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Abstract

Programming languages have long incorporated type
safety, increasing their abstraction level and thus aid-
ing programmers. Type safety eliminates whole classes
of bugs, avoiding the tedious and error-prone search for
these bugs. Type-related bugs are particularly danger-
ous and often result in security holes because they vio-
late programmer expectations. Despite its benefits, type
safety protections traditionally end at the process bound-
ary.

We describe the deep integration of type safety in
Ethos, a clean-slate operating system, which ensures that
communication and files conform to their expected type.
Ethos types are language- and runtime-agnostic, and in-
corporate a new mechanism for automatically creating
type identifiers. We explore the impact of type safety
on type descriptions, filesystem structure, scripting lan-
guages, file streaming, and application programming.

1 Introduction
Type safety prevents untrapped errors—where an er-
ror goes unnoticed and computation continues—and can
reduce trapped errors—where an error is detected and
computation stops [12]. Untrapped errors are particu-
larly pernicious since they result in arbitrary behavior;
this arbitrary behavior occurs when a program’s run-
time state becomes inconsistent. Deep implementation
knowledge and extensive analysis can be required to pre-
dict the execution after an untrapped error. For example,
C’s lack of type safety permits untrapped errors such as
buffer overflows [15, 13].

Thus Programming Language (PL) designers have
long incorporated type safety to reduce the effort of writ-
ing applications. Milner stated “well-typed programs
cannot ‘go wrong’” [36]. While surely an exaggeration,
strongly checked type systems increase program quality.

But type-safe PLs are not sufficient: distributed sys-
tems are often written in multiple languages, and their
applications must be integrated. Even for distributed ap-
plications written in a single language, it is beneficial to
ensure consistent type use. PL type systems (and related
techniques, e.g., [4]) primarily provide internal program
consistency. In contrast, Operating System (OS)-based
types can constrain input and output to conform to pro-
gram expectations.

The most compelling reason for adding types to an
OS is for security. Existing distributed systems often act
insecurely due to ill-structured input and output (§5.1).

Many applications dedicate a significant amount of code
to parsers (or in some cases decoders) that translate un-
typed data into a language’s native form. Attackers of-
ten can craft input to exploit vulnerabilities in this code
(§5.2). An attacker might also fool a program into gen-
erating data that it should not.

To address such issues, we have developed Ethos,
a clean-slate OS designed for security. Because
OSs provide complete mediation, they uniquely can
provide system-wide guarantees that complement the
application-local guarantees of a PL. We explore here
the role OSs can have in performing type checking on the
data that flows between programs in a distributed system.

We call Ethos’ type system Etypes. Processes send
data to other processes—either directly through Inter-
Process Communication (IPC)1 or indirectly through the
filesystem—in the form of (typed) objects. Each object
has at least two representations, one in a running program
and another external representation. Etypes converts be-
tween external serialized objects and internal program
memory and Ethos subjects all process input and output
to a type checker. This type checker maintains a property
we call object integrity, which we define in §2.1.

Ethos is the first OS to subject its system calls to a
language-agnostic system-wide type checker. Like au-
thorization, programmers define types in advance of use,
and Ethos restricts (in conjunction with authorization)
what types programs can read or write. This limits the
attacker’s ability to introduce ill-typed data and reduces
surprises—and therefore vulnerabilities—during appli-
cation reads. Etypes’ contributions include:

C1 Universally Unique IDs (UUIDs) for types without
naming authorities (§4.4). Types are independently
defined, guaranteed not to conflict with types cre-
ated elsewhere, and usable anywhere. This is nec-
essary for loosely coupled [40] distributed systems.

C2 Enabling OS-based type checking of all process in-
put and output (§4.3) through OS-defined types.

C3 Tightly integrated PL/system support (§4.2, §4.3),
reducing application code, eliminating type errors,
and impacting the design of scripting languages.

We next survey types in general, including a series of
definitions. In the remainder of the paper, we discuss
types in general, including a series of definitions (§2); an
overview of Etypes (§3); our design (§4); an evaluation

1Both local IPC and networking share one API (§4.3).



of Etypes (§5); and related work (§6). Our evaluation
focuses on Etypes’ security benefits and performance.

2 Types
PLs can be untyped, in which a variable can hold values
of any type; or they can be typed, in which each variable
is restricted by a type [12]. Type-safe PLs have no un-
trapped errors. This is ensured either by dynamic check-
ing in untyped languages (or certain language features)
or by static checking a typed program prior to execution.
Go is a typed language, LISP is an untyped language, and
assembly is a language that is both untyped and unsafe.

Traditional OSs are untyped and have untrapped er-
rors with respect to applications. The result is that appli-
cations written on top of such OSs can fail silently and
in unpredictable ways. Some OSs use type safety for
internal consistency, to eliminate errors within the OS
or at the OS interface. For example, dynamic checkers
have been used to prevent buffer overflows within ker-
nels. Static type checkers have been used to regulate
either internal Remote Procedure Calls (RPCs) or code
extensions.

The above use of types for internal consistency is
much more tightly-coupled than the approach we pur-
sue here; their environment is characterized by fixed PLs
and are used by OS maintainers which are a tightly-knit
group. In contrast, we examine the scenario where one
application reads data that another produces; these ap-
plications may have different developers, be on different
systems, and use different PLs. In such a setting it is
important not to overly restrict types. The mechanisms
presented here support an open-ended system.

Hence, Ethos’ type system is different in several
ways from PL type systems. First, the equivalent of
variables—files and IPC—are typed like a typed PL, but
checked dynamically. Second, we have made our design
as modular as possible: Etypes is not limited to a sin-
gle application PL or application virtual machine (e.g.,
Common Language Runtime (CLR)). Finally, we have
kept our type system general (as OS mechanisms must
be) so that it may be applied universally while assuring
useful soundness properties.

2.1 Object integrity

Ethos assures object integrity by using its type checker,
as we will describe in §4.3. We define object integrity
as: (1) objects are read or written in whole, thus prevent-
ing short or long reads/writes [47], (2) objects (external
or memory) must be consistent with their type, and (3) an
object which is written by one program and read by an-
other must produce an equivalent object (see below). A
system call that writes/reads object o will either succeed
if o is well-typed or return an error without application
side effects. Managing side effects in this way simplifies

application development, and is a strategy shared with
other systems [34].

Our notion of object includes not only the object di-
rectly referenced (o0), but also those objects which are
reachable from o0 via pointers (o1,o2, . . .on). Given this
numbering of objects, the reconstituted object must con-
sist of n objects o′0,o

′
1, . . . ,o

′
n, such that the type of oi is

equal to o′i, and the value of oi is equivalent to o′i. Two
objects oi and o′i are equivalent if (1) each pointer field
in oi that points to o j has a counterpart field in o′i that
points o′j and (2) each non-pointer field in oi is equal to
its counterpart in o′i.

2.2 Business rules

There may be additional restrictions on an object that an
application could violate. For example, an integer might
represent time, which should increase monotonically. Or,
a type might contain pointers but prohibit cycles. In
Etypes, these considerations are left to applications—
there is an inherent trade off between generality and
safety in a system-wide type system. We call these
higher-level semantics business rules.

Though rules are the responsibility of applications,
they can be described with a type’s Etypes annotations
(§3.2). Thus an application developer has documentation
of the business rules expected to be enforced by his ap-
plication.

3 Etypes
With Etypes, programmers specify types and RPC in-
terfaces using Etypes Notation (eNotation) which, like
External Data Representation (XDR), is a data descrip-
tion language (§3.1). Etypes’ serialized wire format is
called Etypes enCoding (eCoding). Etypes has three
fundamental operations: encode, which takes a PL type
and serializes it to an eCoding; decode, which takes an
eCoding and sets an appropriately typed PL variable to
its value; and check, which Ethos uses to implement its
type checker. Etypes addresses both the syntax and se-
mantics of types (§3.2).

3.1 Etypes Notation

eNotation describes types using a syntax based on Go.
Table 1 lists the eNotation types, a syntax example
for each, and their corresponding eCoding. Primitive
types include integer (both signed and unsigned), floats,
and booleans. Composite types include pointers, ar-
rays, tuples, strings, dictionaries, structures, discrimi-
nated unions, any, and RPC interfaces. RPCs, unions,
and any types, warrant further description.

RPCs An Etypes RPC interface specifies a collection
of RPC functions. Etypes RPCs are built from stub and
skeleton routines, similar to Open Network Computing
(ONC) RPC. Although eNotation specifies RPC func-
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Type eNotation eCoding

Integer
b byte little-endian signed or

unsigned X-bit integers,
where X is 8, 16, 32, or 64

i intX
u uintX

Boolean b bool unsigned 8-bit integer

Floats
f float32

little-endian IEEE-754
f float64

Pointer p ∗T enc. method ‖ value
Array a [n]T values
Tuple t []T length ‖ values
String s string length ‖ UTF-8 values

Dictionary d [T]S length ‖ key/value pairs
Structure N struct {. . .} field values

Union M union {. . .} uint64 union tag ‖ value
RPC F(T0,T1,. . . ,Tn) uint64 func. ID ‖ args.
Any a Any type’s UUID ‖ value

Annotation
[‘text‘]

n/a: contributes to UUID
[see ‘filename‘]

Table 1: Primitive, vector, composite, and RPC type
eNotation and eCoding; UUIDs are encoded as arrays
of bytes; lengths are encoded as uint32; T is an arbitrary
type; ‖ is concatenation.
1 C e r t i f i c a t e s t r u c t {
2 h e a d e r C e r t i f i c a t e H e a d e r
3 [ ‘ABA t r a n s i t number i n MICR form ‘ ]
4 bankId u i n t 3 2
5 [ ‘ From account ; bank ’ s num. s td . ‘ ]
6 f romAccount [ ] b y t e
7 [ ‘To account ; bank ’ s num. s td . ‘ ]
8 toAccount [ ] b y t e
9 [ ‘ T rans f e r amount i n US d o l l a r s ‘ ]

10 amount u i n t 6 4
11 }

Figure 1: An eNotation structure representing a bank
transfer certificate

tions in a traditional way, their Etypes implementations
are in fact one-way—they do not have direct return val-
ues. Instead, a callee returns a value by invoking a reply
RPC; this supports both asynchronous and synchronous
communication. One-way RPCs are a very simple, yet
entirely general, mechanism.

Unions and any types eCoding is implicitly typed,
with two exceptions: unions and the any type. A union
may be instantiated to one of a specified set of types and
an any may be instantiated to one of the set of all types.
When a program encodes an object as either, Etypes in-
cludes the object’s actual type identifier (§4.4) in the en-
coding.

3.2 Syntax and semantics

eNotation’s annotations informally describe semantics
beyond types. Annotations (1) contribute to a type’s
UUID, binding syntax and semantics together; (2) dif-
ferentiate structurally identical types; and (3) enable
integrity requirements beyond typing to be expressed

(§2.2). Application programmers, administrators, and
users refer to a type’s annotations to determine an
object’s meaning, and thus annotations minimize the
semantic-level difference [5] as understood by Ethos
users.

Consider the certificate type described in Figure 1,
which is a digitally signed bank transfer order. It contains
a certificate header and four certificate-specific fields: a
bank ID, two account numbers, and the transfer amount.
Field names, i.e., bankId, contribute to type UUIDs but
are insufficient for detailed descriptions. Annotations
narrow the semantic-level difference, for example by de-
scribing the bankId field as an American Bankers As-
sociation transit number (at line 10). More complex
annotations can be in an external file referenced by an
eNotation specification.

4 Design
We designed Etypes for Ethos, an OS designed to pro-
vide the foundation for next-generation robust distributed
systems. Ethos is decidedly clean-slate, with a goal
of substantially reducing overall software complexity.
Since it’s possible to prove an OS correct [27], but infea-
sible to do so for every application, Ethos focuses on re-
ducing application complexity and vulnerabilities. Ethos
currently provides memory paging, processes, encrypted
networking, and a filesystem. We implemented 39 sys-
tem calls, ported the Go and Python PLs to it, and built a
shell, basic command-line utilities, a remote shell utility,
and a networked messaging system.

Ethos is a “security first” OS, even to the extent
of being incompatible with existing applications and
network protocols. Ethos provides compatibility with
existing network protocols through network proxies.
But internally, Ethos is designed without compatibil-
ity constraints—avoiding existing complex and not-
designed-for-security interfaces. Adequate security—
beyond that in today’s systems—cannot be added after
the fact [14]. We focus here on the design, implemen-
tation, and analysis of general-purpose interfaces which
protect applications against attack.

The Ethos kernel (and PL runtimes) is presently writ-
ten in C, and applications are written primarily in Go.
We have thus far implemented Etypes support for the C
and Go PLs, and we are building an Etypes scripting lan-
guage called eL. Ethos prohibits, via authorization, ap-
plications in C in keeping with Ethos’ security first goal,
as it is far more difficult to write secure programs in C.

Targeting different PLs presents both a challenge and
opportunity. In §4.1, we describe how Etypes remains
PL-agnostic through the use of type graphs, and we ex-
plain why multiple PLs are needed to meet the various
requirements of Ethos in §4.2. We discuss issues related
to the deep integration of Etypes into Ethos in §4.3.
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Field Description

Hash Type hash, the UUID for the type
Name Mnemonic for the type

Kind
Integer representing the type’s kind (e.g.,
uint32, struct) from a fixed enumeration

Annotation Annotation for a type, struct field, or func.
Size Size, if the class is a fixed-length array

Elems

Tuple of type hashes representing: the type
of a typedef, fields in a struct, type of ele-
ments in a vector, parameters/return values
for an RPC function, RPC functions in an in-
terface, or target of a pointer

Fields
Tuple of strings naming: the fields in a struct,
parameters/return values for a function, or
RPC interface functions

Table 2: The contents of a type graph node; one node
exists for every type specified

Etypes identifies its types using something we call a
type hash—a UUID based on a cryptographic hash. The
type hash is a fully distributed mechanism, naming each
type in a unique but predictable manner, yet does not re-
quire any naming authorities. Type hashes also support
the requirement of versioning. We describe the algorithm
to compute type hashes in §4.4.

4.1 Type graphs

Given an eNotation specification, a utility named et2g
generates a PL-independent type graph and its type
hashes. A type graph is a directed graph containing type
descriptions as nodes and type references as edges. A
type graph identifies types by universally unique hashes
rather than the local names used in its eNotation specifi-
cation. Type graphs are self-contained: for all types T in
graph G, any type which T references is also in G. For
example, if a struct appears in a type graph, so do the
types present in the struct’s fields.

Ethos forbids creating an OS object of type T unless
T is present in the system’s type graph (§4.3). Ethos uses
the type graph to check types, and user-space utilities
(such as eg2source as described below) also make use
of the same graph. Type graphs themselves are stored as
eCoding. Table 2 shows the contents of a graph node.

4.2 PL integration

Our type system is PL-agnostic; nevertheless it has pro-
found impacts on the PLs Ethos supports. In particular,
we discuss its impact in terms of three different types
of PLs: unsafe, statically-checked PLs such as C; type-
safe, statically-checked PLs such as Go; and type-safe,
dynamically-checked PLs

For performance reasons, Etypes minimally relies on
introspection. Instead, it uses eg2source to generate code
targeted to a specific PL; given a type graph and output
language, the tool generates code to encode and decode

types. For RPCs, eg2source creates stubs and skeletons,
similar to ONC RPC or CORBA.

Unsafe PLs Types can be added to a running system,
so check must be table-driven and thus able to verify
unanticipated types. On the other hand, encode and
decode require compile-time type definitions, due to C’s
static typing. Currently encode and decode are table-
driven, but unlike for check, this is not a requirement
(§7). Thus Etypes’ C implementation is table-driven, be-
cause the Ethos kernel uses check. eg2source generates
tables which describe types, and a library called liben
walks these tables to encode, decode, or check the types.
Since liben depends only on external malloc- and free-
like functions, it is easily integrated into both the OS
kernel and PL runtimes. Etypes simplifies kernel code
by subsuming tedious, manual encode, decode, and veri-
fication routines.

C is not type-safe. Using Etypes in C can have un-
trapped errors, such as a mismatch between an eNotation
type and C variable. However, since the use of C on
Ethos is limited to system software, its use can be subject
to more rigorous code inspection. We intend to eventu-
ally provide a proof of correctness.

Type-safe, statically-checked PLs Go is type-safe and
statically-checked; such languages are where eNotation
is aimed. Each Go program contains only a fixed num-
ber of compile-time types. Like Go, eNotation types are
declared in advance and the types throughout Ethos are
restricted. This restriction increases application security
by reducing the surprises with which applications need
to contend.

Our Go Etypes implementation generates per-type
encode/decode routines using eg2source, unlike C’s
liben- and table-based implementation. The code for us-
ing an arbitrary type T is shown in Figure 2. Figure 2a
creates an IPC channel and sends the value t of type T on
it. Figure 2b accepts an IPC channel and receives an ob-
ject of type T on it. The procedures Ipc, WriteT, Import,
and ReadT are generated by eg2source; thus the system
calls necessary to implement these operations are hid-
den behind typed APIs. In keeping with Ethos’ goal of
minimizing application complexity, Etypes calls requires
no more application code than untyped I/O calls in other
OSs. But Ethos calls do more, reducing the total amount
of application code.

Type-safe, dynamically-checked PLs Statically-
checked languages are preferred for traditional applica-
tions, because they provide higher integrity. However,
utilities often benefit from dynamic types. Consider
traversing a filesystem recursively and displaying the
contents of files—here types may not be known at com-
pile time. We are building eL, a dynamically-checked
language that will integrate with Etypes.
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1 e , d := en . I p c ( hostname , se rv i ceName )
2 e . WriteT(& t )

(a) Create a connection and send a typed value t

3 e , d , u := en . Import ( se rv i ceName )
4 t := d . ReadT ( )

(b) Accept a connection and receive a typed value t
Figure 2: Go code to create/accept an IPC and read/write
a value. T is an arbitrary type.
1 s e e n = {}

2 i s A T r e e ( x )
3 f o r a l l f i n f i e l d s ( x )
4 i f i s P t r ( f ) then
5 i f x . f i n s e e n then
6 r e t u r n f a l s e
7 s e e n = s e e n union { x . f }
8 i f ! i s A T r e e ( x . f ) then
9 r e t u r n f a l s e

10 r e t u r n t r u e

Figure 3: isATree in eL

eL allows printing, summarizing, extracting informa-
tion, and creating composites over the types in an Ethos
system. It uses a combination of generic operators, in-
trospection, and type-specific extraction. For example,
we have written a program isATree (Figure 3) which will
walk all the pointers of a given object recursively to see if
any node is reachable by multiple paths. isATree makes
no stipulation about the type of objects it checks.

One of the great successes of UNIX are the text-based
utilities used to manipulate system state. Since UNIX
was designed, these utilities have been diminished as
types have become richer. Generic utilities, which pro-
cesses types dynamically, are essential to making Ethos
accessible to system administrators and others. Etypes
will enable UNIX-like utilities that manipulate richer
data.

4.3 OS integration

Here we discuss the integration of Etypes with Ethos. In
particular, we describe how Ethos associates a type with
every streaming file descriptor or file, and how Ethos
uses such types to regulate system calls.

Type checking overview Ethos verifies all network
reads and writes as well as file or local-IPC writes us-
ing check. Filesystem encryption ensures that file writes
must go through the Ethos kernel. Ethos traps ill-formed
objects when writing rather than reading to aid correct-
ness and problem diagnosis. Such type checking, like
authorization, prevents mismatches between processes.

Associating types with objects Ethos applies the same
type to all objects in a given filesystem directory; that is,
a directory may contain only objects of a single type.
Since filesystem paths also name IPC services, direc-

tories determine the types of both files and IPC con-
nections. Thus a program can only read/write object
types corresponding to directories it is allowed to access.
While this increases the number of directories, it has the
advantage that Ethos can enforce the type-safety of file
creation transparently—a write does not need to specify
a type. We provide an example Ethos program that ac-
cesses a file in §4.5.

In Ethos, types must be specified only when creating
a directory, a relatively infrequent operation compared to
file operations. Applications create directories with the
createDirectory system call, which accepts as parameters
the parent directory dirFd, name, authorization label,
and type uuid:

createDirectory(dirFd, name, label, uuid)

We expect directory creation to be primarily handled by
administrative tools. If the directories are set up outside
of a particular application, the application and type pol-
icy are completely independent. When a directory nat-
urally contains various types, applying the any or union
types allow it to be used in the style of traditional direc-
tories.

Files In Ethos, the contents of a file can be any Etypes
object, from primitives (e.g., a 32-bit integer) to complex
entities made up of multiple objects, (e.g., a tree).

Ethos provides a writeVar system call to write a file in
its entirety—an Ethos file is not a streaming object.

writeVar(dirFd, fileName, contents)

The inverse of writeVar is readVar.

readVar(dirFd, fileName)

Rather than directly use the above system calls, applica-
tion programmers use encode/decode interfaces (§4.5).

Seek It may seem odd not to support seeking within
files; after all, video files can span many gigabytes. But
this is necessary for simple failure semantics—an object
is either of the correct type and the readVar/writeVar
syscall succeeds or it is not and the operation fails with
no application side effects.

When designing Ethos, we had originally sought to
provide seek. But its semantics became complex when
considering typed objects because (1) objects have vari-
able size and hence computing an offset to a well-formed
sub-object is not straightforward, (2) the encoding is not
normally visible to applications which only see decoded
values, and (3) errors would not be detectable until the
whole file was read, complicating error recovery. (3) is
particularly troublesome, as an application would likely
introduce side affects into the system as it reads well-
formed offsets, only to encounter an ill-formed offset
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later. At this point, error recovery becomes (unneces-
sarily) difficult.

Ethos supports very large objects with directory
streaming rather than with very large files, which we dis-
cuss next. Individual files must be read in their entirety,
and so Ethos bounds file sizes to conserve memory. (To
support legacy file formats, Ethos uses network proxies
which convert between legacy formats and an eCoding.)

Streaming IPC and directories In Ethos, IPC and di-
rectories are streaming entities, and Ethos enforces the
type of each write. The write system call sends data out
on a streaming descriptor:

write(descriptor, contents)

Likewise, the read system call reads from a streaming
descriptor. Again, the data must conform.

read(descriptor)

We provide an example of Ethos IPC in §4.5. Stream-
ing directories present another challenge, because their
files must be named to preserve their order. The write
system call, when applied to a directory, creates a file
named with the current time; the read system call, when
applied to a directory, reads the next file in filename or-
der. Thus Ethos streams over a directory of files (e.g.,
video frames), whereas each file is non-streaming (i.e.,
read in its entirety).

Networking Programmers on Ethos open network
connections using the same Application Programming
Interface (API) as local IPC; a non-empty hostname ar-
gument to Ipc implies a network connection. Etypes
takes care of many networking chores at the OS-level in-
cluding encryption, user authentication, endianess, align-
ment, parsing, and data value encoding, so that network-
ing just works. Because network data comes from a for-
eign system, Ethos applies check to network reads as
well as writes. Higher-level interfaces also allow Etypes
optimizations independent of application code. Space
prevents us from describing further details of Ethos net-
working which we discuss elsewhere [38, 37]. Here it
suffices to say that no Ethos application can receive ill-
typed data from the network, because first the data must
satisfy Ethos’ type checker.

Type graph Ethos stores the system type graph in
its filesystem at /types. Both kernel-internal types
and types specified in the course of application de-
velopment are organized as collections, and both ker-
nel and application-specific collections are stored in
/types/spec/c/, where c is a collection name. Each file
in collection directory c is a graph node, and each file’s
name is the type’s hash. The directory /types/all/ con-
tains copies of all of the types described by the collec-

T

V

W

U
E f

Eb

Figure 4: A graph partitioned into E f and Eb

tions in aggregate. It is the directory /types/all/ that is
loaded by Ethos at boot time and reloaded on demand.

We envision that application type hashes will be in-
stalled by the packaging system and will remain until the
package and all of its nodes are removed. A type with
hash h can be removed from /types/all/ only when it is
not present in any directory /types/spec/∗/ and it is not
used as the type hash for any directory.

4.4 Type hash algorithm

eNotation identifies types based on the hash of their syn-
tactic and semantic specification, ensuring each type has
a UUID. The possibility of cyclic types complicates this
process somewhat. For example, the eNotation in Fig-
ure 5a contains the cycle V →W →V . Here we describe
the algorithm typeHash which calculates a type hash for
T when given a type graph that describes T .

Let t be the type graph node corresponding to T and
let G = (N,E) be a directed graph. N is the set of non-
primitive eNotation definitions reachable from t, and E
consists of the edges [n,n′] where node n directly refer-
ences node n′.

First, typeHash’s partition computes G′ = (N,E f ), a
Directed Acyclic Graph (DAG) rooted at t and spanning
G. (Given G, partition deterministically computes the
same G’.) Thus E f contains all edges excluding those
that would result in a cycle. The remaining backward
edges, Eb = E − E f , are those which would introduce
a cycle. Figure 4 shows the partitioning of our sample
type.

We next describe how typeHash propagates hashes in
Eb and E f . Every node which references another node
will contain indirectly—through a series of intermediate
hashes—or directly the referenced node’s hash.

First, typeHash deals with the back edges using
intermediary. intermediary visits back edges e ∈ Eb, cal-
culating the hash of the parent node of e and substituting
this hash in e’s child node. Included in each hash is the
parent node’s eNotation definition, including the anno-
tations which precede it or are contained within it. These
substitutions are done in an order such that the hash is al-
ways on a node which has not yet been re-written; this is
ensured by noOut(n,E f ) which means that n has no out-
going edges in E f . Thus intermediary computes hashes
for all dependencies in Eb.

Next, typeHash uses collapse to compute type hashes
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1 T s t r u c t {
2 aRef ∗U
3 a n o t h e r R e f ∗V
4 }

5 U s t r u c t { a n I n t e g e r u i n t 3 2 }
6 V s t r u c t { l e a d s T o A C y c l i c R e f ∗W }

7 W s t r u c t { a C y c l i c R e f ∗V }

(a) eNotation

h5 = hash (T s t r u c t { aRef ∗h2 a n o t h e r R e f ∗h4 })

h2 = hash (U s t r u c t { a n I n t e g e r u i n t 3 2 })
h1 = hash (V s t r u c t { l e a d s T o A C y c l i c R e f ∗W })
h4 = hash (V s t r u c t { l e a d s T o A C y c l i c R e f ∗h3 })
h3 = hash (W s t r u c t { a C y c l i c R e f ∗h1 })

(b) Hash computation (subscript indicates order of computation)

Figure 5: Sample eNotation structure containing the cycle V →W →V , along with its hash computation sequence

for each e ∈ E f , starting at the nodes which have no out
edges and chaining back toward t. After computing this
hash, collapse substitutes it for references to its type in
other eNotation definitions, removes e from E f , and re-
peats until E f is empty.

Finally, typeHash computes t’s hash.

Algorithm 1 typeHash(t)

1: [E f ,Eb]← Partition(t)
2: intermediary(E f ,Eb)
3: collapse(E f )
4: return hash(t)

Algorithm 2 intermediary(E f ,Eb)

1: while ∃[n′′,n] ∈ E f | noOut(n,E f ) do
2: for all [n,n′] ∈ Eb do
3: h← hash(n′)
4: replace references to n′ in n with h
5: Eb← Eb−{[n,n′]}
6: end for
7: E f ← E f −{[n′′,n]}
8: end while

Algorithm 3 collapse(E f )

1: while ∃[n′,n] ∈ E f | noOut(n,E f ) do
2: h← hash(n)
3: replace references to n in n′ with h
4: E f ← E f −{[n′,n]}
5: end while

We now provide an example of how typeHash
calculates the type hash for T . Initially, E f =
{[T,U ], [T,V ], [V,W ]}. [W,V ] is a back edge and thus the
only member of Eb.

The hash calculations are shown in Figure 5b. First,
typeHash calls intermediary(E f ,Eb). The only edge that
satisfies Line 1 is [V,W ], and the only edge that satisfies
Line 2 is [W,V ], so intermediary calculates the interme-
diate hash h1 and replaces V in W’s eNotation with h1.

Next, typeHash runs collapse(E f ). This calculates the
hash for U, labeled h2 and propagates this hash to T , re-
placing its reference to U with h2. Likewise, collapse

1 TypeA s t r u c t {
2 W u i n t 3 2
3 V Any
4 }

(a) Example eNotation

5 a := en . TypeA { u i n t 3 2 ( 0 ) , u i n t 6 4 ( 1 ) }
6 d := s y s c a l l . O p e n D i r e c t o r y (”/ someDir /”)
7 e := en . WriteVarTypeA ( d , f i l eName , a )

(b) Example code: encode an any type to a file

8 d := s y s c a l l . O p e n D i r e c t o r y (”/ someDir /”)
9 a := en . ReadVarTypeA ( d , f i l e N a m e )

10 s w i t c h a . V . ( t y p e ) {
11 c a s e u i n t 6 4 : // Of a c t u a l t y p e u i n t 6 4 .
12 }

(c) Example code: decode an any type from a file
Figure 6: Encoding/decoding an any type to/from a file

hashes the definitions of W and V to compute h3 and h4.
At each step, typeHash replaces the child’s reference in
the parent’s eNotation with a hash. Finally, typeHash
computes T’s type hash, h5.

4.5 Sample code

Filesystem access Figure 6 provides an example of en-
coding to and decoding from a file in Go. Figure 6a de-
fines TypeA, a struct containing an integer and any. Fig-
ure 6b demonstrates how to write TypeA. Line 5 initial-
izes a to a TypeA structure, Line 6 opens a directory, and
Line 7 writes a to a file named f ileName in the direc-
tory. Attempting to write an ill-formed object relative to
the type associated with /someDir/ would cause a run-
time error.

Figure 6c provides the inverse. Here we decode to a
native Go struct. Trying to decode from a file using the
wrong decode function (e.g., ReadVarTypeB) would re-
sult in a compile-time error.

Any types We now describe the details of using the
any type in Figure 6. The any type in TypeA must be of
an actual type known to Ethos. (Not shown is the error
handling at Lines 7 and 9 should the type be unknown.)
Encoding an any type encodes the type hash of the actual
type followed by the encoding of the actual type. Decod-
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1 I i n t e r f a c e {
2 Add ( i u i n t 3 2 , j u i n t 3 2 ) ( r u i n t 3 2 )
3 }

(a) Example eNotation: an RPC interface

4 e , d := en . I p c ( hostname , se rv i ceName )
5 e . IAdd ( 0 , 1)
6 d . I H a n d l e ( e )

(b) Example code: invoke RPC
Figure 7: Invoking an RPC and handling the response

ing an any type uses introspection to identify the actual
type (Line 10). Once the actual type is determined, the
application can act on it appropriately.

RPC Figure 7 provides an example of invoking an
RPC. Figure 7a defines an example RPC interface con-
taining a single function, Add. Not depicted is a detailed
annotation describing Add.

Figure 7b provides the body of an application. It opens
a network connection using Ipc and initializes e and d to
the returned encoder and decoder objects, respectively.
These, in turn, are wrappers for Ethos’ read and write
system calls, and provide access to the generated RPC
stub/skeleton routines. The program next invokes e’s
IAdd function, thereby making an RPC request. Call-
ing d’s IHandle function causes the program to wait for
an incoming RPC reply to IAdd. The programmer must
also implement iAdd and iAddReply, but this is not de-
picted (the generated skeleton routine IHandle will call
these functions). Attempting to write an ill-formed re-
quest relative to the type associated with serviceName
will cause a runtime error, and Ethos will not deliver ill-
formed responses to the application.

5 Evaluation
Our evaluation focuses on the security properties pro-
vided by the integration of Etypes with Ethos. We first
consider how Etypes addresses semantic-gap attacks, ad-
dresses parsing bugs, and conserves application code.
We then present performance measurements of our C and
Go implementations using microbenchmarks; here we
compare our results to XDR/ONC RPC and JavaScript
Object Notation (JSON). Finally, we present a more real-
istic use case, analyzing the performance of a messaging
system we wrote for Ethos. Although Ethos has security
over performance as a design goal, its performance must
be acceptable—we show that Etypes performs well.

Ethos is a paravirtualized OS running on top of Xen
4.1 [6]. We ran our tests on computers with 4.2 GHz
AMD FX-4170 quad-core processors, 16GB of memory,
and a gigabit Ethernet adapter.

5.1 Semantic-gap attacks

Buccafurri et. al presented the Dalı́ attack in the con-
text of digital signatures [11], and Jana et. al presented

chameleon attacks in the context of anti-virus software
[32]. In these attacks, the type is unknown and is there-
fore determined in an ad hoc, and sometimes erroneous,
manner. Ethos provides countermeasures for both at-
tacks. The type of each Ethos object is known (§4.3),
every application and utility interprets an object consis-
tently by its type, and each type has a universal meaning
defined by its annotations.

Consider two types t1 and t2 with identical structure;
they nonetheless have different hashes in Ethos due to
their semantic description (§3.2). An Ethos application
commits to a type when it reads or writes data as an
Ethos object, and Ethos enforces the type it chooses. Of
course, an application could erroneously swap data of
type t1 for t2. This error is unavoidable through struc-
tural type checking alone, but Ethos’ authorization sys-
tem can restrict the application so that it can only write
Ethos objects of type t1. Even in these cases, there is no
possibility of encoding errors since t1 and t2 are identi-
cally coded.

Another attack comes from short or long reads, in
which the object is partially read or beyond the object
is read [47]. In these attacks, it is possible to get con-
fused as to the sources of input, mistaking untrusted for
trusted information.

Certificates present a particular example of the inter-
action between Ethos authorization and Etypes. Without
Etypes, an attacker might trick a flawed program (such as
a user-downloaded game) to sign a bank transfer request
with a user’s secret key. Thus we integrate types into
Ethos’ certificate system; the CertificateHeader fields in
Figure 1 include a type hash. When servicing a sign sys-
tem call, Ethos checks the type of the output directory,
and sets the certificate’s type to match before signing it
on behalf of the user. This binds a meaning to the certifi-
cate (which might otherwise have an identical structure
to another), and prevents the game from producing one,
as the game would be restricted from writing to any di-
rectories bearing the transfer certificate type. Of course,
a system could alternatively maintain different keys for
different purposes, but eventually two seemingly sepa-
rate certificates will need to be bound to the same person.

5.2 Parsing vs. encoding/decoding

Parsing is vulnerable to subtle attacks. Jana describes
the difficulty of writing parsers that prevent werewolf at-
tacks [32]; for anti-virus, the difficulty is that virus de-
tectors and applications can parse data differently. Sim-
ilar difficulties are encountered when defending against
Cross-site Scripting (XSS) attacks because a server’s in-
put validation must anticipate how a client browser will
parse HTML [10]. Ethos takes a different approach—it
prefers decoders, types are enforced by the OS, and for
any type only a single decoder exists.
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Component C Go Template YACC
E

ty
pe

s liben 1,278
et2g 826 329

eg2source 1,407 2,320

O
N

C libtirpc 15,105
rpcbind 5,264
rpcgen 5,479

Table 3: Lines of code in Etypes (total 6,160) and ONC
RPC (total 25,848)

Component Purpose LoC

MIME Parse MIME 13,381
SMTP Interact using SMTP 1,487
POP3 Interact using POP3 2,958

libxml2 Parse XML/HTML 136,362

Table 4: Lines of code in selected libcamel components

In comparison with decoders, parsing has two disad-
vantages. First, parsing can be ambiguous, leading to
confusion. Second, parsing is incomplete—it produces a
parse tree which still must be processed—while decod-
ing produces an actual object to be operated upon.

Parsing is complex and deals with untyped input
streams, perhaps directly generated by an attacker. In
Ethos, there are no untyped input streams—Etypes trans-
lates between external and internal representations while
being subjected to a type checker. Thus applications
know their input is well-typed. Furthermore, Etypes’
encoders/decoders must be generated from a high-level
eNotation description. Only one encoder/decoder gener-
ator (eg2source) is needed per PL, and formal methods
can ensure that they are correct. We describe next how
eg2source benefits the kernel and applications.

Kernel As previously discussed, we use liben in the
Ethos kernel. Replacing our original hand-written RPC
code with eNotation machine-generated code added
1,124 while removing 1,778 Lines of Code (LoC). This
is a net reduction of 654 LoC. More importantly, using
machine-generated code reduces the hard-to-isolate bugs
often resulting from RPC interface changes. This brings
liben, et2g, and eg2source into the Trusted Computing
Base (TCB) of Ethos. We note that the TCB typically
contains far more than just the kernel—for example, en-
cryption and many other code bases. The lines of code
associated with each Etypes component are listed in Ta-
ble 3. Etypes’ language support is less than 25% the size
of ONC RPC, even though it supports both C and Go.

Applications Applications also save many lines of
code through the use of eNotation. For example, we ob-
serve that existing mail user, transfer, and delivery agents
require an implementation of several parsers, including
for Simple Mail Transfer Protocol (SMTP) message en-
velopes, Internet Message Format (IMF) message head-

ers, and Multipurpose Internet Mail Extensions (MIME).
Each of these is described by a series of Requests for
Comments (RFCs). Furthermore, configuration files also
require parsing. These requirements increase application
size. We reviewed libcamel [1], a library that implements
many mail-related encoders (SMTP, POP3, MIME) and
parsers (XML/HTML), and summarize its over 150,000
lines of code in Table 4. Its encoders/decoders support
communication and storage; its parsers are for languages
which are used in networking for both client and server.

Tools such as bison and PADS [20] exist to aid in writ-
ing parsers. They clearly reduce parser costs, and they
are useful on Ethos too when parsing is a necessity. They
compliment Ethos’ system-wide protections, which are
independent of application programmers.

With Ethos, eg2source generates the code for seri-
alization/deserialization from an eNotation description.
Programs cannot accept or produce data not in accor-
dance with its eNotation specification since Ethos will
not allow it.

5.3 Encoding density

The use of the type hash to identify an any type means
that it takes 64-bytes to explicitly encode the actual type
associated with an eCoding. For types other than any,
eCoding’s use of implicit encoding results in a mini-
mal encoding size. There are a few exceptions, where
we made decisions affecting overhead. eCoding encodes
NULL pointers with a single byte, and the overhead for
other pointers is also a single byte. Arrays need not have
their known length encoded, but tuples, strings, and dic-
tionaries encode their length as a 32-bit value. (Choos-
ing a 32-bit length is possible due to the integration of
Etypes and Ethos—the maximum Ethos object size is
232− 1; larger constructions can exist as a collection of
objects as discussed in §4.3.) RPC calls contain a pro-
cedure ID as overhead, and discriminated unions contain
a tag. eCoding is not 32-bit aligned; thus it can encode
values of less than 32-bits more efficiently than XDR.

5.4 Performance

Microbenchmarks We first analyzed performance by
measuring the speed at which our implementation can
check, encode to, and decode from a memory buffer (Fig-
ure 8). We wrote a series of microbenchmarks based on a
collection of types, including primitive, vector, and com-
posite types. We tested the speed of encoding and decod-
ing using Etypes, XDR, and JSON. We also measured
the speed of type checking. An average for each test of
encoding, decoding, or checking is provided.

Figure 8 depicts our results. For scalar types, XDR
is the fastest as it benefits from mandatory 32-bit align-
ment. XDR also encodes pointers faster than Etypes, but
this is because Etypes supports cyclic and shared objects.
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Figure 8: Microbenchmarks: encode/decode to/from memory buffer

JSON performs the slowest due to its use of runtime type
introspection. Etypes’ encoding of vectors containing
scalar types benefits in the common case of little-endian
architectures. C Etypes encoding is at 0.136–22.823 (ge-
ometric mean: 0.985) times faster than XDR, and its de-
coding is 0.180–33.084 (geometric mean: 0.995) times
faster than XDR. Verification is a common operation in
Ethos kernel and its speed is 1.375–9.568 times faster
than C Etypes encoding.

eMsg performance To illustrate the use of Etypes, we
wrote eMsg, a messaging system for Ethos. eMsg is
able to send and receive a message whose type is de-
fined in eNotation and invoke RPC functions generated
by eg2source.

We compare the performance of eMsg to Postfix.
Since Ethos encrypts and cryptographically authenticates
all network connections, we configured Postfix with
Transport Layer Security (TLS) encryption and client
certificate authentication. We wrote a client program that
connects to Postfix using TLS-protected SMTP over a
UNIX socket and sends 2,500 emails to the server.

eMsg provides a client/server architecture roughly
similar to Postfix. Both the client and server per-
form type-related work: the client must check the well-
formedness of messages sent to the network and the
server must do the same for received messages, as well
as check the data that the receiver writes to a user’s spool
directory.

Figure 9 shows the performance of eMsg and Post-
fix, over three different message sizes. Each bar consists
of two parts: the message itself and its overhead. We
modified eMsg so that it incurred an overhead roughly
equal to Postfix: 1,229 bytes. (eMsg’s overhead is actu-
ally smaller because it does not use IMF headers.) For
each message size, eMsg was faster than Postfix.

6 Related work
6.1 Types and operating systems

Types are widely used and have been developed primar-
ily for PLs. Specialized types in PLs are useful for pre-
venting errors, but in general depend on PL semantics
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Figure 9: eMsg performance

and tightly-coupled code. Examples include linear types
[45] which can ensure at most one reference to each ob-
ject, and union types [31] which can allow performing
only operations valid for two or more types. In our envi-
ronment, such semantics appear to be too restrictive.

Java’s type system provides isolation within the JX
OS [22]. JX OS does not require a Memory Manage-
ment Unit (MMU) and instead implements software-
based stack overflow and NULL reference detection.
Singularity is written in Sing], provides Software Iso-
lated Processes (SIPs), and uses linear types to prevent
shared-memory-related race conditions [30]. LISP and
Haskell have also been used to construct an OS kernel
[24, 26]. Ethos has a different goal than these OSs: it
enforces object integrity without imposing a particular
language or runtime.

SPIN allows applications to specialize the OS kernel
using extensions [8, 25]. Type safety allows SPIN to
dynamically link extensions into the kernel while iso-
lating other kernel data structures. Exokernels likewise
maximally embody the end-to-end argument [19]. This
has been shown to provide performance benefits, for ex-
ample by allowing applications to interact more directly
with network interfaces [21].

One difficulty of requiring type safety in compiled
programs system-wide is that it either (1) has an expen-
sive run-time requirement or (2) requires that the com-
piler is part of the TCB. While compilers are typically
large, certifying compilers avoid the above issues by rel-
egating trust to a small certificate checker [41].
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Fabric labels objects with their security requirements
and provides dstributed-system-wide, language-based
access and flow controls [35]. HiStar provides a sim-
plified, low-level interface and implements mandatory
information-flow constraints without a language depen-
dency [49]; DStar builds on HiStar to provide informa-
tion flow across hosts on a network [50]. Developments
in HiStar/DStar and Ethos are complimentary: flow con-
trol will benefit from a higher semantic understanding of
the types in a system.

6.2 Serialization and RPCs

Many mechanisms exist for object serialization. These
mechanisms range from the basic (e.g., htons) to the so-
phisticated. Care must be taken when serializing an ob-
ject containing pointers which might produce shared ob-
jects—where two or more objects each reference a given
object—or cyclic objects—where an object contains a
direct or indirect reference to itself. Some schemes such
as JSON do not directly support cyclic objects, but stan-
dard techniques exist to address these requirements [29].
In an implicitly typed encoding, only data is encoded,
not its type. This reduces encoding size and eliminates
type field interpretation while decoding. In explicit typ-
ing, types are encoded along with data.

RPCs are procedure calls that are executed in another
address space [9]. Some RPC systems allow communi-
cation with remote computers and others—often for per-
formance reasons—allow communication only within a
single computer [7, 48]. RPC systems are used both in
applications and microkernels. Microkernel RPC is par-
ticularly performance-sensitive, and so its performance
is often highly optimized [33].

PL-specific Python [3], Java [23], C] [28], and C++’s
Boost [2] provide examples of native serialization fa-
cilities. RPC systems in particular benefit from PL-
specific serialization. The homogeneity of Java’s Re-
mote Method Invocation (RMI) [46] makes it easier to
use than heterogeneous systems since it does not need a
PL-agnostic Interface Description Language (IDL). PL-
specific systems can also provide conveniences such as
the ability to pass previously unknown objects such as
subtypes to remote methods. This enables polymorphism
(in other systems a subtype might be interpreted as its
parent at the distant end).

PL-agnostic XDR [18], ASN.1, JSON [17], and Pro-
tocol Buffers [39] can serialize objects from any PL.
Google designed the latter after experience demonstrated
settling on one PL was infeasible.

ONC RPC builds on XDR [43]. The rpcgen utility
generates client stub and server skeleton code from a
high-level declaration, and programmers fill in the rest.
CORBA provides inheritance and an any type [44], and

identifies actual types using a type code. CORBA’s type
codes are ambiguous [16], but Etypes’ are not. Ambi-
guity can violate the type safety of inheritance and any
types. Thrift [42] is particularly flexible. Instead of
dictating a single encoding format or transport protocol,
Thrift exports an interface with which to implement both.

7 Conclusion and further work
An OS-wide type system can make it easier to develop
and administer a robust distributed system. Etypes is
similar to ONC RPC which is PL-agnostic, has an im-
plicitly typed encoding, and generates code based on
type descriptions. What makes Etypes unique is its use
of the type hash as a UUID and its tight integration into
the Ethos OS.

Ethos’ type hash allows separately developed compo-
nents to be later combined with predictable results, and
annotations remove type ambiguity while documenting
business rules. Most importantly, both eliminate the need
for central type naming authorities.

Ethos’ clean-slate design enables deep integration and
simple semantics. The filesystem plays a critical role
in maintaining type information and simplifying failure
handling through streaming directories.

Ethos performs type checking in its kernel, ensuring
that applications only see well-formed data that matches
their expected type. This provides important security
protections such as ensuring consistent treatment of ob-
jects, removing parsing ambiguities, and removing sub-
stantial parsing code. Parsing code is an especially at-
tractive target for attackers due to its size, complexity,
and direct availability. Ethos’ application APIs are as
straightforward to use as untyped APIs on traditional sys-
tems, while performing many chores for the application
programmer and thus reducing application code size.

We plan to build on Etypes’ guaranteed properties. It
is already not possible to evade the OS’ conformance
checks. Currently, programmers are discouraged from
directly using Ethos’ low-level systems calls; a future im-
plementation will eliminate this access, forcing the use of
Etypes’ encode/decode routines.

One of the most interesting areas is the design and im-
plementation of eL. Etypes’ uniformity makes it easier
to write utilities and scripting languages which enable
system administrators to better manage their systems.
Our goal is to make Ethos accessible to system admin-
istrators through eL scripts that are as useful as UNIX’s
text-based scripting languages even while manipulating
richer types.
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