this embedding method is heuristic. Still, if c is very close to the lattice L, then
c− v will be much shorter than the shortest vector of L, so that L′ has a large
gap, and hopefully, is easy to reduce.
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3 The Goldreich-Goldwasser-Halevi Cryptosystem

We make a brief description of the GGH Cryptosystem. More details can be
found in [16]. In particular, we do not specify the key generation because it
is unnecessary for the understanding of our attack. Roughly speaking, GGH is
the lattice-analog of the McEliece [21] cryptosystem based on algebraic coding
theory. In both schemes, a ciphertext is the addition of a random noise vector
to a vector corresponding to the plaintext. The public key and the private key
are two representations of the same object (a lattice for GGH, a linear code for
McEliece). The private key has a particular structure which allows to suppress
noise vectors up to a certain bound. However, the domains in which all these
operations take place are vastly different.

The security parameter is (n, σ) ∈ N
2. The integer n is much larger than σ: a

typical value is (n, σ) = (300, 3). A lattice L in Z
n is generated together with a

reduced basis R of L. One actually generates a non-singular matrix R with short
row vectors, and defines the lattice spanned by this matrix. The basis R, which
is kept private, is transformed to a non-reduced basis B, which will be public.
Several transformation methods were proposed in [16]. Roughly speaking, these
methods multiply R by sufficiently many small unimodular matrices. Computing
a basis as “good” as the private basis, given only the non-reduced basis, means
approximating SBP.

The message space is a “large enough” parallelepiped in Z
n. For instance, in

the numerical challenges, cleartexts were randomly chosen in [−128 · · ·+ 127]n

so that they could be stored within 8n bits. A message m ∈ Z
n is encrypted into

c = mB + e where e is an error vector uniformly chosen from {−σ, σ}n. In [16],
other methods to embed messages into lattice points are discussed. Note, that as
it stands, the cryptosystem is not semantically secure, because one can check if
a ciphertext c corresponds to a plaintext m by computing c−mB. A ciphertext
c is decrypted as bcR−1eRB−1 (note: this is Babai’s round method [4] to solve
CVP). The private basis R is generated in such a way that the decryption process
succeeds with high probability. More precisely, the following result is proved
in [16]:

Theorem 1. Let R be the private basis, and denote the maximum L∞ norm
of the columns in R−1 by γ/

√
n. Then the probability of decryption errors is

bounded by 2ne−1/(8σ2γ2).

The larger σ is, the harder the CVP-instances are expected to be. But the
previous theorem shows that σ must be small for the decryption process to
succeed. In practice, one chooses a private basis R, looks at the norm of the
columns in R−1, and then takes the maximal possible value for σ. The authors
of GGH considered that the value σ = 3 was a good compromise. Based on
extensive experiments (see [16]) with all known methods to solve CVP, they
conjectured that the cryptosystem was secure in practice for dimension 300 or
so. The most successful attack (embedding technique using improved reduction
algorithm) against GGH could decrypt ciphertexts up to dimension 200, in about
a few days.
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We now present new results on the security of GGH, which show that GGH
cannot provide sufficient security even for dimensions as high as 400. In fact,
there is an intrinsic weakness in the encryption process which will prove very
dangerous.

4 Leaking Remainders

Let (n, σ) be the security parameter, and B be a public basis. Assume that a
message m ∈ Z

n is encrypted into a ciphertext c ∈ Z
n with B. There is a vector

e ∈ {±σ}n such that:

c = mB + e (1)

We will see that this equation defining the encryption process has a major flaw.
The key to our results is to look at (1) modulo some well-chosen integer. By
an appropriate choice of the modulus, the error vector e will disappear, from
which information on m can be derived. Since each entry of e is ±σ, a natural
candidate is σ, which gives: c ≡ mB (mod σ). But we notice that 2σ is a better
modulus. Indeed, if we let s = (σ, . . . , σ) ∈ Z

n, then we have e+s ≡ 0 (mod 2σ),
so that:

c + s ≡ mB (mod 2σ) (2)

This reads as a modular system in the unknown m. If we can solve this system,
we obtain m modulo 2σ, which we denote by m2σ. Two questions arise: how
many solutions are there ? And how can we compute all of them ? We will
see that with high probability, there are very few solutions, which are easy to
compute. With non-negligible probability, there is even a single solution. The
probability is with respect to B. Since B is obtained by randomly mixing a
private basis R, and since 2σ is a small number, we assume that the entries of
B modulo 2σ are uniformly and independently distributed in Z2σ. Recall that,
in practice, the standard choice is σ = 3, so that 2σ = 6.

We now discuss the general problem of solving a linear system y = xB
(mod N), where the vector y, the (random) matrix B and the (small) modulus
N are known and we know that there is at least one solution. Clearly, two
solutions differ by an element of the kernel of B, defined as the set of x ∈ Z

n

such that xB ≡ 0 (mod N). It follows that all solutions can be found from the
kernel of B and a particular solution to the system, and their number is equal
to the cardinal of the kernel. If the matrix B is invertible modulo N , that is, if
det(B) is coprime to N , then there is only one solution, which can be found by
matrix inversion: x = yB−1 (mod N). This is of course the simplest case. Let
us see how often such a case occurs.

4.1 Invertible Matrices

The material covered in sections 4.1 and 4.2 is quite intuitive and is probably
already known. Since we have not been able to locate appropriate references,
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we provide proofs in the appendix. The following result gives the proportion of
invertible matrices modulo N among all matrices:

Theorem 2. Let N be some positive integer. Let p1, . . . , p` be the distinct prime
factors of N . Consider the ring of n × n matrices with entries in ZN . Then the
proportion of invertible matrices (i.e., with determinant coprime to N) is equal
to:

∏̀
i=1

n∏
k=1

(1 − p−k
i ).

Note that the above proportion converges rapidly to its limit. It follows that
the proportion can be considered as constant for dimensions of interest, since
those dimensions are high (higher than 200). Table 1 gives numerical results.
It shows that with non-negligible probability, the public matrix B is invertible

Table 1. The proportion of invertible matrices modulo N .

Modulus N 2 3 4 5 6 7 8 9 10

% 28.9 56.0 28.9 76.0 16.2 83.7 28.9 56.0 22.0

modulo 2σ, which discloses any plaintext modulo 2σ. We now show that when
the matrix is not invertible, its kernel is most of the time very small.

4.2 Matrices with Small Kernel

We first treat the case of a prime modulus p. The kernel is then a Zp-vector
space. If d is the kernel dimension, the number of solutions is pd. If both p and
d are small, this number is small. The following theorem shows that the vast
majority of non-invertible matrices modulo p have a kernel of dimension less or
equal to two:

Theorem 3. Let Fq be the finite field with q elements, where q is a prime power.
Consider the set of n × n matrices with entries in Fq. We have:

1. The proportion of matrices with one-dimensional kernel is equal to:

q

(q − 1)2
(1 − q−n)

n∏
k=1

(1 − q−k).

2. The proportion of matrices with two-dimensional kernel is equal to:

q2

(q − 1)2(q2 − 1)2
(1 − q1−n − q−n + q1−2n)

n∏
k=1

(1 − q−k).
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Table 2. The proportion of square modular matrices of low-dimensional kernel.

Prime modulus p 2 3 5

Kernel dimension 1 2 ≥ 3 1 2 ≥ 3 1 2 ≥ 3

% 57.8 12.8 0.5 42.0 2.0 < 0.1 23.8 0.2 � 0.1

Again, we note that the above proportions converge quickly to their limit, so
that the numerical results of table 2 hold for any sufficiently high dimension. It
shows that with high probability, the kernel has dimension less than 2, which
means that there are most p2 solutions to the modular system. Furthermore, it
is very simple to compute these solutions. One can compute a kernel basis of
any matrix modulo any prime in polynomial time (see [8]). To find a particular
solution of the system, one can build a (n + 1) × (n + 1) matrix from the image
vector y and the matrix B, as in the embedding technique. It can be shown that
a particular solution can be derived from any kernel basis of the new matrix. We
refer to [8] for more details.

Now, if the modulus N is not prime but square-free (for instance, 6), the
previous results allow us to conclude. Indeed, if N = p1 × · · · × p` where the
pi’s are distinct primes, then all the solutions can be recovered by Chinese re-
mainders from the solutions modulo each prime pi. And the total number of
solutions is obtained by multiplying the number of solutions for each prime.
Furthermore, one can compute the proportion of matrices with respect to the
number of elements of their kernel, from the previous proportions. Table 3 gives
the results for a modulus equal to 6, which is the case of interest. It shows that
only a very small minority of matrices modulo 6 have a kernel with more than
12 elements. The most probable cases are 2, 6, 1 and 3 elements. Otherwise,

Table 3. The proportion of square matrices modulo 6 with small kernel

Kernel cardinal 1 2 3 4 6 9 12 18 36 Other cases

% 16.2 32.4 12.1 7.2 24.3 0.6 5.4 1.1 0.3 0.6

if the modulus N is not square-free, the previous methods do not apply. Still,
there exist methods to solve such modular systems, as a method is implemented
in the Lidia package [18]. This implementation can compute all the solutions to
a linear system modulo any small composite number, in about the same time
required for a prime modulus. We have not been able yet to locate further refer-
ences, but we believe such a classical problem has already been studied. We also
believe that the number of solutions is still small most of the time, although we
do not know whether this number can easily be estimated. The problem is that
we have ZN -modules instead of vector spaces. The ring ZN has zero divisors,
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and all its ideals are principal ideals. The modules will not usually be free mod-
ules, so counting the number of elements is harder. We stress that the case of
non-square-free numbers does not occur for the suggested choice of parameters
in GGH. And if one selects different parameters for which the modulus has a
square factor, then one can apply the mentioned algorithm and still hope that
the number of solutions is small.

4.3 Security Implications

We saw that for the suggested choice of parameters, the public matrix B had very
small kernel with high probability. Then, for any ciphertext c, the underlying
linear system has very few solutions. It follows that, even though the encryption
method is probabilistic, one can check whether a given ciphertext corresponds to
a given plaintext (knowing only a small fraction of the plaintext), or whether two
given ciphertexts correspond to the same plaintext, with overwhelming proba-
bility. Thus, the GGH cryptosystem is far from being semantically secure. One
might argue that other methods of embedding plaintexts into lattice points were
proposed in [16] to make sure the scheme was semantically secure. But the only
other practical method suggested to embed the message in the least-significant
bits of the coordinates. Namely, instead of picking mB as the lattice point to
be perturbed, it was suggested to pick vB where the message would form the
least-significant bits of v’s entries, and the remaining bits would be chosen at
random. The method is even worse, since our techniques recover the remainders
of v, that is, the least-significant bits. We will discuss ways to fix the flaw in the
encryption process in section 7.

5 Simplifying the Closest Vector Problem

Assume now that one knows the plaintext m modulo 2σ which we denote by
m2σ. We explain how this partial information simplifies the decryption problem.
Recall that we have:

c = mB + e.

Therefore:
c− m2σB = (m − m2σ)B + e.

The vector m −m2σ is of the form 2σm′ where m′ ∈ Z
n. It follows that:

c− m2σB

2σ
= m′B +

e
2σ

.

The rational point c−m2σB
2σ

is known, so that the previous equation reads as
a closest vector problem for which the error vector e/(2σ) ∈ {±1

2
}n is much

smaller. The error vector length is now
√

n/4, compared to σ
√

n previously.
And if one can solve the new CVP-instance, one can easily solve the former
CVP-instance, due to the relationship between the two error vectors. In other
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words, we have reduced the problem of decrypting ciphertexts (that is, CVP-
instances for which the error vector has entries ±σ), to a simpler CVP-problem
for which the error vector has entries ±1

2 . At this point, we note that there
might exist specialized CVP-algorithms to solve such CVP-instances. But we
can also apply traditional methods such as the embedding technique, which are
more likely to work now that the error vector is smaller.

The previous section showed that one was not guaranteed to obtain m2σ (the
message modulo 2σ). However, with high probability, one can confine m2σ to a
very small set which can be computed. It follows that the general problem of
decrypting ciphertexts can be reduced to solving a very small number of CVP-
instances, among which one is easier than the former CVP-instance. Note that
it is not necessary to solve all the CVP-instances: it suffices to solve the right
one. In practice, this means reducing several lattices in parallel until one of them
provides the solution.

The fact that the new CVP-instance involves rational points is not a problem.
Rationals can be avoided by multiplying by two the equation defining the CVP-
instance. One thus obtains an integer CVP-instance for which the error vector
has entries ±1 and the lattice is the original lattice with doubled entries.

Another way to avoid rational arithmetic is to make the error vector a mul-
tiple of 2σ by translation. For instance, letting again s = (σ, . . . , σ) ∈ Z

n, we
have: c + s − m2σB = (m − m2σ)B + e + s. The vector e + s is of the form
2σe′, where e′ ∈ {0, 1}n. It follows that the vector c + s− m2σB is of the form
2σc′, where c′ ∈ Z

n. Therefore, dividing by 2σ, one gets: c′ = m′B + e′. This is
a closest vector problem for which the error vector has expected length

√
n/2,

which is slightly worse than
√

n/4.

6 Experiments on the Internet Challenges

To validate our results, we tested the method on the Internet challenges [14]
provided by the authors of the cryptosystem, because the hardness of the CVP-
instances partly depends on the way the private basis is transformed to the
public basis. For each challenge, the cleartext was a vector of Z

n with en-
tries in [−128 · · · + 127], and σ was equal to 3. The private basis was gener-
ated by multiplying the n × n identity matrix by 4d√n + 1c, and then adding
to each entry a random integer chosen from [−4 · · · + 3]. Although we do not
know the private basis, we can estimate the length of the shortest vector by√

(4d√n + 1c)2 + (n − 1) × 11/2. This allows to estimate the gap of the em-
bedded lattice, so that we get a feeling on the hardness of the SVP-instance
defined by the embedding attack. The larger the gap is, the easier the reduction
is expected to be.

We implemented the attack using the NTL library [28] developed by Victor
Shoup. Timings are given for a 500-MHz 64-bit DEC Alpha running on Linux.
For all experiments, we had to use the so-called Givens floating-point variants of
reduction algorithms, which are slower than the standard floating-point variants
but less prone to stability problems. The results are summarized in table 4 and
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5. Table 4 refers to an error vector in {±1
2}n, whereas table 5 refers to an error

vector in {0, 1}n. In each dimension, we first solved the linear system modulo 6
described in section 4. The number of solutions is indicated in the corresponding
row. It is worth noting that these numbers correspond to what was theoretically
predicted by table 3 of section 4. For each solution, we built the corresponding
CVP-instance described in section 5. We tried to solve these CVP-instances using
the embedding technique and improved reduction algorithms. The Expected gap
row gives an approximation of the embedded lattice gap. Of course, all the
reductions were performed in parallel: each workstation took care of a single
CVP-instance, and the running time is with respect to the workstation who found
the solution. In all our experiments, at most six workstations were required at
the same time. The reduction process was the following: apply a LLL reduction;
then a BKZ reduction [25] with blocksize 20; and if necessary, a pruned-BKZ
reduction [27] with blocksize 60 and pruning factor 14. From dimension 200 to
300, the embedding used the public basis: it is likely that the running times
could have been decreased if we had started after reduction of the public basis.
Therefore, the running times should not be considered as optimal. We stress
that it is not necessary to perform a complete BKZ-reduction: one just keeps
reducing until the correct solution has been found (that is the time indicated in
the Time row). In our experiments, the ratio between the total reduction time
and the actual time for which the basis was sufficiently reduced to provide the
solution is around 3. Thus, stopping the reduction as soon as the solution is
found significantly reduces the running time, which is not very surprising. In
dimension 350, the embedding used the public basis after BKZ-reduction with
blocksize 20, and the corresponding running time does not include the reduction
of the public basis. This is because we were not able to recover the plaintext after
4 days of computation, when the embedding started with the public basis (and
not the public basis reduced). We are unable to explain this phenomenon. In fact,
the behavior of lattice reduction algorithms is still not very well understood.

Table 4. Experiments on the Internet Challenges, with a {±1
2}-error.

Dimension 200 250 300 350 400

Number of solutions mod 6 2 2 6 6 1

Expected gap 9.7 9.4 9.5 9.4 9.6

Block size 20 20 20 60 60

Type of reduction BKZ BKZ BKZ Pruning Pruning

Time in minutes 30 60 165 270 Unsolved

The results demonstrate the power of the new attack. We are able to solve all
challenges except in dimension 400, in a reasonable time, although challenges in
dimension 300 and 350 were assumed to be intractable. We even obtained infor-
mation on the plaintext in dimension 400, since we recovered all the remainders
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Table 5. Experiments on the Internet Challenges, with a {0, 1}-error.

Dimension 200 250 300 350 400

Expected gap 6.9 6.6 6.7 6.6 6.8

Block size 20 20 20 60 60

Type of reduction BKZ BKZ BKZ Pruning Pruning

Time in minutes 30 60 240 1290 Unsolved

modulo 6. The 200-challenge took only 30 minutes, whereas previous methods
required a few days. Challenges in dimension 250 and 300 take respectively 1 and
3 hours, and these timings are not even optimal. The running time in dimension
350 is much larger than in dimension 300 (if we take into account the reduction
of the public basis) because a stronger reduction algorithm was required. It is
hard to guess what the required time would be for higher dimensions.

Our results suggest that in order to be secure, GGH would require working in
dimensions at least higher than 400. But already in dimension 400, the scheme
is not really practical: for the 400-challenge, the public key takes 1.8 Mbytes,
and the ciphertext takes 6.4 Kbytes, which represents a message expansion of
16.6. And each encryption requires 4002 ≈ 217 multiplications with numbers of
bit-length up to 129.

7 Repairing the Scheme

Our attack used two “qualitatively different” weaknesses of the scheme. The
first one is inherent to the GGH construction: the error vectors are always quite
shorter than the vectors in the lattice. This results in a gap in the embedded lat-
tice, which was exploited in previous embedding attacks (success up to dimension
200). There seems to be no easy way to fix this problem, making CVP-instances
arising from GGH easier than general CVP-instances. The second weakness is
the particular form of the error vectors in the encryption process. This can be
fixed by choosing the error vector e in such a manner that an attacker no longer
knows the value of e modulo some well-chosen integer, and theorem 1 is valid.
A careful analysis of the proof of theorem 1 suggests that the theorem remains
correct when the entries of the error vector are less than σ in absolute value, and
have zero mean. Therefore, the most natural way to prevent the flaw is to choose
the entries of the error vector e at random in [−σ · · ·+ σ] instead of {±σ}. The
drawback is that the error vector is smaller now. Indeed, if the entries of e are
uniformly chosen from [−σ · · ·+ σ], then the expected length of ‖e‖ is approx-
imately σ

√
n/3 instead of σ

√
n. One can obtain a larger error by choosing the

entries at random in {±σ,±(σ − 1)} instead, but the special form of the vector
might be dangerous.

In any case, the error vector is smaller than in the original scheme, which
makes the scheme more vulnerable to the first weakness. If we choose the entries
in [−σ · · · + σ], the gap of the embedded lattice is around 3. Our experiments
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showed that similar CVP-instances could be solved by a single computer when
the gap was slightly less than 7, up to dimension 350. So it might be reasonable to
assume that using larger resources, CVP-instances with a gap of 3 can be solved
up to about the same dimension. And if one believes that the problem is much
harder, one has to keep in mind that such problems can be solved in dimension
200 with small resources. Unfortunately, GGH would need such small dimensions
to hope to be competitive with existing public-key cryptosystems. In fact, in
early drafts of GGH [16], the proposed dimension was 150-200. Furthermore,
one should not forget about possible improvements over current lattice reduction
algorithms. Hence, we feel that it would be dangerous to use a dimension less
than 400 even if we fix the flaw, which clearly limits interests in the scheme, even
compared to the McEliece cryptosystem. Actually, we do not suggest any precise
dimension, because we feel that the lattice reduction area is not understood
enough yet.

Finally, we note that the hardness of the GGH CVP-instances is somehow
related to the hardness of the problem arising in Ajtai’s worst-case/average-
case connection [1], and in the AD security proof [3]. The problem is a shortest
vector problem in a lattice for which the gap is polynomial in the dimension. Our
experiments showed that SVP could effectively be solved for a class of lattices
with small gap (around 7), up to dimension 350. Although our class of lattices
is particular, it seems to suggest that Ajtai’s problem might be tractable up to
moderate dimensions. It would be nice to assess the hardness of such problems,
both from a theoretical and a practical point of view.

8 Conclusion

We showed that the GGH cryptosystem had a major flaw. The special form
of the error vector in GGH CVP-instances is dangerous: partial information
on plaintexts can be recovered, and the problem of decrypting ciphertexts can
be reduced to solving CVP-instances much easier than the general problem.
We demonstrated the effectiveness of these results by solving all the numerical
challenges proposed by the authors of the GGH scheme, except in the highest di-
mension 400. Two of those challenges were conjectured to be intractable. There
exist simple ways to prevent the flaw, but even modified, we estimate that the
scheme cannot achieve sufficient security without large parameters. Our exper-
iments seem to indicate that, in practice, hard lattice problems can be solved
up to high dimensions. We feel that, for the moment, it is risky to speculate
on the practical performances of the best lattice-reduction algorithms, because
their behavior is still not well understood. Our results suggest that, unless ma-
jor improvements are found, lattice-based cryptography cannot provide a serious
alternative to existing public-key encryption algorithms and digital signatures
such as RSA and DSS.
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A The Solutions to the Internet Challenges

For completeness, we provide the solutions to the numerical challenges [14] pub-
lished on the Internet by Goldreich, Goldwasser and Halevi. The message entries
are given from left to right, and top to bottom.

A.1 Dimension 200

The message is:

-37 -46 73 73 -55 -65 74 100 38 71 87 110 -113 -10 109 70 36 116 -114 -94 -38 32 59 6 54
86 -81 48 108 -24 79 -57 58 25 -112 -124 88 90 104 -1 33 64 -19 49 -73 -38 -9 92 -49 6

126 41 -90 57 -80 92 16 -33 12 -3 72 -36 68 3 117 85 7 77 48 -16 -52 -47 -80 58 -125

-25 -108 -5 -61 -28 -127 -62 -115 -89 124 -67 -124 13 29 17 -118 -26 109 79 105 98 36 -16 48 -44

96 125 38 -112 55 41 -8 76 -91 60 -80 -90 126 -66 -50 122 -4 -45 7 -102 100 18 0 81 -31

-23 52 -123 90 -28 -38 58 -30 -128 75 -103 42 -60 102 79 -128 -105 118 127 -43 -59 122 82 24 1

108 -4 -108 -20 -50 -11 86 -125 -6 48 -24 84 -21 74 85 -74 100 -1 -5 74 -49 -5 98 -58 -6

-73 11 -11 -118 -93 118 118 32 -117 -29 111 0 -70 114 122 106 -38 79 -42 -92 37 12 -120 -91 -120

A.2 Dimension 250

The message is:

77 -81 -118 -123 -22 -46 120 85 70 27 -123 78 18 -21 46 -122 -64 91 115 -7 7 55 92 -71 -77

90 122 72 119 62 108 68 110 119 73 -39 -54 65 -82 -112 -35 -76 95 112 31 13 118 96 -23 106

-38 112 33 -74 -86 85 -111 -92 29 -120 99 10 76 82 1 22 -85 75 -40 -39 92 53 13 59 38

-83 -56 29 -114 50 7 -23 34 -88 31 77 125 48 114 27 57 85 -91 6 39 39 -100 83 -14 -11

-84 -50 -85 58 -118 81 104 -45 -18 119 -123 117 -32 40 -98 -128 -11 -100 49 -25 55 -22 -67 93 112

101 4 -115 56 119 2 101 -58 45 32 -48 -1 8 35 110 0 41 100 96 -47 -126 96 71 -98 18
-82 86 124 -20 51 109 -46 -73 123 -117 -81 -3 112 -11 -85 17 69 43 -103 -23 25 26 -110 -3 -5

-28 0 -37 -85 31 110 -38 -11 106 70 -88 87 -103 -32 82 -92 15 -48 -108 -124 -4 38 74 -88 64

-76 65 -38 -58 -65 85 42 64 -79 85 -33 -97 -81 84 -118 118 124 98 -113 -35 52 -77 108 -123 -56

113 2 110 59 42 46 111 -20 -119 -74 44 94 97 -20 -112 55 75 -81 103 31 -71 93 28 -101 109
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A.3 Dimension 300

The message is:
3 31 -96 68 -80 122 -73 -19 -74 94 -115 -83 -46 59 -39 84 117 -62 -119 -83 90 -108 -112 -56 -33

-25 114 -46 107 90 -33 -18 -7 -1 -77 42 -6 -22 -104 48 -55 -90 94 28 98 -72 -15 87 -6 -5

-124 -44 15 -108 28 110 -4 14 -64 -24 -23 32 86 99 -97 -119 14 26 -12 38 -53 62 77 -87 -38

47 -31 76 6 91 -57 10 -80 86 31 76 69 -100 -37 -122 4 69 38 -37 40 70 -27 -73 -32 89

93 43 24 42 84 115 -39 -74 63 96 -110 -122 -21 -62 92 -118 -114 33 -89 -22 39 43 -81 -50 -122

88 -108 -21 -113 -12 -59 109 -97 93 24 116 81 114 -86 16 82 -68 22 -67 -2 -13 -56 13 -107 -17

120 61 -102 -89 -117 -95 -128 - 96 12 -112 20 82 125 52 48 21 40 1 7 83 -111 -39 -112 40 23
14 -100 95 -100 -79 -49 -108 111 -22 -68 123 11 -67 -101 -104 -51 47 106 -54 -29 26 96 -116 -100 -24

95 -83 66 112 86 -39 -1 114 -71 27 -92 8 48 -109 114 109 -114 -2 -86 -87 22 -9 88 1 66

-68 -100 34 -55 -72 -117 -87 -26 77 -103 -68 -90 24 -81 -32 -76 -45 105 101 -26 91 82 -12 -38 124

30 113 -12 -9 -14 -74 52 15 89 125 72 100 -90 -82 49 -64 -21 88 89 26 -72 -115 109 -95 114

-44 125 68 73 -40 65 -25 -55 -75 94 60 -21 18 -53 -59 16 -109 -87 55 -62 91 119 46 51 80

A.4 Dimension 350

The message is:
-23 -12 114 123 49 -17 17 3 116 -93 54 27 121 83 123 126 125 -70 -25 -67 80 -8 75 -112 -18

-46 -99 51 -69 70 -1 37 -70 -14 32 108 98 -79 -16 87 -43 -90 -14 -50 122 -19 -51 119 40 52
-76 -7 -83 -128 9 28 -46 39 -48 14 -19 80 -76 40 -62 85 21 -91 -121 -123 124 -35 -84 -17 43

-90 92 121 -98 5 46 -45 126 91 -45 8 -8 38 -81 72 -76 29 24 -23 -58 91 -66 91 -127 -58

97 126 35 -114 -19 -49 -76 -54 -56 -45 79 118 38 78 82 121 -42 -53 31 6 -109 84 -93 44 -66

-23 8 -3 -59 9 67 -90 7 -26 -76 116 53 -23 -66 126 60 -115 117 -29 92 71 -36 -78 -110 124

56 -90 81 92 82 -112 -59 -38 13 10 100 -48 49 -21 55 101 -32 -19 -49 30 -21 -116 44 -32 -17

8 -88 76 59 -69 73 -13 -30 26 -49 -75 42 21 16 -72 -96 -12 8 81 96 -65 55 -64 44 -121

95 -104 -109 11 -7 3 -108 33 -49 80 93 -104 -60 -65 51 20 -11 -34 -87 -123 22 -54 -7 -98 -101

-39 -34 83 26 -117 90 -7 -93 110 -124 28 -15 -103 -66 65 105 -100 89 -83 -37 13 66 80 107 107

86 1 -75 -49 32 -47 41 126 -91 -61 -119 -128 60 -83 110 65 73 -32 91 -120 -95 69 -92 123 115

0 9 53 -47 -12 32 -89 118 86 -9 22 -88 -96 20 -51 -28 30 -50 -95 75 -67 98 21 29 62

29 63 3 66 59 -10 -62 -60 -84 19 57 77 59 47 35 -78 -59 76 -46 90 -102 55 -7 -24 88
-59 37 59 90 -61 -7 -8 -126 124 -70 62 -13 -3 -125 31 -112 60 -20 75 -21 -112 126 48 92 -47

A.5 Dimension 400

The message modulo 6 is:
5 1 1 3 2 0 3 1 1 3 2 1 5 3 0 4 2 4 4 2 4 1 1 4 0 0 5 2 3 1 1 0 5 5 0 5 3 0 3 3 2 4 0 3 4 2 0 4 3 0 5 5 3 2 5 1 1 1 2 2 4 5 5

1 3 4 3 4 0 3 3 1 3 0 3 5 5 5 2 0 2 3 1 4 2 5 2 1 2 0 0 5 4 3 3 4 4 5 5 3 4 4 0 0 3 5 4 0 1 2 2 1 2 2 2 2 3 2 0 4 5 4 0 2 3 1

2 4 4 5 3 5 2 1 3 1 2 5 4 1 4 4 1 5 2 2 4 4 0 2 5 4 4 3 3 4 2 4 0 3 0 1 0 1 4 0 1 5 4 1 5 4 1 3 2 2 1 2 3 0 2 5 1 4 1 0 1 0 3

3 5 1 3 2 4 0 0 1 3 0 1 5 3 1 0 1 0 5 1 1 2 1 5 1 2 2 5 5 4 5 1 2 2 2 0 5 4 4 3 4 2 0 1 4 5 0 1 1 2 0 1 2 4 2 1 4 1 3 0 4 4 0

2 4 5 1 0 0 3 1 3 2 5 0 2 0 5 2 0 3 4 3 3 0 2 0 1 2 1 0 2 4 3 3 5 0 2 3 3 2 0 4 2 2 3 3 1 4 1 3 5 4 3 1 1 4 4 0 2 3 3 2 4 5 4

5 1 2 0 3 0 3 3 1 3 4 0 0 5 0 2 2 0 3 0 5 3 2 2 3 2 4 4 2 5 4 5 5 3 2 4 1 4 5 4 3 0 1 2 3 3 0 2 2 5 4 0 0 5 4 0 3 1 1 4 2 3 0
5 2 4 0 0 4 4 3 0 2 0 0 1 2 2 2 3 5 2 5 4 5

B Proofs for Section 4

B.1 Proof of Theorem 2

We notice that it suffices to prove the statement for prime powers, by Chinese
remainders. Thus, let N be a prime power qα. Since numbers not coprime to
N are exactly multiples of q, singular matrices are the matrices for which the
determinant is divisible by q. It follows that the proportion of invertible matrices
in Mn(Zqα) is exactly the proportion of invertible matrices in Mn(Zq). Denote
by Fq the finite field with q elements. The number of invertible matrices in
Mn(Fq) is equal to the number of families (b1, . . . ,bn) of linearly independent
vectors. A simple counting argument shows that this number is equal to:

n−1∏
k=0

(qn − qk) = qn2
n∏

k=1

(1 − q−k)
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B.2 Proof of Theorem 3

We count the number of matrices with one-dimensional kernel by the num-
ber of families (b1, . . . ,bn) of rank n − 1. Denote by Bk the subspace spanned
by b1, . . . ,bk, with the convention B0 being the nullspace. Recall that a k-
dimensional subspace has cardinality qk. For each family (b1, . . . ,bn) of rank
n − 1, there exists a unique i such that b1, . . . ,bi−1 are linearly independent,
bi ∈ Bi−1, and for all j > i, bj 6∈ Bj−1. There are

∏i−2
k=0(q

n − qk) possibilities
for (b1, . . . ,bi−1). There are qi−1 choices for bi. And there are

∏n−2
k=i−1(q

n − qk)
possibilities for (bi+1, . . . ,bn). It follows that the total number of families is:

n∑
i=1

qi−1
n−2∏
k=0

(qn − qk) =
(qn − 1)qn2

(q − 1)(qn − qn−1)

n∏
k=1

(1 − q−k).

Now, consider a family (b1, . . . ,bn) of rank n− 2. There exists a unique (i1, i2)
with i1 < i2 such that: b1, . . . ,bi1−1 are linearly independent, bi1 ∈ Bi1−1, for
all i1 < j < i2, bj 6∈ Bj−1, bi2 ∈ Bi2−1, and for all j > i2, bj 6∈ Bj−1. That way,
we know the dimension of Bj for all j, and therefore, the number of (b1, . . . ,bn)
corresponding to a given (i1, i2) is:

i1−2∏
k=0

(qn − qk) × qi1−1 ×
i2−3∏

k=i1−1

(qn − qk) × qi2−2 ×
n−3∏

k=i2−2

(qn − qk).

It follows that the total number of families of rank n − 2 is:

n−3∏
k=0

(qn − qk) ×
n−1∑
i1=1

n∑
i2=i1+1

qi1+i2−3.

The double sum is equal to:

n−1∑
i1=1

qi1+n−2 − q2i1−2

q − 1
=

q2n−1 − qn − qn−1 + 1
(q − 1)(q2 − 1)

.

Therefore, the number of families is:

q2n−1 − qn − qn−1 + 1
(qn − qn−1)(qn − qn−2)(q − 1)(q2 − 1)

n−1∏
k=0

(qn − qk).

The result follows after a few simplifications.
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