
MD5 CHOSEN-PREFIX COLLISIONS ON GPUS

BLACK HAT USA 2009

Marc Bevand
m.bevand@gmail.com

marc bevand@rapid7.com

July 30, 2009

Abstract

In December 2008, an MD5 chosen-prefix collision attack was performed on
a cluster of 215 PlayStation 3 consoles to create a rogue CA certificate. A new
implementation of this attack has been researched and developped to run an order
of magnitude faster and more efficiently on video card GPUs. This paper gives
an overview of the GPGPU technology. It then describes the most computing
intensive part of the MD5 chosen-prefix collision attack, known as birthdaying.
Finally it demonstrates how a breakthrough performance gain can be achieved by
carefully implementing the MD5 birthdaying stage on ATI R700 family GPUs (HD
4000 series).

1 GPGPU Technology
As video card GPUs1 have evolved to the point of having fully programmable rendering
pipelines, the technology has been exposed to the software development world at large
under the name of GPGPU2. This section explains why GPUs are a particularly good
fit to run ALU-bound cryptographic workloads such as MD5.

1.1 Comparison to CPUs
Because graphics workloads are embarrassingly parallel workloads, where each pixel
on the screen can be rendered independently, a typical modern GPU is based on a
massively parallel architecture. As of 2009, a high-end ATI/AMD or Nvidia GPU is
capable of executing hundreds of 32-bit instructions per cycle, has a frequency clock in
the range of 0.5-1.5 GHz which gives it a theoretical single-precision computing power
of about 500-1500 GFLOPS, runs within a TDP3 of 100-200 W, and has a street price
of 150-300 USD. Dual-GPU video cards double the performance, are generally a bit

1Graphics Processing Units
2General-Purpose computing on Graphics Processing Units
3Thermal Design Power

1



Table 1: Technical specifications of high-end video cards (current as of June 2009)
Number Clock TDP Perf. Perf.

Video Card / GPU of ALUs (MHz) (W) (GFLOPS) (Ginstr/s)
ATI HD 4870 X2 1600 750 289 2400 1200
ATI HD 4850 X2 1600 625 230 2000 1000
ATI HD 4890 800 850 190 1360 680
ATI HD 4870 800 750 160 1200 600
Nvidia GTX 295 480 1242 289 1788 596
ATI HD 4850 800 625 114 1000 500
ATI HD 4770 640 750 80 960 480
Nvidia GTX 285 240 1476 204 1063 354
Nvidia GTX 275 240 1404 219 1011 337
Nvidia GTX 280 240 1296 236 933 311
Nvidia GTX 260 216SP 216 1242 171 805 268
Nvidia GTX 260 Core 216 216 1242 182 805 268
Nvidia GTX 260 192 1242 182 715 238

more efficient (less than 2x the power consumption), and cost about twice as much.
See table 1 for the technical characteristics of a handful of recent high-end GPUs.

By comparison a typical AMD or Intel 4-core CPU is capable of executing 12
128-bit SSE instructions per cycle (3 per core), has a frequency clock in the range
of 2-3 GHz which gives it a theoretical single-precision computing power of 100-150
GFLOPS, runs within a power envelope of 50-150 W, and has a street price of 200-1000
USD.

In other words, when looking at the sweet spot of GPUs and CPUs, GPUs offer
a performance/USD or performance/Watt ratio that is roughly an order of magnitude
better than CPUs if not more. It is no wonder that GPGPU technology is gaining
grounds in the HPC4 industry. In our case, cryptographic workloads such as MD5 are
perfect candidates for GPUs.

1.2 GPU Architecture
This section focuses on the latest generation of ATI and Nvidia GPUs: the ATI R700
family (HD 4000 series) and Nvidia GT200 family (GTX 200 series).

A traditional GPU contains hundreds of independent ALUs5. Each ALU is capable
of executing a single 32-bit integer, logical, or floating point instruction. The reader
should be aware that ATI and Nvidia use a different terminology which can be confus-
ing; hence the reason this paper uses a more standard nomenclature. ATI calls an ALU
a Stream Core and used to call it a Stream Processing Unit; Nvidia calls it a Streaming
Processor.

ATI GPUs are based on a 5-way VLIW6 architecture, where 5 ALUs are put to-

4High-Performance Computing
5Arithmetic and Logic Units
6Very Long Instruction Word

2



gether to form one VLIW unit. ATI calls a VLIW unit a Thread Processor and used to
call it a Stream Processor. A single VLIW instruction therefore can execute up to 5
instructions on 5 different ALUs. For the purpose of comparing ATI GPUs to Nvidia
GPUs, this VLIW detail, as a logical unit, can be ignored (however it provides signifi-
cant advantages at the micro-architectural level, see next subsection).

Multiple ALUs are organized into a logical SIMD7 unit, which is only capable of
dispatching 1 instruction, the same one, to every ALU per cycle. Because each ALU
has its own independent register file and is, technically, executing a different thread, all
the threads handled by a SIMD unit execute the same code path at any point in time. It is
crucial to understand this technical point. It is the reason why GPU designers can pack
so many ALUs per GPU ASIC8, and it is the reason why ”branchy” workloads perform
poorly on GPUs. To take a simple example and without entering into too many details,
a loop which is iterated 100 times by 1 thread and 1 times by all the other threads will in
practice cause all the threads to step through 100 iterations of the loop, thereby wasting
computing resources. An ATI R700 GPU organizes 80 ALUs (16 VLIW units) into a
single SIMD unit (called a SIMD Core or SIMD Engine); an Nvidia GT200 organizes
8 ALUs into a single SIMD unit (called a Streaming or Shading Multiprocessor).

Finally, multiple SIMD units coexist on a single GPU ASIC. An ATI R700 GPU
has 10 SIMD units, or 160 VLIW units, or 800 ALUs; an Nvidia GT200 GPU has 30
SIMD units, or 240 ALUs.

1.3 ATI vs. Nvidia
It is important to note that although GFLOPS ratings are often used to compare GPUs
between each other, they are particular misleading numbers when comparing ATI GPUs
to Nvidia GPUs. This is because the GFLOPS rating of an ATI GPU is computed
assuming each ALU executes 1 multiply-add instruction per cycle (MAD = 2 float-
ing point operation per cycle), whereas for an Nvidia GPU it is computed assuming
each ALU executes 1 fused pair of multiple & multiply-add instructions per cycle
(MUL+MAD = 3 floating point operations per cycle).

A better performance rating number to predict the relative performance of different
GPUs on ALU-bound cryptographic workloads is the number of billion instructions
per second as seen in table 1, column Performance (Ginstr/s).

By that number, it is obvious that ATI GPUs offer a significantly superior level of
performance/Watt, performance/USD, and absolute performance, than Nvidia GPUs.
These 3 metrics are the reason why the rest of the paper focuses on ATI GPUs, despite
the fact that the ATI GPGPU SDK (Stream SDK) is generally perceived as less mature
than the Nvidia GPGPU SDK (CUDA). The VLIW architecture chosen by ATI seems
to have paid off as it allows them to provide more computing power per square inch of
die area.

It remains to be seen how the next-generation GPU families will compare to each
other. The author of that paper is keeping a close and interested eye on ATI R800,
Nvidia GT300, and Intel Larrabee.

7Single Instruction, Multiple Data
8Application-Specific Integrated Circuit

3



2 Chosen-Prefix Collision Overview
This section gives a quick overview of the MD5 algorithm, how the chosen-prefix
collision attack works, and how it was applied to produce a rogue CA.

2.1 MD5 Algorithm
The MD5 algorithm, described in RFC 1321, is presented in this section in very suc-
cinct (and incomplete) details, mostly to establish the notation used in the rest of the
paper.

1. The message is padded by appending a ’1’ bit. Then a number of ’0’ bits is
appended to make the bitlength equal to 448mod512. Finally the bitlength of
the original unpadded message is appended as a 64-bit little-endian integer.

2. The padded message is partitionned intoN consecutive 512-bit blocksM1,M2, ...,MN .

3. To hash a message consisting of N blocks, MD5 goes through N + 1 states
IHVi, for 0 ≤ i ≤ N , called the intermediate hash values. Each intermediate
hash value IHVi consists of 4 32-bit words ai, bi, ci, di. They are fixed to pre-
defined values for i = 0, and for i = 1, 2, ..., N , IHVi is computed using the
MD5 compression function:
IHVi = MD5Compress(IHVi−1,Mi)

4. The final hash value is the last IHVN .

The MD5 compression function partitions the message blockMi in 16 32-bit words
m0,m1, ...,m15 and executes 64 steps. Each step t is of the following form:

w = x+ ((w + func(x, y, z) +mk +ACt) <<< RCt)
Where: x, y, z, w is a permutation of 4 working registers, func() is a non-linear

function involving logical operators (defined as one of the 4 F (), G(), H(), I()), ACt

is an addition constant, and RCt is a rotation constant.

2.2 Rogue CA
In December 2008, an MD5 chosen-prefix collision attack was performed by Sotirov,
Stevens, Applebaum, Lenstra, Molnar, Osvik, and Weger to create a rogue CA certifi-
cate using a cluster of 215 PlayStation 3 consoles. After having presented their results
at the 25th Chaos Communication Congress (25C3), they released a paper containing
more details in March 2009 [2], followed by another paper containing the complete
details plus new improvements in June 2009 [3].

The attack performed by the 7 researchers involved 3 steps:

1. They pre-computed a legitimate certificate ”A” and a rogue CA9 certificate ”B”,
in such a way that the to-be-signed parts of the 2 certificates collided under MD5,
so that a signature for a certificate could also be applied to the other.

9Certification Authority

4



2. Then they submitted a specially crafted certificate signing request (CSR) to a CA
that ended up with the CA generating a certificate that was identical to certificate
”A”. This step involved submitting the request at a very specific time in order
to match the validity period and the serial number that had to be predicted in the
first step.

3. The valid signature from certificate ”A” was then simply copied to the rogue CA
”B”, which is possible because the to-be-signed parts collide.

2.3 Chosen-Prefix Collision Details
A chosen-prefix collision attack is an attack where 2 message prefixes P and P ′ can
be chosen freely, and collision blocks C and C ′ can be constructed such that the MD5
hash of the concatenated messages P‖C and P ′‖C ′ collide. Because of the nature of
MD5, any suffix S can be appended to these messages so that the MD5 hash of P‖C‖S
and P ′‖C ′‖S also collide. The attack was used to generate the legitimate certificate
”A” and the rogue CA certificate ”B” in the following way:

• The legitimate certificate ”A” was partitionned into 3 parts so that the arbitrary
prefix P was chosen to map to most of the certificate fields (version, serial num-
ber issuer, validity period, subject, etc). The collision blocks C were chosen to
map to part of the public key field. The suffix S was chosen to map to the end of
the public key field, followed by the X.509 extensions, etc.

• A rogue CA certificate ”B” was built as the other arbitrary prefix P ′ in a way to
start a ”Netscape comment” field that would cover the collision blocks C ′ and S.

In order to compute the collision blocks C and C ′, pre-conditions on the prefixes
P and P ′ have to be met. In order to meet these, the last bits of the prefixes are
actually bruteforced in a stage known as a birthday search, or birthdaying. This is
the most computing intensive part of the attack, which was originally estimated by the
researchers at 251.x MD5 compression function calls, or 18 hours on 215 PlayStation
3 consoles, according to [1].

Once this birthdaying stage is completed, the collision blocks are computed using
an automated way to find differential paths for MD5 (near collision stage). Then the
final stage consists of choosing a suffix S such that the public key of the legitimate cer-
tificate ”A” is a valid RSA modulus. These final steps are significantly less computing
intensive and are not covered in this paper.

3 Birthdaying on ATI R700
This section describes the goal of the birthdaying stage and how it was optimized for
the ATI R700 GPU.

5



3.1 Algorithm
The last few bits (”birthday bits”) of the last message block of the prefixes P and P ′

have to be bruteforced in order for the difference between IHVn and IHV ′n to satisfy
some conditions, namely: δIHVn = (0, δb, δc, δc) for some δb and some δc. In other
words we are looking for a collision (a, c − d) = (a′, c′ − d′) between IHVn =
(a, b, c, d) and IHV ′n = (a′, b′, c′, d′).

The algorithm used to find such a collision is a deterministic pseudo-random walk
in the birthday bits search space using the Pollard-Rho method. The concept behind
that algorithm is similar to the problem of colliding chains in rainbow tables, except
that in this case we are looking for collisions. Many variation of the algorithms are
valid but the one I chose to implement is the following.

The inputs of the algorithm are: the last partial message blocks B and B′ of the
prefixes P and P ′, and the current IHVn and IHV ′n states. The steps are as follow:

1. Initially, random birthday bits x are chosen.

2. If the less significant birthday bit is 0: callMD5Compress(IHVn, B‖x), com-
pute (a, c− d), save some of these bits as the current birthday bits,
else: call MD5Compress(IHV ′n, B

′‖x), compute (a′, c′ − d′), save some of
these bits as the current birthday bits.

3. If the current birthday bits have reached a distinguished point (say the less signif-
icant 32 bits are zero), return. The initial birthday bits (”startpoint”) and current
birthday bits (”endpoint”) will be saved in a hashtable whose keys are the end-
points.

4. Else, go to step 2.

Eventually, the hashtable will contain endpoint collisions. Because the startpoint
are saved as well, the ”colliding paths” can be replayed to determine where they collide.
50% of the collisions will be useless (collision between the same blocks), and the
remaining 50% will be useful for performing the following stage of the chosen-prefix
collision attack.

3.2 CAL IL Implementation
CAL IL stands for Compute Abstract Layer Intermediary Language and is one of the
lowest-level language available to program ATI GPUs. It conceptually sits right above
the native R700 ISA, and below Brook+. It has been chosen for its maturity (compared
to Brook+), portability (across R600, R700, and R800 in the future), and excellent
ability to exploit the computing power of the GPU close to its theoretical maximum.

Obviously, the MD5 compression function calls in the birthdaying stage are the
most time-intensive. Therefore an MD5 compression function has been hand-coded in
CAL IL.

Here is a step involving the F() function for example:

6



Table 2: MD5Compress() benchmark
PlayStation 3

(Cell BE 3.2 GHz) ATI HD 4850 X2
Street price 400 USD 200 USD
TDP 130 W (45nm Cell) 230 W
MD5Compress/s 180 Mcompr/s 1634 Mcompr/s
Performance/USD 0.45 Mcompr/s/USD 8.17 Mcompr/s/USD
Performance/Watt 1.38 Mcompr/s/W 7.10 Mcompr/s/W

; F(x,y,z)
ixor r5, r0, r1
and r5, r5, r3
ixor r5, r5, r1
; m_k + AC_t
iadd r6, cb0[0].zzzz, cb1[0].zzzz
; sum everything
iadd r5, r2, r5
iadd r5, r5, r6
; rotate <<< RC_T
ushr r6, r5, l1.xxxx
umad r5, r5, l1.yyyy, r6
; final add
iadd r2, r3, r5

One of the optimization technique used here is to perform the rotate operation by
using a pair of unsigned shift right (ushr) + unsigned multiply-add (umad).

The addition constants ACt are stored in constant buffers to reduce the number of
literal registers that are used.

4 Performance
After table 1, the author selected the ATI HD 4850 X2 as the optimal GPU to run the
birthdaying stage. Available for about 200 USD on NewEgg as of June 2009, this card
is one with the most promising performance/USD ratio to run this MD5 workload.

For reference purposes, the PlayStation 3 Cell BE processor at 3.2 GHz is able to
execute about 180 million MD5Compress() call per second, or about 30 Mcompr/s per
SPU10 according to number inferred from [1].

According to table 2, the ATI HD 4850 X2 video card costs half the price of a
PS3, is 9 times faster, provides a performance/USD ratio 18 times better, and a
performance/W ratio 5 times better.

10Synergistic Processing Unit

7



5 Conclusion
GPUs are massively parallel chips that have become a commodity thanks to the gaming
industry. It is clear that many ALU-bound cryptographic workloads are perfect targets
for GPGPU technology. Considering any sort of general purpose CPU almost doesn’t
make sense anymore.

An MD5 birthdaying tool has been written to exploit this new level of performance,
it will be open-sourced and released at http://www.epitech.net/˜bevand_m
. This makes MD5 chosen-prefix collision attacks practical for anybody. Public CAs
have stopped signing certificates with MD5, but what about private/corporate CAs?

It is clear by now that systems should be migrated to SHA-2 or SHA-1, however
the latter is already starting to show its weaknesses[4]. The NIST hash function com-
petition for a new SHA-3 function is more than welcome.

References
[1] MD5 considered harmful today, Creating a rogue CA certificate

http://www.win.tue.nl/hashclash/rogue-ca/

[2] Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA Certifi-
cate
http://eprint.iacr.org/2009/111

[3] Chosen-prefix Collisions for MD5 and Applications
https://documents.epfl.ch/users/l/le/lenstra/public/
papers/lat.pdf

[4] SHA-1 collisions now 252

http://eurocrypt2009rump.cr.yp.to/
837a0a8086fa6ca714249409ddfae43d.pdf

8


