
Characterizing Logging Practices in Open-Source Software

Ding Yuan‡†, Soyeon Park†, and Yuanyuan Zhou†
†University of California, San Diego, ‡University of Illinois at Urbana-Champaign

{diyuan,soyeon,yyzhou}@cs.ucsd.edu

Abstract—Software logging is a conventional programming
practice. While its efficacy is often important for users and de-
velopers to understand what have happened in the production
run, yet software logging is often done in an arbitrary manner.
So far, there have been little study for understanding logging
practices in real world software. This paper makes the first
attempt (to the best of our knowledge) to provide a quantitative
characteristic study of the current log messages within four
pieces of large open-source software. First, we quantitatively
show that software logging is pervasive. By examining devel-
opers’ own modifications to the logging code in the revision
history, we find that they often do not make the log messages
right in their first attempts, and thus need to spend a significant
amount of efforts to modify the log messages as after-thoughts.
Our study further provides several interesting findings on
where developers spend most of their efforts in modifying the
log messages, which can give insights for programmers, tool
developers, and language and compiler designers to improve
the current logging practice. To demonstrate the benefit of our
study, we built a simple checker based on one of our findings
and effectively detected 138 pieces of new problematic logging
code from studied software (24 of them are already confirmed
and fixed by developers).

Keywords-log message, log quality, empirical study, failure
diagnosis

I. INTRODUCTION

Writing software log messages is a well established

programming practice to record the dynamic information

during a program’s execution. It is often used in failure

diagnosis, auditing, profiling, etc. Figure 1 shows how

developers write log messages in real-world open-source

software. In a log message, developers describe the logged

event using static text and optionally record variable values

related to the event. Each log message also has a verbosity

level. For instance, Figure 1 shows four types of different

verbosity levels: fatal (i.e., abort a process after logging),

error (i.e., record error events), info (i.e., record important

but normal events), debug (i.e., verbose logging only for

debugging). The verbosity levels for less critical events (e.g.,

debug) naturally subsume those for more critical events

(e.g. error), meaning that all the events logged under the

latter are also recorded under the former. Using verbosity

level, users or developers can trade the benefit of sufficient

log messages with their cost (e.g., performance overhead).

Under the default production setting, open-source software

typically only log error events in addition to a few (less

than 10% [35]) book-keeping messages (e.g., info). Other

!"#$%&'()(*+%,#-.%#/%0!0#12345%%678#9.$1!:;*76

<=>"#$>!11#1%&?@@+%,A#-"B%C#.%#=!C%AD<19!.%E
%%%%%%%%%%%%%%%%%%%A#CF!19G#C%A#C/G$%/G"!%H93+%!"#$#%&'45%

"#$G.%&IJ'K+%,(-.D!C.GA<.G#C%1!/-9!BL%H93+%()#'45%%%%%%%%%%%%%%67%%K=!C::M%%76

!"#$&N?OPQR+%,<1ADGF!B%.1<C9<A.G#C%"#$%/G"!%H93+%*("+45%678#9.$1!:;*76

%67%%%%(=<AD!%%%%76

Figure 1. Log printing code examples from open-source software.

verbose mode messages are typically used only during in-

house testing.

Logs are particularly beneficial to diagnosing failures in

the production environment, which often require immediate

resolutions as they directly impact the end users. Log mes-

sages printed during the production run are often the only

data source available for the developers to diagnose such

failures. This is because it is often challenging to reproduce

production failures. First, end-users are often reluctant to

release their failure-triggering input due to privacy concerns.

Second, it can be forbiddingly expensive for the vendors

to recreate the exactly same execution environment (e.g.,

the same hardware, third party library, OS, etc.) as in

the production setting. Consequently, software engineers

mostly rely on log messages for trouble-shooting production

failures. Besides developers, logs are also used by system

administrators to resolve failures caused by security attacks,

hardware errors, and misconfigurations.

The importance of logging has been widely identi-

fied [14]. Consequently, practically almost all open-source

software print log messages. For example, the widely used

OpenSSH server contains 3407 log printing statements in its

81K lines of code, and 2241 of them are printed under the

default verbosity mode.

The importance of log message is also proved by its

commercial acceptance. It is an industry common practice

for vendors to request logs or even have their systems

to automatically sending the logs back periodically (i.e.,

“call-home” [6]). As a result, most modern systems today

(such as those from EMC [7], NetApp [21], Cisco [5],

Dell [6], just to name a few) are able to collect logs from at

least 50% of their customers [7], [21], [5], [6]. Once such

logs are collected, they can be either analyzed by human

or by commercial log analysis tools (e.g., Splunk [26] or

ArcSight [1]).

A. State of the Art of Logging Design

Despite the importance of log messages, logging is often

a subjective and arbitrary practice in reality. In general,

there is no rigorous specification or systematic process on

software logging, partially because logging is seldom a core

feature provided by the vendors. Therefore, in many cases,

log messages are written as “after-thoughts” after a failure

happens and logs are needed. There are a number of logging

libraries, such as syslog [28] and log4j [16], that provide

better logging interface (e.g., multiple verbosity levels) than

general-purpose output functions (e.g., printf). But even

with them, it is still the developers’ arbitrary decisions on

when, what and where to log. Recently, a few research

work proposed to systematically improve a few aspects of

software logging. LogEnhancer [36] automatically suggests

which variable values need to be recorded in each existing

log message. However, even with LogEnhancer, developers

still need to make majority of the logging decisions.

Improving the current logging practice will significantly

benefit from a deep understanding of the real-world logging

characteristics. Specifically, we first need to assess whether

the current practice is good enough, and if not, what are

the common issues and what are their consequences. Not

only it could provide programmers with useful guidelines

and motivations for better logging, but also shed lights to

new tools and programming language support for systematic

logging, better testing of logging, logging improvement, etc.

B. Our Contributions

This paper makes the first attempt (to the best of our

knowledge) to study the practice of software logging. Specif-

ically, we try to answer the following questions: (i) how

pervasive is software logging? (ii) is the current logging

practice good enough? (iii) if not, how are developers

modifying logs?

To answer these questions, we study the logging practice

in four pieces of large, widely used open-source software,

including Apache httpd, OpenSSH, PostgreSQL, and Squid,

each with at least over 10 years of developing history.

To understand the pervasiveness of logging, we study the

density of log messages in source code and the churn

rate [19] from the revision history.

Answering question (ii) and (iii) is more challenging

because judging the logging efficacy requires deep domain

expertise. We address this challenge by studying developers’

own modifications to their log messages. Specifically, we

systematically and automatically analyze the revision history

of each log message. We further separate those log modi-

fications that are indeed modifying log messages as after-

thoughts from those merely consistency updates together

with other non-logging code changes. Then we analyze each

category separately, with a focus on the former.

Table I summarizes our major findings and their implica-

tions. Overall, our study makes the following contributions:

• Our work is the first (to the best of our knowledge)

to provide quantitative evidences that logging is an

important software development practice.

• We find that despite the importance of effective logging,

unfortunately, developers often are not able to make

log messages right at the first time. Therefore, many

of the log messages need to be modified as after-

thoughts. By examining developers’ own modifications,

we identify the particular aspects in logging choices

where developers spend most efforts to get them right.

Such findings can shed lights on various new tools and

program language supports to improve log messages.

• To demonstrate the potential benefits of our findings,

we developed a simple checker to detect problematic

verbosity level assignment (inspired by our Finding 7).

We detected 138 new problematic cases in the latest

versions of the four pieces of the studied software.

24 of them have already been confirmed and fixed

by the developers as a result of our bug reports. This

result confirms that our findings are indeed beneficial

to tool developers to systematically help programmers

to improve their log messages.

While we believe that the open-source software we ex-

amined well represent the characteristics of current logging

practice, we do not intend to draw any general conclusions.

Our findings and implications should be taken with the ex-

amined open-source software and our methodology in mind

(see our discussion about threats to validity in Section II).

II. METHODOLOGY

A. Software Used in Our study

We study four large, widely used software programs

with over at least 10 years of developing history, namely

Apache httpd, OpenSSH, PostgreSQL and Squid. Table II

provides the descriptions. Each of them is popular as it

is ranked either first or second in market share for its

product’s category. The lines of code (LOC) is measured

using sloccount [25], which excludes non-functional code

such as comments, white-spaces, etc.

All of the software we study include server compo-

nent. We choose servers because, first, their availability

and reliability are often important since they tend to be

used as infrastructure software providing critical services

(e.g., e-commerce services), and thus many users and other

applications are depending on them.

Second, runtime logs are particularly important for diag-

nosing server failures, which are hard to be reproduced due

to the privacy and environment setting issues. They typically

run for a long period of time, handle large amounts of data

from users, perform concurrent execution, and are some-

times deployed in a large distributed environment forming

server farms, all of which make failure reproduction and

diagnosis difficult.

2

Table I
OUR MAJOR FINDINGS ON REAL WORLD LOGGING CHARACTERISTICS AND THEIR IMPLICATIONS.

Density of software logging (Section III-A) Implications

(1) On average, every 30 lines of code contains one line of logging
code. Similar density is observed in all the software we studied.

Logging is pervasive during software development.

Benefit of log messages in failure diagnosis (Section III-B) Implications

(2) Log messages can speed up the diagnosis time of production-run
failures by 2.2 times [35].

Logging is beneficial for diagnosing production-run fail-
ures.

Churns of logging code (Section III-C) Implications

(3) The average churn rate of logging code is almost two times (1.8),
compared to the entire code.

Logging code is being actively maintained by developers.

(4) In contrast to its relatively small density, logging code is modified
in a significant number (18%) of all the committed revisions.

Logging code takes a significant part of software evolution
despite its relatively small presence.

(5) 33% of modifications on logging code are after-thoughts. The
remaining ones are updates together with other non-logging code
changes within the same patch to make them consistent. More than
one third (36%) of our studied log messages have been modified at
least once as after-thoughts.

The current logging practice is ad hoc, introducing problems
to the log quality. Developers take their efforts to address
them as after-thoughts.

Overview of log modifications (Section IV) Implications

(6) Developers seldom delete or move logging code, accounting for
only 2% of all the log modifications. Almost all (98%) of the log
modifications are to the content of the log messages.

We surmise there is lack of documentations explaining the
purpose of log messages so that developers are conservative
in deleting/moving log messages.

Modification to logging content (Section V, VII, VI) Implications

(7) Developers spend significant efforts on adjusting the verbosity
level of log messages, accounting for 26% of all the log improve-
ments. Majority (72%) of them reflect the changes in developers’
judgement about the criticality of an error event.

Tools that systematically exposing error conditions would
help testing the logging behavior. Testing and code analysis
tools need to provide more information (e.g., error condi-
tions) for developers to decide the proper verbosity.

(8) In 28% of verbosity level modifications, developers reconsider
the trade-off between multiple verbosities. It might indicate that de-
velopers are often confused when estimating the cost (e.g., excessive
messages, overhead) and benefit afforded by each verbosity level.

The scalar design of current verbosity level may not be a
good way to help developers with such logging decision.
More intelligent logging methods, such as adaptive logging,
can help balancing the trade-offs.

(9) One fourth (27%) of the log modifications are to variable logging.
Majority (62%) of them are adding new variables that are causally
related to the log message. It indicates that developers often need
additional runtime information to understand how a failure occurred.

Logging tools that automatically infer which variables to
log (e.g., LogEnhancer [36]) can help informative logging.
Given failing and passing test cases, Delta debugging [37]
can also be used to infer the relevant variables to log.

(10) 45% of log modifications are modifying static content (text) in
log messages. More than one third (39%) of them are fixing incon-
sistencies between logs and actual execution information intended
to record. Software can leverage programming language support to
eliminate certain inconsistency, as Squid does.

Developers should pay more attention to update the log
messages as code changes. Tools combining natural lan-
guage processing and static code analysis can be designed
to detect such inconsistencies.

Table II
OPEN-SOURCE SOFTWARE WE STUDIED. THE THIRD COLUMN SHOWS THE POPULARITY OF THE SOFTWARE IN ITS OWN PRODUCT

CATEGORY. *: AMONG ONLY OPEN-SOURCE DATABASE SERVERS, IT HAS THE SECOND LARGEST MARKET SHARE.

Software Description
Market

LOC
Verbose Log messages Lines of LOC

RCS
share levels total default mode logging code per log

Apache httpd 2.2.16 Web server top 1 [22] 249K 8 1838 1100 (warn) 6758 36 SVN
OpenSSH 5.8p2 Secure shell server top 1 [23] 81K 8 3407 2241 (info) 4672 17 CVS
PostgreSQL 8.4.7 Database server top 2* [30] 614K 13 6052 5818 (warn) 20733 30 GIT
Squid 3.1.16 Caching web proxy top 1 [31] 155K 10 3474 1268 (info) 4103 38 Bazzar

Total 1.1M 14771 10427 36266 30

B. Study Methodology

We study various aspects of the logging practice. To study

the density of logging code, we measure both the lines of

code (LOC) of the entire program and the logging code

(shown in Table II). Note that the LOC of logging code

is larger than the number of log printing statements since a

logging statement might occupy more than one code lines.

The code churn rate is measured in Churned LOC/

Total LOC [20]. The churn rate of logging code

is thus measured in churned LOC of logging code
/LOC of logging code. We analyze each revision in the

recent five year’s history of software to measure the churned

code. We first measure the churn rate for each of the years,

then take the average of these five one-year churn rates.

For studying the modifications on logging code, we only

focus on the modifications to the log printing behavior,

including verbosity levels, static content, variable values and

3

log message location. None-behavioral modifications, such

as renaming log printing functions or verbosity levels (e.g.,

from warn to warning), indent changes, etc., are excluded

from our analysis.

With the collected modifications, we study the types of

modifications. In the revision history, there could be two

types of log modifications: some are merely for consistent

update with other non-logging code changes within the same

revision, and others are modifying the logging behavior

as after-thoughts. To separate the modification types, one

possible policy is to check whether the revisions only include

changes solely to logging code but not to other code.

However, this is too conservative in that developers tend

to batch multiple patches into one revision.

Instead, we use a few simple heuristics following our

observations on the common logging practice: developers

often log right after checking a certain condition (e.g., an

error condition), which is usually implemented with a branch

statement (e.g., if, while, etc.). In a revision, if such a branch

statement is modified together with following logging code,

it may not be introduced for logging adjustment, but for

changing program semantic together with logging. Similarly,

if a variable or a function is renamed consistently both in the

logging code and non-logging code within the same revision,

it is also not modifying the logging behavior.

Since our automatic analysis may not be accurate, we

further manually verify our analysis result on 400 randomly

sampled modifications (100 from each program). Our man-

ual verification suggests the accuracy of our analysis is 94%.

We further study the details of those log modifications.

For some types of such modifications, to reason about why

the previous logging was problematic or insufficient, we

randomly sample the same modification cases and carefully

examine the relevant source code, comments, commit log,

bug reports, and discussions in mailing list (if any). If we

cannot clearly understand the reason, we always conserva-

tively classify them as the “other” category when presenting

our results. The confidence interval of our sampling is

reported together with our result whenever sampling is used.

C. Threats to Validity

As with all the previous characteristics study, our work

is also subject to a validity problem. Potential threats to the

validity of our characteristic study are representativeness of

the software and examination methodology.

To address the former, we selected diverse open-source

software in terms of functionality, including Web server,

database server, caching proxy, shell server, and together

with their client utilities, all of which are widely used in

their product category as shown in Table II. They have at

least 10 years of history in their code repositories and more

than 14771 static log points in source code. Overall, we

believe that they well represent large software which embed

the current logging practices. However, our study may not

reflect the characteristics of logging practices in other types

of non-server/client software, such as scientific applications,

operating systems, commercial software, or software written

in other programming languages.

As for our examination methodology, we try to minimize

our own subjective judgement on the quality of log messages

by systematically analyzing developers’ own modifications

to the log messages. Also, we examine developers’ commit

logs, comments, related bug reports, etc., together with the

source code to reason about the modifications. Furthermore,

our study includes all of the aspects typically considered

by developers for logging, including verbosity level, static

content and variables to record, and log placement in source

code. As a limitation, for some logging problems unknown

even to the developers, our methodology may also miss

them, since the modification is not in revision history.

However, if the problem is general enough, it should have

been fixed in at least one of the program we studied.

We do not study the additions of new logging code. This is

because our goal is to reveal issues with the current logging

practices, therefore we only focus on the modifications

(including deletions) to the previously existing logging code.

However, adding new logging code might also reflect issues

with existing logs where it is a revival of the existing

logging code that has been deleted once. While we study

the deletions in such addition/deletion chains, we will miss

the additions where they might have important meanings as

well. However, our results in Table V and Table XII suggest

that the deletions of log messages rarely occur (less than 2%

among all of the modifications). Therefore, we expect that

such deletion/addition chains are also rare.

Overall, while we cannot draw any general conclusions

that can be applied to all software logging, we believe that

our study provides insights about efficacy and pitfalls of soft-

ware logging, particularly in open source server applications

written in C/C++.

III. IMPORTANCE OF LOG MESSAGES

In this section we study the pervasiveness of software

logging in reality and the benefit of software logging to

production-run failure diagnosis.

A. Code Density of Sofware Logging

Finding 1: On average, every 30 lines of code contains

one line of logging code. Similar density is observed in

all the software we studied.

Implications: Logging is a pervasive practice during

software development.

The code density of software logging is shown in the

“LOC per log” column in Table II. It is calculated using

the LOCs of logging code and the entire code. Even in the

software with least log density (Squid), there is still one line

of logging code per 38 lines of code.

4

0 %

25 %

50 %

apache openssh postgres squid

C
h

u
rn

 R
at

e
Logging code

Entire code base

Figure 2. Churn rates comparison between logging and entire code.

B. Benefit of log messages in failure diagnosis

Finding 2 (Benefit of log messages): Log messages

reduces median diagnosis time of production-run failures

between 1.4 and 3 times (on average 2.2X speedup).

Implications: Logging is beneficial for failure diagnosis.

We randomly sampled 250 user reported failures from

Apache, Squid, and PostgreSQL, and compared the failure

resolution time between the set of failures where user

provided any log messages with the ones without any

log messages. The details are discussed in our previous

work [35]. Jiang et. al. [13] revealed a similar finding by

studying production failures in commercial systems.

C. Churns of Logging Code

Finding 3: As shown in Figure 2, the average churn rate

of logging code is almost two times (1.8) compared to

the entire code. Interestingly, except for PostgreSQL, all

the software show that logging code have higher churn

rates than the entire code base.

Implications: Developers are actively maintaining log-

ging code like other non-logging code for software func-

tionality. Logging is at least as important as other part of

code in the maintenance perspective.

Such churns on logging code are also scattered across

many revisions, indicating the logging code is continuously

maintained as a significant part of software evolution:

Finding 4: In contrast to the relatively small density of

logging code (Finding(1)), a significant number (18%) of

all the committed revisions modify logging code.

Implications: Logging code takes a significant part of

software evolution despite its relatively small presence.

Overall, Finding 3 and 4 together implicate that logging

code is being continuously and actively modified. To under-

stand what these modifications are, we studied modifications

from the revisions of our studied software.

Table III shows the detailed classification of modifications

to logging code, which is from our automatic analysis tool

on committed revisions (with 94% accuracy) as described

in Section II-B. Our tool identifies a modification as a

consistent update with the other changes on non-logging

code if the same patch contains one of the following three

types of changes: (i) modification on the conditions that

Table III
MODIFICATIONS IN EACH REVISION TO THE LOG MESSAGES.

Software total
after- following other code change

thoughts condition variable function

apache 3035 810 (27%) 1941 64 220
openssh 3459 1446 (42%) 1703 284 26
postgres 15455 5389 (35%) 9153 746 167
squid 5536 1431 (26%) 2951 930 224

Total 27485 9076 (33%) 15748 2024 637

Table IV
LOG MESSAGES(%) THAT HAVE BEEN MODIFIED.

log msgs apache openssh postgres squid total

modified 605 628 3128 1106 5367
total 1838 3407 6052 3474 14771

percentage 40% 18% 52% 30% 36%

Table V
TYPE OF LOG MODIFICATIONS AS AFTER THOUGHTS.

Software
Log Modifications

total location verbosity text variables

apache 810 35 (4%) 118 (15%) 429 (52%) 228 (28%)
openssh 1446 33 (2%) 550 (38%) 264 (18%) 599 (41%)
postgres 5389 17 (1%) 1148 (21%) 3000 (56%) 1224 (23%)
squid 1431 65 (5%) 573 (40%) 364 (25%) 429 (30%)

Total 9076 150 (2%) 2389 (26%) 4057 (45%) 2480 (27%)

the logging code is dependent on; (ii) re-declaration of the

logged variable that is also changed in logging code; (iii)

modification on a function name that is also referred in the

logging code as static text. Otherwise, our tool classify the

modification on logging code as an after-thought. Table IV

shows the number of log messages that have been modified

at least once as after-thoughts by these 9076 modifications.

Finding 5: 33% modifications on logging code are after-

thoughts. The remaining ones are consistent updates with

the other changes on non-logging code in the same patch.

As a result, 36% of the total 14771 log messages have

been modified at least once as after-thoughts.

Implication: In current practice, logging is conducted in

a subjective and arbitrary way, introducing problems to

the log quality. Developers take efforts to improve them

as after-thoughts.

In remainder of the paper, we will use modifications to

only refer to these modifications that are not consistent up-

dates with other non-logging code changes, unless otherwise

specified. We focus on studying these modifications as they

are likely to reflect more directly developers’ concerns over

the previously problematic log messages.

IV. OVERVIEW OF LOG MODIFICATIONS

In Table V, we further break the 9076 modifications based

on what developers modified: the location of logging code

within the source code, verbosity level, static content of a

log message, and variables to log. For location change, we

consider the logging code’s relative location within a basic

block, including both move and deletion.

5

Table VI
VERBOSITY-LEVEL MODIFICATION WITH ERROR EVENT

LOGGING AND WITH NON-ERROR EVENT LOGGING

software total error non-error

apache 118 84 (71%) 34 (29%)
openssh 550 398 (72%) 152 (28%)
postgres 1148 831 (72%) 317 (28%)
squid 573 399 (70%) 174 (30%)

Total 2389 1712 (72%) 677 (28%)

Finding 6: Developers seldom delete or move the logging

code, accounting for only 2% of all the log modifications.

Almost all (98%) modifications are to the content of

the log messages, namely verbosity level, static text and

variables.

Implications: Given the lack of specifications on logging

behaviors, developers would not delete/move log messages

unless they cause serious problems (Section VIII).

V. VERBOSITY LEVELS MODIFICATION

This section analyzes the 2389 modifications to verbosity

levels (Table V), which indicate developers often do not

assign the right verbosity level at the first time.

In Table VI, we further break down the verbosity level

modification into those for error event logging and non-error

event logging. In the former (72%), at least one verbosity

level before or after the modification is an error-level (e.g.,

error, fatal, etc.). These indicate that developers might

have misjudged how critical the event to log is at the first

place. Please recall that in these modifications developer

did not change the conditions (typically the error condition)

leading to the log messages, but only the verbosity level

themselves, indicating they are likely after-thoughts. In the

other 28% verbosity level modifications, developers change

between non-error (also non-fatal) levels, such as info and

debug, which are supposedly to record non-error events.

Finding 7: Majority (72%) of the verbosity-level modifi-

cations reflect the changes in developers’ judgement about

the criticality of an error event (Table VI).

Implications: Tools that systematically exposing error

conditions would help test the logging behaviors. For

example, fault injection tools [12] can be used to inject

faults to trigger an error and consequently its error logging.

Similarly, software model checking [2] can be extended to

explore the execution paths reaching the logging code.

A. Reconsidering Error Criticality

Table VII breaks down the verbosity-level modifications

for error event logging. More than half (56%) of the

cases are changing levels between non-fatal and fatal. This

class is different from others in that they are introduced to

change the system’s execution behavior as well as logging

behavior. Specifically, with the modifications, developers

Table VII
RECONSIDERATIONS OF ERROR CRITICALITY AND

VERBOSITY-LEVEL MODIFICATION.

Software
non-fatal fatal to non-error error to

others
to fatal non-fatal to error non-error

apache 18 12 12 37 5
openssh 80 169 75 71 3
postgres 236 294 148 67 86
squid 29 127 42 201 0

Total
363 602 277 376 94

(21%) (35%) (16%) (22%) (6%)

Figure 3. Error verbosity level modifications from PostgreSQL

changed their decision either to enforce a system to abort

after logging, or allow it to continue to run.

The modification from a non-fatal to a fatal level is to

prevent a non-survivable error from propagating, which can

lead to serious system malfunctions or security issues. On

the other hand, the modification from a fatal to a non-fatal

level is to avoid an unnecessary system termination on a

survivable error for better system availability.

For example, in Figure 3 (A), PostgreSQL developers

originally record an error event (i.e., an access to an unini-

tialized pointer) at ERROR level, which could potentially

introduce security holes if not aborted right away. Later they

provide this patch only to promote the level to a PANIC (fatal

in this software) that will abort the entire database back-

end. As an opposite example, in Figure 3 (B), PostgreSQL

developers prevent non-critical cases from taking down the

entire database by demoting the original PANIC to ERROR.

In Table VII, some others (38%) are changing verbosity

levels between an error level and non-error levels. In those

cases, developers may reconsider their original judgements

about whether the event to record is an error or not, because

recording a real error with non-default verbosity level such

as debug would cause missing important error messages

for failure diagnosis, and recording a non-error event with

error level might either confuse the users and developers

or cause unnecessary production run overhead. For example,

Figure 3 (C) shows that PostgreSQL developers originally

6

missed to report a configuration error by logging it with

info which is not a default verbosity level for production

run in PostgreSQL. After suffering from diagnosing it with-

out logs, they committed a patch only to change it to error.

B. Reconsidering Logging Trade-offs

As shown in Table VI, 28% of the verbosity-level mod-

ifications come from non-error event logging. In general,

non-error events are logged with one of multiple verbose

levels such as debug1, debug2,..., or sometimes even with

a default levels, e.g. info in Squid. Table VIII decomposes

the verbosity modifications for non-error events.

Table VIII
RECONSIDERATION OF LOGGING TRADE-OFF AND

VERBOSITY-LEVEL MODIFICATION

Software
between verbose default between
verbose to default to verbose default

apache 23 (67%) 3 (9%) 8 (24%) 0 (0%)
openssh 116 (76%) 11 (7%) 25 (16%) 0 (0%)
postgres 132 (42%) 108 (34%) 59 (19%) 18 (5%)
squid 115 (66%) 38 (22%) 21 (12%) 0 (0%)

Total 386 (57%) 160 (24%) 113 (17%) 18 (3%)

Finding 8: For non-error event logging, developers re-

consider the trade-off between multiple verbosity levels.

It might indicate that developers are often confused when

estimating the cost (e.g., excessive messages, logging over-

head) and benefit afforded by each verbosity level.

Implications: The scalar design of current verbosity level

may not be a good way to help developers with such

logging decision. Adaptive logging in runtime, similar to

adaptive sampling [11], can help balancing the trade-off by

dynamically backing-off the logging rate.

In Table VIII, more than half (57%) of the non-error ver-

bosity level modifications are changing between two verbose

levels. In all the studied software, verbose levels are not

enabled by default, meaning that they are mostly used during

in-house testing. Therefore, the logging overhead may be

less of concern when developers make such adjustments.

Instead, developers probably are more concerned about

balancing the amount of logs: too excessive logging would

rather make noises for failure diagnosis, but insufficient

logging would miss important runtime information.

One of the possible causes for such many adjustments

within verbose levels might be because no clear division

among multiple verbose levels is given in terms of purpose

of use, benefit, and cost, resulting in confusing developers

when deciding among the verbose levels. For example, in

Squid, there are 7 debug levels out of total 10 verbosity

levels, but no guidance for which cases they should be used.

Indeed, in their header file, developers wrote a comment

saying “level 2-8 are still being discussed amongst the de-

velopers”. We surmise that developers would decide which

Table IX
MODIFICATIONS TO IMPROVE VARIABLE LOGGING (*: E.G.

FROM INTEGER FORMAT TO FLOAT FORMAT)

software. total
add replace delete change
var. var. var. format(*)

apache 228 81 68 15 64
openssh 599 348 106 24 121
postgres 1224 839 184 102 99
squid 429 278 45 26 80

Total 2480
1546 403 167 364
(62%) (16%) (7%) (15%)

level to use arbitrarily at the first place and often revisit the

decision later.

Figure 4. Example from PostgreSQL of a verbosity level demotion
from default level (non-erroneous) to verbose level, together with
developers’ commit log.

For non-error logging with default level (e.g., bookkeep-

ing with info), developers may need to carefully consider

more factors since it would directly affect production run.

For example, Figure 4 shows that PostgreSQL users com-

plained about the excessive log messages, and thus develop-

ers demote the previous default level (LOG) to verbose level

(DEBUG). Interestingly the developers originally assigned a

default level because the event was in some new code that

potentially is buggy, but it resulted in excessive logging at

a user site. In addition, of course developers may need to

consider logging overhead in production run.

Overall, setting the verbosity level by considering all

those factors may not be easy at the first place, or need

further adjustment as software and environment changes.

Unfortunately, the current scalar design of verbosity level

does not provide enough information for developers. To

help developers, systematic and dynamic logging tools or

assists, such as adaptive logging [11], are needed. Instead

of using a statically assigned verbosity, adaptive logging

exponentially decreases logging rate when a certain logging

statement is executed many times, only recording its 2
n

dynamic occurrences. Such strategy will reduce both the

amount of logs and performance overhead, while preserving

the first several occurrences of each log message.

VI. MODIFICATIONS TO VARIABLE LOGGING

Table IX shows how developers improved variable log-

ging. Majority of them are adding new variables to original

logging code, which could provide more dynamic informa-

tion for failure diagnosis. For example, in Figure 5, a user of

7

Bug Report from user:
User: Error when setting client encoding to UTF-8, with error message:

 failed to commit client_encoding!

Dev: Cannot reproduce the bug… Asking for more details…
… … … …

Dev: “Fixed the bug. Motivated by this report, should always

 include the parameter value we failed to assign. “

Patch:
if (!(*conf->assign_hook) (newval, true, PGC_S_OVERRIDE))

-! elog(ERROR, "failed to commit %s”, conf->gen.name);

+ elog(ERROR, "failed to commit %s as %d”, conf->gen.name, newval);

Figure 5. Example of adding variable values to log message.

Patch:

ap_log_cerror(APLOG_INFO, 0, c,

 “Connection to child %ld closed with %s shutdown”

- “(client %s)”, c->id, type, c->remote_uri);

+ c->id, type);

Commit log:

“It is VERY IMPORTANT that you not log any raw data from the

network, such as the request-URI or request header fields. Doing

so makes the server vulnerable to a denial-of-service attack. “

Deleted

Figure 6. Logging a wrong variable causing Apache vulnerable to
denial of service attack.

PostgreSQL reported a production-run failure with an error

message printed by the software. Unfortunately, developers

could not diagnose the failure due to the lack of runtime

information. Only after a couple of rounds of back-and-forth

discussion with users they resolved this. From the lessons,

later they committed a patch only to a new variable causally-

related to the logging point.

Finding 9: One fourth (27%) of the log modifications are

to variable logging. Majority (62%) of them are adding

new variables that are causally related to the log message.

It indicates that developers often need additional run-time

information to understand how a failure occurred.

Implication: Logging tools that automatically infer which

variables to log (e.g., LogEnhancer [36]) can help infor-

mative logging. Given failing and passing test cases, Delta

debugging [37] can be used to log those variable values

that are specific to a failing run.

Interestingly, once variables are introduced into logging

code, they are seldom (7%) deleted, as shown in Table IX.

Probably it is because recording unnecessary variables often

would not introduce serious concerns besides one or two

useless variable values in the log.

However, there can also be certain variables that should

not be logged, considering security and privacy concerns,

and developers should be careful to avoid them. Figure 6

shows that Apache developers deleted a variable including a

client’s URI from the logging code, since recording it could

“make the server vulnerable to denial-of-service attack”.

To further understand why variables are deleted or re-

placed in the logging code, we manually study 154 such

modifications that are randomly sampled. As a result, Ta-

ble X shows that (i) as the most dominant case, the original

logging code records wrong variables at the first place, either

Table X
VARIABLE REPLACEMENT AND DELETION. THE MARGIN OF

ERRORS ARE SHOWN AT 95% CONFIDENCE LEVEL.

wrong incon- read- redun-
other

var. sistency ability dancy

46% (±6%) 11 (%±4%) 23 (%±5%) 2 (%±2%) 18 (%±5%)

permanently_set_uid(struct passwd *pw) {

 if (temporarily_use_uid_effective)
- fatal("restore_uid: temporarily_use_uid effective");

+ fatal("permanently_set_uid: temporarily_use_uid effective");

Function name

Mismatch!

Figure 7. Example of inconsistency between log messages and the
code in OpenSSH. This patch is just to fix this inconsistency.

only by mistakes or by not being aware of security or privacy

concerns; (ii) other non-logging code was evolved but the

variable logging was not updated together, becoming incon-

sistent; (iii) an error number such as errono was printed

without interpretation, requiring replacement to readable

description; (iv) a log message includes redundant variables,

preferred to be deleted. The remaining cases, where we

cannot understand the modifications from their source code,

commit logs, or comments, belong to the “other” category.

VII. MODIFICATIONS TO STATIC CONTENT

45% of the log modifications are modifying the static

content (text) in log messages. Since it is challenging to

automatically analyze the text written in natural language,

we randomly sampled 200 modifications and studied them,

which are shown in Table XI.
Table XI

IMPROVING STATIC CONTENT OF LOG MESSAGES. THE MARGIN

OF ERRORS ARE SHOWN AT 95% CONFIDENCE LEVEL.

incon- clarifi- spell/ incorrect
others

sistency cation grammar content

39%(±6.6%) 36%(±6.5%) 18%(±5.2%) 5%(±2.9%) 2%(±1.9%)

In some cases (39%), developers modified the out-of-

date log messages that are inconsistent with the actual

execution information, which could mislead and confuse

the developers or users (please note that those consistent

updates of both log and code in the same patch are excluded

from our analysis by our analysis tool). Majority (76%) of

them are related to function name changes. For example,

in Figure 7, OpenSSH developers changed a function name

from “restore uid” to “permanently set uid” but forgot to

update the logging code to record this name. Later, they were

confused with the out-of-date log message while trying to

resolve a failure. Finally, they committed this patch just to

fix the inconsistent logging code.

Such inconsistency can be partly avoided by using pro-

gramming language support. For example, C programming

language provides a macro “ FUNCTION ” as part of the

ANSI-C99 standard, which holds the function name within

which the code is currently executing. As a good logging

practice, as shown in Figure 8, Squid started to use this

in its logging code to automatically recognize a function

8

/* HERE is a macro that you can use like this:

 * debugs(1, HERE << "some message”); */

#define HERE __FILE__<<"("<<__LINE__<<") "<<__FUNCTION__<<": ”

 Patch:

 if (fd < 0) {

-! debugs(3, "BlockingFile::open: got failure (" << errno << ")");

+ debugs(3, HERE << ": got failure (" << errno << ")");

Fixing inconsistency

using ‘HERE’

Figure 8. The use of the programming language support to hold
location information for log messages in Squid.

name and log it. This eliminates the need for developers to

manually record or update a location information, avoiding

the inconsistent update problem at the first place.

To detect other inconsistent updates (e.g., an event to log

and its description), it would be beneficial to use natural

language processing together with static source code analy-

sis, similar to iComment [29] which uses natural language

processing to automatically analyze comment and source

code in order to detect inconsistency.

Finding 10: More than one third (39%) of modifications

to static content are fixing inconsistency between logs and

actual execution information intended to record. Software

can leverage programming language support to eliminate

some of the inconsistency, as Squid does.

Implication: Tools combining natural language processing

and static code analysis can be designed to detect such

inconsistency.

Bug Report from user: Confusing message in log file
“I changed the postgresql.conf file, and see the following messages:

so I expect both newly enabled “archive_command” and “shared_buffers”

not to take effect…. But in fact, “archive_command” does take effect.”

Patch:
ereport (ERROR,

-! “parameter \”%s\” cannot be changed after server start;”, gconf->name

-! “configuration file change ignored”

+ “attempted change of parameter \”%s\” ignored,”, gconf->name

+ “This parameter cannot be changed after server start”

parameter “shared_buffers” cannot be changed after server start; !

configuration file change ignored!

Figure 9. Example of a log message clarification from PostgreSQL.

In some other cases (36%), developers modified static

content of log messages to clarify the event description in

it. As an example, Figure 9 shows that a log message in

PostgreSQL was unclear and thus it misled a user to believe

that all his configuration changes would lose effect, which

was not true. At the end, the modification was made only

to clarify the content of the log message.

VIII. LOCATION CHANGE

As we discussed in Finding 6, developers seldom delete

or move logging code once it is written. To understand

under which cases developers delete/move logging code,

we randomly sampled 57 such cases from the 150 location

modifications and manually examined them. The Table XII

Table XII
REASONS FOR MOVING OR DELETING LOG MESSAGES

software misleading reduce
others

failure log msg. noises

26%(±9%) 21% (±8%) 40%(±10%) 12% (±7%)

 sigusr2_handle(int sig) {

- debug(1, "sigusr2_handle: SIGUSR2 received.\n");

+ /* no debug() here; bad things happen if

 * the signal is delivered during debug()*/

I/O in signal

handler can corrupt

the system state.

Figure 10. Deleting Logging from a signal handler in Squid.

summarizes the results with the sampling errors at the 95%

confidence level.

Interestingly, 26% of the location changes were required

because the original logging code was misplaced and re-

sulted in software failures. For example, logging in sig-

nal/interrupt handlers is dangerous since the non-reentrant

I/O operations during logging might corrupt system states

and open up vulnerabilities. Figure 3 shows a patch to

delete such a problematic logging code from a signal han-

dler in Squid. In addition, logging variables before their

initialization would result in system crash or misbehavior;

logging non-error events with fatal verbosity level will

unnecessarily terminate the software execution. To identify

these problems above, in-house testing tools and static

analysis tools [8] can be extended to explore logging place.

For example, we can use static analysis to detect logging

statements within interrupt handlers and the use of unini-

tialized variables.

In some cases, developers delete some misleading log

messages (e.g, an error message printed under a non-error

situation). From several commit logs, we find that some

developers tend to actively log certain events simply with the

error verbosity level for the purpose of in-house testing,

then forgot to completely delete them before the production

release. In other cases, log messages are moved out of

a loop body or combined into one that can summarize

them, probably in order to avoid overhead and noises from

excessive logging. Finally, the “others” category includes the

cases that we cannot clearly understand.

IX. VERBOSITY LEVEL CHECKER

To show the feasibility of automatic logging assistance

from our findings, we designed a simple verbosity-level

checker which helps identify certain type of problematic

verbosity-level assignment. This is motivated by the signif-

icant number of verbosity-level adjustments (Finding 7).

Our checker is based on the observation that if the logging

code within the similar code snippets have inconsistent ver-

bosity levels, at least one of them is likely to be incorrect [9],

[15], [10], [33]. First, the tool identifies all the code clones

in the source code (we used CP-Miner [15] to detect code

clones). Then, it further checks each pair of clones to see

whether they contain logging code and their verbosity levels

are consistent.

9

Table XIII
VERBOSITY-LEVEL INCONSISTENCY DETECTED.

apache openssh postgres squid

Inconsistency 12 4 89 33

As a result, our checker detected 138 inconsistent pairs

of logging code, as shown in Table XIII. We reported 45

cases to the developers. 24 of them are confirmed and

fixed [27], 10 are confirmed as false positives where the

cloned code snippets are in different contexts so they should

have different verbosity levels [27], and the remaining ones

are not being responded.

This result shows that based on our finding, even a simple

checker can effectively help for better logging. It confirms

that the first important step towards systematic and automatic

supports for better software logging is to understand the

current manual efforts for logging, which is exactly the goal

of this work.

X. RELATED WORK

Logging effectiveness study: Two pieces of recent

work [35], [13] studied the effectiveness of logging in failure

diagnosis as one part of their work. LogErr [35] character-

ized the problem of lacking of log messages for diagnosis,

and suggest to check generic error conditions and log all

detected errors (i.e., where to log). They further proposed a

tool to automatically insert error messages for those generic

error conditions. In contrast, we focus on many other aspects

of logging decisions, such as verbosity levels, static content,

variable values, etc. In particular, LogErr studied failures, but

not programmer’s modifications on existing log messages.

Also it only studied the default-mode log messages, where

as we study all the messages in this work. Therefore, all of

our findings except finding 2 are unique to this work.

Jiang et al. [13] mainly studied the correlations among

root causes of storage system failures, impact and diagnosis

time. One of their finding confirms the benefit of logging,

but does not provide detailed efficacy of logging practices.

Logging improvement: There have been some work

to help systematically improve logging. Some can help

developers in inserting new log messages, but only for

error conditions [35], [4], [24], [3]. SMELL [4] detects

some exception handling code which is not logged or

inappropriately logged. Some other work [24], [3] propose

to generate error checking code (e.g., assertions) from a

program specifications, which provide natural logging places

for error messages. LogEnhancer [36] can suggest new

variable values to be recorded in each existing log message

by analyzing the source code.

Our work is complementary to the tools for log improve-

ment as the characteristics of logging practice we reveal can

be used to either support the usefulness of these tools and

inspire future tools.

Log analysis work: Many systems analyze the production-

run logs for post-mortem diagnosis [32], [34], [18], [17].

Some [32], [18] of them learn statistical signatures to detect

and diagnose anomalies. SherLog [34] infers the partial

execution paths by mapping log messages to source code.

Mariani and Pastore [17] analyze logs to learn the correct

dependency between log messages from the normal execu-

tions, and use the information to identify anomalies in failed

executions. The effectiveness of these work depends on the

quality of log messages, thus can potentially benefit from

our study.

XI. CONCLUSIONS

This paper presents the first (to the best of our knowledge)

attempt to study the practice of software log messages using

four pieces of large open-source software. We first quantify

the pervasiveness and the benefit of software logging. By

further studying developers’ own modifications on their log

messages, we found they often cannot get the log messages

right after the first attempts. In particular, developers spend

significant efforts in modifying the verbosity level, static

text, and variable values of log messages in various ways,

but rarely change the message locations. By identifying these

common log-modification efforts that are done manually,

we reveal many opportunities for tools, compiler and pro-

gramming language support to improve the current logging

practices. Such benefit of our findings is confirmed by a

simple checker we built, which is motivated by identifying

developers’ large amount of manual efforts in modifying the

verbosity level, that can effectively detect 138 new pieces of

problematic logging code .

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insight-

ful feedback. This research is supported by NSF CNS-

0720743 grant, NSF CCF-0325603 grant, NSF CNS-

0615372 grant, NSF CNS-0347854 (career award), NSF

CSR Small 1017784 grant and NetApp Gift grant.

REFERENCES

[1] ArcSight Log analysis. http://www.arcsight.com/Logger.
[2] T. Ball and S. K. Rajamani. The SLAM project: debugging

system software via static analysis. In Proceedings of the
29th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL), pages 1–3, 2002.

[3] L. Baresi and M. Young. Toward translating design con-
straints to run-time assertions. Electron. Notes Theor. Comput.
Sci., 116:73–84, January 2005.

[4] M. Bruntink, A. v. Deursen, and T. Tourwé. Discovering
faults in idiom-based exception handling. In Proceedings
of the 28th international conference on Software engineering
(ICSE), pages 242–251, 2006.

[5] Cisco system log management. http://www.cisco.com/en/US/
docs/voice ip comm/cucm/service/3 3 2/ccmsrvs/sssyslog.
html.

[6] Dell. Streamlined Troubleshooting with the Dell system E-
Support tool. Dell Power Solutions, 2008.

10

[7] EMC seen collecting and managing log as key driver for 94
percent of customers. http://www.rsa.com/press release.aspx?
id=7596.

[8] D. Engler, B. Chelf, and A. Chou. Checking system rules
using system-specific, programmer-written compiler exten-
sions. In Proceedings of the 4th conference on Symposium
on Operating System Design & Implementation (OSDI), pages
1–16, 2000.

[9] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In Proceedings of the eighteenth ACM
symposium on Operating systems principles (SOSP), pages
57–72, 2001.

[10] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su. Scalable
and systematic detection of buggy inconsistencies in source
code. In Proceedings of the ACM international conference
on Object oriented programming systems languages and
applications (OOPSLA), pages 175–190, 2010.

[11] M. Hauswirth and T. M. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling. In Pro-
ceedings of the 11th international conference on Architectural
support for programming languages and operating systems,
ASPLOS-XI, pages 156–164, 2004.

[12] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection
techniques and tools. Computer, 30:75–82, 1997.

[13] W. Jiang, C. Hu, S. Pasupathy, A. Kanevsky, Z. Li, and
Y. Zhou. Understanding customer problem troubleshooting
from storage system logs. In Proccedings of the 7th confer-
ence on File and storage technologies (FAST), pages 43–56,
2009.

[14] B. W. Kernighan and R. Pike. The Practice of Programming.
Addison-Wesley, 1999.

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A Tool for
Finding Copy-paste and Related Bugs in Operating System
Code. In Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation (OSDI), pages
176–192, 2004.

[16] Apache Logging Services - Log4j. http://logging.apache.org/
log4j.

[17] L. Mariani and F. Pastore. Automated identification of failure
causes in system logs. In Proceedings of the 2008 19th
International Symposium on Software Reliability Engineering
(ISSRE), pages 117–126, 2008.

[18] L. Mariani, F. Pastore, and M. Pezzè. A toolset for automated
failure analysis. In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pages 563–566,
2009.

[19] J. C. Munson and S. G. Elbaum. Code churn: A measure for
estimating the impact of code change. In Proceedings of the
International Conference on Software Maintenance (ICSM),
pages 24–31, 1998.

[20] N. Nagappan and T. Ball. Use of relative code churn measures
to predict system defect density. In Proceedings of the 27th
international conference on Software engineering (ICSE),
pages 284–292, 2005.

[21] NetApp. Proactive health management with auto-support.
NetApp White Paper, 2007.

[22] Netcraft report: Apache httpd is the most popular
webserver. http://news.netcraft.com/archives/category/web-
server-survey/.

[23] Lessons from the success of ssh. http://www.cs.virginia.edu/
∼drl7x/sshVsTelnetWeb3.pdf.

[24] M. Pezzè and J. Wuttke. Automatic generation of runtime
failure detectors from property templates. In B. H. Cheng,
R. Lemos, H. Giese, P. Inverardi, and J. Magee, editors,
Software Engineering for Self-Adaptive Systems, pages 223–
240. Springer-Verlag, Berlin, Heidelberg, 2009.

[25] SLOCCount: Source Lines Of Code Count. http://www.
dwheeler.com/sloccount/.

[26] Splunk Log management. http://www.splunk.com/view/log-
management/SP-CAAAC6F.

[27] Squid bug report 3319. http://bugs.squid-cache.org/show
bug.cgi?id=3319.

[28] RFC3164 – the BSD Syslog protocol. http://tools.ietf.org/
html/rfc3164.

[29] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment:
Bugs or bad comments? */. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles
(SOSP), pages 145–158, 2007.

[30] Top 10 Enterprise database systems to consider.
http://www.serverwatch.com/trends/article.php/3883441/Top-
10-Enterprise-Database-Systems-to-Consider.htm.

[31] D. Wessels. Squid: The Definitive Guide. O’Reilly, 2004.
[32] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.

Detecting large-scale system problems by mining console
logs. In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (SOSP), pages 117–132, 2009.

[33] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Trans. Softw. Eng., 30:574–586, September 2004.

[34] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupa-
thy. SherLog: Error diagnosis by connecting clues from run-
time logs. In Proceedings of the fifteenth edition of ASPLOS
on Architectural support for programming languages and
operating systems (ASPLOS), pages 143–154, 2010.

[35] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, Y. Zhou,
and S. Savage. Did you log the error? Characterizing and
improving software error reporting. Technical Report.

[36] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improv-
ing software diagnosability via log enhancement. In Proceed-
ings of the sixteenth international conference on Architectural
support for programming languages and operating systems
(ASPLOS), pages 3–14, 2011.

[37] A. Zeller. Isolating cause-effect chains from computer pro-
grams. In Proceedings of the 10th ACM SIGSOFT symposium
on Foundations of software engineering, SIGSOFT’02/FSE-
10, pages 1–10, 2002.

11

