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ABSTRACT
Botnets are the most common vehicle of cyber-criminal activity.
They are used for spamming, phishing, denial of service attacks,
brute-force cracking, stealing private information, and cyber war-
fare. Botnets carry out network scans for several reasons, includ-
ing searching for vulnerable machines to infect and recruit into
the botnet, probing networks for enumeration or penetration, etc.
We present the measurement and analysis of a horizontal scan of
the entire IPv4 address space conducted by the Sality botnet in
February of last year. This 12-day scan originated from approxi-
mately 3 million distinct IP addresses, and used a heavily coordi-
nated and unusually covert scanning strategy to try to discover and
compromise VoIP-related (SIP server) infrastructure. We observed
this event through the UCSD Network Telescope, a /8 darknet con-
tinuously receiving large amounts of unsolicited traffic, and we cor-
relate this traffic data with other public sources of data to validate
our inferences. Sality is one of the largest botnets ever identified by
researchers, its behavior represents ominous advances in the evo-
lution of modern malware: the use of more sophisticated stealth
scanning strategies by millions of coordinated bots, targeting crit-
ical voice communications infrastructure. This work offers a de-
tailed dissection of the botnet’s scanning behavior, including gen-
eral methods to correlate, visualize, and extrapolate botnet behavior
across the global Internet.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring;
C.2.5 [Local and Wide-Area Networks]: Internet;

General Terms
Measurement, Security

Keywords
Darknet, Network Telescope, Internet Background Radiation, Bot-
net, SIP, Scan, Probing, Stealth, Covert, Coordination, Sality, Bot,
VoIP
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1. INTRODUCTION
Botnets are collections of Internet hosts (“bots”) that through

malware infection have fallen under the control of a single entity
(“botmaster”). Botnets of up to few million hosts have been ob-
served [4, 23, 54]. Innocent users carry on with their legitimate
activities, unaware that their infected PCs are executing various
types of malicious activity in the background, including spamming,
phishing, denial-of-service (DOS) attacks, brute-force password crack-
ing, stealing of credentials, espionage and cyber warfare. The news
media and scientific literature have documented many criminal ac-
tivities carried out by botnets over the last few years [15,20,35,59],
including on mobile phones [42].

Botnets perform network scanning for different reasons: propa-
gation, enumeration, penetration. One common type of scanning,
called “horizontal scanning”, systematically probes the same pro-
tocol port across a given range of IP addresses, sometimes select-
ing random IP addresses as targets. To infect new hosts in order
to recruit them as bots, some botnets, e.g., Conficker [27, 46], per-
form a horizontal scan continuously using self-propagating worm
code that exploits a known system vulnerability. In this work we
focus on a different type of botnet scan – one performed under the
explicit command and control of the botmaster, occurring over a
well-delimited interval.

Several botnets have been analyzed in the literature, including
characterizing botnet scanning techniques either based on packet
captures from darknets and honeynets [38, 39], or by examining
botnet source code [11]. Documented scans by botnets have been
of relatively small size (e.g. around 3000 bots) [39] and lightly
coordinated, e.g., many bots randomly (typically uniformly ran-
domly [39]) probing the same target address range.

In February 2011, the UCSD /8 Network Telescope instrumenta-
tion [7] captured traffic reflecting a previously undocumented large-
scale stealth scanning behavior (across the entire IPv4 space, we
believe) from a botnet using about 3 million unique source IP ad-
dresses. We identified the malware responsible for this massive and
sophisticated scanning activity as a binary module of the Sality
botnet [23] known to target SIP (Session Initiation Protocol [49])
servers [22]. We hence refer to this interesting scanning event as
“sipscan” throughout the rest of this paper.

Our contributions in this study include techniques to character-
ize a large-scale intentionally surreptitious scan of the entire IPv4
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space (that is, a “/0” scan), including use of additional data to con-
firm that the scan was not using spoofed source IP addresses, but
rather was being sourced by a large botnet. We correlated darknet
traffic over this period with two other publicly available sources
of Internet traffic data that strongly suggest the scan was not just
of this /8 but over the entire IPv4 Internet address space. Finally,
we created animations and visualization to help us understand the
strictly ordered progression of the entire /0 scan, and correlate its
address space and geographic coverage with its traffic volume. These
tools also enabled us to delineate different phases of its scanning
activity and its adaptation to changing network conditions. These
methods and tools have already yielded substantial insight into the
first observed /0 scan by a botnet, but we anticipate a wide range
of applicability to other analyses of unidirectional or even bidirec-
tional traffic.

Section 2 summarizes related work. Sections 3 describes the anatomy
of the scan, including high-level characteristics and validation that
it was indeed carried out by a botnet targeting the entire IPv4 space.
Section 4 analyzes more detailed properties of the scan, including
the impressively covert scanning strategy, bot turnover rate, cover-
age and overlap in target addresses, and highly orchestrated adap-
tivity and coordination of the bots. Section 6 summarizes our find-
ings and contributions.

2. BACKGROUND AND RELATED WORK
Botnets have been an active area of research for almost a decade,

starting with early generation botnets that used IRC channels to
implement centralized Command & Control (C&C) infrastructures
[9, 17]. In 2007 the Storm botnet signaled a new generation of
botnet capabilities, including the use of peer-to-peer protocols to
support distributed C&C channels [33, 51, 58]. These botnets are
harder to detect and dismantle because there is no single point of
failure, and they often use sophisticated techniques such as en-
crypted communication [58] and Fast flux DNS resolution [14].
Researchers have also studied methods for automated discovery
of botnets [31, 40, 56], formal models of botnet communication
[16, 18], and their use for orchestrated spam campaigns [36, 45].

Botnets commonly scan large segments of Internet address space,
either seeking hosts to infect or compromise, or for the purpose
of network mapping and service discovery. Analyzing and detect-
ing these events can improve our understanding of evolving botnet
characteristics and spreading techniques, our ability to distinguish
them from benign traffic sources, and our ability to mitigate attacks.
But analysis of network probing activities of botnets has received
little attention in the literature.

In 2005, Yegneswaran, Barford, and Paxson analyzed six months
of network traffic captured by honeynets [62]. Based on statisti-
cal properties of traffic, they characterized and classified 22 large-
scale events into three categories: worm outbreaks, misconfigura-
tions, and botnet probings. These first-generation botnets were less
evolved in several ways than those we see today: in size (a maxi-
mum of 26,000 bots), scope (largest target scope was a /8 network),
and communication capabilities (centralized IRC-based command
and control). Li, Goyal, and Chen [38] analyzed traffic data they
collected from 10 contiguous /24 networks operating as honeynets
throughout 2006. Through analysis of the probing traffic they were
able to infer properties of the botnet, e.g., geographical location of,
and operating system running on infected machines. We use a sim-
ilar approach to infer characteristics of the botnet scan we study in
this paper. These three authors collaborated with Paxson on a more
comprehensive analysis of data from both 2006 and 2007, which
was corroborated both by data from the DShield project [34] and
by the inspection of botnet source code [39]. Analyzing the traf-

fic from 10 contiguous /24 darknets/honeynets they identified 203
botnet scans with different characteristics, all scanning at most a /8
network, and all with inferred bot populations significantly smaller
(200-3700) than the February 2011 scan captured at our darknet (3
million IP addresses), They found that these first-generation bot-
nets employed simple scanning strategies, either sequential or uni-
form random scanning, and elementary orchestration capabilities:
many bots scanning the same address range independently, with
high redundancy and large overlap in target addresses. Other stud-
ies have found similar results via examination of botnet source code
to understand the scanning strategies [10, 11]. Barford and Yeg-
neswaran [11] inspected four widely-used IRC botnet code bases,
finding only primitive scanning capabilities with “no means for ef-
ficient distribution of a target address space among a collection of
bots”. However these studies did not analyze any new-generation
botnets.

The scan that we observe and analyze in this study differs from
previous work in several ways: (i) it is recent (2011) and related
to a new-generation, widely-deployed, peer-to-peer botnet (Sality
[23]); (ii) it is observed from a larger darknet (a /8 network); (iii)
the population of bots participating in the scan is several orders of
magnitude larger; (iv) the target scope is the entire IPv4 address
space; (v) it adopts a well-orchestrated stealth scan strategy with
little redundancy and overlap.

This last point is the most surprising finding in terms of novelty
and impact. The remarkably stealth scanning employed by new-
generation botnets gives us reason to suspect that many large-scale
scans may have occurred in recent years but gone unnoticed by
any modern instrumentation for studying it. Despite the lack of any
literature documenting the observation of highly coordinated large-
scale network scans from botnets, the concept has been discussed,
both in a worst-case theoretical analysis of attack potential [57],
and for the more benign application of Internet-wide service dis-
covery [37]. For service discovery, these authors considered a scan
strategy based on reverse-byte sequential increments of target IP
addresses, which they named “Reverse IP Sequential (RIS)”. Al-
though they dismissed this option for being difficult to extrapolate
metrics from partial scans, we discovered that this was exactly the
technique used by the Internet-wide scan (“sipscan”) we study in
this paper (Section 4.1). Heidemann’s et al. reachability census was
Internet-wide but ran independently from two hosts, not coordi-
nated in the way botnets are [32].

Another relatively novel aspect of the scan we analyze is that it
targets SIP infrastructure, which is not typically in published lists of
services probed by botnets [39]. Only in the past 2 years have SIP
servers been reported as the object of large-scale attacks [47,52,64].
As more of the world’s voice communications move to an IP sub-
strate, fraudulent activity targeting SIP-based VoIP services offers
an attractive source of revenue to cybercrime [24]. In April 2010,
Sheldon reported a series of brute-force password-guessing attacks
on SIP servers worldwide, sourced from the Amazon EC2 cloud
[52, 64]. Later in 2010, several sources reported on a new malware
named “sundayaddr”, which behaved like a few-hundred node bot-
net comprised of unix-like machines (e.g., Linux, FreeBSD) trying
to brute-force accounts on SIP servers [30, 47]. The layout of the
SIP headers in the attacking packets was almost identical to that
of SIPVicious, a tool suite written in Python designed to perform
security auditing of SIP services [26]. It seems therefore likely that
the attack code was a slightly modified version of SIPVicious [47].

In November 2010, the author of SIPVicious reported another
large-scale attack against several SIP servers worldwide, using a
more significantly different SIP header than used by SIPVicious
[25, 53]. Both of these events were reported by several parties and



were largely discussed on public SIP operational mailing lists [6,8].
In contrast, to the best of our knowledge the scan that we docu-
ment in this study was not publicly reported with respect to either
observed network traffic or server activity (e.g. logs). Symantec
identified and analyzed the binary responsible for what we call the
“sipscan”, which they discovered while monitoring Sality, a large
peer-to-peer based botnet [22, 23]. A host infected by Sality down-
loads the scanning binary via a component of the main bot exe-
cutable, which is responsible for downloading and executing ad-
ditional malware whose URLs are communicated by other botnet
peers [23]. During our analysis we had access to the same binary
code and verified that it matches the SIP headers we observed in
the sipscan. Symantec did not publish any information about the
stealth scanning strategy or in particular on the reverse byte or-
der adopted by the sipscan (Section 4.1). Our study, based instead
on network traffic measurement and analysis, is complementary to
what has been found by reverse-engineering the code running on
the bots, showing novel insights into the botnet population and the
orchestration and coordination of the scan. Since Sality is one of
the largest known botnets but relatively undocumented in research
literature, another contribution of our study is to shed light on the
scanning behavior of this new-generation botnet.

3. ANALYSIS PART I: ANATOMY OF THE
SIPSCAN

3.1 Overview
The sipscan probes each target IP address with two packets: (i) a

UDP packet to port 5060 carrying a SIP header and (ii) a TCP SYN
packet attempting to open a connection on port 80. We observe the
sipscan at a darknet – i.e., there are no devices on it responding to
incoming traffic – so we do not observe any further packets for the
same flows except for TCP SYN retransmits.

Figure 1 depicts the SIP header of the packets sent by the sip-
scan. This SIP header is a request to register a random user account
on a SIP server, but random account registrations are usually not
accepted by SIP servers. Thus, if the targeted host is a SIP server,
the registration will likely fail but will result in a “404 Not Found”
response code, which is enough to reveal to the bot that the target
is indeed a SIP server. We presume that the goal is to identify SIP
servers for later use, e.g., to perform brute-force attempts to register
user accounts.

The sipscan SIP header is similar to the header built by the SIPVi-
cious security auditing tool suite to generate probe packets [26]. In
November 2010, the author of this tool reported a large distributed
attack against SIP servers with headers similar to those his tool
used; this attack was observed by several parties and was likely
carried out by a botnet [25, 53]. In the case of both the Novem-
ber 2010 scan and the February 2011 scan we observed, the botnet
developers probably used the Python code of SIPVicious as a ref-
erence to write their attack code. The most notable difference be-
tween such attacks and SIPVicious headers is in the “User-Agent”
header, where the attack code replaced the string “friendly-scanner”
with the less suspicious “Asterisk PBX”1.

The observed sipscan header has two distinctive characteristics
compared to the attack of November 2010 (and in general com-
pared to the miscellaneous SIP malware packets observed at the
UCSD telescope): the user name, which is always composed of ten
digits, and the “To:”/“From:” fields, which contains a SIP URI in-
stead of simply the number [49]. Based on the properties of its SIP
1Asterisk is a widely deployed open-source PBX software support-
ing both PSTN and VoIP.

header, we defined a payload signature to identify all the sipscan
packets seen by the UCSD Network Telescope. Each source host
sends the TCP packet together with the UDP packets, allowing us
to easily infer which TCP SYN packets on port 80, among all those
received by the telescope, were associated with the sipscan).
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Figure 2: Overview of the scan. The continuous line shows the packets per
second, in 5 minute bins, of UDP probing packets from the sipscan ob-
served by the UCSD Network Telescope. The dashed line represents the
corresponding number of distinct source IP addresses per bin.

Figure 2 shows the packet rate of the sipscan UDP packets (left
axis) and the number of unique IPs per hour (right axis) sending
such packets to addresses in the UCSD Network Telescope. The
scan goes through different phases over approximately 12 days:
it starts with a packet received on Monday 31 January 2011 at
21:07 UTC, and ends with a sharp drop of packets on Saturday 12
February around 15:00 UTC. Approximately 100 residual packets
were observed in the following two days. During the scan, peaks
of 21,000 hosts with distinct IPs probed the telescope’s /8 address
space in a single 5-minute interval.

# of probes (1 probe = 1 UDP + multiple TCP pkts) 20,255,721
#of source IP addresses 2,954,108
# of destination IP addresses 14,534,793
% of telescope IP space covered 86,6%
# of unique couples (source IP - destination IP) 20,241,109
max probes per second 78.3
max # of distinct source IPs in 1 hour 160,264
max # of distinct source IPs in 5 minutes 21,829
average # of probes received by a /24 309
max # of probes received by a /24 442
average # of sources targeting a destination 1.39
max # of sources targeting a destination 14
average # of destinations a source targets 6.85
max # of destination a source targets 17613

Table 1: Summary of the scanning event characteristics. The scan origi-
nated from almost 3 million distinct IP addresses and hit about 14.5 million
addresses of the address space observed by the UCSD Network Telescope.

Table 1 lists the main characteristics of the scan. The portion
of the scan observed by the UCSD Network Telescope involved
around 3 million distinct source addresses, generating 20 million
probes – we define a probe as a UDP scanning packet with the pay-
load signature from Figure 1, plus TCP SYN packets to the same
destination. These probes covered more than 14.5 million target IP
addresses, that is, 86.6% of the darknet address space.

3.2 Verification of unspoofed source addresses
Because darknet addresses do not respond to received packets,

we cannot generally assume that packets are not using spoofed



1 2011−02−02 1 2 : 1 5 : 1 8 . 9 1 3 1 8 4 IP ( t o s 0x0 , t t l 36 , i d 20335 , o f f s e t 0 , f l a g s [ none ] , p r o t o UDP ( 1 7 ) , l e n g t h
412) XX. 1 0 . 1 0 0 . 9 0 . 1 8 7 8 > XX. 1 6 4 . 3 0 . 5 6 . 5 0 6 0 : [ udp sum ok ] SIP , l e n g t h : 384

2 REGISTER s i p :3982516068@XX. 1 6 4 . 3 0 . 5 6 SIP / 2 . 0
3 Via : SIP / 2 . 0 / UDP XX. 1 6 4 . 3 0 . 5 6 : 5 0 6 0 ; b r an c h =1F8b5C6T44G2CJt ; r p o r t
4 Conten t−Length : 0
5 From : < s i p :3982516068@XX. 1 6 4 . 3 0 . 5 6 > ; t a g =1471813818402863423218342668
6 Accept : a p p l i c a t i o n / sdp
7 User−Agent : A s t e r i s k PBX
8 To : < s i p :3982516068@XX. 1 6 4 . 3 0 . 5 6 >
9 C o n t a c t : s i p :3982516068@XX. 1 6 4 . 3 0 . 5 6

10 CSeq : 1 REGISTER
11 Cal l−ID : 4731021211
12 Max−Forwards : 70

Figure 1: Example of the payload of a UDP packet generated by the sipscan (line 1 is tcpdump output [5] with timestamp and information from IP and UDP
headers). The payload contains a SIP request to register a user on the contacted host. A variant of the signature (which we also matched) has the string ":5060"
appended to the "Contact: " header field (line 9). In the figure we replaced the value of the most significant byte of the destination address with "XX".

(fake) source IP addresses. Effective scanning requires the use of
real source addresses to receive responses, so there is reason to as-
sume that these IP addresses are not spoofed. Conversely, evidence
that the addresses are not spoofed would increase our confidence
in the hypothesis that this behavior is in fact a large-scale scan. We
found the following evidence that the observed packets were not
actually spoofed.

• In [19] we studied the country-wide outage that occurred in
Egypt between the 27th of January and the 2nd of February
2011. During the last two days of the outage - which overlap
with the period of activity of the sipscan - most of the coun-
try was completely isolated from the rest of the Internet. We
verified that no sipscan packets with source IP addresses that
geolocated to Egypt were observed by the telescope during
the outage. Figure 3 shows the re-announcement of all the
BGP prefixes geolocated to Egypt that were withdrawn dur-
ing the outage (continuous line, left y axis), and the packet
rate of UDP packets from the sipscan geolocated to the same
country (dashed line, second y axis). The graph shows Egyp-
tian hosts contributing to the scanning activity only after the
country is reconnected to the Internet. We used the same
methodology described in [19] to analyze BGP data from the
RIPE RIS [3] and Routeviews [60] repositories, and geolo-
cation data from MaxMind [41] and Afrinic [1].

• Random IP spoofing would use also source IPs from our /8
darknet set of addresses, which we never see in this set of
packets. We also mapped the source addresses of the scan to
originating ASes (autonomous systems, or independent net-
works in the global routing system) using BGP data, and ver-
ified that they matched only assigned ranges of IP addresses.

• In Section 3.4 we analyze source port numbers in transport-
layer headers from selected scanning bots. The consistency
of these parameters over time suggests that the source ad-
dresses are not spoofed: IP spoofing requires the use of raw
sockets and usually involves random selection of spoofed ad-
dresses, whereas the progression of source ports followed by
these bots is typical of packets sent through standard sockets
that use ephemeral ports assigned by the operating system
based on a single, global counter.

3.3 Botnet activity
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Figure 3: The case of the Internet black-out in Egypt helps to verify that
source addresses from the sipscan are not spoofed. The continuous line
shows the reannouncement of routes to Egyptian IPv4 prefixes when the
country reappears on the Internet on 2 February 2011. The sipscan starts
approximately on the 1 February, but we start seeing probes from source
IPs geolocated to Egypt only when the Egyptian networks get reannounced
through BGP updates.

This convincing evidence that the source IP addresses are au-
thentic supports our hypothesis that a botnet is generating the pack-
ets, rather than one or a few hosts, or a worm spreading. Over
the course of twelve days, we observed about 3 million source ad-
dresses, which mapped to countries and networks all over the world
(Section 4.4). Figure 2 displays a clearly delimited beginning and
end of the behavior, with strong diurnal periodicity and variations
of intensity. Spreading worms tend to exhibit closer to exponential
growth in IP addresses infected and trying to spread further [65].

We discovered an even more compelling piece of evidence that
this traffic was generated by a botnet when we examined traffic
data during last year’s nation-wide censorship episode in Egypt. In
[19] we showed that, during the Egyptian outage, some Conficker-
infected hosts were still able to randomly send infecting packets
to the Internet, even if they were in networks not visible via BGP.
Outbound connectivity (from Egyptian hosts “upstream” to the rest
of the Internet) was still possible from some networks in Egypt
through the use of default routes. But while we saw Conficker traf-
fic originating from IPs geolocated in Egypt, we saw no sipscan
traffic from Egypt, consistent with the sipscan hosts not acting in-
dependently, but rather receiving instructions from a command &



control ‘botmaster’ host (i.e., requiring bidirectional connectivity)
outside of Egypt.

Figure 4: Snapshot of our “World Map” animation of the sipscan available
at [13] (Wed Feb 2 09:34:00 2011). The animation shows, in 5:20-minutes
of data represented per frame, circles at the geographical coordinates of
source hosts (bots) with size proportional to the number of hosts geolocated
to those coordinates, and color to the number of packets sent. The animation
depicts the spatial and temporal dynamics of the scan.

To simultaneously represent both the temporal and spatial dy-
namics of the event, we created a “World Map” animation avail-
able at [13]. Figure 4 is a single frame of the animation (capturing a
window of 5 minutes and 20 seconds of data) from Wed 2 Feburary
09:34:00 2011. The circles are centered at the geographical coordi-
nates of source IP addresses. For each time bin, the size of the circle
is proportional to the number of hosts geolocated to those coordi-
nates, whereas the color reflects the number of packets sent (these
two values are not proportional because, as we show in Section 4,
there are both hosts sending a single probe and hosts sending mul-
tiple probes at different rates). The animation illustrates the traffic
volume and geographic scope of the scan over time. Geolocation
of IP addresses was done using the MaxMind GeoLite database re-
leased on March 1st, 2011, temporally proximate to the event [41].
The software used to create the animation is an improved version
of the code originally developed at CAIDA by Huffaker et al. and
available at [2]. The animation visually represents, for the first time,
an Internet-wide scan conducted by a large botnet.

3.4 A “/0” scan
Observation from the UCSD Network Telescope is limited to

packets destined to the corresponding /8 network. However, we also
discovered evidence that the scan targeted the entire IPv4 address
space (a /0 scan): similar traffic patterns observable on other net-
work segments, and a continuity in source port usage in the packets
we observed.

3.4.1 Targeting the UCSD Network Telescope
Even if approximately 15% of addresses of our darknet were not

hit by the scan, the sipscan uniformly targeted the entire address
range of the /8 network. In Section 4.3 we show that the missing
(15%) targets may be due to a specific configuration parameter that
would trade completeness of IPv4 address space coverage for re-
dundancy in the utilization of the bots.

3.4.2 DShield repository
We have found circumstantial evidence of sipscan traffic in the

DShield repository [34]. DShield is a constantly updated reposi-
tory of scanning and attack reports. In particular it reports aggre-
gated data of traffic observed on several “sensors” (i.e., small hon-
eynets and darknets) operated by different participating organiza-
tions. Figure 5 shows the number of distinct source IP addresses
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the small link monitored by the MAWI working group perfectly follow the
profile of the sipscan observed by the UCSD Network Telescope, strongly
suggesting that the sipscan targeted also other /8 networks.

per day observed by the DShield sensors on port 5060 from the 1
January to 28 February 2011. The large spikes in the traffic profile
of the source IP addresses match the sipscan profile shown in Fig-
ure 2, indicating that the same phenomenon was probably targeting
other networks besides the /8 monitored by the UCSD Network
Telescope.

3.4.3 MAWI WIDE Samplepoint-F
We also examined traffic traces from a 150Mbps link on a trans-

Pacific line that are made available by the MAWI WIDE project
[29] (link “samplepoint-F”). The trace set is made of daily traces
in pcap format, of 15 minutes each, where the IP addresses are
anonymized and the transport-layer payload is removed [28]. This
anonymization scheme prevented us for searching the trace specif-
ically for the sipscan packets, since we can see neither the UDP
payload signature nor the source IP addresses of the packets. In-
stead, from the analysis of the sipscan SIP headers (Figure 1), we
built a flow-level signature with the following conditions for each
UDP flow: (i) destination port 5060; (ii) made of a single packet;
(iii) flow-size (in this case matching the packet size) between 382
and 451 bytes. We obtained the packet size range by examining all
SIP header fields that were not fixed size, and how they varied (e.g.
IP addresses in ascii format take between 7 and 15 bytes). We fur-
ther sanitized the remaining flows considering some isolated cases
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of spikes in the MAWI traces which were using source ports outside
of the most common ranges observed on the telescope (see Figure
7). The final result, depicted in Figure 6, is that there are almost no
packets matching the flow-level signature in the days outside of the
sipscan, whereas their profile during that period roughly follows the
profile of the sipscan (The lack of tight precision between the two
data sets in Figure 6 is due to the MAWI samples being coarser-
grained, 15 minutes each once per day, and from a relatively small
link).

This finding is important because the anonymization technique
used for MAWI traces preserves matching prefixes and IP classes
between IP addresses [28]. The analysis of this data therefore re-
vealed that, on average, 8 different /8 classes were targeted every
day by the packets traveling on this link.

3.4.4 Exploiting source-port continuity
The positive correlations of our data source with the DShield

and MAWI data sources convinced us that the sipscan hit other /8
networks as well as our own. We also found the following evidence
that the sipscan most likely targeted all the /8 networks in the IPv4
address space.

We identified a few bots scanning at a roughly constant pace
over several days. Analyzing the sequence of source ports in their
scanning packets revealed that some of these bots used incremental
source ports within a specific range assigned by the operating sys-
tem. For example, Windows XP and other Microsoft operating sys-
tems assign a new ephemeral source port in the range 1025-5000
by incrementing a global counter for each opened TCP or UDP
socket [44]. We inferred how many other connections/sessions a
bot opened between each probe sent to the darknet by following
the sequence of source ports the bot used and “unwrapping” them,
taking into account their range. In [39], Li et al. used the same
methodology to estimate the global scope of botnet scans. We could
only apply this technique to the few persistent bots (see Section 4.2)
running on an operating system configured to assign source ports
in this manner.

Figure 8 depicts the behavior of three of these bots (the bot num-
ber indicates its rank based on the number of probes they sent).
The continuous lines represent the count of probes (a UDP packet
plus at least one TCP SYN packet) observed by the UCSD Net-
work Telescope (y axis), whereas the dashed lines represent the
number of connections/sessions opened by each bot as inferred by
unwrapping its source port numbers (second y axis). For each bot
the two curves follow approximately the same trend, suggesting
that the view from the telescope is representative of the global be-
havior of the bot. The UCSD Network Telescope covers 1/256th of
the entire IPv4 address space, so a uniformly random scanning bot
will probe this /8 darknet approximately every 256 probes, or ev-
ery 512 new connections opened (every probe includes a UDP and
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Figure 8: Estimating the global scan scope by exploiting source port con-
tinuity in scanning bots: continuous lines represent the count of probes (a
UDP packet plus at a least one TCP SYN packet) observed by the UCSD
Network Telescope (y axis), whereas the dashed lines represent the number
of connections/sessions opened by each bot as inferred by unwrapping its
source port numbers (second y axis). Each bot probes the darknet on av-
erage (approximately) every 285 global probes, suggesting that during its
absence reaches the remaining 255 /8 networks in the IPv4 address space.

TCP connection attempt). We find these subclass of bots actually
hitting our darknet every 570 packets (on average), which would
be consistent with their hosting computer opening other connec-
tions/sessions unrelated to the scan, such as legitimate user activity
or communication with the botmaster. In the next section we will
show how the bots select their target IP addresses by first incre-
menting the most significant byte. Therefore we can assume that
the external 255 probes from the bot reach all the other /8 networks
in the IPv4 address space. In Section 4 we will also explore another
feature of the data in Figure 8: the bots proceed at different rates
and are active over different time intervals. We will refer to this
finding later in the paper.

4. ANALYSIS PART II: PROPERTIES OF THE
SIPSCAN AND OF THE BOTNET

4.1 Reverse IP Sequential order
A first manual observation of the sipscan destination addresses

revealed that the bots were coordinated, presumably by a botmas-
ter, to choose targets in a pre-defined sequence while scanning the
entire IPv4 address space. Such coordination has not yet been doc-
umented in botnet-related research literature (see Section 2). Even
more interesting, the target IP addresses incremented in reverse-
byte order – likely to make the scan covert. Reverse-byte order
scanning was considered in the context of supporting network-friendly
Internet-wide service discovery [37], but was discarded for being
difficult to extrapolate metrics from partial scans. A pseudo-random
approach in selecting target addresses was also used as a technique
for non-aggressive Internet-wide measurement surveys [32]. But
to the best of our knowledge, this reverse-byte order scanning has
been neither empirically observed in malicious scans nor discov-
ered in botnet source code.

Manual examination of a sequence of 20 million addresses is
practically infeasible; even its visual representation is a challenge.
We used a visual map based on the space-filling Hilbert Curve
[43,50] to verify that the target IP addresses incremented in reverse-
byte order for the three bytes that we could observe (the most sig-



nificant byte is fixed in our data to the /8 of the darknet observation
point).
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Figure 9: Examples of Hilbert’s space-filling curves: orders 1, 2 and 3.

The Hilbert curve is a continuous fractal curve that can be used
to map one-dimensional data into two dimensions filling a square,
such as shown in Figure 9. Other researchers have effectively used
the Hilbert space layout to visualize results of Internet-wide scan-
ning or other Internet-wide data [21, 32]. The original order of
the data is preserved along the Hilbert curve in two dimensions,
and conveniently displays data that is structured in powers of two.
Hilbert curves of order 4, 8, and 12 have 28, 216, 224 points, re-
spectively, which in turn correspond to the masks for Class C (/24),
Class B (/16), and Class A (/8) address blocks in the IPv4 number-
ing space. When mapping IP addresses to these two-dimensional
Hilbert curves, adjacent address blocks appear as adjacent squares,
even CIDR blocks (in between Class A, B, and C block sizes) are
always represented as squares or rectangles.

We visualized the progression of the IP addresses targeted by
the sipscan through an animation. Each frame represents the IPv4
address space of our darknet using a Hilbert curve of order 12, in
which each cell corresponds to one IP address of the darknet, thus
varying the 3 least significant bytes through all the possible combi-
nations. The curve is displayed as a bitmap of size 4096x4096, with
each pixel being assigned an IP address. For each frame, the pixels
corresponding to the IP addresses that have been probed prior to
that point in time are highlighted. We also added a brightness de-
cay effect to better highlight the addresses probed in the last few
frames while displaying the animation.

Figure 10: Snapshot of our animation representing the progression over time
of the IP addresses targeted by the sipscan [13]. The darknet address space
is represented as a Hilbert curve of order 12 in which the order of the three
least significant bytes of each address is reversed before mapping it into
the curve. Highlighted pixels correspond to IP addresses that have been
probed up to that time (5 Feb 2011 11:47 GMT, in this frame). The anima-
tion proves the reverse-byte order progression is rigorously followed by the
bots during the entire 12 days, independent of the varying rate of the sip-
scan. [The above snapshot is a modified version of the original frame from
the reverse byte order animation at [13]; we over-emphasized the fading ef-
fect to better illustrate, in a single picture, the path the scan took through
the address space.]

Drawing the Hilbert curve using IP addresses sequenced in their
natural byte order does not reveal a particular pattern in the tar-
get progression, showing the square uniformly filling across the 12
days of the scan. This animation of target progression is available
at [13]. In contrast, reversing the order of the three varying (i.e.,
least significant) bytes yields a representation that clearly illustrates
the reverse sequential IP order rigorously followed by the sipscan:
throughout the 12 days all the bots “march” together toward filling
the entire address space. Figure 10 shows the frame for 5 Febru-
ary 2011 11:47 GMT from the full reverse-byte order animation
available at [13]. This animation proves the strong coordination of
bot activity: the progression is strictly observed by all the bots for
the entire execution of the scan, independent of (i) variations in
global scanning speed, (ii) the rates at which different bots pro-
ceed (see Section 3.4), (iii) the large number of hosts involved at
the same time and thus the possible distributed architecture of the
botnet (e.g., multiple C&C channels).

We also created a composite animation which combines both the
natural and reverse byte order heatmaps with the world map ani-
mation into a single synchronized view of both the sources and the
targets of the sipscan. This composite animation is available at [13].

The reverse IP sequential order used in this scan has signifi-
cant implications. Observing this scan from a generic /24 network,
would result in a very low number of packets per day: the aver-
age speed, during the largest phase of the scan – from the 2nd to
the 6th of February – increments the least significant byte 34 times
per day, unlikely to be detected by automated systems. This stealth
technique is even more effective when combined with the constant
turnover of bots that we illustrate in the next section.

4.2 Bot Turnover
The scanning statistics in Table 1, in particular the number of

unique source IPs (about 3 million), total number of probes (about
20 million), and the average number of destinations a source tar-
gets (6.85), suggest that there is a large turnover in the use of the
bots. Figure 11 shows the constant use of new bots throughout the
entire scan, except for the interval from approximately 7 Febru-
ary 00:00 GMT to 11 February 12:00 GMT, which exhibits sig-
nificantly reduced botnet activity. The continuous line with square
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Figure 11: Arrival of new bots. The continuous line with squares shows the
cumulative percentage of bots that probed our darknet throughout the 12-
day scan. The continuous line with circles is the cumulative percentage of
source /24 networks. The slope of these curves indicates a constant arrival
(during the botnet’s active periods) of new bots participating in the scan.
The dashed line represents the number of unique source IPs scanning per
5-minute interval, representing the evolution of the scan over time.

symbols shows the cumulative percentage of bots that probed our
darknet over the 12-day scan. Its linear slope indicates a constant
arrival of new bots participating in the scan. To partially take into
account the effect of dynamic IP address assignment, we also plot



the cumulative sum of unique /24 networks containing the source
IP addresses (continuous line with circles). The slope of this curve
proves that new bots take part in the scan for its entire duration.

Figure 12 shows the distribution of the number of packets sent by
each bot. The diagram on the left uses a log-log scale to show all the
data, whereas the diagram on the right uses a linear scale to zoom
in to the left side of the distribution up to 10 packets. More than
1 million bots (more than 1/3 of the total) sent a single probe and
never participated further in the scan. The number of bots that sent
more than 100 packets during the scan is two orders of magnitude
smaller. This difference suggests rapid turnover of bots during the
scan. We hypothesize that this behavior is related to how the C&C
channels managed and assigned tasks to bots. For example, a C&C
channel may assign a list of target IP ranges to a queue of bots, in
which case it is unlikely that a single bot could reach the head of
the queue twice. In such a situation, bots that reappear in the scan
would have likely been assigned to a C&C channel with a smaller
pool of bots.
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Figure 12: (left) Full histogram of packets sent per bot (log-log scale);
(right) zoomed histogram of packets sent per bot for bots that sent up to
10 packets (linear axis) Most bots sent few packets, e.g., over a third of the
bots sent a single packet during the entire scan.

In combination with the reverse-byte order property of the scan,
the high bot turnover rate makes the scan impressively covert. Not
only would an automated intrusion detection system on a /24 net-
work see only 34 packets to the same port, but they would most
likely arrive from 34 distinct IP addresses, making detection highly
unlikely.

4.3 Coordination and Adaptation

4.3.1 Coverage and Overlap
The scan fails to cover the entire darknet’s /8 address space,

probing only 86.6% of it (Table 1). On the other hand, there is
a non-negligible overlap in terms of bots hitting the same target:
about 5.7 million IP addresses were probed by more than one bot,
and on average a targeted IP is probed by 1.39 distinct bots. Whether
probed zero, one, or multiple times, the probed IP addresses are
scattered all over the address space without clusters or holes, in
both the standard and reverse representation of the address bytes.
These properties – coverage and overlap of target addresses – are
independent of the number of bots active at any given time, the
overall rate of the scan, or specific subnets being scanned. But we
did discover a correlation between coverage and overlap in targets,
which we believe is likely a function of a parameter of the scan
configured by the botmaster to support trading off completeness
and redundancy of scanning.

The representation with the Hilbert curve of the probed IP ad-
dresses in reverse byte order reveals three regions with different

(a) Coverage (b) Overlap
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Figure 13: Different phases (A, B, C) of the scan characterized by differ-
ent but correlated rates of coverage and overlap of the target IP space, (a)
Slice of the Hilbert-curve map (with reversed-byte order IP addresses) high-
lighting areas of different density indicating different coverage of the target
space. (b) shows the same phenomenon in terms of overlap: the lit pixels
in the map represent target addresses probed by more than one bot. The
three regions perfectly match between the two maps. (c) Scanning source
IPs throughout scan, showing the transitions from Phase A to B and from
Phase B to C.

Start time Jan 31 21:00 Feb 1 00:45 Feb 1 11:20
# of probes 179,143 486,394 19,590,184
% of IP space covered 93.81% 76.27% 86.98%
Average bots per target 1.66 1.01 1.40

Table 2: Characteristics of the three phases of the scan, with different cov-
erage and overlap of the target address space, show a trade-off between the
two properties.

densities. These regions are labeled A, B, C, in a detail of the
Hilbert-curve map in Figure 13(a) and correspond to three differ-
ent phases of the scan as indicated in Figure 13(c). Brighter areas
indicate a greater coverage of the corresponding address space: the
scan starts with a very high percentage of targets probed (“A”), af-
ter few hours a parameter is changed and the coverage significantly
drops (“B”), finally the parameter is adjusted again and an inter-
mediate level of target coverage remains for the rest of the scan
(“C”). The same regions are visible in Figure 13(b), where we use
the Hilbert-curve map to highlight the overlap in targets: IP ad-
dresses (in reverse-byte order) that were probed more than once are
depicted in white.

Table 2 shows statistics calculated separately for the three phases
of the scan. The correlation between coverage and overlap of the
scan is evident, and is consistent with a probabilistic mechanism in
the choice of the targets that can be configured by the botmaster
to trade off completeness and redundancy of scanning. The find-
ing illustrated in Figure 14 further substantiates the hypothesis that
the three phases correspond to different configurations of the scan.
The figure shows, for each phase, the distribution of the number of



packets sent in each “reverse /16 subnet” (we define a reverse /16
subnet as the set of all possible IP addresses obtainable when the
least two significant bytes are fixed). The three curves refer to pop-
ulations of different size, which explains the different smoothness
of their shapes (e.g., phase C is considerably longer thus covering
a larger number of reverse /16 subnets). However, all of them are
highly centered around a different value (average values are 395.6
(A), 196.3 (B), 312.6 (C)) and mostly non-overlapping, reflecting a
consistent and distinctive behavior in each phase.
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Finally, in both Figures 13(a) and 13(b), we also observe bet-
ter coverage and larger overlap in the transition from one region
to the other, suggesting that the botmaster re-issued a command to
scan those IP ranges to the bots after changing the configuration
parameter (possibly because the scan was stopped without collect-
ing the results of the previous command). The higher coverage in
these transition areas provides further evidence of a probabilistic
approach in the choice of the target IPs (probably happening at the
level of the single bots): re-issuing the commands for that range of
target IPs results in a partially different set of probed targets.

Even given non-negligible redundancy, an average of 1.39 bots
hitting the same target is small compared to the large number of
bots involved. Such low redundancy is novel, or at least undocu-
mented in the literature, which has mostly reported on bots that
independently scan the same address range in a random uniform
fashion [12,39]. The small overlap and thus high efficiency in terms
of completeness vs. redundancy achieved by this botnet is an im-
pressive consequence of strongly orchestrated behavior.

4.3.2 Adaptivity
The strong coordination of bot activity is also visible in terms

of adaptation capabilities. Starting around 7 February 00:00 GMT
through around 11 February 12:00 GMT, the scan proceeds very
slowly, with only a few active bots (Figure 2). A possible hypoth-
esis is that most of the C&C channels are down during this pe-
riod. However, we observe that the target IP ranges that would have
normally been assigned to these C&C channels were automatically
redirected to those channels that were still up.

Figure 15 illustrates this behavior. Dashed lines in the graph rep-
resent the probing rate per hour of the three bots discussed in Sec-
tion 3.4. During this period the bots do not change their speed, sug-
gesting that the C&C channel they refer to has not changed its char-
acteristics in terms of numbers of bots managed, etc. (i.e., the num-
ber of bots competing for a certain C&C channel does not change,
therefore the rate at which each bot gets assigned a new “reverse”
/24 stays the same). However, over this same time interval we ob-
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Figure 15: Adaptive assignment of target IP ranges to different C&C chan-
nels. Dashed lines represent probes per hour (PPH) carried out by 3 different
bots. Their speed did not change significantly on 7 February but the global
speed of the scan decreased considerably, probably because some C&C
channels went off-line. However, the target IP ranges assigned to these bots
became denser during this period, to compensate for the absence of other
C&C channels: continuous lines represent the distance between subsequent
target IPs of each respective bot, showing an order of magnitude decrease
in that time interval.

serve a significant change in the sequences of IP ranges assigned
to these bots. The continuous lines in Figure 15 show, for each of
the three bots, the distance between subsequent target IPs, calcu-
lated by subtracting the target IPs after reversing their byte order
and converting them into 32-bit numbers. The graph shows a drop
of about one order of magnitude in the distance, meaning that the
corresponding C&C channel(s) receive a “denser” list of targets to
compensate for the disappearance of the other C&C channels.

4.4 Botnet characteristics
Observing a horizontal scan of this magnitude from such a large

darknet allows unique insight into the characteristics of the botnet
that performed it. The size of the darknet, combined with the re-
verse IP sequential ordering of the targets, allowed the telescope
to capture probes across the entire life of the scan, providing an
unprecedented view of the population of the Sality botnet.

A white paper from Symantec [23] estimated the size of the Sal-
ity botnet at approximately a million bots, by measuring the num-
ber of hosts that a ‘rogue’ server under their control communicated
with. We identified a total of 2,954,108 unique source IPs for bots
that participated in the sipscan. As the authors of [59] demonstrate,
it is difficult to accurately determine the size of the botnet popula-
tion when using source IP addresses collected from traffic sent by
infected hosts. This difficulty arises due to the effects of dynamic
IP address assignment (DHCP), which can result in several IP ad-
dresses being used by a single bot (especially over a 12-day inter-
val), and NAT, which can cause multiple bots to appear as a single
IP. However, Figure 11 shows continuous growth in the number of
unique /24 networks hosting bots over the entire duration of the
scan. This diversity of /24 networks can be used as an approxima-
tion for the number of new bots that arrive over the course of the
scan.

We leverage the large population of source addresses observed
to further understand how hosts compromised by botnets are dis-
tributed globally. To this end, we determine the Autonomous Sys-
tem Number (ASN) for each bot using a Routeviews BGP routing
snapshot [60] taken on Monday 14 February 2011 at 12:00 UTC,
proximate to the scanning episode. Using this table, we perform
longest-prefix matching to resolve each source IP to its origin AS.



Rank % ASN AS Name Country
1 10.81 9121 TTNet Turkey
2 4.57 8452 TE Egypt
3 4.40 9829 BSNL-NIB India
4 4.22 17974 TELKOMNET Indonesia
5 4.20 45899 VNPT Vietnam
6 3.01 7738 TELEMAR Brazil
7 2.65 8708 RDSNET Romania
8 2.51 24560 AIRTELBROADBAND India
9 2.07 9050 RTD Romania

10 1.94 9737 TOTNET Thailand

Table 3: Top 10 origin ASes of bots used in the sipscan. As noted in other
work [55], we see a dominant AS at the top of the list (Turkey, with 10%
of the overall bot population), followed by a long tail. The country and AS
name data have been extracted from whois data for each AS.

Conficker [55] Mega-D [55] Sipscan
Rank ASN Country ASN Country ASN Country

1 4134 China 3352 Spain 9121 Turkey
2 4837 China 3269 Italy 8452 Egypt
3 7738 Brazil 6739 Spain 9829 India
4 3462 Taiwan 9121 Turkey 17974 Indonesia
5 45899 Vietnam 6147 Peru 45899 Vietnam
6 27699 Brazil 19262 USA 7738 Brazil
7 9829 India 4134 China 8708 Romania
8 8167 Brazil 7738 Brazil 24560 India
9 3269 Italy 7418 Chile 9050 Romania

10 9121 Turkey 22927 Argentina 9737 Thailand

Table 4: Comparison of the top 10 ASes observed in three different botnets:
the Conficker botnet as surveyed by [55], the Mega-D botnet as reported
by [4, 55], and the Sality (sipscan) botnet. We observe a trend toward East-
ern European countries which have not featured as prominently in previous
botnets.

The ASes enumerated in Table 3 are the 10 most common across
the bots used by the sipscan botmaster. We also list the AS name
and home country extracted from whois data. Similar to the Con-
ficker [55] and Mega-D [4] botnets, we see a dominant AS at the
top of the list (TTNet), which alone accounts for over 10% all par-
ticipating bots, followed by a long tail of small ASes. However,
although the scale of the leading ASes may resemble other botnets,
the networks featured in the top 10 are quite different (Table 4).
Only four of the ASes in the top 10 of the sipscan appear in the
top 10 of either Conficker [55] or Mega-D [55]. Notably, TTNet in
Turkey, which [55] lists in 10th place, represents the largest AS by
more than a factor of two in the sipscan botnet.

Both the Conficker and Mega-D AS distributions indicate a move
toward larger representation of bots in Asian and South Ameri-
can countries, corroborating the results of [55]. However, we see
a considerable rise in bots in Eastern European countries, which
becomes even more apparent on a per-country level (Table 5).

Simply aggregating bots by their ASN can be misleading be-
cause many large organizations/providers have multiple ASNs. To
complement our AS findings, we geolocate the bot’s IP address us-
ing a MaxMind GeoLite database [41] snapshot from March 1 2011
(again, proximate to the scan episode). Table 5 presents the top 10
countries for bots in both the sipscan and the Mega-D botnets [4].
Once we aggregate bots to a country granularity, the distribution of
locations changes appreciably, with the Russian Federation making
an appearance in the top 10 lists of both Mega-D and sipscan2.

Contrary to similarly large botnets [4,48,55,61], the sipscan bots
do not have a dominant presence in China. China has been recorded
in the top ten lists of these other botnets, but in the sipscan, China is

2 [55] only provides Conficker results at an AS level.

Mega-D [4] Sipscan
Rank % Country % Country

1 14.82 USA 12.55 Turkey
2 11.74 Russian Federation 12.54 India
3 6.33 Turkey 8.64 Brazil
4 6.32 Poland 7.23 Egypt
5 5.32 Thailand 5.77 Indonesia
6 4.11 Brazil 5.59 Romania
7 3.89 Germany 5.58 Russian Federation
8 3.23 United Kingdom 5.36 Vietnam
9 2.53 India 5.10 Thailand

10 2.25 Spain 3.01 Ukraine

Table 5: Top 10 Countries of bots used in the sipscan compared to the Mega-
D botnet. Geolocation data for sipscan sources was obtained using the Max-
Mind GeoLite database [41]. Aggregating bots by country rather than AS
helps identify regions that are heavily compromised by bots but have many
small ASes, such as the Russian Federation, which is not in the list of top
10 ASes.

in 27th place (0.57%) - close to U.S.’s 29th place position (0.44%).
Heatmaps of overall Sality bot locations [23] also indicate a cor-
responding lack of Sality bot presence in China. We believe this
under-representation of China, when compared to previous botnets,
may be considered a limitation of the Sality botnet rather than a spe-
cific design choice by the botmaster. Although the data presented
in [23] is largely in aggregated graphical form, it does appear to
corroborate our findings in terms of geographical distribution. As
noted earlier however, we are able to identify a much larger bot
population.

In addition to analyzing the networks that host the bots, we also
investigated the bots themselves. Output of the p0f passive OS fin-
gerprinting tool [63] reported that more than 97% of bots were run-
ning operating systems of the Microsoft Windows family. The dis-
tribution of UDP source port values shown in Figure 7 also shows
that the majority of packets fall into the 1025-5000 range of ports,
which was used by Microsoft Windows until Vista and Server 2003.
There are, however, a non-negligible number of bots that p0f iden-
tified as running the Linux operating system. We believe these ma-
chines are likely not bots but rather NAT gateways proxying pack-
ets from infected hosts.

5. BINARY ANALYSIS
We had the opportunity to analyze the binary code responsible

for this scanning. The binary is a separate executable that Sality-
infected computers download via a URL as directed by the peer-to-
peer botnet infrastructure [22, 23]. Although our work focuses on
the Internet measurement aspect of the event, we partially reverse
engineered this code to validate some of our inferences. This sec-
tion summarizes the most relevant findings.

We found that each bot contacts a hard-coded IP address (the
C&C channel) in order to receive a probing command from the
botmaster. The command followed by the bots we observed is one
of three different command types that the binary supports. Through
this command, the botmaster sends the target IP to the bot in the
form of an ASCII string (dotted quad decimal format). By ana-
lyzing the code, we verified that this address is the actual address
probed by the bot. In particular, the bot properly manages the endi-
anness of the target IP addresses, e.g., when converting the ASCII
string into binary and then when contacting the target.

Each bot reports through the C&C channel the results of both the
TCP and UDP probes immediately after receiving a response from
the victim. It then selects and probes a new target by incrementing
the most significant byte of the target address received by the bot-



master. This increment is repeated 15 times, for a total of 16 targets
probed, each one from a different /8 network. The bot then sleeps
for a fixed amount of time before contacting the botmaster again to
receive a new target IP.

These findings, along with the progression of the target IP ad-
dresses observed through the UCSD Network Telescope, indicate
that both the botmaster and each bot incremented the target IPs
in reverse-byte order, and that the sequence followed by the scan
reflected the original orders of the botmaster (who was sending
addresses as quad decimal dot-separated ASCII strings). In other
words, the reverse byte order probing was most likely not due to a
bug or error in managing the endianness of the target IP addresses.

Inspecting the binary also revealed that several interesting prop-
erties of the scan would have not been visible by relying solely on
the reverse-engineering the bot binary. For example, the code run-
ning on a single bot shows only the selection of 16 target addresses
(whose increments to the most significant byte could have been at-
tributed to a coding mistake, without the knowledge of the overall
pattern). But analysis of traffic from the UCSD Network Telescope
revealed a heavily coordinated behavior of many bots around the
world, allowing inference of the mechanisms adopted by the bot-
master in orchestrating the scan.

6. DISCUSSION
Botnets commonly scan large segments of the Internet’s address

space for various purposes, such as infecting or compromising hosts,
recruiting hosts into a botnet, or collating a list of future targets.
Awareness of evolving botnet characteristics and spreading tech-
niques can improve our ability to navigate and mitigate their im-
pacts. As mentioned in Section 2, although many aspects of botnet
behavior have been documented, we are not aware of any published
investigation of a million node botnet covertly scanning the entire
IPv4 space. Most of the available literature are studies of older
generation (pre-2007) botnets, which are substantially smaller in
size, scope, and capability from newer-generation botnets. Stud-
ies of newer generation bots have focused on aspects other than
the scanning behavior, such as the command and control, peer-to-
peer infrastructure, or the domain of abuse, e.g., spam campaigns
inflicted by the botnet. We present a new angle on the study of
new-generation botnets: their scanning activity as observable in
large darknets, most aspects of which cannot be inferred by reverse-
engineering the bot malware.

This work offers contributions in two areas: documenting and
visualizing behavioral aspects of a current generation botnet, and
thoroughly analyzing the multiple synergistic characteristics of its
extraordinarily well-coordinated scanning.

The scan that we analyzed in this study was new, or at least not
previously documented, in four ways. It was sourced by a current-
generation (2011), widely-deployed, peer-to-peer botnet (Sality [23]).
Although earlier-generation version of Sality were first reported in
June 2003, it was not until February 2011 that Sality operators
deployed a new module designed to locate and compromise SIP
servers in a distributed, heavily coordinated manner. The popula-
tion of bots participating in the scan is several orders of magni-
tude larger than any previously documented botmaster-orchestrated
scanning. Previous Internet-wide scanning behavior perpetrated by
botnets was due to worm-spreading modules inside the bot, e.g,
in Conficker, rather than botmaster-coordinated scanning. Not only
was this sipscan coordinated, but it was impressively well-engineered
to maximize coverage, minimize redundancy and overlap among
target IP addresses by scanning bots, and evade detection by even
state-of-the-art intrusion detection capabilities.

We used the detailed packet traces captured by the darknet to

richly analyze many properties of the botnet, including several in-
teracting properties of the botnet’s heavily coordinated scanning.
The size of the botnet, the fact that it was a /0 scan, i.e., of the
entire IPv4 address space, and the reverse-byte ordering sequence
of IP addresses targets were unprecedented and impressive enough
characteristics, the last of which we only discovered using animated
visualization techniques. This animation also revealed that the scan
operated in distinct phases, with observable phase transitions. We
presume the botmaster triggered these phase changes using con-
figuration parameters in the malware, in order to trade off address
coverage vs. redundancy in scanning. Time-series analysis of the
active IP addresses operating as bots revealed an unusually rapid
turnover rate and associated low re-use rate of the bot population,
all heavily coordinated by the botmaster to scan in a extremely reg-
ular, stealth pattern.

We did have the opportunity to dissect the binary, which we used
to validate our inferences. But most of these aspects of the scan-
ning behavior would not be revealed by reverse-engineering of the
bot binary; they require inference by measurement and analysis of
actual bot-generated traffic (e.g, the mechanism that selects the IP
addresses to be scanned is not entirely encoded in the bot binary,
rather the intelligence lies in the botmaster and C&C).

We also developed several animation and visualization techniques
to facilitate our own exploration of the phenomena. For example,
using the Hilbert-curve map clearly revealed the strictly ordered
reverse-byte incrementing behavior of the progression of the en-
tire scan; without this visualization technique it is not clear that
we would have verified this sequence (for all the three observable
changing bytes) at all. Animations of the scan over time [13] also
exposed the three different phases of the scanning, and juxtapos-
ing the Hilbert maps with a geographic map of bot activity as well
as a traffic time-series allowed us to visualize multiple dimensions
of the scanning simultaneously. We anticipate this technique will
be useful by us and others for analysis of other large-scale Internet
probing behavior.

As the world’s voice communications completes its transition to
an all-IP network, the vulnerability of VoIP infrastructure, and the
emerging capabilities of botnets to illegitimately commandeer its
resources, present a daunting challenge for Internet architects, en-
gineers, and policymakers. Analysis of this scan provides an illus-
trative if ominous indicator of the more sophisticated capabilities
to surreptitiously survey and exploit critical infrastructure vulnera-
bilities on a planetary scale. Our darknet packet capture allowed a
detailed analysis of a botnet’s comprehensive and covert scanning
behavior, and in the process we developed generalizable methods
to correlate, visualize, and extrapolate botnet behavior across the
global Internet.

A dataset with detailed information (e.g., timestamp and source
IP geolocation) for each sipscan UDP probing packet we captured
is available at [13].
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