
Virtual Machine-Provided Context Sensitive Page Mappings

Nathan E. Rosenblum Gregory Cooksey Barton P. Miller
Computer Sciences Department, University of Wisconsin–Madison

{nater,cooksey,bart}@cs.wisc.edu

Abstract
Context sensitive page mappings provide different mappings from
virtual addresses to physical page frames depending on whether a
memory reference occurs in a data or instruction context. Such dif-
ferences can be used to modify the behavior of programs that ref-
erence their executable code in a data context. Previous work has
demonstrated several applications of context sensitive page map-
pings, including protection against buffer-overrun attacks and cir-
cumvention of self-checksumming codes. We extend context sen-
sitive page mappings to the virtual machine monitor, allowing op-
eration independent of the guest operating system. Our technique
takes advantage of the VMM’s role in enforcing protection between
guest operating systems to interpose on guest OS memory manage-
ment operations and selectively introduce context sensitive page
mappings.

In this paper, we describe extensions to the Xen hypervisor that
support context sensitive page mappings in unmodified guest op-
erating systems. We demonstrate the utility of our technique in
a case study by instrumenting and modifying self-checksumming
tamper-resistant binaries. We further demonstrate that context sen-
sitive page mappings can be provided by the VMM without incur-
ring extensive overhead. Our measurements indicate only minor
performance penalties stem from use of this technique. We sug-
gest several further applications of VMM-provided context sensi-
tive page mappings, including OS hardening and protection of pro-
cesses from malicious applications.

Categories and Subject DescriptorsD.4.7 [Operating Systems]:
Organization and Design; D.4.6 [Operating Systems]: Security
and Protection

General Terms Design, Security

Keywords context sensitive memory, virtual machine monitor,
xen, self checksumming code

1. Introduction
Tamper-resistent software seeks to defend against modification of
its behavior by an external agent. One technique for providing this
resistance isself-checksumming code. A self-checksumming pro-
gram incorporates computations whose results depend on contents
of memory representing the program’s code. If the code has been
modified (for example, by an instrumentation program as part of

Copyright c©2008 Association for Computing Machinery. This is the author’s version
of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in theProceedings of the 4th
international conference on Virtual execution environments (VEE ’08), Seattle, WA,
March 2008 (to appear).

a reverse-engineering effort), the program will detect the modifi-
cation and can take appropriate defensive action, such as termi-
nating execution. Surveys of malicious software such as viruses
have revealed that authors frequently disguise their applications
with commoditypackingsoftware, some of which employs self-
checksumming as a tamper resistance mechanism [10]. Circum-
venting such protections is an important first step in analyzing
novel malicious software.

Self-checksumming techniques rely on the underlying hardware
having avon Neumann memory architecture[15], in which the pro-
gram data and instructions reside in the same storage object. This
unified view of memory enables the application to access its exe-
cutable code as a data reference, enabling the self-checksumming
technique. Modern operating systems such as Microsoft Windows
and Linux on the x86 architecture export this unified view of a pro-
gram’s address space. Previous work by Wurster, et al. [16] sub-
verted self-checksumming codes by modifying the kernels of Linux
and Windows operating systems to induce a virtualHarvard mem-
ory architecturefrom the target program’s perspective, as depicted
in Figure1.

In this paper, we introduce virtual machine monitor-basedcon-
text sensitive page mappings. The aim of our work is to transpar-
ently manipulate the guest operating system’s view of memory, and
by extension that of processes within the guest OS. Context sensi-
tive page mappings are a technique to introduce different mappings
from virtual to physical addresses at page granularity based on the
type of memory reference. The virtual machine monitor is an ideal
point to introduce context sensitive mappings, because of its central
role in managing virtual memory hardware to enforce protection.
Our modified VMM, along with a user-level utility process, allow
us to instrument and examine a tamper-resistant process running on
an unmodified operating system.

Our implementation extends the Xen hypervisor [2] on the Intel
x86 platform to enable selective introduction of context sensitive
page mappings into unmodified guest operating systems. Careful
manipulation of thetranslation lookaside buffers (TLBs)can intro-
duce virtual to physical address translation that is sensitive to data
or instruction execution context. Implementing this facility in a vir-
tualized context introduces several challenges that are not present
when similar techniques are applied at the operating system level,
such as target process identification. In addition, the x86 architec-
ture does not provide software managed TLBs, so a well-defined
interface does not exist to manipulate their contents. We discuss
our approaches to these challenges in Section3 and give imple-
mentation details in Section4.

Although our implementation focuses on the Xen hypervisor
running on the x86 architecture, the general technique is not lim-
ited to a particular virtual machine monitor or hardware platform.
VMM-provided context sensitive page mappings have only two
prerequisites: a mechanism for interposition between the operating
system and the virtual memory hardware, and a hardware facility
that can provide alternate mappings from virtual to physical ad-

Memory

Process
Code (fetch)

D
at

a
(r

ea
d

/w
ri

te
)

Code
Memory

Process
Code (fetch)

Data
Memory

Data (r/w)

1. A von Neumann memory architecture 2. A Harvard memory architecture

Figure 1. Two possible application views of memory. In (1), the
process sees the same address spaces regardless of context (instruc-
tion vs. data). In (2), separate address spaces exist depending on
context. Self-checksumming code implicitly assumes the model of
(1).

dresses based on the context of a memory reference. Architectures
such as SPARC and Power that, like x86, have data and instruc-
tion TLBs should be suitable for this technique. Indeed, platforms
with software managed TLBs (e.g., SPARC) simplify such an im-
plementation.

In addition to operating system independence, extension of con-
text sensitive page mappings to the virtual machine monitor sug-
gests additional applications. Because the context sensitive map-
pings are provided by the VMM, they remain transparent to privi-
lege processes within the guest operating system. We suggest two
uses of this fact in Section7: protection of sensitive guest OS data
and code, and protection of particular processes within the guest
OS.

2. Related Work
Our technique for inducing context sensitive page mappings fol-
lows the direction used by Wurster et al. [16, 14] to attack self-
checksumming codes. The authors presented two methods for in-
ducing a virtual Harvard memory architecture from point of view
of Windows and Linux processes on the x86 architecture, both in-
volving manipulation of virtual memory-related hardware. Wurster
et al. describe a manipulation of the paging hardware by modifying
the operating system virtual memory management code.

Sparks and Butler [12] present a method similar to that of
Wurster to induce a split code and data view of memory on the Intel
x86 architecture. The authors describeShadow Walker, a stealth
rootkit that patches the page fault handling routines in the Windows
kernel to hide or misrepresent the executable contents of malicious
programs [9].

The PaX project [11] is an extension of the Linux kernel that at-
tempts to reduce certain types of security exploits by randomizing
the location of a program’s layout in memory, including the place-
ment of non-position-independent code. PaX redirects accesses of
the expected code location to its new location. Unlike the technique
we present here, PaX makes no attempt to obscure this mapping.

Garfinkel and Rosenblum [5] introduced a VMM-based intru-
sion detection system. They describe akernel memory enforcer
component that protects sensitive portions of the guest OS kernel
from tampering, even by software running at the same privilege
level as the OS kernel. Our context sensitive page mappings can
provide similar protection against malicious privileged malicious
software as we describe in Section7.

Giffin, et al. [6] addressed Wurster’s attack by extending the
self-checksumming protection to includeself-modifying code. By
requiring that the anti-tampering test compute a value contingent
on consistent execution and reads of program code, the authors
eliminate the implicit reliance on a von Neumann architecture. This
defense depends on a program’s ability to self-modify, which may
not be possible. For example, self-modifying code is not available
in environments that provide and rely upon hardware protection
against code injection (e.g.,NX bit protection against execution on
the heap [13]).

3. System Overview
Our system provides context sensitive views of memory at page
granularity within guest operating systems in a virtualized environ-
ment. Our goal is to provide such mappings in an efficient manner,
while ensuring transparency from the perspective of the guest op-
erating system and processes running within it. Implementation of
this feature relies on certain fundamental characteristics of the un-
derlying hardware. In particular, the virtual memory hardware must
provide mapping mechanisms that are sensitive to memory refer-
ence context. There must be a mechanism (explicit or implicit) to
manipulate the contents of the virtual memory hardware to effect a
disparity between execution and data reference views.

In Wurster’s [16] approach to circumvention of self-checksumming
code, a modified operating system managed the paging hadware
manipulation. Because our context sensitive page mappings are
provided by the VMM, we must be able to interpose on operating
system activity that affects the virtual memory hardware. In design-
ing modifications to the Xen virtual machine monitor to support our
requirements, we had to address the following issues:

• VMM interposition and control of OS paging operations

• Separate manipulation of instruction and data TLBs

• Storage of extra pages needed to provide context sensitive data

• Identification of process access to context sensitive pages

We provide background on our implementation environment
and give an overview of our approach to each of these challenges
in this section.

3.1 MMU Update Interposition

Our implementation comprises modifications of the Xen virtualiza-
tion environment [2] on the Intel x86 architecture. The Xen virtual
machine monitor hosts multiple guest operating systems asguest
domains. One privileged domain (dom0) interacts with the hard-
ware directly and is tasked with creation and management of the
other guest domains (domUs). The virtual machine monitor imple-
ments protection in the x86 memory management unit. The VMM
virtualizes privileged MMU operations, such as updates to the page
tables that provide a virtual to physical address mapping. When the
operating system attempts such modifications, the VMM interposes
on the operation and ensures that inter-domain protection is not be-
ing violated. It is this low-level control of virtual memory hardware
that enables our context sensitive page mapping technique. We can
control guest OS modifications to the page tables because the Xen
hypervisor must already manage guest access to to the virtual mem-
ory hardware.

3.2 Virtual Memory Subsystem

Our mechanism for implementing context sensitive page mappings
is depicted in Figure2. The paging hardware on the x86 platform
translates from segmented linear addresses to physical addresses
through apage table. This mechanism allows for sharing and pro-
tection of the linear address space at the granularity of a page, usu-

Fetch?

Linear Address

Page Directory Index Page Table Index Offset

DTLBITLB

Memory

(a) Normal linear address space

Fetch?

Linear Address

Page Directory Index Page Table Index Offset

DTLBITLB

Memory

(b) Split address space

Figure 2. An address space split induced by desynchronized instruction and data TLBs. In (a) the ITLB and DTLB entries indexed by the
first 20 bits of the linear address are identical. After application of our technique, the entries are desynchronized and index different physical
pages, as in (b).

ally 4096 bytes. Each process has associated with it apage direc-
tory pointed to by thepage table base registercr3 that represents
a two or greater level tree ofpage tablesidentifying pages owned
by that process. When a reference to a virtual address is executed
by the processor, the hardware memory management unit uses the
page tables to translate from the virtual page to the physical page
frame containing the referenced data.

To reduce the cost of memory references, thepage table en-
tries (PTEs)for recently accessed pages are cached in atranslation
lookaside buffer. Only when an address translation cannot be sat-
isfied from the TLB is a full page directory traversal necessary. In
the case of a TLB miss, the hardware performs a walk over the page
directory and fills in the missing TLB entry with no software inter-
vention. The x86, like several architectures, has two separate TLBs:
one for data references (the DTLB), and one for instruction refer-
ences (the ITLB). This contextual distinction at the lowest levels of
the paging hardware provides a handle for controlling the view of
memory exposed to a program.

Normally the ITLB and DTLB entries mapped to a particular
virtual address are identical. By carefully manipulating the proces-
sor state we are able to break this symmetry, causing translations for
a particular virtual address to depend on context. This mechanism
depends on our ability to manipulate the contents of the instruction
and data TLBs independently, a feature not directly supported by
the x86 architecture. Instead, we use a combination of page table
modifications and specially crafted memory references to load dif-
fering PTEs into the ITLB and DTLB. The VMM uses the virtual
address space of the target process to make these memory refer-
ences. This ensures that the loaded TLB entries are used to resolve
subsequent memory references by the target. Details of these tech-
niques are discussed in Section4.

3.3 Storage Alternatives

Providing context sensitive data raises the question of where that
data should be stored. It is likely too expensive in both time and
space to provide context sensitive mappings for all processes, let

alone all pages in a particular process. Instead, the set of mappings
are represented as tuples(Vcs, Pdata, Pexec), whereVcs is the vir-
tual address of the context sensitive page and each ofPdata and
Pexec corresponds to physical memory visible in a data or instruc-
tion context, respectively. We refer to such a tuple as apage corre-
spondence. One physical page in the correspondence represents the
original page that is rendered context sensitive by our technique.
The other physical page must be allocated and managed separately.
The page can either be allocated within the guest operating system,
or by the VMM itself.

Assume thatPexec corresponds to the original page allocated
within the guest operating system, and thatPdata must be allocated
within the guest OS or the VMM. WhereverPdata is allocated,
data-context access to locations withinVcs must reference the cor-
rect data inPdata. This presents particular challenges ifPdata is
allocated within the guest OS. Recall that the mapping fromVcs to
Pdate is controlled by the VMM; in particular, the guest operating
system has no knowledge of it. If the guest OS has control over
Pdata, it can chose to reclaim that memory at any time by writing
the contents ofPdata to the backing store and loading new values in
its place. The guest would maintain a mapping from another virtual
address,Valt, to Pdata, and would not invalidate theVcs mapping
when it releasedPdata. Our VMM has no way of influencing the
guest operating system’s behavior in this regard. We cannot guar-
antee that the contents of aPexec page allocated within the guest
OS remain valid.

Instead we allocate storage within the virtual machine monitor’s
address space. The VMM ensures that the contents ofPdata are
available for the lifetime of the page correspondence. This method
increases system resources reserved by the VMM, but ensures that
guest operating system behavior cannot affect context sensitive
page mappings.

3.4 Target Process Identification

The principal remaining challenge is lack of information about
guest operating system data structures, in particular those pertain-

ing to the target process. Depending on availability of low-level
documentation, guest OS data structures might or might not be
opaque to us, but in either case we have no direct way to associate
that information with a particular process. The VMM does not have
access to guest operating system abstractions such as process iden-
tifiers with which to select target processes. Also, dependence on
such OS internal information would reduce portability across guest
operating systems and across versions of the same system.

One way the VMM could identify individual processes is by
address space identifiers (ASIDs) that uniquely identify a process
in both time and space. Although x86 architecture lacks the notion
of a proper ASID, our technique only requires a means to uniquely
identify a process at a particular moment in time. It is irrelevant
in our system whether a particular identifier is reused by multiple
processes, so long as only one process (or group of processes
sharing an address space) uses it at a given time. The x86 page
table base register (cr3) provides just such semantics. Each unique
address space has its own set of page tables, pointed to bycr3
while the process owning that address space is executing.

4. Implementation Details
Our modifications to Xen include three main components: instal-
lation of context sensitive mappings for target processes, interposi-
tion on operating system access to the memory management hard-
ware, and interface extensions to selectively enable context sensi-
tive page mappings for particular pages in an address space.

4.1 Installation of Mappings

Installation of context sensitive page mappings for a target process
is divided into two parts: intercepting access to context sensitive
pages for which mappings have not been installed, and installing
the mappings. The former involves straightforward use of the x86
memory management hardware, while the latter is complicated by
the lack of software programmable TLBs. Both are implemented in
the page fault handling routines of the Xen hypervisor.

Processor faults on x86 are passed to software running at the
highest privilege level, in our case the VMM. Page faults are gen-
erated when memory accesses fail for several reasons, such as pro-
tection violations orpage not presentconditions. Except when the
fault is caused by inter-domain protection violations, the VMM
refers page faults to the guest operating system for service. When
we create a context sensitive page, we update the corresponding
page table entry and clear the User/Supervisor bit. Unprivileged ac-
cess to a page with a clear User/Supervisor bit causes a page fault
due to protection violation.

We modified the page fault handling routine on Xen to test
whether such page faults are caused by access to a context sensitive
page. Our VMM maintains a hash of all page correspondence tuples
associated with particular address space. A hash lookup determines
whether the faulting process was accessing a context sensitive page.
If so, the VMM must install a context-sensitive page mapping in
the faulting process’ TLBs. The only complication arises if the
page in question is also marked as not present. In this case, the
VMM depends on the guest operating system to retrieve the page
from the backing store. We modify the page fault exception code to
indicate that the fault was caused by apage not presentcondition
and refer the fault to the guest OS. A repeat memory reference will
cause another page fault and the VMM will then install the context
sensitive mapping.

The steps necessary to install different mappings in the x86
instruction and data TLBs are outlined in Figure3. The basic
strategy is to modify the page table entries and then execute and
read code from the page, loading the modified page table entries in
the the appropriate TLBs. We modify the instruction context page

to allow safe execution by the VMM by inserting a jump instruction
that returns control to our page fault handler.

Wurster et al. appear to take a similar approach to installing
different ITLB and DTLB mappings on the x86 architecture [14].
They indicate that their VMM executes aNOP (no operation) in-
struction in a target page to load the mapping into the ITLB. It is
not clear from their description how control would be transferred
to thisNOP instruction or returned to the VMM after executing it.
We surmise that they use a sequence of jump intsructions similar to
the technique that we describe below.

First, the page table entry for the context sensitive page is
updated to temporarily unprotect the page by setting the User/
Supervisor bit (line 5). The ITLB is loaded whenever an instruction
context memory reference is made to a virtual address and the
corresponding PTE is not already cached in the ITLB. We can
safely execute an instruction out of a page in the target process if we
control its contents. However, there are two complications: writing
instructions to a virtual address causes the DTLB to be loaded, and
entries cannot be flushed from the DTLB independent of the ITLB.

To modify the target page’s contents, we first create a new
virtual to physical mapping in the VMM’s address space (line
10). We then flush the target entry from the TLBs and install a
trampolineinto the target physical page through the VMM’s virtual
mapping (line 19). The trampoline is simply a branch instruction
that jumps back to thereturn loc address in our pseudo code
representation. Finally, we branch to the trampoline code through
the target virtual address (line 24), causing the ITLB to be loaded
with the PTE we have temporarily unprotected.

Installation of the DTLB entry is considerably easier. First, we
modify the the page table entry to point to a different physical page
(Pdata) (line 32). The VMM then reads a single byte of memory
from the target virtual address, loading the DTLB. Our final step is
to restore the page table entry to its original, protected state (line
40). The ITLB and DTLB mappings for the target virtual page are
now desynchronized.

These mappings persist until the guest operating system sched-
ules a different process or explicitly flushes the TLBs (e.g., when it
updates page tables). Subsequent accesses to the the context sensi-
tive page while these mappings exist will not incur additional page
faults because the User/Supervisor bit is set in the PTEs cached in
the TLBs.

4.2 OS MMU Interposition

We are able to modify and maintain modified page table entries be-
cause the VMM is responsible for enforcing protection between do-
mains by use of the hardware memory management unit. Because
the MMU traverses the page tables when translating from virtual
to physical addresses, the Xen hypervisor must restrict updates to
the page tables to ensure inter-domain protection. When the guest
operating system attempts to modify page table entries, the VMM
intervenes to check the validity of updates. We extend the check-
ing routines to ensure that PTEs for context sensitive pages are not
modified by guest OS updates.

When the guest OS installs or modifies a page table entry, we
test whether it is one of the page correspondences for the updated
address space. If so, we install or modify the page table entry
as requested, first explicitly clearing the User/Supervisor bit as
described above. In this way we ensure that subsequent access by
the target process will continue to cause page faults.

4.3 VMM Interface Extensions

We assume that there will be a process running on the guest oper-
ating system that will control the context sensitive page mapping
facilities provided by our VMM. For example, the case study we
present in Section5 features a dynamic instrumentation program

1 // Temporarily unprotect PTE entry by
2 // setting User/Supervisor bit
3 pte = get_guest_pte(addr)
4 orig = pte
5 set_pte_bit(pte, U/S)
6
7 // Create a new virtual to physical in
8 // mapping in VMM space
9 paddr’ = physical_addr(addr)

10 addr’ = map_domain_page(paddr’)
11
12 // Flush the TLB entry for this virtual
13 // address only
14 flush_tlb_one(addr)
15
16 // Write a branch back to return_loc
17 // into the physical page through the
18 // VMM-space mapping
19 install_trampoline(addr’)
20
21 // Branch back to the installed code
22 // through the guest-space mapping
23 // (installs ITLB entry)
24 jump(addr)
25
26 :return_loc
27 // remove changes
28 remove_trampoline(addr’)
29
30 // prepare PTE for DTLB (change
31 // physical page)
32 modify_pte(pte, clean_page)
33
34 // install DTLB entry by reading from
35 // physical page with guest-space
36 // mapping
37 read_byte(addr)
38
39 // restore
40 pte = orig

Figure 3. Installation of split ITLB/DLTB entries. First the ITLB
is loaded with the address of the modified page (the page pointed
to by the protected PTE in our system), then the DTLB is loaded
with a modified PTE pointing to a different physical page.

that requests context sensitive page mappings from the VMM to cir-
cumvent self-checksumming. Implementing such an application as
a process running on the guest operating system has the advantage
that it reduces the number of changes needed in the Xen hypervi-
sor. It is significantly easier to implement tools as normal processes
rather than subsystems of a operating system kernel or virtual ma-
chine monitor. To support such applications, we define an interface
between the guest process and the hypervisor.

We define four interfaces to the hypervisor. The first two in-
stall and remove context sensitive page mappings. The user-level
process provides an address space identifier that names the target
process, and a virtual address that specifies the context sensitive
page. They hypervisor is responsible for allocating a page within
its pool of memory to represent thePdata member of the resulting
page correspondence tuple.

• createcs mapping(INPUT asid, INPUT vaddr)
Requests that the hypervisor create a copy of the page corre-

sponding to the input virtual address in the given address space,
and to maintain a context sensitive page mapping.

• removecs mapping(INPUT asid, INPUT vaddr)
Requests destruction of the indicated context sensitive page
mapping.

For the purposes of the tamper-resistance circumvention we
describe in Section5, the Pdata page stored by the hypervisor
need only be a copy of the original page specified in thecre-
ate cs mappingcall. In general, it may be useful to modify the
contents of thePdata page after installation of the context sensi-
tive page mapping.

• updatecs page(INPUT asid, INPUT vaddr, INPUT vupdate)
Instructs the hypervisor to update thePdata member of the
specified mapping by copying the contents of the page indicated
by vupdate.

The final interface stems from our use of thecr3 register to
identify target processes and is particular to our specific needs in
the case study described below. Access to thecr3 value is restricted
to privileged processes (including the guest operating system), so a
strictly user-space process cannot read the contents of the register.
Hypervisor assistance is necessary to retrieve the value associated
with a target process.

• get cr3(OUTPUT asid)
Returns thecr3 value associated with the calling process.

Our use of this interface in our case study requires some expla-
nation. The value of interest is only contained incr3 when the tar-
get process is executing. We must induce the target process to make
the get cr3 call itself, prior to enabling the context sensitive page
mappings that allow us to modify the tamper resistant process. We
avoid this apparent contradiction by forcing the target process to
execute theget cr3 call with no chance of its own code executing in
the interim. Self-checksumming can only detect modifications to a
program’s code that persist while the self-checksumming algorithm
runs. Our dynamic instrumentation tools enable us to halt an exe-
cuting process, inject and execute arbitrary code, and remove that
code prior to resuming normal execution of the target process. This
technique gives us the ability to induce execution of theget cr3 call
without detection. We are now free to modify the code of the target
process. We discuss this and other details of our instrumentation
tools in the following section.

5. Case Study: Self-Checksumming Code
To validate our implementation of context sensitive page mappings,
we performed a case study in which we added instrumentation
to a program that uses self-checksumming to detect modification
to its code. In this section, we provide background on Dyninst,
the instrumentation library we use to modify the target process.
We then introduce the target tamper-resistant program and the
program used to instrument it. Our instrumentation program runs
as a user-level process within a Linux guest operation system,
communicating target pages to the modified Xen hypervisor. The
individual components of our system are depicted in Figure4.

5.1 Dyninst Background

Dyninst is a cross-platform dynamic instrumentation and modifi-
cation library [7, 3]. Dyninst differs significantly from other in-
strumentation systems. It creates or attaches to a running process,
statically analyzes the binary, and thendynamically modifiesthe
program as it executes. Dyninst’s instrumentation is patched into
the executable code of the program as necessary. For example,
to obtain a trace of program execution, Dyninst can be used to

patch the entry and exit points of all functions in the binary. When
the program is allowed to run, it executes as normal, but the in-
serted instrumentation is executed whenever it is encountered. This
method of instrumentation is flexible and incurs extremely low
cost, but is clearly visible to introspective techniques such as self-
checksumming code.

Dyninst provides another facility we have previously men-
tioned. Dyninst’s ability to insert and remove code, combined with
its control of process execution, facilitatesone-time codes. A one-
time code in Dyninst is transient; after execution it is removed,
and no lingering effects remain in the binary. When Dyninst in-
jects a one-time code into a process, it first halts the process if it is
currently executing. It then saves a backup copy of instructions to
be overwritten and installs the instructions that make up the one-
time code snippet at the current point of execution in the process
and continues the process execution. The one-time code saves the
current process state before performing its intended action, and
restores the state after it has completed. It then returns control to
Dyninst, which removes the one-time code and restores the original
instructions. The process is then continued from where it was orig-
inally halted with nothing to indicate that it been forced to execute
some arbitrary amount of code. We previously described how this
technique allows us to briefly hijack a tamper-resistant process to
execute theget cr3 routine and remain undetected.

5.2 Instrumentation Program

We introduce a helper tool, Igor, that is responsible for loading and
instrumenting the target process and communicating as necessary
with the modified Xen hypervisor. Igor uses Dyninst to insert in-
strumentation into the target process at runtime. Without the con-
text sensitive page mappings provided by the VMM, the instru-
mentation Igor inserts would be identified by the tamper-resistance
mechanisms of the target process.

Igor starts the target application and immediately suspends its
execution before themain function is executed. We use the Dyninst
library to statically parse the target executable, identifying func-
tions within its code section. Our goal is to instrument the entry and
exit points of all functions in the binary, similar to how an analyst
might go about tracing execution of a suspect process. Before any
modifications are made to the target process, Igor communicates
the set of affected pages to the Xen hypervisor using our modified
interface. The hypervisor copies the contents of the target pages
and creates page correspondence tuples for the target process. Once
Igor has inserted the desired instrumentation, it releases the target
process. Subsequent memory references within the target to modi-
fied pages are sensitive to context.

5.3 Tamper-resistent Target

Our target application is a simple proof-of-concept that uses self-
checksumming to test whether its code has been modified. The
application computes a checksum over the bytes comprising its
main function. If the computed value differs from the expected
value, the process terminates with an error condition. This is similar
to the type of tamper-resistance provided by some software packers
such as ASProtect [1].

We verify that our instrumentation is successfully applied to the
target application by modifying its behavior. Themain function
invokes a routine that prints a known value tostdout. Another
function exists in the binary that prints an alternate value tostdout
but is never called. In addition to the entry and exit instrumentation
we insert into the process, we dynamically modify the call inmain
to refer to the second function. Successful termination of the test
program along with display of the alternate value verifies that the
instrumentation was installed but remained undetected by the self-
checksumming routine.

6. Performance Impact
We performed several micro benchmarks to ascertain the perfor-
mance impact of our modifications to the Xen system. Our modifi-
cations add additional cost in two facilities of the Xen VMM: mem-
ory management unit updates and page fault handling. We were
interested in two possible changes in these facilities: addition time
consumed and increase in incidents of usage. In particular, we were
interested in measuring the increase in page faults due to context
sensitive page mappings.

Our system incurs at most one additional page fault per access
to a modified page when the ITLB or DTLB does not cache the
corresponding page table entry. Since the TLBs are flushed at
context switch, the least number of additional page faults we incur
is one per execution time slice. However, because collisions are
possible in the ITLB and DTLB, cache interactions may increase
the likelihood that our modified entries are ejected, necessitating an
additional page fault on the next access.

We instrumented the VMM to record the time spent in these
facilities and to count the number of times they were used. We
took measurements for target programs with and without modified
pages. The most significant increase is in handling page faults on
modified pages, due to the additional operations necessary to cause
the DTLB and ITLB to be loaded. All other overhead stems from
checking whether the faulting process was referencing a context
sensitive page. The overhead in performing MMU updates simi-
larly stems from checking whether the updated or installed PTE
refers to an element of a page correspondence tuple. The results of
our micro benchmarks of the MMU update and page fault handling
facilities in unmodified Xen and our extended VMM are summa-
rized in Table1.

MMU Updates Page Fault Handling
(ns per update) (ns per fault)

Unmodified Xen 903 395

Normal Pages 974 (+7.9%) 447 (+13.2%)

Context Sensitive Pages 1,003 (10.9%) 918 (+132.4%)

Table 1. Direct VMM overhead due to the context sensitive page
mappings extension. The percentage for normal and context sensi-
tive pages indicates the increase over unmodified Xen. The highest
cost is in servicing page faults on context sensitive pages, as it in-
cludes the cost of manipulating the TLBs.

We created three simple artificial workloads to help evaluate the
performance of our context sensitive page mappings. The work-
loads exercise the additional layers of abstraction we introduce with
our TLB manipulations. Our goal is to model the impact that con-
text sensitive page mappings would have on code that frequently
accesses a data store in multiple contexts, such as the self check-
summing code from our case study. The test program maps a vari-
able number of full-page functions into its address space. Using
our modified hypervisor, we create context sensitive mappings that
redirect read requests to different pages with known values that
would abnormal execution if interpreted as instructions. The read
and execute accesses in our workloads both target the original, ex-
ecutable pages. We verify correctness by checking for the alternate
values read from the mapped in pages.

The three workloads represent a spectrum of load for our sys-
tem. The executable pages consist primarily ofNOP instructions that
are represented by a single byte in the IA-32 instruction set. Our
read function similarly accesses the page one byte at a time. Each
was run with a varying number of context sensitive page mappings
with the particular access pattern repeated 1,000 times.

guest VM

Igor
targetmodified

code
unmodified

code

Dyninst
attach

Xen
page correspondences

communication
channel

Figure 4. System component overview: the helper process Igor loads and modifies the target program, requesting context sensitive page
mappings for particular pages from the Xen hypervisor. Then Igor modifies pages within the target process address space. Xen redirects
memory references by the target process depending on context.

• Page-interleaved access
This workload executes the contents of a page, then reads the
contents. This pattern is very basic but does map to some re-
alistic applications, for example just in time compilation or
integrity self-checking. Figure5 compares this and the other
workloads to comparative workloads without context sensitive
page mappings as the number of mapped pages is increased.

• Completely serial access
All of the pages are executed, then all are read. This pattern
of access performs slightly less well than the page-interleved
access, mainly due to the increased number of page faults. By
linearly traversing a large number of pages we cause a large
number of collisions in the TLB. We are forced in this case to
take a page fault and re-apply the context sensitive mapping in
the TLBs.

• Fine-grain interleaved access
We assumed that this access pattern would paced the most stress
on our system and it most closely resembles the real access
patterns of self-checksumming or otherwise introspective code.
The shorter run times are in part due to minor configuration dif-
ferences in our test application, but the good performance over-
all nicely demonstrates the efficacy of the dual TLB mappings.
Without the ability to load arbitrary values independently into
the instruction and data TLBs, each fine-grain interleved access
would cause a page fault and greatly increase the cost of creat-
ing the context sensitive view of code and data.

7. Other Applications of Context Sensitivity
Implementation of context sensitive page mappings in the virtual
machine monitor instead of natively at the operating system level
means that such mappings can be transparent to privileged process
running in a guest operating system. In this section we describe
two potential uses of this technique to defend against malicious
software.

7.1 OS Tamper Resistance

Stealthy malicious applications such asrootkits attempt not only
to subvert operating system control, but also to conceal themselves
from detection [4] . One common method of hiding from system
introspection utilities is to patch system call entry points. Custom
routines are inserted that mask the malicious process, for example

by modifying the output of a task listing to remove telltale entries.
Detecting processes hidden in this manner has been a topic of
recent research [8].

Context sensitive page mappings could be used to protect com-
mon attack points in the operating system, such as system call entry
points. Garfinkel and Rosenblum describe virtual machine monitor-
based protection of sensitive guest OS data in their Livewire VMM-
based intrusion detection system [5]. They use the VMM to block
changes to such critical pages. Using our context sensitive page
mappings, the VMM achieves the same result by redirecting mali-
cious modifications (necessarily made in a data context) to a differ-
ent page.

In addition to preventing modification, protection in this manner
could offer valuable insight into malicious software behavior. At-
tempted modifications could be captured without compromising the
guest OS. Perhaps more interestingly, the changes wouldappearto
have been successful from the perspective of the malicious process.
If the malicious process functionally depended on the changes tak-
ing effect (i.e., if it depended on some specific result of executing
its modifications) it would likely crash. However, if the changes
were a purely defensive mechanism (as in the case of task hiding
modifications), the malware might continue to operate oblivious to
the fact that it had not accomplished its aim. Such a result might be
of use in identifying or analyzing malicious software.

7.2 Shielded Processes

Context sensitive page mappings could be used similarly to pro-
tect the memory of particular user processes within a guest op-
erating system. Such protection could be of particular use in de-
fending software components critical to detection of and response
to malicious software activity. Virus scanners and intrusion detec-
tion systems are susceptible to attack and subversion by malware
that gains elevated privilege on the machine. Virtual machine mon-
itor protection of process code or data would prevent modification
even by more privileged processes within the guest domain. Such a
shielded processcould be readily examined by privileged software,
but would be resistant to attempts to modify its behavior because
its memory would be protected by the VMM.

Introducing shielded processes would require collaboration be-
tween the VMM and user-level processes within the guest operating
system similar to the mechanism we described in Section4.3 and
in our case study of self-checksumming code. Because of the sen-

0 500 1000 1500

0
5

1
0

1
5

2
0

2
5

3
0

Page−interleaved Access

Active Pages

R
u
n

 T
im

e
 (

s
)

normal pages

CSPM

(a) Page-interleaved Access

0 500 1000 1500

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Sequential Access

Active Pages

R
u
n

 T
im

e
 (

s
)

normal pages

CSPM

(b) Sequential Access

0 500 1000 1500

0
5

1
0

1
5

Fine−grain Access

Active Pages

R
u
n

 t
im

e
 (

s
)

normal pages

CSPM

(c) Fine-grained Access

Figure 5. A comparison of context sensitive page mapping performance under our workload with performance using unmodified pages.
Each data point represents one thousand iterations of the access pattern over the specified number of pages. All three access patterns consist
of small reads from the selected pages. The access patterns in (a) and (b) differ in whether the reads and executes are interleaved or not,
but they both operate in isolation on pages. In contrast, (c) staggers reads and executes. This workload is suggestive of applications such as
just in time compilation and self checksumming code. The split TLBs allow redirection of reads without incurring the prohibitive expense of
trapping and emulating each read or execute operation.

sitive nature of this application, a more secure interface between
the user-level process and the VMM would be needed. Otherwise,
however, the basic technique remains the same: the VMM manages
the page mappings of the shielded processes, presenting one view
of memory from a data context and another from execution con-
text. The pages protected in this manner cannot be modified within
the guest operating system, as data context access is redirected to
a dummy page. It is important to note that the split view of mem-
ory would necessarily apply to the shielded process itself, as well.
Otherwise, the process hijacking we described in Section5 could
be used to modify the executable code of the process.

As we mentioned in discussing OS tamper resistance, two po-
tential benefits beyond preventing modification of shielded pro-
cesses spring to mind. Attempted modifications would be captured
in the data-context page in which they were made. Additionally,
any modifications would appear to have been successfully made
from the view of the modifying process. Only observation of the
actual execution behavior of the cloaked process would reveal that
its code had been unaffected.

8. Conclusions
We introduced context sensitive page mappings provided by the vir-
tual machine monitor. We showed how inherent context sensitivity
in memory management hardware and a method for interposing on
memory-related guest operating system operations can induce con-
text sensitive views of memory in a target process. Unlike previous
work, our VMM accomplishes these tasks independent of the guest
operating system, rendering the multiple views transparent to priv-
ileged processes within the guest OS.

We described our implementation of context sensitive page
mappings in the Xen hypervisor running on the x86 architecture.
Our technique loads different values into the data and instruction
TLBs, providing context sensitive memory access at page granu-
larity. To demonstrate one application of this technique, we used
our VMM in concert with a user process executing within the guest
OS to instrument a tamper-resistant test program, successfully cir-
cumventing its self-checksumming protection.

By utilizing virtual memory hardware to implement context sen-
sitive page mappings, we avoid incurring significant overhead. We
tested the performance impact of our extensions within the Xen hy-
pervisor by creating a benchmarking program that accesses context

sensitive pages in a variety of data and execution patterns. Our re-
sults indicate that our modifications incur only a slight performance
penalty over programs running on unmodified guest operating sys-
tems in the normal case. In particular, we see that the technique
scales well in the number of context sensitive pages within a pro-
gram, even in pathological cases such as interleaved data and exe-
cution accesses.

Further applications of context sensitive page mappings include
protection of sensitive OS and user-level processes. In general,
manipulation of memory mappings without assistance from the
guest operating system can be useful whenever privileged processes
(or the guest OS itself) play a potentially adversarial role.

Acknowledgments
This work is supported in part by Department of Energy Grants DE-
FG02-93ER25176 and DE-FG02-01ER25510, and National Sci-
ence Foundataion grant 0627501 The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.

References
[1] ASPACK SOFTWARE. ASProtect Website.

http://www.aspack.com/asprotect.html.

[2] BARHAM , P., DRAGOVIC, B., FRASER, K., HAND , S., HARRIS,
T., HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A.
Xen and the art of virtualization. InSOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles(New
York, NY, USA, 2003), ACM Press, pp. 164–177.

[3] BUCK, B., AND HOLLINGSWORTH, J. K. An api for runtime code
patching.Int. J. High Perform. Comput. Appl. 14, 4 (2000), 317–329.

[4] BUTLER, J., UNDERCOFFER, J., AND PINKSTON, J. Hidden
processes: the implication for intrusion detection. InInformation
Assurance Workshop, 2003. IEEE Systems, Man and Cybernetics
Society(2003), pp. 116–121.

[5] GARFINKEL , T., AND ROSENBLUM, M. A virtual machine
introspection based architecture for intrusion detection. InProc.
Network and Distributed Systems Security Symposium(February
2003).

[6] GIFFIN, J. T., CHRISTODORESCU, M., AND KRUGER, L. Strength-
ening software self-checksumming via self-modifying code. InAC-
SAC ’05: Proceedings of the 21st Annual Computer Security Appli-

cations Conference(Washington, DC, USA, 2005), IEEE Computer
Society, pp. 23–32.

[7] HOLLINGSWORTH, J. K., NIAM , O., MILLER , B. P., XU, Z.,
GONCALVES, M. J. R., AND ZHENG, L. MDL: A language
and compiler for dynamic program instrumentation. InPACT
’97: Proceedings of the 1997 International Conference on Parallel
Architectures and Compilation Techniques(Washington, DC, USA,
1997), IEEE Computer Society, p. 201.

[8] JONES, S. T. Implicit Operating System Awareness in a Virtual
Machine Monitor. PhD thesis, University of Wisconsin–Madison,
2007.

[9] KRUEGEL, C., ROBERTSON, W., AND V IGNA , G. Detecting kernel-
level rootkits through binary analysis.ACSAC ’04: Proceedings of
the 20th Annual Computer Security Applications Conference(2004),
91–100.

[10] MORGENSTERN, M., AND BROSCH, T. Runtime Packers: The
Hidden Problem? InBlack Hat USA(Las Vegas, USA, 2007).

[11] PAX TEAM. PaX.http://pax.grsecurity.net.

[12] SPARKS, S.,AND BUTLER, J. “Shadow Walker”: Raising the bar for
rootkit detection. InBlack Hat Japan(Tokyo, Japan, 2005).

[13] VAN DE VEN, A. New security enhancements in red hat enterprise
linux v.3, update 3. Tech. rep., Red Hat, Inc., 2004.

[14] VAN OORSCHOT, P. C., SOMAYAJI , A., AND WURSTER, G.
Hardware-assisted circumvention of self-hashing software tamper
resistance.IEEE Trans. Dependable Secur. Comput. 2, 2 (2005),
82–92.

[15] VON NEUMANN , J. First draft of a report on the EDVAC.IEEE Ann.
Hist. Comput. 15, 4 (1993), 27–75.

[16] WURSTER, G., VAN OORSCHOT, P.,AND SOMAYAJI , A. A generic
attack on checksumming-based software tamper resistance. InIEEE
Symposium on Security and Privacy(2005), IEEE Computer Society,
pp. 127–138.

	1 Introduction
	2 Related Work
	3 System Overview
	3.1 MMU Update Interposition
	3.2 Virtual Memory Subsystem
	3.3 Storage Alternatives
	3.4 Target Process Identification

	4 Implementation Details
	4.1 Installation of Mappings
	4.2 OS MMU Interposition
	4.3 VMM Interface Extensions

	5 Case Study: Self-Checksumming Code
	5.1 Dyninst Background
	5.2 Instrumentation Program
	5.3 Tamper-resistent Target

	6 Performance Impact
	7 Other Applications of Context Sensitivity
	7.1 OS Tamper Resistance
	7.2 Shielded Processes

	8 Conclusions

