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Abstract

Light transport algorithms generate realistic images by simulating the emission and scatter-

ing of light in an artificial environment. Applications include lighting design, architecture,

and computer animation, while related engineering disciplines include neutron transport and

radiative heat transfer. The main challenge with these algorithms is the high complexity of

the geometric, scattering, and illumination models that are typically used. In this disserta-

tion, we develop new Monte Carlo techniques that greatly extend the range of input models

for which light transport simulations are practical. Our contributions include new theoreti-

cal models, statistical methods, and rendering algorithms.

We start by developing a rigorous theoretical basis for bidirectional light transport al-

gorithms (those that combine direct and adjoint techniques). First, we propose a linear op-

erator formulation that does not depend on any assumptions about the physical validity of

the input scene. We show how to obtain mathematically correct results using a variety of

bidirectional techniques. Next we derive a different formulation, such that for any physi-

cally valid input scene, the transport operators are symmetric. This symmetry is important

for both theory and implementations, and is based on a new reciprocity condition that we

derive for transmissive materials. Finally, we show how light transport can be formulated as

an integral over a space of paths. This framework allows new sampling and integration tech-

niques to be applied, such as the Metropolis sampling algorithm. We also use this model to

investigate the limitations of unbiased Monte Carlo methods, and to show that certain kinds

of paths cannot be sampled.

Our statistical contributions include a new technique called multiple importance sam-

pling, which can greatly increase the robustness of Monte Carlo integration. It uses more

than one sampling technique to evaluate an integral, and then combines these samples in a
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way that is provably close to optimal. This leads to estimators that have low variance for

a broad class of integrands. We also describe a new variance reduction technique called

efficiency-optimized Russian roulette.

Finally, we link these ideas together to obtain new Monte Carlo light transport algo-

rithms. Bidirectional path tracing uses a family of different path sampling techniques that

generate some path vertices starting from a light source, and some starting from a sensor.

We show that when these techniques are combined using multiple importance sampling, a

large range of difficult lighting effects can be handled efficiently. The algorithm is unbiased,

handles arbitrary geometry and materials, and is relatively simple to implement.

The second algorithm we describe is Metropolis light transport, inspired by the Me-

tropolis sampling method from computational physics. Paths are generated by following a

random walk through path space, such that the probability density of visiting each path is

proportional to the contribution it makes to the ideal image. The resulting algorithm is un-

biased, uses little storage, handles arbitrary geometry and materials, and can be orders of

magnitude more efficient than previous unbiased approaches. It performs especially well

on problems that are usually considered difficult, e.g. those involving bright indirect light,

small geometric holes, or glossy surfaces. To our knowledge, this is the first application of

the Metropolis method to transport problems of any kind.
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Chapter 1

Introduction

The goal of this dissertation is to develop robust, general-purpose algorithms for solving

light transport problems. To meet our goal of generality, we concentrate on Monte Carlo

methods. Currently, only Monte Carlo approaches can handle the wide range of surface ge-

ometries, reflection models, and lighting effects that occur in real environments. By arobust

algorithm, we mean one that produces an acceptably accurate output for as wide a range of

inputs as possible. In this dissertation, we make substantial progress toward these goals,

by developing new theoretical models, statistical methods, and rendering algorithms. We

also investigate what cannot be achieved — the inherent limitations of certain approaches

to light transport.

Despite a great deal of research, current light transport methods are fairly limited in their

capabilities. They are optimized for a very restricted class of input models, and typically re-

quire a huge increase in resources to handle other types of inputs. For example, they often

have problems on scenes with strong indirect lighting, or scenes where most surfaces are

non-diffuse. These are not pathological examples by any means, and in fact there is consid-

erable interest in solving these cases well (e.g. in architectural applications).

For light transport algorithms to be widely used, it is important to find techniques that

are less fragile. Rendering algorithms must run within acceptable time bounds on real mod-

els, yielding images that are physically plausible and visually pleasing. They must support

complex geometry, materials, and illumination, since these are all important components of

real environments.

1
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In our research, we seek to develop algorithms with reasonable, predictable performance

over the widest possible range of real models. Because we have chosen to focus on Monte

Carlo approaches, which support complex geometry and materials with relative ease, our

main interest is to develop algorithms that can handle complex illumination efficiently. This

includes features such as glossy surfaces, concentrated indirect lighting, small geometric

objects, and caustics, all of which cause problems for a wide variety of current rendering

algorithms. Our goal is to find general-purpose algorithms that handle these difficult cases

well, without special treatment; in other words, light transport algorithms that are robust.

In the following sections, we start with an overview of the light transport problem and

why it is important. We also discuss our assumptions about the transport model (discussed

in more detail in Section 1.5). After this brief introduction, we summarize the original con-

tributions of this dissertation, and outline its organization.

In the rest of the chapter, we step back to see how these results fit into a larger context. In

Section 1.4 we give a high-level view of the various types of light transport algorithms used

in graphics, and explain the advantages of unbiased Monte Carlo algorithms. In Section 1.5,

we consider the various phenomena that occur with real light (such as diffraction), and the

reasons why these phenomena are easy or difficult to simulate. Finally, in Section 1.6 we

look at problems from physics and engineering that are closely related to light transport.

The viewpoints in these other fields are often quite different from one another, which has

led to a variety of different solution techniques for problems that are actually quite similar.

1.1 The light transport problem

In computer graphics, the simulation of light transport is a tool that helps us to create con-

vincing images of an artificial world. We are given a description of the environment, in-

cluding the geometry and scattering properties of the surfaces. We are also given a descrip-

tion of the light sources, and the viewpoints from which images should be generated. Light

transport algorithms then simulate the physics of this world, in order to generate realistic,

accurate images.
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1.1.1 Why light transport is important

One of the main goals of light transport algorithms is to increase human efficiency in the

modeling of realistic virtual environments. In computer animations, for example, a great

deal of effort is currently spent on designing realistic lighting. The main problem is that the

algorithms used for production work (such as scan-line rendering and ray tracing) do not

have the ability to simulate indirect lighting. Thus indirect illumination does not happen

automatically when lights are placed: instead, it must be imitated by carefully placing ad-

ditional lights. If we could find robust light transport algorithms, then the indirect lighting

could be computed automatically, which would make the lighting task far easier.

Another important application of light transport is predictive modeling, where we wish

to predict the appearance of objects before they are built. This idea has obvious uses in

architecture and product design. For these applications, it is important that the results be

objectively accurate, as well as visually pleasing.

Finally, better techniques for light transport in graphics may lead to better methods in

physics and engineering, because light transport has a structure that is similar to radiation

and particle transport problems. Section 1.6 discusses these possibilities in detail.

If robust light transport algorithms can be found, it seems inevitable that they will be

widely used. This would continue a trend for computer software in general, whereby al-

gorithms that are simpler or more powerful are eventually favored over those designed for

efficiency in special cases. We feel that the benefits of accurate light transport simulations

will soon outweigh their moderate computational costs.

1.1.2 Assumptions about the transport model

Light transport algorithms do not simulate the behavior of light in every detail, since this

is not necessary for most applications.1 From a graphics standpoint, physical optics is best

thought of as a menu of options. For each application, we decide which optical effects are

important, and choose an algorithm that can simulate them.

1Strictly speaking, it is not even possible, since the laws of physics are not completely known. However,
the theory of light and its interaction with matter is one of the best that physics has to offer, and can predict
virtually every observed phenomenon with great accuracy [Feynman 1985]. For the purposes of computer
graphics, we can assume that these laws are completely understood.
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In our work, we generally assume a geometric optics model. Light is emitted, scattered,

and absorbed only at surfaces, and travels along straight lines between these surfaces. Thus,

we do not allow participating media such as clouds or smoke, or media with a continuously

varying index of refraction (e.g. heated air). We also ignore most properties of light that

depend on a wave or quantum model for their explanation (e.g. diffraction or fluorescence).

In particular, we ignore the possibility of interference between light beams, i.e. light is as-

sumed to be perfectly incoherent.

In normal environments, the effects we have ignored are not very significant. Geometric

optics is adequate to model almost everything we see around us, to a high degree of accuracy.

For this reason, virtually all light transport algorithms in graphics are based on assumptions

similar to those above. Later in this chapter, we will investigate some of the other choices

that could have been made (see Sections 1.5 and 1.6).

1.2 Summary of original contributions

Our contributions fall into three areas: new theoretical models, new statistical methods, and

new rendering algorithms. We give an overview of each of these areas, and then discuss our

results in detail.

The first part of this dissertation investigates the theory of bidirectional light transport

algorithms. We have developed light transport models that are simple, mathematically pre-

cise, and reveal the structure of the light transport problem in useful ways. In particular we

have studied the relationships between different bidirectional solution techniques (e.g. those

based on light and importance) under different assumptions about the physical validity of

the scene model. These new light transport formulations have led directly to new insights

and rendering techniques.

Statistical methods are another vital component of Monte Carlo algorithms. In the pro-

cess of investigating light transport algorithms, we have developed new general-purpose

methods for variance reduction. We isolated these techniques and presented them in an ab-

stract setting, since we believe that they will be useful in other contexts.
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Finally, our main contribution has been the development of robust light transport algo-

rithms. The principal advantage of these algorithms is their ability to handle complex illu-

mination efficiently. Because of their Monte Carlo nature, they also support complex scat-

tering models and surface geometries. The combination of these properties allows a wide

variety of realistic scenes to be rendered in a reasonable, predictable amount of time, even

when there is difficult indirect illumination.

1.2.1 Bidirectional light transport theory in computer graphics

A general linear operator formulation. We present a simple light transport model based

on linear operators, extending the work of Arvo [1995]. This new formulation unifies light

transport, importance transport, and particle tracing, and concisely summarizes the relation-

ships among them. We do not make any assumptions about the physical validity of the scene

model, which gives our framework a richer structure than previous approaches.

New examples of non-symmetric scattering. Certain materials must be treated specially

in light transport algorithms, namely those whose bidirectional scattering distribution func-

tion (BSDF) is not symmetric. We discuss two common examples of this that have not been

previously recognized. Specifically, we show that non-symmetric scattering occurs when-

ever light is refracted, and also whenever shading normals are used. We derive the transfor-

mations required to handle these situations correctly in bidirectional algorithms. We also

show that if these new transformations are not used, there can be substantial errors and im-

age artifacts.

A reciprocity principle for general materials. It is well known that the reflection of light

from physically valid materials is described by a symmetric BSDF. We derive a general-

ization of this condition that holds for arbitrary materials (i.e. for transmission as well as

reflection). We establish this new reciprocity principle using the laws of thermodynamics,

in particular Kirchhoff’s laws and the principle of detailed balance. We also discuss the his-

torical origins of reciprocity principles, the subtleties involved in their justification, and the

conditions under which they are valid.
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A self-adjoint operator formulation. Taking advantage of this new reciprocity principle,

we propose the first light transport formulation in which the linear operators are self-adjoint

(symmetric) for all physically valid scenes. We show that this simplifies both the theory and

implementation of bidirectional light transport algorithms.

The path integral formulation. Usually the light transport problem is expressed in terms of

integral equations or linear operators. Instead, we show how to formulate it as an integration

problem over a space of paths. This viewpoint allows new solution techniques to be applied,

such as multiple importance sampling, or the Metropolis sampling algorithm.

The inherent limitations of unbiased Monte Carlo methods. We show that certain kinds

of transport paths cannot be generated by standard sampling techniques. This implies that

the images generated by unbiased Monte Carlo algorithms (such as path tracing) can be

missing certain lighting effects. We analyze the conditions under which this occurs, and

propose methods for making these path sampling algorithms complete.

1.2.2 General-purpose Monte Carlo techniques

Multiple importance sampling. We describe a new technique for constructing estimators

that are robust, i.e. whose variance is low for a broad class of integrands. It is based on

the idea of using more than one sampling technique to evaluate an integral, where each

technique is designed to sample some feature of the integrand that might otherwise lead to

high variance. Our key results are on how to combine the samples: we present combination

strategies that are provably close to optimal, compared to any other unbiased method. This

leads to low-variance estimators that are useful in a variety of problems in graphics, includ-

ing distribution ray tracing, multi-pass radiosity algorithms, and bidirectional path tracing.

Efficiency-optimized Russian roulette. Russian roulette is a technique that reduces the av-

erage cost of sampling, but increases variance. We propose a new optimization that trades

off one property against the other, in order to maximize the efficiency of the resulting es-

timator. This is particularly useful in the context of visibility tests, where often there are

many samples that only make a small contribution.
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1.2.3 Robust light transport algorithms

Bidirectional path tracing. We propose a new light transport algorithm based on the idea

of using a family of different sampling techniques for paths, and then combining them us-

ing multiple importance sampling. Each path is generated by connecting two independently

generated subpaths, one starting from the light sources and the other starting from the eye.

By varying the lengths of the light and eye subpaths, we obtain a family of different sam-

pling techniques. We show that each technique can efficiently sample different kinds of

paths, and that these paths are responsible for different lighting effects in the final image.

By combining samples from all of these techniques using multiple importance sampling, a

wide range of different lighting effects can be handled efficiently.

We describe the complete set of bidirectional estimators, including the important special

cases where the light or eye subpath has at most one vertex. We also discuss extensions for

handling ideal specular surfaces, arbitrary path lengths, and efficient visibility testing.

Metropolis light transport. We propose a new Monte Carlo approach to the light transport

problem, inspired by the Metropolis sampling method in computational physics. To render

an image, we generate a sequence of light transport paths by randomly mutating a single

current path (e.g. a mutation might add a new vertex to the path). Each mutation is accepted

or rejected with a carefully chosen probability, to ensure that paths are sampled according

to the contribution they make to the desired final image. In this way we construct a random

walk over the space of transport paths, such that an unbiased image can be formed by simply

recording the locations of these paths on the image plane.

This algorithm is unbiased, handles general geometric and scattering models, uses little

storage, and can be orders of magnitude more efficient than previous unbiased approaches.

It performs especially well on problems that are usually considered difficult, e.g. those in-

volving bright indirect light, small geometric holes, or glossy surfaces. Furthermore, it is

competitive with previous unbiased algorithms even on scenes with relatively simple illu-

mination.

The key advantage of the Metropolis approach is that the path space is explored locally,
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by favoring mutations that make small changes to the current path. This has several conse-

quences. First, the average cost per sample is small (typically only one or two rays). Sec-

ond, once an important path is found, the nearby paths are explored as well, thus amortizing

the expense of finding such paths over many samples. Third, the mutation set is easily ex-

tended. By constructing mutations that preserve certain properties of the path (e.g. which

light source is used) while changing others, we can exploit various kinds of coherence in

the scene. It is often possible to handle difficult lighting problems efficiently by designing

a specialized mutation in this way.

To our knowledge, this is the first application of the Metropolis algorithm to transport

problems of any kind.

1.3 Thesis organization

The first two chapters consist of introductory and background material. In the rest of Chap-

ter 1, we discuss the advantages and disadvantages of various types of light transport al-

gorithms, we examine the range of optical phenomena that can be simulated by such algo-

rithms, and we compare light transport to similar problems in other fields. In Chapter 2, we

give an introduction to Monte Carlo integration, including a survey of the variance reduction

techniques that have proven most useful in computer graphics.

The remainder of the dissertation is divided into two parts. In the first part, we describe

new theoretical models for bidirectional light transport algorithms. Chapter 3 develops the

concepts of radiometry and gives an introduction to the standard light transport equations. It

also describes a new measure-theoretic basis for defining radiometric quantities. Chapter 4

presents a new light transport model based on linear operators. This formulation does not

make any assumptions about the physical validity of the scene model. Chapter 5 investigates

the situations where this model is necessary, i.e. materials whose scattering properties are

not symmetric. We give both physical and non-physical examples of such materials, and we

derive the techniques needed to handle these materials correctly in bidirectional algorithms.

In Chapter 6, we investigate how the scattering of light from materials is constrained

by the laws of physics, and we derive a new reciprocity principle for general materials. In

Chapter 7, this principle is used to construct the first light transport framework where light,
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importance, and particles obey the same transport equations for any physically valid scene.

Finally, Chapter 8 describes the path integral framework, which forms the basis of our new

light transport algorithms.

The second part of the dissertation is more practical in nature. Chapter 9 describes mul-

tiple importance sampling, a general tool for reducing the variance of Monte Carlo integra-

tion. In Chapter 10, we apply this tool to the path integral framework, to obtain the bidirec-

tional path tracing algorithm. Finally, Chapter 11 builds upon the path integral framework

in a different way, by combining it with a well-known sampling technique from computa-

tional physics to obtain the Metropolis light transport algorithm.

1.4 Light transport algorithms

Within the field of computer graphics, many different algorithms have been proposed for

solving the light transport problem. In this dissertation, we have chosen to focus on unbi-

ased, view-dependent, Monte Carlo algorithms. We first mention the various kinds of algo-

rithms that have been proposed, and then discuss the choices we have made.

1.4.1 A brief history

Light transport algorithms can be roughly divided into two groups: Monte Carlo methods,

and finite element methods.

Monte Carlo methods have been used for neutron transport problems since the 1950’s

[Albert 1956], and have been studied extensively there [Spanier & Gelbard 1969]. In graph-

ics Monte Carlo methods arose independently, starting with Appel [1968] who computed

images using random particle tracing. Whitted [1980] introduced ray tracing (the recursive

evaluation of surface appearance), and also suggested the idea of randomly perturbing view-

ing rays. Cook et al. [1984] implemented this idea and extended it to random sampling of

light sources, lenses, and time. This led to the first complete, unbiased Monte Carlo trans-

port algorithm as proposed by Kajiya [1986], who recognized that the problem could be

written as an integral equation, and could be evaluated by sampling paths. Since then, many
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refinements to his path tracing technique have been adapted from the particle transport lit-

erature [Arvo & Kirk 1990].

There has also been a great deal of work on biased Monte Carlo algorithms, which are

often more efficient than path tracing. These include the irradiance caching algorithm of

Ward et al. [1988], the density estimation method of [Shirley et al. 1995], and the photon

map approach of [Jensen 1995].

Finite element methods for light transport were originally adapted from the radiative

heat transfer literature. Goral et al. [1984] introduced these methods to the graphics com-

munity, where they are typically known as radiosity algorithms. Many improvements have

been made to the basic radiosity method, including substructuring [Cohen et al. 1986], pro-

gressive refinement [Cohen et al. 1988], hierarchical basis functions [Hanrahan et al. 1991],

importance-driven refinement [Smits et al. 1992], discontinuity meshing [Lischinski et al.

1992], wavelet methods [Gortler et al. 1993], and clustering [Smits et al. 1994]. Other ex-

tensions include the handling of participating media [Rushmeier & Torrance 1987], and fi-

nite element methods for non-diffuse surfaces [Immel et al. 1986, Sillion et al. 1991, Aup-

perle & Hanrahan 1993, Schröder & Hanrahan 1994].

Methods have also been proposed that combine features of Monte Carlo and finite el-

ement approaches. Typically, these take the form of multi-pass methods, which combine

radiosity and ray tracing passes in order to handle more general scene models [Wallace

et al. 1987, Sillion & Puech 1989, Chen et al. 1991]. Another approach is Monte Carlo

radiosity, where the solution is represented as a linear combination of basis functions (as

with finite element methods), but where the coefficients are estimated by tracing random

light particles [Shirley 1990b, Pattanaik & Mudur 1993, Pattanaik & Mudur 1995].

1.4.2 Monte Carlo vs. deterministic approaches

At the most basic level, a Monte Carlo algorithm uses random numbers, while a determin-

istic algorithm does not. However, in practice algorithms often use a mixture of techniques,

and are not easily classified. The distinction is further blurred by issues that have nothing

to do with random numbers per se, but that are often associated with one type of algorithm

or the other. We discuss some of these differences below.
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First, Monte Carlo algorithms are usually more general. This is a very important issue,

since the biggest source of error in light transport calculations is often the scene model it-

self. A key advantage of Monte Carlo approaches is that virtually any environment can be

modeled accurately. With deterministic algorithms, on the other hand, there are often severe

restrictions on the allowable geometry (e.g. limited to polygons) and materials (e.g. limited

to ideal diffuse reflectors).2 With these restrictions, it is difficult or impossible to model real

environments. To use these methods, we must usually resort to solving a different problem,

by modifying the scene model. Any claims about the solution “accuracy” under these cir-

cumstances are misleading at best.

Monte Carlo and deterministic approaches are also distinguished by how they access

the scene model. Deterministic algorithms usually work with explicit representations of the

scene and its properties (e.g. lists of polygons). Thus, they are strongly affected by the size

and complexity of the scene representation. On the other hand, Monte Carlo algorithms are

based on sampling, which means that the scene model is accessed through a small set of

queries (e.g. what is the first surface point intersected by a given ray?). This interface hides

the scene complexity behind a layer of abstraction, and means that rendering times are only

loosely coupled to the scene representation (for example, the scene complexity may affect

the time required for ray casting). In effect, Monte Carlo algorithms can sample the scene

to determine the information they actually need, while most deterministic algorithms are

designed to examine every detail, whether it is relevant or not.

This is an especially important issue for robustness: ideally, the performance of light

transport algorithms should depend only on what the scene represents, rather than the de-

tails of how it is represented. For example, consider a scene illuminated by a square area

light source. If this light source is replaced with a 10 by 10 grid of point sources, then the

visual results will be nearly identical. However, the performance of many light transport

algorithms will be much worse in the second case. Similarly, suppose that we replace the

same source by a pair of fluorescent bulbs covered by a translucent panel. In this case the

2Even when deterministic algorithms support “general” surfaces and reflection models, their form is often
quite limited (e.g. polynomial functions of a prespecified maximum degree). This demands an extra approx-
imation step when modeling the scene, and often this approximation is very bad and/or expensive in some
cases (e.g. for glossy surfaces).
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entire scene is illuminated indirectly, which will cause problems for many algorithms. Ide-

ally, rendering algorithms should not be sensitive to cosmetic changes of this sort. The same

comments apply to geometric complexity: whether an object is represented as a thousand

polygons or a million Bezier patches, we would like the rendering times to be as similar as

possible. Monte Carlo algorithms at least have the potential to deal with these situations

effectively, because they are based on sampling.

The distinction between Monte Carlo and deterministic methods is somewhat blurred

by the fact that Monte Carlo algorithms place very weak restrictions on the “randomness”

of the numbers they use (e.g. often the only requirement is that these numbers are uniformly

distributed). It is usually possible to design fixed sampling patterns which satisfy the same

restrictions, and this often leads to better performance (these are called quasi-Monte Carlo

methods [Niederreiter 1992]). The principle of Monte Carlo methods is not that the samples

are truly random, but that random samples could be used in their place.

1.4.3 View-dependent vs. view-independent algorithms

The purpose of all light transport algorithms in computer graphics is to produce images, i.e.

rectangular arrays of color values, suitable for display on a monitor or printing device. A

view-independent algorithm is one that computes an intermediate representation of the so-

lution, from which arbitrary views can be generated very quickly. Any other algorithm is

view-dependent, which can mean one of several things. Importance-driven methods com-

pute a solution that is defined globally, but is optimized for a particular view. That is, the

solution is detailed in the visible portions of the scene, but it may be very coarse elsewhere.

Multi-pass methods compute a global solution that is valid for all views, but where the final

rendering step to obtain an image is relatively slow (e.g. it requires ray tracing). Finally,

image space methods compute an image directly from the scene model, without trying to

represent the solution everywhere. This category includes Monte Carlo algorithms such as

path tracing.

The distinction between view-dependent and view-independent methods raises a num-

ber of interesting issues. First, these two types of algorithms generally have different pur-

poses. View-dependent methods are useful for animations, where the scene model can
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change substantially from one frame to the next. They are also the natural choice for ren-

dering still images. On the other hand, view-independent solutions are useful for interactive

applications, such as architectural walkthroughs or computer games.

One problem with “view-independent” algorithms is that they do not make any guar-

antees about the error for any particular view. Ideally, these algorithms would ensure that

every view has a small error. Instead, error is usually measured globally (averaged over the

entire scene), which implies that local errors can still be large. This means that if we render

an image of a region where the view-independent solution is particularly bad, the results can

be completely wrong.

Another problem with view-independent solutions is that they are often more expensive

than view-dependent ones, because they compute a representation of the full solution (es-

sentially solving for all views simultaneously). When non-diffuse materials are allowed,

this can be a great deal of extra work compared to computing a single view, since the ap-

pearance of glossy surfaces changes rapidly with the viewpoint.

Even if only diffuse surfaces are allowed, view-dependent algorithms are often more

efficient, since they only need to compute the portion of the solution that we are interested

in. For example, if the scene model is complex, and only a small part of it is visible, then it

can be much more efficient to compute an image directly. Image space algorithms have the

greatest potential here, since importance-driven methods do not scale as well to complex

scenes (where it can be very expensive to compute even a coarse solution over the whole

domain).

The difference between view-dependent and view-independent algorithms is actually

not as large as it might appear at first, since it is often possible to convert a view-dependent

algorithm into view-independent one. The similarity is that both types of algorithms com-

pute a finite set of linear measurements of the global solution. For a view-dependent algo-

rithm, these measurements are pixel values: each pixel is defined by integrating the light

falling on a small region of the image plane. This is closely related to the view-independent

approach, where the solution is usually represented as a linear combination of basis func-

tions. View-dependent algorithms can often be adapted to estimate the coefficients of these

basis functions, rather than the pixel values of an image, since they are both defined as linear

measurements.
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1.4.4 Unbiased vs. consistent Monte Carlo algorithms

A Monte Carlo estimator computes a value FN(X1; : : : ; XN) that is supposed to approxi-

mate some unknown quantityQ. Typically,Q is a parameter of a known density function p,

and theXi are random samples from p. The quantity FN �Q is called the error, and its ex-

pected value �[FN ] = E[FN�Q] is called the bias. The estimator is unbiased if �[FN ] = 0

for all sample sizesN , while it is consistent if the errorFN�Q goes to zero with probability

one as N approaches infinity [Kalos & Whitlock 1986].

Intuitively, an unbiased estimator computes the correct answer, on average. A biased

estimator computes the wrong answer, on average. However, if a biased estimator is also

consistent, then the average error can be made arbitrarily small by increasing the sample

size.

We argue that unbiased estimators are essential in order for light transport calculations

to be robust. This is an important point, since many algorithms used in graphics are merely

consistent.

The basic reason for preferring unbiased algorithms is that they make it far easier to

estimate the error in a solution. To have any confidence in the computed results, we must

have some estimate of this error. For unbiased algorithms, this simply involves computing

the sample variance, since any error is guaranteed to show up as random variation among

the samples. For algorithms which are merely consistent, however, we must also bound the

bias. In general this is very difficult to do; we cannot estimate bias by simply drawing a

few more samples. Bias leads to results that are not noisy, but are nevertheless incorrect.

In graphics algorithms, this error is often noticeable visually, in the form of discontinuities,

excessive blurring, or objectionable surface shading.

Unbiased algorithms are often used to generate reference images, against which other

rendering algorithms can be compared. Because unbiased methods make strong guaran-

tees about the kinds of errors that can occur, they are useful for detecting and measuring

the artifacts introduced by approximations.3 For scenes of realistic complexity, unbiased

3Improvements in unbiased algorithms may also lead to better approximation techniques. (Similarly,
[Arvo 1995] has pointed out that better analytic methods can lead to better Monte Carlo methods.) Our view-
point is that one should start with an unbiased algorithm, and adopt approximations only where they are clearly
necessary (and their effects are well-understood).
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algorithms are the only practical way to generate images that we can confidently say are

correct.

Other things being equal, it is clear that we should prefer an unbiased algorithm. The

conventional wisdom in graphics is that unbiased methods are “too expensive”, and that an

acceptable image can be achieved in less time by making approximations. However, there is

little research to support this claim. While there has been a great deal of work on light trans-

port algorithms in graphics, very little of this has been directed toward unbiased algorithms.

In our view, considerably more research is necessary before we can judge their capabilities.

One of the goals of this dissertation is to explore what can and cannot be achieved by unbi-

ased methods, to help resolve these questions.

1.5 Models of light and their implications for graphics

Light transport can be studied at many levels of abstraction, ranging from two-dimensional

“flatland radiosity” to quantum simulations. It is useful to have a variety of these mathemat-

ical models at hand, so that we can select the simplest model that is adequate for each task.

As we will see, some optical phenomena have profound implications for algorithm design,

while others can be added quite easily. It is this choice about which effects to simulate that

distinguishes different classes of rendering algorithms, and that separates light transport in

graphics from similar problems in other fields.

In the following sections, we summarize the important optical effects that occur in the

real world, and discuss their implications for light transport algorithms. Optical phenomena

are grouped according to the least-complicated optical theory that can explain them (geo-

metric, wave, or quantum optics). Each of these theories explains different aspects of the

observed behavior of light.

1.5.1 Geometric optics

Geometric optics is essentially the particle theory of light. This model can describe a wide

range of optical phenomena, including emission, diffuse and specular reflection, refraction,

and absorption. This covers most of what we see in everyday environments, which is why



16 CHAPTER 1. INTRODUCTION

so many rendering algorithms are based on geometric optics.

However, full geometric optics is too complex for most rendering applications. In com-

puter graphics we usually make more restrictive assumptions, to obtain simpler and faster

light transport algorithms.

For example, participating media are often ignored. In general, light can be emitted,

scattered, or absorbed in a three-dimensional medium, such as fog or gelatin. By ignoring

these possibilities, all scattering is assumed to happen at surfaces (which are infinitely thin).

This also implies that no energy is lost as light travels between surfaces.

In principle, it is easy to include participating media in Monte Carlo algorithms, by sim-

ply extending the ray casting procedure to sample the volume scattering and absorption

along the ray [Rushmeier 1988]. The main effort required is the implementation of addi-

tional geometric primitives. Considerably more work is necessary to implement participat-

ing media with finite element approaches, since three-dimensional volumes must be meshed

and subdivided, and the interaction with two-dimensional elements must be properly ac-

counted for [Rushmeier & Torrance 1987]. With either approach, it is easier to handle me-

dia that only absorb light (no emission or scattering), since this can be handled in the same

way as surface occlusion (these media block a fraction of the light traveling on a given ray,

rather than all or none).

Geometric optics also allows media that have a continuously varying refractive index.

This situation occurs when air is heated, for example, leading to shimmering “mirage” ef-

fects. In theory, this effect makes the light transport problem much more complicated, since

beams of light no longer travel in straight lines between surfaces. Instead, they follow

curved trajectories described by the eiconal equation [Born & Wolf 1986], which must be

integrated in small steps to determine the path of a beam. To check for “visibility” between

two points (i.e. the existence of an optical path that connects them), we must solve a difficult

optimization problem. Some of these problems can be alleviated by making approximations

[Stam & Languenou 1996]. However, since this effect is not important for most graphics

models, it is usually just ignored.

Another common assumption is that light is monochromatic (i.e. that it has a single fre-

quency). This is usually just a convenience, to simplify the description of algorithms. It

is usually straightforward to deal with polychromatic light, by calculating with full spectra
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rather than monochromatic intensities. Operations on spectra are usually handled through

a generic interface, so that different spectral representations can be substituted easily. A

large number of representations have been proposed, with various tradeoffs between accu-

racy and expense [Hall 1989, Peercy 1993]. Sometimes, it is argued that polychromatic light

can be handled by simply repeating a monochromatic algorithm at different wavelengths.

However, this is rarely a good idea. Many calculations must be repeated separately at each

wavelength, and any variations between the results at different wavelengths (for example,

the mesh resolution or the location of random samples) can lead to objectionable color ar-

tifacts.

Similarly, transmission through surfaces is often disallowed. Again, this is usually just

a convenience in describing algorithms. Transmission can be handled just like reflection,

except that light is scattered to the opposite side of the surface. However, some care must

be taken when the refractive index changes from one side to the other, since the radiance of

a light beam changes according to the square of refractive index (see Chapter 5). Also, the

index of refraction may depend on the frequency of the incident light, leading to the familiar

rainbow effect known as dispersion.

For some algorithms, ideal specular scattering is not supported. This includes reflec-

tion by mirrors, and refraction between water and air. This is mainly a problem for algo-

rithms that require an explicit representation of the scattering properties of a surface (e.g. as

a polynomial function). In these representations, mirror-like surfaces correspond to Dirac

delta distributions, which are not easily handled. If specular surfaces are supported by

these algorithms at all, it is often only large, flat mirrors, which can be handled by reflect-

ing the environment around the plane of the mirror, and treating the mirror as a window

[Rushmeier 1986, Wallace et al. 1987, Rushmeier & Torrance 1990]. It is relatively easy to

support specular surfaces in Monte Carlo algorithms, although this may add considerable

variance to the calculations (see Chapter 8).

Finally, some algorithms support only ideal diffuse reflection (or transmission). A dif-

fuse surface appears equally bright from all viewing directions; the direction in which a

photon is scattered does not depend on how it arrived. This is a serious limitation, since

real scenes contain a wide variety of materials, and it is often the variation in their scatter-

ing properties that makes an image look interesting or real.
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The main advantage of diffuse surfaces is that their appearance depends only on posi-

tion, rather than position and direction. This reduces a four-dimensional problem to a two-

dimensional one, which can obviously lead to simpler algorithms. However, it is usually

quite difficult to convert an algorithm the other way, from diffuse surfaces to general materi-

als. Some algorithms handle surfaces that are a linear combination of ideal diffuse and ideal

specular, but this is not at all the same as supporting general scattering functions. There are

also some algorithms which appear to be general, but where in fact only diffuse surfaces are

handled efficiently (e.g. other materials are handled via distribution ray tracing). Claims of

generality for these algorithms are misleading, since they do not perform well unless most

surfaces are diffuse. For testing generality, it is perfectly reasonable to use a scene with no

ideal diffuse materials, since these materials do not exist in the real world.

1.5.2 Wave optics

Light can also be regarded as an electromagnetic wave [Born & Wolf 1986]. This model

explains all of the phenomena handled by geometric optics, plus a few more. It is not al-

ways necessary to simulate the wave model of light to obtain wave effects. For example,

polarization can be added quite easily to rendering systems based on geometric optics. In

fact, the models of light transport in graphics often combine features from all three optical

theories.

One effect exhibited by waves is diffraction, which causes light to “bend” slightly

around obstacles. While diffraction is rarely noticeable at human scales, it cannot be ne-

glected for small objects (e.g. those which are less than ten wavelengths across). This is

an important issue in predicting reflection from rough surfaces, for example by simulating

light transport at the microgeometry level [He et al. 1991]. However, it is difficult to incor-

porate diffraction into most light transport algorithms, since it violates the assumption that

light travels in straight lines.

Another important wave effect is coherence. Coherence is a relationship between two

beams of light, which measures the average correlation between their phases [Born &

Wolf 1986]. So far, we have been assuming that light waves are perfectly incoherent, mean-

ing that any two such waves have no phase correlation. The most important property of
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incoherent beams is that when they are superposed, their intensities add linearly (where in-

tensity means the mean squared amplitude). This agrees with our usual intuition, e.g. two

100 watt bulbs are twice as bright as one 100 watt bulb.

When two beams are partially or fully coherent, their superposition results in interfer-

ence. If there is positive correlation between their phases, it is called constructive interfer-

ence, otherwise it is destructive interference. When two coherent beams of equal intensity

are combined, the resulting intensity can be anywhere from zero to four times as great.4 This

effect is responsible for the light and dark bands in the classic “two-slit experiment” [Born

& Wolf 1986].

Interference is important when modeling very small features, such as thin coatings or

soap bubbles [Gondek et al. 1994]. Light is reflected back and forth inside the coating, so

that the incident light wave is superposed on itself. This leads to interference, since any

light beam is perfectly coherent with itself, and there is still partial coherence between two

points on the beam that are several wavelengths apart. This applies even to beams from

“incoherent” sources, such as incandescent light bulbs.5

Interference can be included in light transport algorithms by keeping track of the phases

of all light beams [Gondek et al. 1994]. This requires keeping track of the optical length of

the path traveled by each beam from the same source, including any coherent reflections or

refractions. However, for most applications this additional expense is not justified.

Coherence is also related to polarization. Light is a transverse electromagnetic wave,

which can be represented as point moving in a two-dimensional plane (this point is the tip

of the electric vector, which is always contained in the plane perpendicular to the direction

of propagation). Equivalently, we can regard light as the superposition of two independent

waves, vibrating at right angles to each other. (Project the function onto two perpendicular

vectors, such as the x- and y-axes.) Just as with any waves, these two waves can be partially

or fully coherent, or have different amplitudes. If any of these things are true, we say the

light is polarized.

4This is not an example of non-linear optics (discussed in the next section), since the waves themselves
add linearly. However, a wave with double the amplitude corresponds to a fourfold increase in intensity.

5Note that the assumption of perfect incoherence in Section 1.1.2 is simply a mathematical abstraction;
perfectly incoherent light does not exist in the real world.
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Polarization is important for modeling materials such as water or glass, where the scat-

tering properties depend strongly on how the incident light is polarized. Another effect that

depends on polarization is birefringence (also known as double refraction) [Drude 1900]. It

occurs in certain kinds of crystals, where the refractive index is different for light polarized

parallel or perpendicular to the crystal surface. This has the effect of splitting an incident

beam of light into two beams with opposite polarizations, which are refracted in different

directions.

Polarization is quite easy to include in most light transport algorithms; the effort is sim-

ilar to that of adopting a different spectral representation. There are two common repre-

sentations of polarization: the Jones matrix (appropriate for monochromatic light, which is

always completely polarized), and the Stokes matrix (which applies to partially polarized,

perfectly incoherent light beams). The general problem of superimposing two partially co-

herent, partially polarized beams is more difficult; there are no simple representations in

general, other than working with an explicit description of the waveforms [Perina 1985].

1.5.3 Quantum optics

Quantum physics offers the most detailed, accurate model of the behavior of light.6 Some

of these effects are not explained by the geometric or wave theories, but are still relevant to

computer graphics.

One of these effects is fluorescence. This occurs when photons are absorbed by a

molecule, and then a new photon is emitted at a different wavelength. This effect is actu-

ally quite common in the real world. For example, fluorescent dyes are used commercially

to obtain brighter colors; this is why clothing often “glows in the dark” under ultraviolet

lights.

Fluorescence is quite easy to add to rendering systems [Glassner 1994], by allowing en-

ergy at different wavelengths to interact (in a linear way). If light spectra are represented as

vectors (with one coefficient per wavelength), then scattering from a surface can be repre-

sented as a matrix. When there is no fluorescence, this matrix is diagonal; otherwise, some

6Feynman [1985] has written a very readable account of the basics of this theory, and makes fascinating
connections between the macroscopic and quantum behaviors of light.
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of the off-diagonal entries will be nonzero.7

Another interesting effect is phosphorescence [Glassner 1994]. Here photons are ab-

sorbed, and re-emitted at a later time (usually at a different wavelength). This effect is not

important for most computer graphics applications; however, there are similar problems in

other fields where this kind of time-delay reaction is crucial (e.g. the decay of radioactive

elements). The implementation of phosphorescence requires that the rendering algorithm

integrate the incident light over time, since the current emission of a phosphorescent sur-

face depends on its exposure in the past.

All of the effects we have described so far belong to linear optics. Consider an arbitrary

optical system, which takes one light beam as input, and produces another light beam as

output. The optical system is linear if the output wave is a linear function of the input wave;

e.g. if we superpose two input waves, the output must be the sum of the outputs we would

get if each wave were used alone. This property holds for practically every optical system.

However, with the introduction of lasers, non-linear effects have been discovered. For

example, when high-intensity laser light passes through certain crystals, the light that exits

the crystal is twice the frequency of the light which enters it. This is known as frequency

doubling [Bloembergen 1996]. It does not happen with low-intensity light, so this is an

example of non-linearity.8

There are many other effects whose explanation rests on quantum physics. For example,

the photoelectric effect, or the observed spectral distribution of blackbody radiation. Lasers

also depend on quantum physics for their explanation. However, these effects are irrelevant

for computer graphics. We do not need to simulate blackbody radiation from first principles

to include it in our scene models. Similarly, special and general relativity can be ignored for

all practical purposes (e.g. the bending of light in a gravitational field).

7Glassner [1994] points out that for real materials, the matrix is often triangular. Photons often migrate
from higher to lower energies during scattering, but rarely move in the other direction. This is why clothes do
not “glow in the dark” when exposed to heat lamps.

8Consider a beam of light that is so intense that it heats the receiving surface, until it begins to glow. This
effect is non-linear (since with a dim beam of light, the surface will not glow at all). However, this is not what
is meant by non-linear optics. The surface temperature depends on the integral of the incident light over time
(unlike the frequency doubling example). At each instant in time, the system is still linear, since the surface
emission does not depend on the current intensity of the incident light.
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1.6 Related problems from other fields

Light transport is similar to a variety of problems in physics and engineering. It is important

to have a clear understanding of the connections between these problems, since many of the

techniques used in graphics were first discovered in other areas. There is still much to learn

from other scientific fields, and conversely these fields also have something to learn from

computer graphics.

However, the underlying assumptions in other fields are often very different from those

in graphics. This can make it difficult to transfer results from one field to another. In fact,

some aspects of the light transport problem seem to be unique to computer graphics.

One important difference is the representation of the final output. In computer graphics,

the final output always consists of images, and any other representations of the solution are

just intermediate steps toward this goal. In physics and engineering, images are not impor-

tant (except possibly as a visualization aid). Instead, the objective is to compute a set of

numerical measurements, or even better, a functional representation of the solution over its

entire domain. A full representation of the solution makes it easier to locate design problems

(e.g. a leak through the shielding of a nuclear reactor).

Another difference is the way in which the quality of a solution is measured. In other

fields, the goal is to compute results that are objectively accurate, according to standard nu-

merical error metrics (e.g. the L2 norm). In computer graphics, on the other hand, the ulti-

mate error metrics are perceptual (and are thus not easy to define explicitly). Visual artifacts

such as discontinuities or Mach bands are very objectionable in graphics, yet they are per-

fectly acceptable in heat transfer or nuclear engineering problems (as long as the numerical

error is satisfactory). Because of this, popular methods in other fields are not always well-

suited for graphics applications. In fact, perceptual error has been one of the main forces

driving further research on light transport algorithms.

In the remainder of this section, we discuss the light transport problem as it relates to

nuclear engineering, radiative heat transfer calculations, radar and acoustic wave scattering,

and many-body problems.
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1.6.1 Neutron transport

One of the first applications of Monte Carlo methods was the design of nuclear devices.

Early Monte Carlo pioneers, such as von Neumann and Ulam, discovered techniques in

this context that have now found much wider applicability [Ulam 1987]. Neutron transport

problems are natural candidates for Monte Carlo methods, because of the relatively large

number of dimensions involved (position, direction, energy, time), and the complexity of

the interactions with atomic nuclei.

Light transport has much in common with neutron transport. They are governed by the

same underlying equation (the Boltzmann equation), which describes the transport of virtu-

ally any kind of particles that do not interact with each other.9 This equation is one of the

central aspects of transport theory, which studies the transport of generic particles without

regard for their physical meaning [Duderstadt & Martin 1979].

However, neutron and light transport differ substantially in emphasis. For example, the

simulation of participating media is not important for most applications in computer graph-

ics, whereas it is absolutely essential for neutron transport. Neutrons penetrate much far-

ther into solid objects than photons, so that volume scattering (and volume emission) are

the dominant effects. In fact, surface scattering and emission are often completely ignored

in these simulations [Spanier & Gelbard 1969].

Another important difference is the interaction between particles at different energy lev-

els. In graphics, fluorescence and phosphorescence are relatively insignificant effects. This

means that to a good approximation, photon scattering is elastic (its wavelength does not

change) and instantaneous (there is no significant delay between the arrival and departure

of the photon). On the other hand, the scattering of neutrons is inelastic: they generally gain

or lose some energy upon collision with a nucleus (an effect similar to fluorescence). Like-

wise, there is a small delay between the arrival of a neutron, and the scattering or emission

of other neutrons (similar to phosphorescence). These delays can substantially affect the

outcome of the calculation, and cannot be ignored.

9The Boltzmann equation does not model particle transport perfectly, since it is based on assumptions sim-
ilar to those of geometric optics. For example, it ignores wave effects such as diffraction.
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A third major difference is the existence of conservation principles. In graphics, we of-

ten rely on conservation of energy: the light scattered from a surface is no greater than the

light incident upon it. With neutrons, on the other hand, it is often the objective to avoid

this type of conservation. It is possible for a nuclear reaction to be critical or supercritical,

in which case the number of neutrons in the environment increases quickly with time. In

terms of individual collision events, a single incident neutron may cause several new neu-

trons to be emitted (by splitting the atomic nucleus). Other kinds of particles may be emitted

as well, such as high-energy photons (gamma rays), and it is often necessary to track these

particles as well.

Despite these differences, many techniques from the neutron transport literature can be

adapted to computer graphics. This is usually quite easy, since light transport is a simpler

problem.

There is also some interest in transport algorithms for charged particles, such as elec-

trons. However, an important property of charged particles is that they interact with each

other at a distance, by means of the electromagnetic field. Similarly, the path of a charged

particle is influenced by fixed electric and magnetic fields, so that these particles follow

curved trajectories (similar to photons passing through a medium with a continuously vary-

ing refractive index). These features give the transport of charged particles a considerably

different flavor, and most light transport algorithms cannot easily be adapted to this purpose.

1.6.2 Heat transfer

Radiative heat transfer is also very similar to light transport. In fact, the only difference

is that the photons in heat transfer have longer wavelengths (in the infrared portion of the

spectrum). As with neutron transport, however, different aspects of the problem are empha-

sized.

First, we review the three mechanisms of heat transfer: conduction, convection, and ra-

diation. With conduction, energy is exchanged between adjacent vibrating atoms, as they

bump into each other. This causes a slow migration of heat away from “hot spots” (e.g. this

is what causes the handle of a frying pan to become hot). With convection, heat is trans-

ferred by the large-scale movements of atoms (e.g. a draft of hot air). Finally, heat can be
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transferred by the radiation of photons, which carry energy almost instantaneously across

large distances (e.g. the heat that is felt when standing near a campfire). It is this last mech-

anism that is similar to light transport.

This brings us to the first important difference from light transport, namely that ra-

diation is only one aspect of heat transfer problem. For many applications, conduction

and convection are at least as important. (One indication of this is that the heat equa-

tion in the applied mathematics and engineering literature often refers only to conduction

[Gustafson 1987, Hughes 1987].) In theory, conduction and convection can also affect light

transport calculations, if portions of the surrounding environment are so hot that they begin

to glow (i.e. emit photons in the visible wavelengths). However, this definitely falls outside

the traditional realm of computer graphics.

A second difference is that heat transfer problems are often non-linear. For example,

the spectrum of radiation emitted by a hot surface depends on the fourth power of its tem-

perature, and convection is also affected by temperature in complex ways. However, these

non-linearities are irrelevant for our purposes, because the radiative aspect of heat transfer

is always a linear problem. Temperature changes due to conduction, convection, and even

radiation are extremely slow compared to the speed of light, so that the system is effectively

in radiative equilibrium at all times.

Unlike neutron transport, most heat transfer algorithms are based on the finite element

method.10 There are several reasons for this. First, finite element methods compute a repre-

sentation of the entire solution (rather than isolated measurements), which makes it easier

to locate design problems. Second, a full solution also makes it easier to include the effects

of conduction and convection, and to follow the evolution of the system over time. Finally,

finite element methods are a standard tool in civil and mechanical engineering, so that it was

natural to extend these methods to heat transfer problems.

The heat transfer literature has thus inspired finite element approaches to light transport,

just as neutron transport algorithms have inspired Monte Carlo work.

10Technically, these are often boundary element methods [Siegel & Howell 1992], where the solution is
represented only on the boundary of the domain rather than its interior. This is the preferred representation in
the absence of convection.
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1.6.3 Radar and acoustics problems

The scattering of radio waves is another problem that is similar to light transport. Radio

waves are simply another part of the electromagnetic spectrum, but with much longer wave-

lengths than visible light or radiant heat. Consequently, the wave nature of electromagnetic

radiation becomes important: effects such as diffraction and interference cannot be ignored.

For this reason, the mathematical models and algorithms for these problems are based on

the wave model of light, rather than geometric optics. This yields a totally different set of

algorithms and insights.

Radio scattering problems arise in the design of objects that are difficult for radar sys-

tems to detect (e.g. military aircraft). Similar problems arise in the design of auditoriums

and concert halls, where it is important to predict the scattering of sound waves. The wave-

lengths of audible sounds are comparable to the dimensions of ordinary objects (ranging

approximately from one centimeter to ten meters), so that wave effects cannot be neglected.

At their most basic level, these problems involve solving the wave equation, a partial dif-

ferential equation that describes how waves propagate with time [Strang 1986, Gustafson

1987, Zauderer 1989]. This formulation is extremely general, but for realistic problems it

is also difficult and expensive to solve. The problem can be greatly simplified by assum-

ing that all radio sources have a single frequency, and that their intensity does not change

with time. This is called the time-harmonic version of the problem. Such a system will

rapidly converge to an equilibrium state, where the intensity of the electromagnetic field at

each point is a sinusoidal function of time. The amplitude and phase of the electromagnetic

vibration at each point can be represented by a complex number.

Mathematically, the reduced problem is described by the Helmholtz equation, also

known as the reduced wave equation [Zauderer 1989]. This is a partial differential equa-

tion, like the wave equation, except that there is no time dependence (since we are solving

for an equilibrium state). Formally, this means that the Helmholtz equation is an elliptic

problem, rather than a hyperbolic problem like the wave equation. Elliptic problems re-

quire an entirely different set of solution techniques than hyperbolic ones, and are generally

easier to solve.

Methods for the scattering of radio and sound waves can be applied directly to the light
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transport problem; the restriction to a single frequency means that only monochromatic light

can be handled (or that each frequency must be simulated independently). This formulation

correctly handles diffraction and interference, as well as all of the phenomena handled by

geometric optics. This could lead to interesting solution techniques for graphics problems

where the wave nature of light is important.

1.6.4 Many-body problems

Efficient algorithms for many-body problems are an important recent influence on computer

graphics. The simplest version of this problem involves a set of N particles, each with a

different mass. The problem is to determine the gravitational force exerted on each particle

by the others. This can be used to simulate the motion of the particles, by integrating their

velocity and position over time. The problem can be extended to charged particles, and also

to bodies with more complex shapes.

The obvious algorithm for this problem is to compute theO(N2) pairs of forces, and add

them together to find the net force acting on each particle. However, recently several algo-

rithms have been proposed that are far more efficient. These algorithms have complexities

ofO(N logN) [Barnes & Hut 1986] or evenO(N) [Greengard & Rokhlin 1987, Greengard

1988]. The basic idea is that distant particles can be grouped together, replacing the calcula-

tions for many individual particles with a single computation for the group. Because of the

O(1=r2) falloff of gravitational and electric force, these approximations are possible with-

out significant loss of accuracy. Particles are organized into a hierarchical data structure, so

that nearby particles can be processed in small groups, while distant particles are handled

in large groups.

These techniques were the inspiration for hierarchical light transport algorithms

[Hanrahan et al. 1991]. It is easy to see that there is some connection; for example, the

intensity of a point light source obeys the same kind ofO(1=r2) falloff law as gravity does.

In fact, if we simply replace point masses by point light sources, many-body algorithms

can be used to efficiently compute the fluence rate due to these light sources at many points

simultaneously. (The fluence rate at a point in space is the integral of the incident radiance

over all directions, i.e. the total power per unit cross-sectional area that would be received
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by a tiny spherical light sensor [American National Standards Institute 1986].)

However, computing the fluence at isolated points is not particularly useful for making

images. There are substantial differences between light transport and the many-body prob-

lem, such as occlusion. Gravity passes through walls, while light does not. Furthermore, the

gravitational force is a function only of position, while light intensity (radiance) is a func-

tion of position and direction. (This is because a point mass creates the same gravitational

force in all directions, while a point light source can radiate different amounts of light in

different directions.)

These differences make light transport considerably more complex than the many-body

problem, and help to explain why hierarchical algorithms in graphics have not been able

to make the same accuracy and performance guarantees that are available for many-body

algorithms. The results for many-body algorithms are quite impressive: solutions can be

computed with any accuracies comparable to the machine’s floating-point resolution, with

a time complexity of O(N) [Greengard 1988].11 It is doubtful that similar results will ever

be obtained for realistic light transport problems.

11Note that although the force-calculation component of the Greengard algorithm is O(N), there is also
a tree building component that can take O(N logN) time. Similarly, the complexity of the Barnes & Hut
[1986] algorithm can be significantly worse than O(N logN) when the particle distribution is non-uniform
[Anderson 1996].



Chapter 2

Monte Carlo Integration

This chapter gives an introduction to Monte Carlo integration. The main goals are to review

some basic concepts of probability theory, to define the notation and terminology that we

will be using, and to summarize the variance reduction techniques that have proven most

useful in computer graphics.

Good references on Monte Carlo methods include Kalos & Whitlock [1986], Hammer-

sley & Handscomb [1964], and Rubinstein [1981]. Sobol’ [1994] is a good starting point

for those with little background in probability and statistics. Spanier & Gelbard [1969] is

the classic reference for Monte Carlo applications to neutron transport problems; Lewis &

Miller [1984] is a good source of background information in this area. For quasi-Monte

Carlo methods, see Niederreiter [1992], Beck & Chen [1987], and Kuipers & Niederreiter

[1974].

2.1 A brief history

Monte Carlo methods originated at the Los Alamos National Laboratory in the early years

after World War II. The first electronic computer in the United States had just been com-

pleted (the ENIAC), and the scientists at Los Alamos were considering how to use it for the

design of thermonuclear weapons (the H-bomb). In late 1946 Stanislaw Ulam suggested

the use of random sampling to simulate the flight paths of neutrons, and John von Neumann

29



30 CHAPTER 2. MONTE CARLO INTEGRATION

developed a detailed proposal in early 1947. This led to small-scale simulations whose re-

sults were indispensable in completing the project. Metropolis & Ulam [1949] published a

paper in 1949 describing their ideas, which sparked to a great deal of research in the 1950’s

[Meyer 1956]. The name of the Monte Carlo method comes from a city in Monaco, famous

for its casinos (as suggested by Nick Metropolis, another Monte Carlo pioneer).

In isolated instances, random sampling had been used much earlier to solve numerical

problems [Kalos & Whitlock 1986]. For example, in 1777 the Comte de Buffon performed

an experiment in which a needle was dropped many times onto a board marked with equidis-

tant parallel lines. Letting L be the length of the needle and d > L be the distance between

the lines, he showed that the probability of the needle intersecting a line is

p =
2L

�d
:

Many years later, Laplace pointed out that this could be used as a crude means of estimating

the value of �.

Similarly, Lord Kelvin used what we would now call a Monte Carlo method to study

some aspects of the kinetic theory of gases. His random number generator consisted of

drawing slips of paper out of a glass jar. The possibility of bias was a significant concern;

he worried that the papers might not be mixed well enough due to static electricity. Another

early Monte Carlo experimenter was Student (an alias for W. S. Gosset), who used random

sampling as an aid to guessing the form of his famous t-distribution.

An excellent reference on the origins of Monte Carlo methods is the special issue of Los

Alamos Science published in memory of Stanislaw Ulam [Ulam 1987]. The books by Ka-

los & Whitlock [1986] and Hammersley & Handscomb [1964] also contain brief histories,

including information on the pre-war random sampling experiments described above.

2.2 Quadrature rules for numerical integration

In this section we explain why standard numerical integration techniques do not work very

well on high-dimensional domains, especially when the integrand is not smooth.
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Consider an integral of the form

I =
Z


f(x) d�(x) ; (2.1)

where 
 is the domain of integration, f : 
 ! IR is a real-valued function, and � is a

measure function on 
.1 For now, let the domain be the s-dimensional unit hypercube,


 = [0; 1]s ;

and let the measure function be

d�(x) = dx1 � � �dxs ;

where xj denotes the j-th component of the point x = (x1; : : : ; xs) 2 [0; 1]s.

Integrals of this sort are often approximated using a quadrature rule, which is simply a

sum of the form

Î =
NX
i=1

wi f(xi) (2.2)

where the weights wi and sample locations xi are determined in advance. Common exam-

ples of one-dimensional quadrature rules include the Newton-Cotes rules (i.e. the midpoint

rule, the trapezoid rule, Simpson’s rule, and so on), and the Gauss-Legendre rules (see Davis

& Rabinowitz [1984] for further details). The n-point forms of these rules typically ob-

tain a convergence rate of O(n�r) for some integer r � 1, provided that the integrand has

sufficiently many continuous derivatives. For example, the error using Simpson’s rule is

O(n�4), provided that f has at least four continuous derivatives [Davis & Rabinowitz 1984].

Although these quadrature rules typically work very well for one-dimensional integrals,

problems occur when extending them to higher dimensions. For example, a common ap-

proach is to use tensor product rules of the form

Î =
nX

i1=1

nX
i2=1

� � �
nX

is=1

wi1wi2 � � �wis f(xi1 ; xi2 ; : : : ; xis)

where s is the dimension, and thewi and xi are the weights and sample locations for a given

1Familiar examples of measures include length, surface area, volume, and solid angle; see Halmos [1950]
for an introduction to measure theory.
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one-dimensional rule. This method has the same convergence rate as the one-dimensional

rule on which it is based (let this be O(n�r)), however it uses a much larger number of

sample points (namely N = ns). Thus in terms of the total number of samples, the con-

vergence rate is only O(N�r=s). This implies that the efficiency of tensor product rules

diminishes rapidly with dimension, a fact that is often called the curse of dimensionality

[Niederreiter 1992, p. 2].

The convergence rate can be increased by using a one-dimensional rule with a larger

value of r, however this has two problems. First, the total number of samples N = ns

can become impractical in high dimensions, since n increases linearly with r (specifically,

n � r=2). For example, two-point Guass quadrature requires at least 2s samples, while

Simpson’s rule requires at least 3s samples. Second, faster convergence rates require more

smoothness in the integrand. For example, if the function f has a discontinuity, then the

convergence rate of any one-dimensional quadrature rule is at bestO(n�1) (assuming that

the location of the discontinuity is not known in advance), so that the corresponding tensor

product rule converges at a rate no better thanO(N�1=s).

Of course, not all multidimensional integration rules take the form of tensor products.

However, there is an important result which limits the convergence rate of any determinis-

tic quadrature rule, called Bakhvalov’s theorem [Davis & Rabinowitz 1984, p. 354]. Essen-

tially, it says that given any s-dimensional quadrature rule, there is function f with r con-

tinuous and bounded derivatives, for which the error is proportional toN�r=s. Specifically,

let Cr
M denote the set of functions f : [0; 1]s ! IR such that����� @rf

@(x1)a1 � � �@(xs)as
����� � M

for all a1; : : : ; as with
P
ai = r, recalling that xj denotes the j-th coordinate of the vector

x. Now consider any N -point quadrature rule

Î(f) =
NX
i=1

wi f(xi)

where each xi is a point in [0; 1]s, and suppose that we wish to approximate some integral

I(f) =
Z
[0;1]s

f(x1; : : : ; xs) dx1 � � � dxs :
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Then according to Bakhvalov’s theorem, there is a function f 2 Cr
M such that the error is���Î(f)� I(f)��� > k �N�r=s ;

where the constant k > 0 depends only on M and r. Thus even if f has a bounded, contin-

uous first derivative, no quadrature rule has an error bound better thanO(N�1=s).

2.3 A bit of probability theory

Before describing Monte Carlo integration, we review a few concepts from probability and

statistics. See Pitman [1993] for an introduction to probability, and Halmos [1950] for an

introduction to measure theory. Brief introductions to probability theory can also be found

in the Monte Carlo references cited above.

2.3.1 Cumulative distributions and density functions

Recall that the cumulative distribution function of a real-valued random variable X is de-

fined as

P (x) = Pr fX � xg ;

and that the corresponding probability density function is

p(x) =
dP

dx
(x)

(also known as the density function or pdf). This leads to the important relationship

Pr f� � X � �g =
Z �

�
p(x) dx = P (�)� P (�) : (2.3)

The corresponding notions for a multidimensional random vector (X1; : : : ; Xs) are the

joint cumulative distribution function

P (x1; : : : ; xs) = Pr fX i � xi for all i = 1; : : : ; sg
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and the joint density function

p(x1; : : : ; xs) =
@sP

@x1 � � � @xs (x
1; : : : ; xs) ;

so that we have the relationship

Pr fx 2 Dg =
Z
D
p(x1; : : : ; xs) dx1 � � � dxs (2.4)

for any Lebesgue measurable subsetD � IRs.

More generally, for a random variableX with values in an arbitrary domain
, its prob-

ability measure (also known as a probability distribution or distribution) is a measure func-

tion P such that

P (D) = Pr fX 2 Dg

for any measurable setD � 
. In particular, a probability measure must satisfy P (
) = 1.

The corresponding density function p is defined as the Radon-Nikodym derivative

p(x) =
dP

d�
(x) ;

which is simply the function p that satisfies

P (D) =
Z
D
p(x) d�(x) : (2.5)

Thus, the probability thatX 2 D can be obtained by integrating p(x) over the given region

D. This should be compared with equations (2.3) and (2.4), which are simply special cases

of the more general relationship (2.5).

Note that the density function p depends on the measure � used to define it. We will

use the notation p = P� to denote the density with respect to a particular measure �, corre-

sponding to the notation ux = @u = @x that is often used in analysis. This notation will be

useful when there are several relevant measure function defined on the same domain
 (for

example, the solid angle and projected solid angle measures that will be described in Chap-

ter 3). See Halmos [1950] for further information on measure spaces and Radon-Nikodym

derivatives.



2.3. A BIT OF PROBABILITY THEORY 35

2.3.2 Expected value and variance

The expected value or expectation of a random variable Y = f(X) is defined as

E[Y ] =
Z


f(x) p(x) d�(x) ; (2.6)

while its variance is

V [Y ] = E
h
(Y � E[Y ])2

i
: (2.7)

We will always assume that expected value and variance of every random variable exist (i.e.

the corresponding integral is finite).

From these definitions, it is easy to see that for any constant a we have

E[a Y ] = aE[Y ] ;

V [a Y ] = a2 V [Y ] :

The following identity is also useful:

E

"
NX
i=1

Yi

#
=

NX
i=1

E[Yi] ;

which holds for any random variables Y1; : : : ; YN . On the other hand, the following identity

holds only if the variables Yi are independent:

V

"
NX
i=1

Yi

#
=

NX
i=1

V [Yi] :

Notice that from these rules, we can derive a simpler expression for the variance:

V [Y ] = E[(Y � E[Y ])2] = E[Y 2]� E[Y ]2 :

Another useful quantity is the standard deviation of a random variable, which is simply

the square root of its variance:

�[Y ] =
q
V [Y ] :

This is also known as the RMS error.
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2.3.3 Conditional and marginal densities

Let X 2 
1 and Y 2 
2 be a pair of random variables, so that

(X; Y ) 2 


where 
 = 
1 � 
2. Let P be the joint probability measure of (X; Y ), so that P (D) rep-

resents the probability that (X; Y ) 2 D for any measurable subsetD � 
. Then the corre-

sponding joint density function p(x; y) satisfies

P (D) =
Z
D
p(x; y) d�1(x) d�2(y) ;

where �1 and �2 are measures on 
1 and 
2 respectively. Hereafter we will drop the mea-

sure function notation, and simply write

P (D) =
Z
D
p(x; y) dx dy :

The marginal density function of X is now defined as

p(x) =
Z

2

p(x; y) dy ; (2.8)

while the conditional density function p(y jx) is defined as

p(y jx) = p(x; y) = p(x) : (2.9)

The marginal density p(y) and conditional density p(x j y) are defined in a similar way,

leading to the useful identity

p(x; y) = p(y jx) p(x) = p(x jy) p(y) :

Another important concept is the conditional expectation of a random variable G =

g(X; Y ), defined as

E[G jx] =
Z

2

g(x; y) p(y jx) dy =

R
g(x; y) p(x; y) dyR

p(x; y) dy
: (2.10)

We will also use the notation EY [G] for the conditional expectation, which emphasizes the

fact that Y is the random variable whose density function is being integrated.
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There is a very useful expression for the variance ofG in terms of its conditional expec-

tation and variance, namely

V [G] = EXVYG+ VXEYG : (2.11)

In other words, V [G] is the mean of the conditional variance, plus the variance of the con-

ditional mean. To prove this identity, recall that

V [F ] = E[F 2]� E[F ]2 ;

and observe that

EXVYG+ VXEYG = EX

n
EY [G

2]� [EYG]
2
o
+ EX [EYG]

2 � [EXEYG]
2

= EXEY [G
2]� [EXEYG]

2

= V [G] :

We will use this identity below to analyze certain variance reduction techniques, including

stratified sampling and the use of expected values.

2.4 Basic Monte Carlo integration

The idea of Monte Carlo integration is to evaluate the integral

I =
Z


f(x) d�(x)

using random sampling. In its basic form, this is done by independently samplingN points

X1; : : : ; XN according to some convenient density function p, and then computing the es-

timate

FN =
1

N

NX
i=1

f(Xi)

p(Xi)
: (2.12)

Here we have used the notation FN rather than Î to emphasize that the result is a random

variable, and that its properties depend on how many sample points were chosen. Note that

this type of estimator was first used in the survey sampling literature (for discrete rather

than continuous domains), where it is known as the Horvitz-Thompson estimator [Horvitz
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& Thompson 1952].

For example, suppose that the domain is 
 = [0; 1]s and that the samplesXi are chosen

independently and uniformly at random. In this case, the estimator (2.12) reduces to

FN =
1

N

NX
i=1

f(Xi) ;

which has the same form as a quadrature rule except that the sample locations are random.

It is straightforward to show the estimatorFN gives the correct result on average. Specif-

ically, we have

E[FN ] = E

"
1

N

NX
i=1

f(Xi)

p(Xi)

#

=
1

N

NX
i=1

Z



f(x)

p(x)
p(x) d�(x)

=
Z


f(x) d�(x)

= I ;

provided that f(x)=p(x) is finite whenever f(x) 6= 0.

Advantages of Monte Carlo integration. Monte Carlo integration has the following ma-

jor advantages. First, it converges at a rate ofO(N�1=2) in any dimension, regardless of the

smoothness of the integrand. This makes it particularly useful in graphics, where we often

need to calculate multi-dimensional integrals of discontinuous functions. The convergence

rate is discussed in Section 2.4.1 below.

Second, Monte Carlo integration is simple. Only two basic operations are required,

namely sampling and point evaluation. This encourages the use of object-oriented black

box interfaces, which allow great flexibility in the design of Monte Carlo software. In the

context of computer graphics, for example, it is straightforward to include effects such mo-

tion blur, depth of field, participating media, procedural surfaces, and so on.

Third, Monte Carlo is general. Again, this stems from the fact that it is based on ran-

dom sampling. Sampling can be used even on domains that do not have a natural correspon-

dence with [0; 1]s, and are thus not well-suited to numerical quadrature. As an example of
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this in graphics, we observe that the light transport problem can be naturally expressed as

an integral over the space of all transport paths (Chapter 8). This domain is technically an

infinite-dimensional space (which would be difficult to handle with numerical quadrature),

but it is straightforward to handle with Monte Carlo.

Finally, Monte Carlo methods are better suited than quadrature methods for integrands

with singularities. Importance sampling (see Section 2.5.2) can be applied to handle such

integrands effectively, even in situations where there is no analytic transformation to remove

the singularity (see the discussion of rejection sampling and the Metropolis method below).

In the remainder of this section, we discuss the convergence rate of Monte Carlo integra-

tion, and give a brief review of sampling techniques for random variables. We then discuss

the properties of more general kinds of Monte Carlo estimators.

2.4.1 Convergence rates

To determine the convergence rate of Monte Carlo integration, we start by computing the

variance of FN . To simplify the notation let Yi = f(Xi)=p(Xi), so that

FN =
1

N

NX
i=1

Yi :

Also let Y = Y1. We then have

V [Y ] = E[Y 2]� E[Y ]2 =
Z



f 2(x)

p(x)
d�(x) � I2 :

Assuming that this quantity is finite, it is easy to check that the variance of V [FN ] decreases

linearly with N :

V [FN ] = V

"
1

N

NX
i=1

Yi

#
=

1

N2
V

"
NX
i=1

Yi

#
=

1

N2

NX
i=1

V [Yi] =
1

N
V [Y ] (2.13)

where we have used V [a Y ] = a2 V [Y ] and the fact that the Yi are independent samples.

Thus the standard deviation is

�[FN ] =
1p
N
�Y ;
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which immediately shows that the RMS error converges at a rate ofO(N�1=2).

It is also possible to obtain probabilitistic bounds on the absolute error, using Cheby-

chev’s inequality:

Pr

8<:jF � E[F ]j �
 
V [F ]

�

!1=2
9=; � � ;

which holds for any random variable F such that V [F ] < 1. Applying this inequality to

the variance (2.13), we obtain

Pr

8<:jFN � Ij � N�1=2

 
V [Y ]

�

!1=2
9=; � � :

Thus for any fixed threshold �, the absolute error decreases at the rateO(N�1=2).

Tighter bounds on the absolute error can be obtained using the central limit theorem,

which states thatFN converges to a normal distribution in the limit asN !1. Specifically,

it states that

lim
N!1

Pr

(
1

N

NX
i=1

Yi � E[Y ] � t
�[Y ]p
N

)
=

1p
2�

Z t

�1
e�x

2=2 dx ;

where the expression on the right is the (cumulative) normal distribution. This equation can

be rearranged to give

Pr fjFN � Ij � t �[FN ]g =
q
2=�

Z 1

t
e�x

2=2 dx :

The integral on the right decreases very quickly with t; for example when t = 3 the right-

hand side is approximately 0.003. Thus, there is only about a 0.3% chance thatFN will differ

from its mean by more than three standard deviations, provided thatN is large enough for

the central limit theorem to apply.

Finally, note that Monte Carlo integration will converge even if the variance V [Y ] is

infinite, provided that the expectation E[Y ] exists (although convergence will be slower).

This is guaranteed by the strong law of large numbers, which states that

Pr

(
lim
N!1

1

N

NX
i=1

Yi = E[Y ]

)
= 1 :
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2.4.2 Sampling random variables

There are a variety of techniques for sampling random variables, which we briefly review

here. Further details can be found in the references given in the introduction.

One method is the transformation or inversion method. In one dimension, suppose that

we want to sample from a density function p. Letting P be the corresponding cumulative

distribution function, the inversion method consists of letting X = P�1(U), where U is

a uniform random variable on [0; 1]. It is easy to verify that X has the required density p.

This technique can easily be extended to several dimensions, either by computing marginal

and conditional distributions and inverting each dimension separately, or more generally

by deriving a transformation x = g(u) with an appropriate Jacobian determinant (such that

j det(Jg(x))j�1 = p(x), where Jg denotes the Jacobian of g).

The main advantage of the transformation technique is that it allows samples to be strat-

ified easily, by stratifying the parameter space [0; 1]s and mapping these samples into
 (see

Section 2.6.1). Another advantage is that the technique has a fixed cost per sample, which

can easily be estimated. The main disadvantage is that the density p(x) must be integrated

analytically, which is not always possible. It is also preferable for the cumulative distribu-

tion to have an analytic inverse, since numerical inversion is typically slower.

A second sampling technique is the rejection method, due to von Neumann [Ulam 1987].

The idea is to sample from some convenient density q such that

p(x) � M q(x)

for some constant M . Generally, the samples from q are generated by the transformation

method. We then apply the following procedure:

function REJECTION-SAMPLING()

for i = 1 to1
Sample Xi according to q.

Sample Ui uniformly on [0; 1].

if Ui � p(Xi) = (M q(Xi))

then return Xi
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It is easy to verify that this procedure generates a sampleX whose density function is p.

The main advantage of rejection sampling is that it can be used with any density func-

tion, even those that cannot be integrated analytically. However, we still need to be able to

integrate some functionMq that is an upper bound for p. Furthermore, this bound should be

reasonably tight, since the average number of samples that must be taken before acceptance

is M . Thus, the efficiency of rejection sampling can be very low if it is applied naively.

Another disadvantage is that it is difficult to apply with stratification: the closest approxi-

mation is to stratify the domain of the random vector (X;U), but the resulting stratification

is not as good as the transformation method.

A third general sampling technique is the Metropolis method (also known as Markov

chain Monte Carlo), which will be described in Chapter 11. This technique is useful for

sampling arbitrary densities on high-dimensional spaces, and has the advantage that the

density function does not need to be normalized. The main disadvantage of the Metropolis

method is that the samples it generates are not independent; in fact they are highly corre-

lated. Thus, it is most useful when we need to generate a long sequence of samples from

the given density p.

Finally, there are various techniques for sampling from specific distributions (see Rubin-

stein [1981]). For example, if X is the maximum of k independent uniform random vari-

ables U1; : : : ; Uk, then X has the density function p(x) = kxk�1 (where 0 � x � 1). Such

“tricks” can be used to sample many of the standard distributions in statistics, such as the

normal distribution [Rubinstein 1981].

2.4.3 Estimators and their properties

So far we have only discussed one way to estimate an integral using random samples,

namely the standard technique (2.12). However, there are actually a great variety of tech-

niques available, which are encompassed by the concept of a Monte Carlo estimator. We

review the various properties of estimators and why they are desirable.

The purpose of a Monte Carlo estimator is to approximate the value of some quantity

of interest Q (also called the estimand). Normally we will define Q as the value of a given
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integral, although more general situations are possible (e.g.Q could be the ratio of two in-

tegrals). An estimator is then defined to be a function of the form

FN = FN(X1; : : : ; XN) ; (2.14)

where theXi are random variables. A particular numerical value ofFN is called an estimate.

Note that the Xi are not necessarily independent, and can have different distributions.

Note that there are some differences in the standard terminology for computer graphics,

as compared to statistics. In statistics, the value of each Xi is called an observation, the

vector (X1; : : : ; XN) is called the sample, and N is called the sample size. In computer

graphics, on the other hand, typically each of the individual Xi is referred to as a sample,

and N is the number of samples. We will normally use the graphics conventions.

We now define a number of useful properties of Monte Carlo estimators. The quantity

FN �Q is called the error, and its expected value is called the bias:

�[FN ] = E[FN �Q] : (2.15)

An estimator is called unbiased if �[FN ] = 0 for all sample sizes N , or in other words if

E[FN ] = Q for all N � 1 : (2.16)

For example, the random variable

FN =
1

N

NX
i=1

f(Xi)

p(Xi)

is an unbiased estimator of the integral I =
R

 f(x) d�(x) (as we saw in Section 2.4).

An estimator is called consistent if the error FN �Q goes to zero with probability one,

or in other words if

Pr

�
lim
N!1

FN = Q
�

= 1 : (2.17)

For an estimator to be consistent, a sufficient condition is that the bias and variance both go

to zero as N is increased:

lim
N!1

�[FN ] = lim
N!1

V [FN ] = 0 :
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In particular, an unbiased estimator is consistent as long as its variance decreases to zero as

N goes to infinity.

The main reason for preferring unbiased estimators is that it is easier to estimate the

error. Typically our goal is to minimize the mean squared error (MSE), defined by

MSE [F ] = E[(F �Q)2] (2.18)

(where we have dropped the subscriptN ). In general, the mean squared error can be rewrit-

ten as

MSE [F ] = E[(F �Q)2]
= E[(F � E[F ])2] + 2E[F � E[F ]](E[F ]�Q) + (E[F ]�Q)2

= V [F ] + �[F ]2 ;

so that to estimate the error we must have an upper bound on the possible bias. In general,

this requires additional knowledge about the estimand Q, and it is often difficult to find a

suitable bound.

On the other hand, for unbiased estimators we haveE[F ] = Q, so that the mean squared

error is identical to the variance:

MSE [F ] = V [F ] = E[(F � E[F ])2] :

This makes it far easier to obtain error estimates, by simply taking several independent sam-

ples. Letting Y1; : : : ; YN be independent samples of an unbiased estimator Y , and letting

FN =
1

N

NX
i=1

Yi

as before (which is also an unbiased estimator), then the quantity

V̂ [FN ] =
1

N � 1

8<:
 
1

N

NX
i=1

Y 2
i

!
�
 
1

N

NX
i=1

Yi

!2
9=;

is an unbiased estimator of the variance V [FN ] (see Kalos & Whitlock [1986]). Thus, error

estimates are easy to obtain for unbiased estimators.
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Notice that by taking many independent samples, the error of an unbiased estimator can

be made as small as desired, since

V [FN ] = V [F1] =N :

However, this will also increase the running time by a factor of N . Ideally, we would like

to find estimators whose variance and running time are both small. This tradeoff is summa-

rized by the efficiency of a Monte Carlo estimator:

�[F ] =
1

V [F ]T [F ]
(2.19)

where T [F ] is the time required to evaluate F . Thus the more efficient an estimator is, the

lower the variance that can be obtained in a given fixed running time.

2.5 Variance reduction I: Analytic integration

The design of efficient estimators is a fundamental goal of Monte Carlo research. A wide

variety of techniques have been developed, which are often simply called variance reduc-

tion methods. In the following sections, we describe the variance reduction methods that

have proven most useful in computer graphics.2 These methods can be grouped into sev-

eral categories, based around four main ideas:

� analytically integrating a function that is similar to the integrand;

� uniformly placing sample points across the integration domain;

� adaptively controlling the sample density based on information gathered during sam-

pling; and

� combining samples from two or more estimators whose values are correlated.

2Note that some variance reduction methods are useful only for one-dimensional integrals, or only for
smooth integrands (e.g. certain antithetic variates transformations [Hammersley & Handscomb 1964]). Since
these situations are usually better handled by numerical quadrature, we do not discuss such methods here.
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We start by discussing methods based on analytic integration. There are actually sev-

eral ways to take advantage of this idea, including the use of expected values, importance

sampling, and control variates. These are some of the most powerful and useful methods

for computer graphics problems.

Note that many variance reduction methods were first proposed in the survey sampling

literature, long before Monte Carlo methods were invented. For example, techniques such

as stratified sampling, importance sampling, and control variates were all first used in survey

sampling [Cochran 1963].

2.5.1 The use of expected values

Perhaps the most obvious way to reduce variance is to reduce the dimension of the sample

space, by integrating analytically with respect to one or more variables of the domain. This

idea is commonly referred to as the use of expected values or reducing the dimensionality.

Specifically, it consists of replacing an estimator of the form

F = f(X; Y ) = p(X; Y ) (2.20)

with one of the form

F 0 = f 0(X) = p(X) ; (2.21)

where f 0(x) and p(x) are defined by

f 0(x) =
Z
f(x; y) dy

p(x) =
Z
p(x; y) dy :

Thus, to apply this technique we must be able to integrate both f and pwith respect to y. We

also must be able to sample from the marginal density p(x), but this can be done by simply

generating (X; Y ) as before, and ignoring the value of Y .

The name of this technique comes from the fact that the estimatorF 0 is simply the con-

ditional expected value of F :

F 0 = EY

"
f(X; Y )

p(X; Y )

#
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=
Z f(X; y)

p(X; y)
p(y jX) dy

=
Z f(X; y)

p(X; y)

p(X; y)R
p(X; y0) dy0

dy

= f(X) = p(X) :

This makes the variance reduction easy to analyze. Recalling the identity

V [F ] = EXVY F + VXEY F

from equation (2.11), and using the fact that F 0 = EY F , we immediately obtain

V [F ]� V [F 0] = EXVY F :

This quantity is always non-negative, and represents the component of the variance of F

that was caused by the random sampling of Y (as one might expect).

The use of expected values is the preferred variance reduction technique, as long as it is

not too expensive to evaluate and sample the analytically integrated quantities. However,

note that if expected values are used for only one part of a larger calculation, then variance

can actually increase. Spanier & Gelbard [1969] give an example of this in the context of

neutron transport problems, by comparing the variance of the absorption estimator (which

records a sample only when a particle is absorbed) to that of the collision estimator (which

records the expected value of absorption at each collision along a particle’s path). They

show that there are conditions where each of these estimators can have lower variance than

the other.

2.5.2 Importance sampling

Importance sampling refers to the principle of choosing a density function p that is similar

to the integrand f . It is a well-known fact that the best choice is to let p(x) = cf(x), where

the constant of proportionality is

c =
1R


 f(y) d�(y)
(2.22)
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(to ensure that p integrates to one).3 This leads to an estimator with zero variance, since

F =
f(X)

p(X)
=

1

c

for all sample points X .

Unfortunately this technique is not practical, since we must already know the value of

the desired integral in order to compute the normalization constant c. Nevertheless, by

choosing a density function p whose shape is similar to f , variance can be reduced. Typ-

ically this is done by discarding or approximating some factors of f in order to obtain a

function g that can be integrated analytically, and then letting p / g. It is also important

to choose p such that there is a convenient method of generating samples from it. For low-

dimensional integration problems, a useful strategy is to construct a discrete approximation

of f (e.g. a piecewise constant or linear function). This can be done either during a sepa-

rate initialization phase, or adaptively as the algorithm proceeds. The integral of such an

approximation can be computed and maintained quite cheaply, and sampling can be done

efficiently by means of tree structures or partial sums.

In summary, importance sampling is one of the most useful and powerful techniques of

Monte Carlo integration. It is particularly helpful for integrands that have large values on a

relatively small part of the domain, e.g. due to singularities.

2.5.3 Control variates

With control variates, the idea is to find a function g that can be integrated analytically and

is similar to the integrand, and then subtract it. Effectively, the integral is rewritten as

I =
Z


g(x) d�(x) +

Z


f(x)� g(x) d�(x) ;

and then sampled with an estimator of the form

F =
Z


g(x) d�(x) +

1

N

NX
i=1

f(Xi)� g(Xi)

p(Xi)

3We assume that f is non-negative in this discussion. Otherwise the best choice is to let p / jf j, however
the variance obtained this way is no longer zero [Kalos & Whitlock 1986].
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where the value of the first integral is known exactly. (As usual p is the density function

from which the Xi are chosen.) This estimator will have a lower variance than the basic

estimator (2.12) whenever

V

"
f(Xi)� g(Xi)

p(Xi)

#
� V

"
f(Xi)

p(Xi)

#
:

In particular, notice that if g is proportional to p, then the two estimators differ only by a

constant, and their variance is the same. This implies that if g is already being used for

importance sampling (up to a constant of proportionality), then it is not helpful to use it as

a control variate as well.4 From another point of view, given some function g that is an

approximation to f , we must decide whether to use it as a control variate or as a density

function for importance sampling. It is possible to show that either one of these choice could

be the best, depending on the particular f and g. In general, if f � g is nearly a constant

function, then g should be used as a control variate; while if f=g is nearly constant, then g

should be used for importance sampling [Kalos & Whitlock 1986].

As with importance sampling, control variates can be obtained by approximating some

factors of f or by constructing a discrete approximation. Since there is no need to gener-

ate samples from g, such functions can be slightly easier to construct. However, note that

for g to be useful as a control variate, it must take into account all of the significant factors

of f . For example, consider an integral of the form f(x) = f1(x) f2(x), and suppose that

f1(x) represents the reflectivity of a surface at the point x, while f2(x) represents the in-

cident power per unit area. Without some estimate of the magnitude of f2, observe that f1

is virtually useless as a control variate. On the other hand, f1 can be used for importance

sampling without any difficulties.

Control variates have had very few applications in graphics so far (e.g. see Lafortune &

Willems [1995a]). One problem with the technique is the possibility of obtaining negative

sample values, even for an integrand that is strictly positive. This can lead to large relative

errors for integrals whose true value is close to zero (e.g. pixels in the dark regions of an

image). On the other hand, the method is straightforward to apply, and can potentially give

a modest variance reduction at little cost.

4See the discussion under Russian roulette below.
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2.6 Variance reduction II: Uniform sample placement

Another important strategy for reducing variance is to ensure that samples are distributed

more or less uniformly over the domain. We will examine several techniques for doing

this, namely stratified sampling, Latin hypercube sampling, orthogonal array sampling, and

quasi-Monte Carlo methods.

For these techniques, it is typically assumed that the domain is the s-dimensional unit

cube [0; 1]s. Other domains can be handled by defining an appropriate transformation of the

form T : [0; 1]s! 
. Note that by choosing different mappingsT , the transformed samples

can be given different density functions. This makes it straightforward to apply importance

sampling to the techniques described below.5

2.6.1 Stratified sampling

The idea of stratified sampling is to subdivide the domain 
 into several non-overlapping

regions 
1, : : :, 
n such that
n[
i=1


i = 
 :

Each region 
i is called a stratum. A fixed number of samples ni is then taken within each


i, according to some given density function pi.

For simplicity, assume that 
 = [0; 1]s and that pi is simply the constant function on 
i.

This leads to an estimate of the form

F 0 =
nX
i=1

vi Fi (2.23)

Fiwhere =
1

ni

niX
j=1

f(Xi;j) : (2.24)

Here vi = �(
i) is the volume of region 
i, and each Xi;j is an independent sample from

5Note that if the desired density p(x) is complex, it may be difficult to find a transformationT that generates
it. This can be solved with rejection sampling, but the resulting samples will not be stratified as well.
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pi. The variance of this estimator is

V [F 0] =
nX
i=1

v2i �
2
i = ni ; (2.25)

where �2i = V [f(Xi;j)] denotes the variance of f within 
i.

To compare this against unstratified sampling, suppose that ni = viN , where N is the

total number of samples taken. Equation (2.25) then simplifies to

V [F 0] =
1

N

nX
i=1

vi �
2
i :

On the other hand, the variance of the corresponding unstratified estimator is6

V [F ] =
1

N

"
nX
i=1

vi �
2
i +

nX
i=1

vi(�i � I)2
#
; (2.26)

where �i is the mean value of f in region 
i, and I the mean value of f over the whole

domain. Since the right-hand sum is always non-negative, stratified sampling can never

increase variance.

However, from (2.26) we see that variance is only reduced when the strata have differ-

ent means; thus, the strata should be chosen to make these means as different as possible.

Ideally, this would be achieved by stratifying the range of the integrand, by finding strata

such that xi 2 
i implies x1 � x2 � � � � � xN .

Another point of view is to analyze the convergence rate. For functions with a bounded

first derivative, the variance of stratified sampling converges at a rate ofO(N�1�2=s), while

if the function is only piecewise continuous then the variance is O(N�1�1=s) [Mitchell

1996]. (The convergence rate for the standard deviation is obtained by dividing these ex-

ponents by two.) Thus, stratified sampling can increase the convergence rate noticeably in

low-dimensional domains, but has little effect in high-dimensional domains.

In summary, stratified sampling is a useful, inexpensive variance reduction technique.

6To obtain this result, observe that an unstratified sample in [0; 1]s is equivalent to first choosing a random
stratum Ij (according to the discrete probabilities vi), and then randomly choosing Xj within 
Ij . From this
point of view, Xj is chosen conditionally on Ij . This lets us apply the identity (2.11) to express the variance
as a sum of two components, yielding equation (2.26).
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It is mainly effective for low-dimensional integration problems where the integrand is rea-

sonably well-behaved. If the dimension is high, or if the integrand has singularities or rapid

oscillations in value (e.g. a texture with fine details), then stratified sampling will not help

significantly. This is especially true for problems in graphics, where the number of samples

taken for each integral is relatively small.

2.6.2 Latin hypercube sampling

Suppose that a total ofN samples will be taken. The idea of Latin hypercube sampling is to

subdivide the domain [0; 1]s into N subintervals along each dimension, and to ensure that

one sample lies in each subinterval. This can be done by choosing s permutations �1, : : :,

�s of f1; : : : ; Ng, and letting the sample locations be

Xj
i =

�j(i)� Ui;j
N

; (2.27)

where Xj
i denotes the j-th coordinate of the sample Xi, and the Ui;j are independent and

uniformly distributed on [0; 1]. In two dimensions, the sample pattern corresponds to the

occurrences of a single symbol in a Latin square (i.e. an N � N array of N symbols such

that no symbol appears twice in the same row or column).

Latin hypercube sampling was first proposed as a Monte Carlo integration technique

by McKay et al. [1979]. It is closely related to Latin square sampling methods, which have

been used in the design of statistical experiments since at least the 1920’s (e.g. in agricultural

research [Fisher 1925, Fisher 1926]). Yates [1953] and Patterson [1954] extended these

techniques to arbitrary dimensions, and also analyzed their variance-reduction properties

(in the context of survey sampling and experimental design). In computer graphics, Latin

square sampling was introduced by Shirley [1990a] under the name of N -rooks sampling

[Shirley 1990a, Shirley 1991].

The first satisfactory variance analysis of Latin hypercube sampling for Monte Carlo

integration was given by Stein [1987]. First, we define a function g(x) to be additive if it

has the form

g(x) =
sX

j=1

gj(x
j) ; (2.28)
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where xj denotes the j-th component of x 2 [0; 1]s. Next, let fadd denote the best additive

approximation to f , i.e. the function of the form (2.28) which minimizes the mean squared

error Z


(fadd(x)� f(x))2 d�(x) :

We can then write f as the sum of two components

f(x) = fadd(x) + fres(x) ;

where fres is orthogonal to all additive functions, i.e.Z


fres(x) g(x) d�(x) = 0

for any additive function g.

Stein [1987] was then able to show that variance of Latin hypercube sampling is

V [F 0] =
1

N

Z


f 2res(x) d�(x) + o(1=N) ; (2.29)

where o(1=N) denotes a function that decreases faster than 1=N . This expression should be

compared to the variance usingN independent samples, which is

V [F ] =
1

N

�Z


f 2res(x) d�(x) +

Z


(fadd(x)� I)2 d�(x)

�
:

The variance in the second case is always larger (for sufficiently largeN ). Thus Latin hyper-

cube sampling improves the convergence rate for the additive component of the integrand.

Furthermore, it is never significantly worse than using independent samples [Owen 1997a]:

V [F 0] � N

N � 1
V [F ] for N � 2 :

Latin hypercube sampling is easy to implement and works very well for functions that

are nearly additive. However, it does not work that well for image sampling, because

the samples are not well-stratified in two dimensions. Except in special cases (e.g. pixels

with vertical or horizontal edges), it has the sameO(1=N) variance that would be obtained

with independent samples. This is inferior to stratified sampling, for which the variance is

O(N�2) for smooth functions and O(N�3=2) for piecewise continuous functions.
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2.6.3 Orthogonal array sampling

Orthogonal array sampling [Owen 1992, Tang 1993] is an important generalization of Latin

hypercube sampling that addresses some of these deficiencies. Rather than stratifying all of

the one-dimensional projections of the samples, it stratifies all of the t-dimensional projec-

tions for some t � 2. This increases the rate of convergence for the components of f that

depend on t or fewer variables.

An orthogonal array of strength t is anN�s array of symbols, drawn from an alphabet

of size b, such that every N � t submatrix contains the same number of copies of each of

the bt possible rows. (The submatrix is not necessarily contiguous; it can contain any subset

of the columns.) If we let � denote the number of times that each row appears (where � is

known as the index of the array), it is clear that N = �bt. The following table gives an

example of an orthogonal array whose parameters areOA(N; s; b; t) = (9; 4; 3; 2):

0 0 0 0

0 1 1 2

0 2 2 1

1 0 1 1

1 1 2 0

1 2 0 2

2 0 2 2

2 1 0 1

2 2 1 0

Various methods are known for constructing orthogonal arrays of strength t = 2 [Bose

1938, Bose & Bush 1952, Addelman & Kempthorne 1961], strength t = 3 [Bose & Bush

1952, Bush 1952], and arbitrary strengths t � 3 [Bush 1952]. Implementations of these

methods are publicly available [Owen 1995a].

Let A be an N � s orthogonal array of strength t, where the symbols in the array are

f0; 1; : : : ; b� 1g. The first step of orthogonal array sampling is to randomize the array, by

applying a permutation to the alphabet in each column. That is, we let

Âi;j = �j(Ai;j) for all i; j ;
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where �1; : : : ; �s are random permutations of the symbols f0; : : : ; b�1g. It is easy to check

that Â is an orthogonal array with the same parameters (N; s; b; t) as the original array A.

This step ensures that each of the bs possible rows occurs in Â with equal probability.

Now let the domain be [0; 1]s, and consider the family of bs subcubes obtained by split-

ting each axis into b intervals of equal size. Each row of Â can be interpreted as an index

into this family of subcubes. The idea of orthogonal array sampling is to take one sample

in each of the N subcubes specified by the rows of Â. Specifically, the j-th coordinate of

sample Xi is

Xj
i = (Âi;j + Ui;j) = b

where the Ui;j are independent uniform samples on [0; 1]. Because of the randomization

step above, it is straightforward to show that each Xi is uniformly distributed in [0; 1]s, so

that FN = (1=N)
PN

i=1 f(Xi) is an unbiased estimator of the usual integral I .

To see the advantage of this technique, consider the sample distribution with respect to

any t coordinate axes (i.e. project the samples into the subspace spanned by these axes).

This subspace can be divided into bt subcubes by splitting each axis into b intervals. The

main property of orthogonal array sampling is that each of these subcubes contains the same

number of samples. To see this, observe that the coordinates of the projected samples are

specified by a particular N � t submatrix of the orthogonal array. By the definition of or-

thogonal arrays, each of the possible bt rows occurs � times in this submatrix, so that there

will be exactly � samples in each subcube.

Orthogonal array sampling is clearly a generalization of Latin hypercube sampling.

Rather than stratifying the one-dimensional projections of the samples, it stratifies all of the

t-dimensional projections simultaneously. (There are
�
s
t

�
such projections in all.)

2.6.3.1 Analysis of variance decompositions

The variance reduction properties of orthogonal array sampling can be analyzed using con-

tinuous analysis of variance (anova) decompositions [Owen 1994, Owen 1992]. Our de-

scription follows [Owen 1992], which in turn is based on [Efron & Stein 1981].

Let S = f1; : : : ; sg be the set of all coordinate indices, and let U � S be any subset of

these indices (there are 2s possible subsets in all). We will use the notation xU to refer to
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the set of coordinate variables xj for j 2 U . The anova decomposition of a given function

f can then be written as a sum

f(x) =
X
U�S

fU(x
U ) ; (2.30)

where each function fU depends only on the variables indexed by U .

The function when U = ; does not depend on any variables, and is called the grand

mean:

I = f; =
Z
[0;1]s

f(x) dx :

The other 2s � 1 subsets of U are called sources of variation. The components of f that

depend on just one variable are called the main effects and are defined as

fj(x
j) =

Z
(f(x)� I) Y

i6=j

dxi :

Notice that all of these functions are orthogonal to the constant function f; = I . Similarly,

the two-factor interactions are defined by

fj;k(x
j;k) =

Z �
f(x)� I � fj(xj)� fk(xk)

� Y
i6=j;k

dxi

which represent the components off that depend on two particular variables together. These

functions are orthogonal to f; and to all the fj .

In general, fU is defined by

fU(x
U) =

Z  
f(x)� X

V�U

fV (x
V )

!
dxS�U (2.31)

where the sum is over all proper subsets of U (V 6= U ). The resulting set of functions is

orthogonal, i.e. they satisfy Z
fU(x

U ) fV (x
V ) dx = 0

whenever U 6= V . This implies the useful property thatZ
f 2(x) dx =

X
U�S

Z
f 2U(x

U) dx ;
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so that the variance of f can be written asZ
(f(x)� I)2 dx =

X
jU j>0

Z
f 2U (x

U) dx :

As a particular case of this analysis, the best additive approximation to f is

fadd(x) = I +
sX

j=1

fj(x
j) ;

where the residual fres = f � fadd is orthogonal to all additive functions. The variance of

Latin hypercube sampling can thus be rewritten as

�2LH =
1

N

X
jU j>1

Z
f 2U(x

U ) dx + o(1=N) ;

i.e. the single-variable components of the variance converge at a rate faster than 1=N .

Orthogonal array sampling generalizes this result; it is possible to show that the variance

is [Owen 1992, Owen 1994]

�2OA =
1

N

X
jU j>t

Z
f 2U(x

U) dx + o(1=N) ;

i.e. the convergence rate is improved with respect to all components of the integrand that

depend on t coordinates or less.

The case t = 2 is particularly interesting for graphics. For example, if we apply this

technique to distribution ray tracing, it ensures that all the two dimensional projections are

well stratified (over the pixel, lens aperture, light source, etc). This achieves a similar result

to the sampling technique proposed by Cook et al. [1984], except that all combinations of

two variables are stratified (including combinations such as the pixel x-coordinate and the

aperture x-coordinate, for example).

2.6.3.2 Orthogonal array-based Latin hypercube sampling

Notice that because the t-dimensional margins are well-stratified, the w-dimensional mar-

gins are also stratified for any w < t. However, the resulting stratification is not as good.

For example, in any one-dimensional projectional there will be exactly �bt�1 samples in
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each interval of width 1=b. This is inferior to Latin hypercube sampling, which places one

sample in each interval of width 1=(�bt).

There is a simple modification to orthogonal array sampling that yields the same one-

dimensional stratification properties as Latin hypercube sampling. (The result, logically

enough, is called orthogonal array-based Latin hypercube sampling [Tang 1993].) The idea

is to remap the �bt symbols within each column into a single sequence f0; 1; : : : ; �bt � 1g,
by mapping the �bt�1 identical copies of each symbol m into a random permutation of the

symbols

�bt�1m; : : : ; �bt�1(m+ 1)� 1 :

This process is repeated for each column separately. Letting Â0 be the modified array, the

sample locations are then defined as

Xj
i =

Â0i;j + Ui;j

�bt
:

This ensures that the samples are maximally stratified for each one-dimensional projection,

as well as for each t-dimensional projection. It is possible to show that this leads to a further

reduction in variance [Tang 1993].

This technique is similar to multi-jittered sampling [Chiu et al. 1994], which corresponds

to the special case where s = 2 and t = 2.

2.6.4 Quasi-Monte Carlo methods

Quasi-Monte Carlo methods take these ideas a step further, by dispensing with randomness

completely. The idea is to distribute the samples as uniformly as possible, by choosing their

locations deterministically.

2.6.4.1 Discrepancy

Let P = fx1; : : : ; xNg be a set of points in [0; 1]s. Typically, the goal of quasi-Monte Carlo

methods is minimize the irregularity of distribution of the samples with respect to some

quantitative measure. One such measure is the star discrepancy of P . Let B� denote the set
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of all axis-aligned boxes with one corner at the origin:

B� = fB = [0; u1]� � � � � [0; us] j 0 � ui � 1 for all ig :

Ideally, we would like each box B to contain exactly �(B)N of the points in P , where

�(B) = u1 � � �us is the volume of B. The star discrepancy simply measures how much

P deviates from this ideal situation:

D�
N(P ) = sup

B2B�

�����#fP \BgN
� �(B)

����� ; (2.32)

where #fP \ Bg denotes the number of points of P that are inside the box B.

Discrepancy measures can also be defined with respect to other sets of shapes (e.g. ar-

bitrary axis aligned boxes, or convex regions [Niederreiter 1992]). For two-dimensional

image sampling, it is particularly useful to measure discrepancy with respect to edges, by

considering the family of shapes obtained by intersecting [0; 1]2 with an arbitrary half-plane

[Mitchell 1992]. The relevance of discrepancy to image sampling was first pointed out by

Shirley [1991].

The significance of the star discrepancy is that it is closely related to bounds on the in-

tegration error. Specifically, the Koksma-Hlawka inequality states that����� 1N
NX
i=1

f(xi) �
Z
[0;1]s

f(x) dx

����� � VHK(f)D
�
N(P ) ;

where VHK(f) is the variation of f in the sense of Hardy and Krause [Niederreiter 1992].

Thus, the maximum integration error is directly proportional to the discrepancy, provided

that the variation VHK(f) is finite. By finding low-discrepancy points sets and sequences,

we can ensure that the integration error is small.

It is important to note that for dimensions s � 2, the variation VHK(f) is infinite

whenever f is discontinuous.7 This severely limits the usefulness of these bounds in com-

puter graphics, where discontinuities are common. Also note that sinceVHK(f) is typically

7More precisely, VHK(f) = 1 whenever f is discontinuous along a surface that is not perpendicular to
one of the s coordinate axes. In general, note that f must be at least s times differentiable in order for VHK(f)
to be bounded in terms of the partial derivatives of f . That is, letting M be an upper bound on the magnitude
of all partial derivatives of degree at most s, then VHK(f) � cM where the constant c depends only on s
[Niederreiter 1992].
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harder to evaluate than the original integral, these worst-case bounds are not useful for es-

timating or bounding the error in practice.

2.6.4.2 Low-discrepancy points sets and sequences

A low-discrepancy sequence is an infinite sequence of points x1; x2; : : : such that the star

discrepancy is

D�
N(P ) = O

 
(logN)s

N

!

for any prefix P = fx1; : : : ; xNg. (Note that P is actually a multiset, i.e. the multiplicity of

the elements matters.) This result is achieved by a number of known constructions, and it

is widely believed to be the best possible [Niederreiter 1992]. However, it should be noted

that the best current lower bound for an arbitrary dimension s is only

D�
N (P ) � C(s) � (logN)s=2

N
;

i.e. there is a significant gap between these bounds.

If we drop the requirement that P is a prefix of an infinite sequence, the discrepancy

can be improved slightly. A low-discrepancy point set is defined to be a multiset P =

fx1; : : : ; xNg for which

D�
N(P ) = O

 
(logN)s�1

N

!
:

(More precisely, this should be the definition of a low-discrepancy point set construction,

since the bound does not make sense when applied to a single point set P .)

Combining these bounds with the Koksma-Hlawka inequality, the error of quasi-Monte

Carlo integration is at most O((logN)s�1=N) using a low-discrepancy point set, or

O((logN)s=N) using a prefix of a low-discrepancy sequence.

Note that these bounds are of questionable value unlessN is very large, since (logN)s

is much larger than N for typical values of N and s. In particular, notice that the function

(logN)s=N is monotonically increasing for N < es (i.e. the larger the sample size, the

worse the error bound). In fact, we should not expect these error bounds to be meaningful

until (logN)s < N at the very least, since otherwise the error bound is worse than it would

be for N = 2. To get an idea of how large N must be, consider the case s = 6. It is easy
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to check that (logN)s=N > (log 2)s=2 for all N < 109, and thus we should not expect

meaningful error bounds until N is substantially larger than this.

However, these error bounds are overly pessimistic in practice. Low-discrepancy se-

quences often give better results than standard Monte Carlo even when N is fairly small,

provided that the integrand is reasonably well behaved.

2.6.4.3 Halton sequences and Hammersley points

We now discuss several well-known constructions for low-discrepancy points sets and se-

quences. In one dimension, the radical inverse sequence xi = �b(i) is obtained by first

writing the base-b expansion of i:

i =
X
k�0

di;kb
k ;

and then reflecting the digits around the decimal point:

�b(i) =
X
k�0

di;k b
�1�k :

The special case when b = 2 is called the van der Corput sequence,

1

2
;
1

4
;
3

4
;
1

8
;
5

8
;
3

8
; � � � :

The discrepancy of the radical-inverse sequence isO((logN)=N) in any base b (although

the implied constant increases with b).

To obtain a low-discrepancy sequence in several dimensions, we use a different radical

inverse sequence in each dimension:

xi = (�b1(i); �b2(i); : : : ; �bs(i))

where the bases bi are all relatively prime. The classic example of this construction is the

Halton sequence, where the bi are chosen to be the first s primes:

xi = (�2(i); �3(i); �5(i); : : : ; �ps(i)) :

The Halton sequence has a discrepancy ofO((logN)s=N).
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If the number of sample pointsN is known in advance, this discrepancy can be improved

slightly by using equally spaced points i=N in the first dimension. The result is known as

the Hammersley point set:

xi = (i=N; �2(i); �3(i); : : : ; �ps�1(i))

where pi denotes the i-th prime as before. The discrepancy of the Hammersley point set is

O((logN)s�1=N).

2.6.4.4 (t;m; s)-nets and (t; s)-sequences

Although discrepancy is a useful measure of the irregularity of distribution of a set of points,

it does not always accurately predict which sequences will work best for numerical integra-

tion. Recently there has been a great deal of interest in (t;m; s)-nets and (t; s)-sequences,

which define the irregularity of distribution in a slightly different way. LetE be an elemen-

tary interval in the base b, which is simply an axis-aligned box of the form

E =
sY

j=1

�
tj
bkj
;
tj + 1

bkj

�

where the exponents kj � 0 are integers, and 0 � tj � bkj � 1. In other words, each

dimension of the box must be a non-positive power of b, and the box must be aligned to

an integer multiple of its size in each dimension. The volume of an elementary interval is

clearly

�(E) = b�
Ps

j=1
kj :

A (0; m; s)-net in base b is now defined to be a point set P of size N = bm, such that

every elementary interval of volume 1=b�m contains exactly one point of P . This implies

that a (0; m; s)-net is distributed as evenly as possible with respect to such intervals. For

example, suppose that P is (0; 4; 2)-net in base 5. Then P would contain N = 625 points

in the unit square [0; 1]2, such that every elementary interval of size 1 � 1=625 contains a

point of P . Similarly, all the intervals of size 1=5� 1=125, 1=25� 1=25, 1=125� 1=5; and

1=625� 1 would contain exactly one point of P .
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The more general notion of a (t;m; s)-net is obtained by relaxing this definition some-

what. Rather than requiring every box of size b�m to contain exactly one point, we require

every box of size bt�m to contain exactly bt points. Clearly, smaller values of t are better.

The reason for allowing t > 0 is to facilitate the construction of such sequences for more

values of b and s. (In particular, (0; m; s)-nets for m � 2 can only exist when s � b + 1

[Niederreiter 1992].)

A (t; s)-sequence is then defined to be an infinite sequence x1; x2; : : : such that for all

m � 0 and k � 0, the subsequence

xkbm+1; : : : ; xkbm+1

is a (t;m; s)-net in the base b. In particular, every prefix x1; : : : ; xN of size N = bm

is a (t;m; s)-net. Explicit constructions of such sequences for various values of b and s

have been proposed by Sobol’, Faure, Niederreiter, and Tezuka (see Niederreiter [1992] and

Tezuka [1995]).

Every (t; s)-sequence is a low-discrepancy sequence, and every (t;m; s)-net is a low-

discrepancy points set (provided that t is held fixed while m is increased). Thus these

constructions have the same worst-case integration bounds as for the Halton sequences

and Hammersley points. However, note that (t; s)-sequences and (t;m; s)-nets often work

much better in practice, because the discrepancy is lower by a significant constant factor

[Niederreiter 1992].

It is interesting to compare the equidistribution properties of (t;m; s)-nets to orthogonal

array sampling. For simplicity let t = 0, and let A be an orthogonal array of strength m.

Then in the terminology of (t;m; s)-nets, orthogonal array sampling ensures that there is

one sample in each elementary intervalE of volume 1=bm, where E has m sides of length

1=b and all other sides of length one. The Latin hypercube extension of Tang [1993] ensures

that in addition, there is one sample in each elementary intervalE that has one side of length

1=bm and all other of length one. Thus the 1- andm-dimensional projections are maximally

stratified. For comparison, the (0; m; s)-net not only achieves both of these properties, it

also ensures that there is one sample in every other kind of elementary interval of volume

1=bm, so that the projections of dimension 2; 3; : : : ; t� 1 are also stratified as well as pos-

sible.
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2.6.4.5 Randomly permuted (t;m; s)-nets and (t; s)-sequences

A significant disadvantage of quasi-Monte Carlo methods is that the sample locations are de-

terministic. In computer graphics, this leads to significant aliasing artifacts [Mitchell 1992].

It also makes it difficult to compute error estimates, since unlike with Monte Carlo methods

we cannot simply take several independent samples.

These difficulties can be resolved by using randomly permuted (t;m; s)-nets and (t; s)-

sequences [Owen 1995b] (also called scrambled nets and sequences). These are obtained by

applying random permutations to the digits of ordinary (t;m; s)-nets and (t; s)-sequences,

in such a way that their equidistribution properties are preserved [Owen 1995b]. The idea

is straightforward to implement, although its analysis is more involved.

Scrambled nets have several advantages. Most importantly, the resulting estimators are

unbiased, since the sample points are uniformly distributed over the domain [0; 1]s. This

makes it possible to obtain unbiased error estimates by taking several independent random

samples (e.g. using different digit permutations of the same original (t;m; s)-net). (See

Owen [1997a] for additional discussion of variance estimates.) In the context of computer

graphics, scrambled nets also provide a way to eliminate the systematic aliasing artifacts

typically encountered with quasi-Monte Carlo integration.

Second, it is possible to show that for smooth functions, scrambled nets lead to a vari-

ance of

V [Î] = O

 
(logN)s�1

N3

!
;

and thus an expected error of O((logN)(s�1)=2N�3=2) in probability [Owen 1997b]. This

is an improvement over both the Monte Carlo rate ofO(N�1=2) and the quasi-Monte Carlo

rate of O((logN)s�1N�1). In all cases, these bounds apply to a worst-case function f (of

sufficient smoothness), but note that the quasi-Monte Carlo rate uses a deterministic set of

points while the other bounds are averages over random choices made by the sampling al-

gorithm.

Scrambled nets can improve the variance over ordinary Monte Carlo even when the

function f is not smooth [Owen 1997b]. With respect to the analysis of variance decom-

position described above, scrambled nets provide the greatest improvement on the compo-

nents fU where the number of variables jU j is small. These functions fU can be smooth
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even when f itself is not (due to integration over the variables in S � U ), leading to fast

convergence on these components.

2.6.4.6 Discussion

The convergence rates of quasi-Monte Carlo methods are rarely meaningful in computer

graphics, due to smoothness requirements on the integrand and the relatively small sample

sizes that are typically used. Other problems include the difficulty of estimating the varia-

tion VHK(f), and the fact that (logN)s�1 is typically much larger than N in practice. The

lack of randomness in quasi-Monte Carlo methods is a distinct disadvantage, since it causes

aliasing and precludes error estimation.

Hybrids of Monte Carlo and quasi-Monte Carlo seem promising, such as the scrambled

(t;m; s)-nets described above. Although such methods do not necessarily work any bet-

ter than standard Monte Carlo for discontinuous integrands, at least they are not worse. In

particular, they do not introduce aliasing artifacts, and error estimates are available.

Keller [1996, 1997] has applied quasi-Monte Carlo methods to the radiosity problem

(a special case of the light transport problem where all surfaces are diffuse). He uses a

particle-tracing algorithm (similar to Pattanaik & Mudur [1993]), except that the directions

for scattering are determined by a Halton sequence. He has reported a convergence rate that

is slightly better than standard Monte Carlo on simple test scenes. The main benefit appears

to be due to the sampling of the first four dimensions of each random walk (which control

the selection of the initial point on a light source and the direction of emission).

2.7 Variance reduction III: Adaptive sample placement

A third family of variance reduction methods is based on the idea of adaptively controlling

the sample density, in order to place more samples where they are most useful (e.g. where the

integrand is large or changes rapidly). We discuss two different approaches to doing this.

One is adaptive sampling, which can introduce bias unless special precautions are taken.

The other approach consists of two closely related techniques called Russian roulette and

splitting, which do not introduce bias and are especially useful for light transport problems.



66 CHAPTER 2. MONTE CARLO INTEGRATION

2.7.1 Adaptive sampling

The idea of adaptive sampling (also called sequential sampling) is to take more samples

where the integrand has the most variation. This is done by examining the samples that have

been taken so far, and using this information to control the placement of future samples.

Typically this involves computing the variance of the samples in a given region, which is

then refined by taking more samples if the variance exceeds a given threshold. A number of

such techniques have been proposed in graphics for image sampling (for example, see Lee

et al. [1985], Purgathofer [1986], Kajiya [1986], [Mitchell 1987], Painter & Sloan [1989]).

Like importance sampling, the goal of adaptive sampling is to concentrate samples

where they will do the most good. However, there are two important differences. First, im-

portance sampling attempts to place more samples in regions where the integrand is large,

while adaptive sampling attempts to places more samples where the variance is large. (Of

course, with adaptive sampling we are free to use other criteria as well.) A second important

difference is that with adaptive sampling, the sample density is changed “on the fly” rather

than using a priori information.

The main disadvantage of adaptive sampling is that it can introduce bias, which in

turn can lead to image artifacts. Bias can be avoided using two-stage sampling [Kirk &

Arvo 1991], which consists of first drawing a small sample of size n from a representative

region R � 
, and then using this information to determine the sample size N for the re-

maining portion 
 � R of the domain.8 Although this technique eliminates bias, it also

eliminates some of the advantages of adaptive sampling, since it cannot react to unusual

samples encountered during the second stage of sampling.

Another problem with adaptive sampling is that it is not very effective for high-

dimensional problems. The same problems are encountered as with stratified sampling:

there are too many possible dimensions to refine. For example, if we split the region to be

refined into two pieces along each axis, there will be 2s new regions to sample. If most of

the sampling error is due to variation along only one or two of these axes, the refinement

will be very inefficient.

8Alternatively, two samples of size n andN could be drawn over the entire domain, where the first sample
is used only to determine the value of N and is then discarded.
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2.7.2 Russian roulette and splitting

Russian roulette and splitting are two closely related techniques that are often used in parti-

cle transport problems. Their purpose is to decrease the sample density where the integrand

is small, and increase it where the integrand is large. Unlike adaptive sampling, however,

these techniques do not introduce any bias. The applications of these methods in computer

graphics have been described by Arvo & Kirk [1990].

Russian roulette. Russian roulette is usually applied to estimators that are a sum of many

terms:

F = F1 + � � �+ FN :

For example, F might represent the radiance reflected from a surface along a particular

viewing ray, and each Fi might represent the contribution of a particular light source.

The problem with this type of estimator is that typically most of the contributions are

very small, and yet all of theFi are equally expensive to evaluate. The basic idea of Russian

roulette is to randomly skip most of the evaluations associated with small contributions, by

replacing these Fi with new estimators of the form

F 0i =

8<:
1
qi
Fi with probability qi ;

0 otherwise :

The evaluation probability qi is chosen for each Fi separately, based on some convenient

estimate of its contribution. Notice that the estimator F 0i is unbiased whenever Fi is, since

E[F 0i ] = qi � 1
qi
E[Fi] + (1� qi) � 0

= E[Fi] :

Obviously this technique increases variance; it is basically the inverse of the expected

values method described earlier. Nevertheless, Russian roulette can still increase efficiency,

by reducing the average time required to evaluate F .

For example, suppose that eachFi represents the contribution of a particular light source

to the radiance reflected from a surface. To reduce the number of visibility tests using Rus-

sian roulette, we first compute a tentative contribution ti for each Fi by assuming that the
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light source is fully visible. Then a fixed threshold � is typically chosen, and the probabili-

ties qi are set to

qi = min(1; ti = �) :

Thus contributions larger than � are always evaluated, while smaller contributions are ran-

domly skipped in a way that does not cause bias.

Russian roulette is also used to terminate the random walks that occur particle transport

calculations. (This was the original purpose of the method, as introduced by Kahn — see

[Hammersley & Handscomb 1964, p. 99].) Similar to the previous example, the idea is to

randomly terminate the walks whose estimated contributions are relatively small. That is,

given the current walk x0x1 � � �xk, the probability of extending it is chosen to be propor-

tional to the estimated contribution that would be obtained by extending the path further, i.e.

the contribution of paths of the formx0 � � �xk0 where k0 > k. This has the effect of terminat-

ing walks that have entered unproductive regions of the domain. In computer graphics, this

technique is used extensively in ray tracing and Monte Carlo light transport calculations.

Splitting. Russian roulette is closely related to splitting, a technique in which an estimator

Fi is replaced by one of the form

F 0i =
1

k

kX
j=1

Fi;j ;

where the Fi;j are independent samples fromFi. As with Russian roulette, the splitting fac-

tor k is chosen based on the estimated contribution of the sample Fi. (A larger estimated

contribution generally corresponds to a larger value of k.) It is easy to verify that this trans-

formation is unbiased, i.e.

E[F 0i ] = E[Fi] :

In the context of particle transport calculations, this has the effect of splitting a single

particle into k new particles which follow independent paths. Each particle is assigned a

weight that is a fraction 1=k of the weight of the original particle. Typically this technique is

applied when a particle enters a high-contribution region of the domain, e.g. if we are trying

to measure leakage through a reactor shield, then splitting might be applied to neutrons that
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have already penetrated most of the way through the shield.

The basic idea behind both of these techniques is the same: given the current state

x0x1 � � �xk of a random walk, we are free to use any function of this state in deciding

how many samples of xk+1 will be taken. If we predict that the contribution of the path

x0 � � �xk+1 will be low, then most of the time we will take no samples at all; while if the

contribution is high, we may decide to take several independent samples. If this is applied

at every vertex, the resulting structure is a tree of paths.

In general, Russian roulette and splitting can be applied to any process where each sam-

ple is determined by a sequence of random steps. We can use any prefix of this sequence to

estimate the importance of the final sample. This is then used to decide whether the current

state should be discarded (if the importance is low) or replicated (if the importance is high).

Although this idea is superficially similar to adaptive sampling, it does not introduce any

bias.

Russian roulette is an indispensable technique in transport calculations, since it allows

otherwise infinite random walks to be terminated without bias. Splitting is also useful if it

is judiciously applied [Arvo & Kirk 1990]. In combination, these techniques can be very

effective at directing sampling effort into the most productive regions of the domain.

2.8 Variance reduction IV: Correlated estimators

The last family of variance reduction methods we will discuss is based on the idea of finding

two or more estimators whose values are correlated. So far these methods have not found

significant uses in graphics, so our discussion will be brief.

2.8.1 Antithetic variates

The idea of antithetic variates is to find two estimators F1 and F2 whose values are nega-

tively correlated, and add them. For example, suppose that the desired integral is
R 1
0 f(x) dx,

and consider the estimator

F = (f(U) + f(1� U)) = 2
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where U is uniformly distributed on [0; 1]. If the function f is monotonically increasing (or

monotonically decreasing), then f(U) and f(1 � U) will be negatively correlated, so that

F will have lower variance than if the two samples were independent [Rubinstein 1981,

p. 135]. Furthermore, the estimator F is exact whenever the integrand is a linear function

(i.e. f(x) = ax + b).

This idea can be easily adapted to the domain [0; 1]s, by considering pairs of sample

points of the form

X1 = (U1; : : : ; Us) and X2 = (1� U1; : : : ; 1� Us) :

Again, this strategy is exact for linear integrands. If more than two samples are desired, the

domain can be subdivided into several rectangular regions 
i, and a pair of samples of the

form above can be taken in each region.

Antithetic variates of this type are most useful for smooth integrands, where f is ap-

proximately linear on each subregion 
i. For many graphics problems, on the other hand,

variance is mainly due to discontinuities and singularities of the integrand. These contribu-

tions tend to overwhelm any variance improvements on the smooth regions of the integrand,

so that antithetic variates are of limited usefulness.

2.8.2 Regression methods

Regression methods are a more advanced way to take advantage of several correlated esti-

mators. Suppose that we are given several unbiased estimators F1, : : :, Fn for the desired

quantity I , and that the Fi are correlated in some way (e.g. because they use different trans-

formations of the same random numbers, as in the antithetic variates example). The idea

is to take several samples from each estimator, and apply standard linear regression tech-

niques in order to determine the best estimate for I that takes all sources of correlation into

account.

Specifically, the technique works by takingN samples from each estimator (where the

j-th samples from Fi is denoted Fi;j). We then compute the sample means

Îi =
1

N

NX
j=1

Fi;j for i = 1; : : : ; n ;
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and the sampling variance-covariance matrix V̂, a square n� n array whose entries are

V̂i;j =
1

N � 1

NX
k=1

(Fi;k � Îi) (Fj;k � Îj) :

The final estimate F is then given by

F = (X� V̂�1X)�1X� V̂�1 Î ; (2.33)

whereX� denotes the transpose ofX,X = [1 : : : 1]� is a column vector of lengthn, and Î =

[Î1 : : : În]
� is the column vector of sample means. Equation (2.33) is the standard minimum-

variance unbiased linear estimator of the desired mean I , except that we have replaced the

true variance-covariance matrixV by an approximation V̂. Further details can be found in

Hammersley & Handscomb [1964].

Note that this technique introduces some bias, due to the fact that the same random sam-

ples are used to estimate both the sample means Îi and the variance-covariance matrix en-

tries V̂i;j (which are used to weight the Îi). This bias could be avoided by using different

random samples for these two purposes (of course, this would increase the cost).

The main problem with regression methods is in finding a suitable set of correlated esti-

mators. If the integrand has discontinuities or singularities, then simple transformations of

the form f(U) and f(1� U) will not produce a significant amount of correlation. Another

problem is that this method requires that a substantial number of samples be taken, in order

to estimate the covariance matrix with any reasonable accuracy.
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Chapter 3

Radiometry and Light Transport

In this chapter, we describe the domains, quantities, and equations that are used for light

transport calculations. Many of these concepts have their origins in radiometry, a field that

studies the measurement of electromagnetic radiation. Radiometry is a natural foundation

for graphics, because light is part of the electromagnetic spectrum.

We start by discussing the mathematical representation of the scene model. We then

discuss the phase space and trajectory space, and show how radiometric quantities can be

defined in terms of photon events. Next we give definitions of the quantities that are needed

for light transport calculations, including power, irradiance, radiance, and spectral radiance.

We also discuss the concepts of incident and exitant radiance functions.

We then describe how the light transport problem is formulated mathematically. This

starts with the definition of the bidirectional scattering distribution function (BSDF), which

gives a mathematical description of the way that light is scattered by a surface. We show

how the BSDF is used to define the basic light transport equations, and we give a brief

introduction to adjoint methods and bidirectional algorithms. We also explain why non-

symmetric BSDF’s require special treatment in bidirectional algorithms, and we define the

useful concept of an adjoint BSDF. These ideas will be of central importance for the next

several chapters.

Appendix 3.A discusses field and surface radiance functions [Arvo 1995], and com-

pares them with the incident and exitant radiance functions that we use instead. Finally,

Appendix 3.B gives the details of our measure-theoretic radiometry framework, in which

75
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we apply the tools of measure theory to define radiometric concepts more precisely. The

main task is to define and use suitable measure functions, extending the work of Arvo [1995,

Chapter 2].

A good introduction to radiometry is the book by McCluney [1994]. Other good ref-

erences include [Nicodemus 1976], [Arvo 1995], [Cohen & Wallace 1993], and [Glassner

1995]. Note that our development is quite different than the standard treatments, due to the

emphasis on measure theory.

3.1 Domains and measures

We assume that the scene geometry consists of a finite set of surfaces in IR3, whose union

is denotedM. Formally, each surface is a piecewise differentiable two-dimensional mani-

fold, possibly with boundary. For technical reasons, we require each manifold to be a closed

set; that is, every manifold M must include its boundary @M . This prevents gaps between

abutting surfaces (e.g. consider a cube formed from six squares). Note thatM itself is not

necessarily a manifold. For example, consider two spheres that touch at a point, or a box

sitting on a table.

The surfaces divide IR3 into a number of connected cells, each filled with a non-

participating medium with a constant refractive index (i.e. volume absorption, emission,

and scattering are not allowed).1 It is possible that some surfaces do not belong to any cell

boundary (e.g., a polygon floating in space).

We define an area measureA onM in the obvious way,2 so that A(D) denotes the area

1With this convention, all objects are hollow inside; a “solid” object is simply an empty cell with an opaque
boundary. This representation is actually used by many rendering systems. Alternatively, a cell could be al-
lowed to contain a perfectly absorbing medium. However, this would require some extra care with definitions,
for example when defining the visibility and ray-casting functions used in Chapter 4.

2Given thatM is the union of manifoldsM1, : : :, MN , we define A(D) as the sum of the areas Ai(D \
Mi), where Ai is the usual area measure on the manifold Mi. The measurable sets D � M are defined by
the requirement that all D \ Mi are measurable. We also require that the intersection between any pair of
surfacesMi andMj is a set of measure zero. In practice, this means that when the intersection between two
surfaces has non-zero area (e.g. a cube sitting on a table), the rendering system must arbitrarily choose one
surface over the other. This ensures that almost every point of M (up to a set of area measure zero) has a
unique set of surface properties.
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of a region D �M. The notation Z
M
f(x) dA(x)

denotes the Lebesgue integral of the function f :M! IR with respect to surface area.

Directions are represented as unit-length vectors ! 2 IR3. The set of all directions is

denoted S2, the unit sphere in IR3. Let � be the usual surface area measure on S2. Given

a set of directions D � S2, the solid angle occupied by D is simply �(D). Similarly, the

solid angle subtended by a surface P from a point x is determined by projecting P onto the

unit sphere centered at x, and computing the measure of the resulting set of directions.

Another useful concept is the projected solid angle [Nicodemus 1976, p. 70], which

arises in determining the irradiance (power per unit area) received by surface. Given a point

x 2 M, letN(x) be the surface normal atx. Given a set of directionsD � S2, the projected

solid angle measure �?
x

is defined by

�
?

x
(D) =

Z
D
j! �N(x)j d�(!) : (3.1)

The factor ! �N(x) is often written as cos �, where � is the polar angle of ! (i.e. the angle

between ! and the surface normal).

The name projected solid angle arises from the following geometric interpretation. Let

T
M
(x) be the tangent space at the point x, i.e. the space of vectors in IR3 that are perpen-

dicular to the surface normal:

T
M
(x) = fy 2 IR3 j y �N(x) = 0g :

(Unlike the more familiar tangent plane, the tangent space passes through the origin. Thus

it is a linear space rather than an affine one.) The tangent space dividesS2 into two hemi-

spheres, namely the upward hemisphere

H2
+(x) = f! 2 S2 j ! �N(x) > 0g (3.2)

and the downward hemisphere

H2
�(x) = f! 2 S2 j ! �N(x) < 0g :
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Now given a set of directionsD contained by just one hemisphere, the projected solid angle

can be obtained by simply projectingD orthogonally onto the tangent space, and then find-

ing the area of the resulting planar region. For example, suppose thatD is the entire upward

hemisphereH2
+. The corresponding projected region is a unit disc, so we have�?

x
(H2

+) = �.

3.2 The phase space

Radiometric quantities can be defined within the more general framework of transport the-

ory, which studies the motion of particles in an abstract setting. Each particle is character-

ized by a small number of parameters, which vary as a function of time. Typical particles

such as neutrons or gas molecules can be represented by their position and velocity, for a

total of 6 degrees of freedom. The state of a system of N particles is then represented as

a 6N -dimensional vector, which can be thought of as a point in the 6N -dimensional phase

space containing all possible system states.3 The evolution of the system over time corre-

sponds to a one-dimensional curve in phase space.

We now consider how this applies to light transport. Under the assumption that light

is unpolarized and perfectly incoherent, the state of each photon can be represented by its

position x, direction of motion !, and wavelength � [Nicodemus 1976, p. 8]. Thus for a

system of N photons, the phase space would be 6N -dimensional.

However, for particles that do not interact with each other (such as photons), it is more

useful to let the phase space correspond to the state of a single particle. With this convention,

the phase space  is only 6-dimensional, and can be expressed as

 = IR3 � S2 � IR+ ;

where IR+ denotes the positive real numbers (corresponding to the range of allowable wave-

lengths). A system of N photons is represented as a set of N points in this 6-dimensional

space, whose positions vary as a function of time.

Radiometric quantities can then be defined by counting the number of photons in a given

3For many problems the natural phase space is not really 6N -dimensional, since physical laws may cause
certain properties of the initial state to be preserved for all time (e.g., the total energy). This restricts the phase
space to be a lower-dimensional manifold within the 6N -dimensional Euclidean space defined above.
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region of the phase space, or measuring their density with respect to one or more parameters.

The most basic of these quantities is the photon number Np, which simply measures the

number of photons in a given phase space region [McCluney 1994, p. 26]. For example,

we could count the number of photons in a given spatial volume 
 � IR3 at a fixed time

t0, with no restrictions on the direction or wavelength parameters. This corresponds to the

region 
� S2 � IR+ of the phase space  .

3.3 The trajectory space and photon events

We generalize the notion of a radiometric measurement further, by considering the time di-

mension explicitly. If the phase space positions of all photons are graphed over time, we

obtain a set of one-dimensional curves in the trajectory space

	 = IR�  ;

where the first parameter represents time. Radiometric measurements are defined by speci-

fying a set of photon events along these curves, and then measuring the distribution of these

events in various ways.

A photon event is a single point in the trajectory space	. Some events have natural def-

initions; for example, each emission, absorption, or scattering event corresponds to a single

point along a photon trajectory.4 Other events can be defined artificially, usually by speci-

fying a surface in 	 that intersects the photon trajectories at a set of points. For example,

we could define the events to be the photon states at a particular time t0. This corresponds

to intersecting the trajectories with the plane t = t0 in the trajectory space 	. Similarly,

given an arbitrary plane P in IR3, we could define a photon event to be a crossing of P ,

corresponding to an intersection with the surface IR� P � S2 � IR+ in trajectory space.

Once the photon events have been defined, we are left with a set of points in the trajectory

4In fact, each scattering event corresponds to two points along the photon trajectory, since the ! parameter
has different values before and after the collision (corresponding to a discontinuity in the trajectory). Similarly,
the wavelength parameter � could change discontinuously in a fluorescent material. Thus, we must distinguish
between in-scattering and out-scattering events, according to whether we measure the photon state before
or after the collision. This is the basis for distinguishing between incident and exitant radiance functions,
discussed in Section 3.5.
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space 	. These points may be distributed throughout the whole space 	, or they may lie on

some lower-dimensional manifold (e.g. if the photon events were defined as an intersection

with a surface). To define a radiometric quantity, we then measure the distribution of these

events with respect to a suitable geometric measure.

For this purpose, it is convenient to assume that the events are so numerous that their

density can be modeled by continuous distributions rather than discrete ones. Rather than

counting the photon events in a given region of the trajectory space, for example, we de-

termine their total radiant energy Q (measured in joules [J]). We will ignore the discrete

nature of photons and assume that Q can take on any non-negative real value. (Note that

each photon has an energy of h�, where h is Planck’s constant, and � = 1=� is frequency.)

3.4 Radiometric quantities

We now discuss some of the most important radiometric quantities. Each of these is de-

fined by measuring the distribution of energy with respect to one or more parameters. The

discussion here is informal; a more detailed development is given in Appendix 3.B.

3.4.1 Power

Radiant power is defined as energy per unit time,

� =
dQ

dt
; (3.3)

and is measured in watts [W = J � s�1]. For example, this is the quantity used to describe

the rate at which energy is emitted or absorbed by a finite surface S � IR3.

The notation (3.3) could be written more precisely as

�(t) =
dQ(t)

dt
;

which makes it clear that � and Q are functions of time. ObviouslyQ must be defined as a

function of time, in order for the idea of differentiating it to make sense. In general, this is

done by defining Q(t) to measure the energy of the photon events in some region D(t) of

trajectory space, where the regionD(t) grows with time. For example, suppose that we are
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counting emission events, and consider the region

D(t) = [0; t]� S � S2 � IR+ ;

where S � IR3 is a finite surface. In this case, Q(t) represents the total energy emitted by

S over the time interval [0; t], so that �(t) = dQ(t)=dt measures the energy emission per

unit time (at each time t).

However, we will usually ignore these subtleties. Most often we are concerned with

systems in equilibrium, so that the density of photon events in phase space does not change

with time. In this case, the t parameter can be omitted from the notation, as in equation

(3.3).

3.4.2 Irradiance

Continuing with our discussion of radiometric quantities, irradiance is defined as power per

unit surface area:

E(x) =
d�(x)

dA(x)
; (3.4)

with units of [W � m�2]. It is always defined with respect to a point x on a surface S (ei-

ther real or imaginary), with a specific normal N(x). The term irradiance also generally

implies the measurement of incident radiation, on one side of the surface only (i.e. light

incident from the upward hemisphereH2
+(x)). When light is leaving the surface, through

either emission or scattering, the preferred term is radiant exitance (denoted by the symbol

M ) [Nicodemus 1978, p. 11]. Another common term is radiosity, which was introduced by

Moon [1936] and popularized in the heat transfer literature (cf. Heckbert [1992]).

3.4.3 Radiance

For light transport calculations, by far the most important quantity is radiance, defined by

L(x; !) =
d2�(x; !)

dA?!(x) d�(!)
; (3.5)
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whereA?! is the projected area measure, which measures area on a hypothetical surface per-

pendicular to !. That is, to measure the radiance at (x; !), we count the number of photons

per unit time passing through a small surface dA?!(x) perpendicular to !, whose directions

are contained in a small solid angle d�(!) around !. Radiance is defined as the limiting

ratio of the power d� represented by these photons, divided by the product dA?!(x) d�(!).

The corresponding units are [W �m�2 � sr�1].
When measuring the radiance leaving a real surface S, a more convenient equation is

given by

L(x; !) =
d2�(x; !)

j! �N(x)j dA(x) d�(!) ; (3.6)

where as beforeA is the area measure onS, andN(x) is the surface normal atx. This relates

the projected area dA?! to the ordinary area dA, according to5

dA
?

!(x) = j! �N(x)j dA(x) : (3.7)

Alternatively, the j!�N(x)j factor can be absorbed into the projected solid angle measure

defined above, leading to

L(x; !) =
d2�(x; !)

dA(x) d�?
x
(!)

: (3.8)

This is the most useful definition when dealing with radiance on real surfaces, because it

uses the natural area measureA.

3.4.4 Spectral radiance

Carrying this one step further, spectral radiance L� is defined by

L�(x; !; �) =
d3�(x; !; �)

dA(x) d�?
x
(!) d�

; (3.9)

that is, L� = dL=d�. The units are typically given as [W � m�2 � sr�1 � nm�1], where

the use of nanometers for wavelength helps to avoid confusion with the spatial variables

[Nicodemus 1976, p. 49]. Other spectral quantities can be defined similarly, e.g. spectral

5More precisely, the projected area measure is defined by A?!(D) =
R
D
j! �N(x)j dA(x), where D is an

arbitrary region of S.



3.5. INCIDENT AND EXITANT RADIANCE FUNCTIONS 83

power is defined by �� = d�=d�.

Spectral radiance is often considered to be the fundamental radiometric quantity, in that

many other common quantities can be derived from it. For example, radiance is given by

L(x; !) =
Z 1

0
L�(x; !; �) d� ;

from which irradiance can be obtained by

E(x) =
Z
H2
+(x)

L(x; !) d�
?

x
(!) :

In this dissertation, we will most often deal with spectral radiance L�. However, for

conciseness we will usually just refer to this as “radiance” and use the symbolL. This is a

slight abuse of terminology, but it is common practice in computer graphics.

Many other radiometric quantities have been defined, but we will not need them here.

The manual by Nicodemus [1976] is an excellent reference on this topic, although some of

the notation has been superceded by the USA Standard Nomenclature and Definitions for

Illuminating Engineering [American National Standards Institute 1986].

3.5 Incident and exitant radiance functions

A radiance function is simply a function whose values correspond to radiance measure-

ments.6 Most often, we will work with functions of the form

L :M�S2 ! IR ;

whereM is the set of scene surfaces (Section 3.1). Occasionally, radiance functions of the

form

L : IR3 � S2 ! IR

will also be useful. Note that we allow negative values forL(x; !) (which have no physical

meaning), to ensure that the set of all radiance functions is a vector space.

6As mentioned in Section 3.4, we will often use the terms radiance and spectral radiance interchangeably,
ignoring the extra � parameter.
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We will distinguish between incident and exitant7 radiance functions, according to the

interpretation of the ! parameter. An incident function Li(x; !) measures the radiance ar-

riving at x from the direction !, while an exitant function Lo(x; !) measures the radiance

leaving from x in the direction !. In free space, these quantities are related by

Li(x; !) = Lo(x;�!) : (3.10)

However, at surfaces the distinction is more fundamental: Li and Lo measure different

sets of photon events, corresponding to the photon states just before their arrival at the sur-

face, or just after their departure respectively. The relation betweenLi and Lo can be quite

complex, since it depends on the scattering properties of the surface.

The difference between incident and exitant radiance can be understood more precisely

in terms of the trajectory space 	. Recall that each photon traces out a one-dimensional

curve in this space, namely the graph of the function (xi; !i; �i)(t) over all values of t. To

measure radiance, we define a photon event to be an intersection of one of these curves with

the surface IP = IR �M� S2 � IR+ in trajectory space. Our key observation is that this

curve is not continuous at IP, since scattered photons instantaneously change their direction

and/or wavelength. (A continuous curve would correspond to a photon that passes through

Mwithout any change.) Similarly, the curves for emitted and absorbed photons are discon-

tinuous, since they are defined on only one side of IP.

We now observe that Li and Lo measure events that are limit points of trajectories on

opposite sides of the surface IP. Each event (ti;xi; !i; �i) measured by Li is the limit of

a trajectory defined for t < ti, while an event measured by Lo is the limit of a trajectory

defined for t > ti. This gives a simple and precise way to differentiate between incident

and exitant radiance.

Note that incident and exitant radiance functions are quite similar to the field and surface

radiance functions proposed by Arvo [1995] (the main difference is that the direction of! is

reversed for field radiance as compared to incident radiance). Appendix 3.A discusses these

two approaches and explains the advantages of incident and exitant radiance functions.

7Nicodemus prefers the spelling exitent, and states that this term was coined by Richmond (cf. [Nicodemus
1976, p. 25]). Our use of exitant stems from [Christensen et al. 1993], where the term appears to have been
re-invented.
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Figure 3.1: Geometry for defining the bidirectional scattering distribution function (BSDF).

3.6 The bidirectional scattering distribution function

The bidirectional scattering distribution function (BSDF) is a mathematical description of

the light-scattering properties of a surface. Letx 2 M be a fixed point on the scene surfaces,

and consider the radiance leaving x in a particular direction !o (see Figure 3.1). We will

denote this Lo(!o), dropping x from our notation. In general, the radiance Lo(!o) depends

on the radiance arriving atx from all directions. For now, we fix a particular direction!i, and

consider the incident light from an infinitesimal cone around !i, where the cone occupies a

solid angle of d�(!i). This light strikes the surface at the pointx, and generates an irradiance

equal to

dE(!i) = Li(!i) d�
?

(!i) :

The light is then scattered by the surface in all directions; we let dLo(!o) represent the con-

tribution made to the radiance leaving in direction !o.

It can be observed experimentally that as dE(!i) is increased (by increasing eitherLi or

d�(!i)), there is a proportional increase in the observed radiance dLo(!o):

dLo(!o) / dE(!i) :

This corresponds to the fact that light behaves linearly under normal circumstances (recall

Section 1.5.3).
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The BSDF fs(!i!!o) is now simply defined to be this constant of proportionality:

fs(!i!!o) =
dLo(!o)

dE(!i)
=

dLo(!o)

Li(!i) d�
?(!i)

: (3.11)

In words, fs(!i!!o) is the observed radiance leaving in direction!o, per unit of irradiance

arriving from !i. The notation !i!!o symbolizes the direction of light flow.

3.6.1 The scattering equation

By integrating the relationship

dLo(!o) = Li(!i) fs(!i!!o) d�
?
(!i)

over all directions, we can now predict Lo(!o). This is summarized by the (surface) scat-

tering equation,8

Lo(!o) =
Z
S2
Li(!i) fs(!i!!o) d�

?

(!i) : (3.12)

This equation can be used to predict the appearance of the surface, given a description of

the incident illumination.

3.6.2 The BRDF and BTDF

The BSDF is not a standard concept in radiometry.9 More typically, the scattered light is

subdivided into reflected and transmitted components, which are treated separately. This

leads to the definition of the bidirectional reflectance distribution function (BRDF), and the

bidirectional transmittance distribution function (BTDF), denoted fr and ft respectively.

The BRDF is obtained by simply restricting fs to a smaller domain:

fr : H2
i �H2

r ! IR ;

8The corresponding equation for one-sided, opaque surfaces is called the reflectance equation [Cohen &
Wallace 1993, p. 30].

9The name appears to have been introduced by Heckbert [Heckbert 1991, p. 26]. Previously, he used the
term bidirectional distribution function (BDF) [Heckbert 1990], however we feel that this term is more ap-
propriate for a category of such functions, containing the various B*DF’s as members.
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where H2
i and H2

r are often called the incident and reflected hemispheres respectively. In

fact, both symbols refer to the same set of directions (H2
i = H2

r ), which can be either the

upward hemisphereH2
+, or its complementH2

�.

The BTDF is defined similarly to the BRDF, by restricting fs to a domain of the form

ft : H2
i �H2

t ! IR ;

where the transmitted hemisphereH2
t = �H2

i is the complement ofH2
i . As beforeH2

i can

represent either the upward hemisphereH2
+, or its complementH2

�.

Thus, we see that the BSDF is the union of two BRDF’s (one for each side of the sur-

face), and two BTDF’s (one for light transmitted in each direction). Its main advantage is

convenience: we only need to deal with one function, rather than four. The BSDF allows us

to write equations that are simple and yet general, capable of describing the scattering from

any kind of surface. Surfaces that are purely reflective or transmissive are simply special

cases of this formulation. In addition, the BSDF is actually easier to define, since we do not

need to specify the hemispherical domains needed by the BRDF and BTDF.

Properties of the BRDF. The BRDF’s that describe real surfaces are known to have a

number of basic properties. For example, they are symmetric:

fr(!i!!o) = fr(!o!!i) for all !i; !o : (3.13)

Because of the symmetry, the notation fr(!i$!o) is often used. Another property shared

by physical BRDF’s is energy conservation, as embodied by the conditionZ
H2
o

fr(!i!!o) d�
?
(!o) � 1 for all !i 2 H2

i : (3.14)

Further explanation of BRDF’s and their properties can be found in [Nicodemus et al. 1977,

p. 5] or [Cohen & Wallace 1993, p. 28].

Note that these simple conditions are unique to reflection, and do not always apply to

surfaces that transmit light. Thus, it cannot be assumed that BSDF’s or BTDF’s satisfy the

simple rules above. We will investigate the correct generalization of these properties to ar-

bitrary surfaces in Chapter 6.



88 CHAPTER 3. RADIOMETRY AND LIGHT TRANSPORT

3.6.3 Angular parameterizations of the BSDF

It is common to write BSDF’s in terms of polar and azimuthal angles, rather than unit di-

rection vectors. We will use this parameterization later in this chapter, to derive the scaling

of radiance at a refractive interface (Section 5.2). We show how the two parameterizations

are related, and summarize the advantages of the unit vector form.

In the angular parameterization, a direction ! 2 S2 is represented as a pair of angles

(�; �). The polar angle � measures the angle between ! and the normal N, while the az-

imuthal angle � measures the angle between ! and a fixed directionT lying in the tangent

space at x. The angular and vector representations are thus related by

cos � = ! �N ;

cos � = ! �T :

To use this parameterization, we must also know how the angle measures � and �? are

represented. The solid angle � corresponds to

d�(!) � sin � d� d� (3.15)

� d! cos � d� ;

while the projected solid angle �? can be written in a number of forms:

d�
?

(!) � jcos �j sin � d� d� (3.16)

� jcos �j d! cos � d�
� sin � dsin � d�

� (1=2) d! cos2 � d�

� (1=2) dsin2 � d� :

With the angular parameterization, the scattering equation (3.12) thus becomes

Lo(�o; �o) =
Z 2�

0

Z �

0
Li(�i; �i) fs(�i; �i; �o; �o) jcos �ij sin �i d�i d�i ; (3.17)

where the other representations (3.16) for the projected solid angle could also be used.

Although the angular representation is common, there are good reasons to prefer the unit
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vector representation ! 2 S2. First, note that (�; �) is a local representation of direction,

since the angles � and � depend on the surface normal. When more than one surface point

is involved, it is much more convenient to work with direction vectors. Second, the (�; �)

representation creates the impression that many formulas involve trigonometric functions,

when in fact they are usually implemented with dot products. Finally, the angular represen-

tation depends on an extra parameter (the tangent vectorT), which must be chosen arbitrar-

ily since it has no physical significance.

3.7 Introduction to light transport

This section reviews the main concepts of light transport, without getting into too much

detail. (These ideas will be defined more precisely in the next chapter, where we reformulate

light transport in terms of linear operators.) We discuss the measurement, light transport,

and importance transport equations. We also outline the ideas of bidirectional methods for

the light transport problem, and explain why they are often the most efficient methods for

its solution. Finally, we explain why bidirectional algorithms need to evaluate BSDF’s with

special care, and we define the useful concept of an adjoint BSDF.

3.7.1 The measurement equation

The goal of light transport is to compute a set of real-valued measurements I1, : : :, IM . For

example, in a light transport algorithm that computes an image directly, each measurement

Ij represents the value of a single pixel, andM is the number of pixels in the image.

Each measurement corresponds to the output of a hypothetical sensor that responds to

the radianceLi(x; !) incident upon it. The response may vary according to the position and

direction at which light strikes the sensor; this is characterized by the sensor responsivity

We(x; !). The total response is determined by integrating the productWeLi, according to

I =
Z
M�S2

We(x; !)Li(x; !) dA(x) d�
?

x
(!) : (3.18)

This is called the measurement equation. Note that there is actually one equation for each

measurement Ij , each with a different responsivity functionW (j)
e (although we will usually



90 CHAPTER 3. RADIOMETRY AND LIGHT TRANSPORT

drop the superscript). Also note that we have assumed that the sensors are modeled as part

of the sceneM, in order that we can integrate over their surface.

3.7.2 The light transport equation

Generally, we are most interested in measuring the steady-state or equilibrium radiance

function for the given scene.10 It is conventional to solve for the exitant version of this quan-

tity, Lo, from which the incident radiance Li can be obtained using

Li(x; !) = Lo(xM(x; !);�!) :

Here x
M
(x; !) is the ray-casting function, which returns the first point ofM visible from

x in direction !.

We can express Lo as the sum of emitted radiance Le, and scattered radiance Lo;s:

Lo = Le + Lo;s :

The emitted radiance functionLe(x; !) is provided as part of the scene description, and rep-

resents all of the light sources in the scene. On the other hand, Lo;s is determined using the

scattering equation (3.12), according to

Lo;s(x; !o) =
Z
S2
Li(x; !i) fs(x; !i!!o) d�

?

x
(!i) :

By putting these equations together, we get a complete specification of the light transport

problem. The most interesting feature is that Lo and Li have been defined in terms of each

other; commonly their definitions are combined to obtain

Lo(x; !o) = Le(x; !o) +
Z
S2
Lo(xM(x; !i);�!i) fs(x; !i!!o) d�

?

x
(!i) ; (3.19)

which is known as the light transport equation. Since Li does not appear in this equation,

the subscript onLo is usually dropped. The form of this equation naturally leads to recursive

solutions (the essence of traditional Monte Carlo methods).

10Since light travels so much faster than the everyday objects around us, equilibrium is achieved very
quickly after any changes to the environment. Effectively, the world we perceive is always in equilibrium
(with respect to light transport).
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3.7.3 Importance and adjoint methods

As we have presented them, the transport rules apply to the scattering of light, as emitted

by the sources. However, the transport rules can be applied equally well to the sensors, by

treating the responsivityWe(x; !) as an emitted quantity. In this context,We(x; !) is called

an emitted importance function, since We specifies the “importance” of the light arriving

along each ray to the corresponding measurement I .

This idea is the basis of adjoint methods, which apply the transport rules to importance

rather than radiance. These methods start with the emitted importanceWe(x; !), and solve

for the equilibrium importance function W (x; !), according to the importance transport

equation

W (x; !) = We(x; !) +
Z
S2
W (x

M
(x; !i);�!i) fs(x; !o!!i) d�

?

x
(!i) : (3.20)

This equation is virtually identical to the light transport equation (3.19), except that the di-

rectional arguments to the BSDF have been exchanged.

Given the equilibrium importance W , measurements are computed by integrating the

product WLe (similar to (3.18)). Note that while there is only one equilibrium radiance

function, there can be many different equilibrium importance functions (one for each sen-

sor). This is an important difference between direct and adjoint methods.

3.7.4 Bidirectional methods

Many recent algorithms combine features from both of these approaches, leading to bidi-

rectional light transport methods. The computation is guided by the viewing information

(sensors), as well as the lighting information (sources). This allows these algorithms to be

more efficient, since they can do less work in regions that are dark or that are not visible.

This concept is similar to certain planning problems in artificial intelligence, where the ob-

jective is to get from an initial state to a goal, given some set of possible actions. It is possible

to reduce the search complexity by simultaneously working forward from the initial state,

and backward from the goal, until the two searches meet somewhere in the middle.

Bidirectional algorithms can appear in a number of different forms. Importance-driven
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(a) Path tracing (b) Particle tracing

Figure 3.2: Path tracing and particle tracing sample the BSDF in different ways. (a) For
path tracing, the direction!o is given (it points toward the previous vertex on a path leading
to a sensor). The path is extended by sampling a direction!i according to the BSDF. (b) For
particle tracing, the direction!i is given (pointing along a path toward a light source), and
the path is extended by sampling a direction!o.

methods use viewing information to guide mesh refinement, by increasing the mesh resolu-

tion in regions where the equilibrium importance is high (since these regions have the great-

est influence on the desired set of measurements). With Monte Carlo approaches, bidirec-

tional methods often combine path tracing, where the transport equation is sampled starting

from the sensors, and particle tracing, where sampling begins at the light sources.

In one way or another, almost all recent light transport algorithms have taken a bidi-

rectional approach. These include finite element approaches [Smits et al. 1992, Schröder

& Hanrahan 1994, Christensen et al. 1996], multi-pass methods [Chen et al. 1991, Zimmer-

man & Shirley 1995], particle tracing algorithms [Heckbert 1990, Pattanaik & Mudur 1995,

Shirley et al. 1995, Jensen 1996], and bidirectional path tracing [Lafortune & Willems 1993,

Veach & Guibas 1994, Veach & Guibas 1995].

3.7.5 Sampling and evaluation of non-symmetric BSDF’s

Scene models often contain materials whose BSDF is not symmetric, i.e. for whichfs(!i!
!o) 6= fs(!o ! !i). Great care must be taken when such materials are used with bidi-

rectional algorithms, because in this case the transport rules for light and importance are
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(a) The normal BSDF fs. (b) The adjoint BSDF f�s .

Figure 3.3: By adopting the convention that!i is always the sampled direction, the BSDF
fs and its adjoint f�s are used for different purposes. (a) The BSDF fs(!i!!o) is used for
radiance evaluation, and to scatter importance particles.(b) The adjoint BSDF f�s (!i!!o)
is used for importance evaluation, and to scatter light particles.

different. Formally, this can be seen by noting that the light transport equation (3.19) and

the importance transport equation (3.20) are identical, except that the directional arguments

to the BSDF have been exchanged. Thus if the BSDF is not symmetric, then light and im-

portance satisfy different transport equations. From another point of view, recall that the

BSDF was defined in terms of light propagation: light flows from the incoming direction!i

to the outgoing direction !o. Thus importance flows from !o to !i, since it is transported in

the opposite direction as light. Similarly, different scattering rules must be used for particle

tracing and path tracing to obtain correct results when non-symmetric BSDF’s are present

(see Figure 3.2). Thus, bidirectional algorithms must take care when evaluating or sampling

the BSDF, to ensure that !i and !o are ordered correctly.

In the next few chapters, we will study non-symmetric BSDF’s and their consequences

for bidirectional algorithms in detail.

3.7.6 The adjoint BSDF

Given an arbitrary BSDF fs, the adjoint BSDF f �s is defined by

f �s (!i!!o) = fs(!o!!i) for all !i; !o 2 S2 : (3.21)
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The main advantage of the adjoint BSDF is that it lets the importance transport equation

(3.20) have the same form as the light transport equation (3.19). Recall that the only dif-

ference between these two equations is that the arguments to the BSDF are exchanged

(fs(!o ! !i) instead of fs(!i ! !o)). By using the adjoint BSDF f �s in the importance

transport equation, this difference is eliminated: the two equations have exactly the same

form, but they use different BSDF’s (see Figure 3.3.)

The adjoint BSDF also provides a useful convention for sampling. Recall that in path

tracing, we sample the BSDF to determine the incident direction!i (since !o is given). We

extend this idea, by adopting the convention that !i is always the sampled direction during

a random walk. We refer to the opposite situation (where!i is provided, and !o is sampled)

as sampling the adjoint BSDF. For example, according to this convention the adjoint BSDF

is used to scatter light particles.

We also mention two other techniques that can be used in bidirectional algorithms. The

first of these is importance particle tracing, in which particles are emitted from the sensors

and scattered throughout the environment, in order to obtain a set of samples that represent

the equilibrium importance. This process is similar to ordinary particle tracing, except that

importance is used instead of light. This implies that importance particles should be scat-

tered using the ordinary BSDF fs. The second technique is importance evaluation, in which

the equilibrium importance on a ray (x; !) is estimated by recursively sampling the impor-

tance transport equation. This is similar to the evaluation of radiance using path tracing,

except that the adjoint BSDF f �s is used instead of fs.

To summarize, the adjoint BSDF is used for importance evaluation and for scattering

light particles (i.e. sampling processes that start at a light source), while the normal BSDF

is used for radiance evaluation and for scattering importance particles (sampling processes

that start at a sensor). These rules will be justified formally in Chapter 4.
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Appendix 3.A Field and surface radiance functions

In this appendix we consider thefield and surface radiance functions defined by Arvo [1995, p. 28],

and compare them with the incident and exitant radiance functions described in Section 3.5. Basi-

cally, field radianceLf is similar to incident radianceLi, while surface radianceLs is similar to exi-

tant radiance Lo. The main difference is thatLf and Ls are defined only in the context of one-sided

(reflective) surfaces, which allows them to be defined as two halves of a single radiance distribution

L.

To define field and surface radiance precisely, letS be a surface bounding an opaque object, and

consider the radiance distributionL(x; !) at a point x 2 S. Arvo [1995] observes that since scatter-

ing occurs on only one side ofS, the direction of! can be used to distinguish incident photons from

exitant ones: if ! is in the upward hemisphereH2
+(x), then L(x; !) refers to radiance leaving the

surface, and otherwiseL(x; !) refers to radiance arriving at the surface. Applying this observation,

he proposed thatL(x; !) is naturally partitioned into surface radiance Ls(x; !) and field radiance

Lf(x; !), according to whether! �N(x) is positive or negative respectively.

However, there are several important differences between incident/exitant radiance and

field/surface radiance. First, the sense of the direction parameter! is reversed for Lf as compared

to Li:

Lf(x; !) = Li(x;�!) :

The field radiance definitionLf would appear to be more natural, since! corresponds to the direction

of travel of the photons. However, theLi definition has two important advantages. At reflective sur-

faces, it corresponds to the convention assumed by most BRDF formulas, where!i and!o both point

outward. More significantly, theLi definition causes certain natural transport operators to become

self-adjoint (namely theG and K operators defined in Section 4.3), which increases the symmetry

between the equations governing light and importance transport.

A second difference is thatLi andLo are defined for two-sided surfaces, e.g. those that allow both

reflection and transmission. For these surfaces,! cannot be used to distinguish between incident and

exitant photons, since Li and Lo are both defined for all ! 2 S2. Instead, the two sets of photon

events must be distinguished using the time dimension, as we have outlined above.

Finally, field and surface radiance are defined only at surfaces, while incident and exitant radi-

ance are defined in space as well. (The distinction betweenLi and Lo is still useful in this context,

since it can be used to define self-adjoint operators for volume scattering.)
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Appendix 3.B Measure-theoretic radiometry

Typically, radiometric quantities are defined using “infinitesimals” and limit arguments. Arvo [Arvo

1995, Chapter 2] has taken a different approach, by proposing a set of axioms that correspond to the

observable behavior of photons, and then deriving radiometric quantities using the tools of measure

theory. His analysis focused on the spatial distribution of steady-state, monochromatic radiation, and

led to a measure-theoretic definition of thephase space density (defined below). In this section we

show how to extend his techniques to a more general class of radiometric quantities: for example,

we give measure-theoretic definitions ofspectral radiance and spectral radiant sterisent.

3.B.1 Measure spaces

A measure space is a triple (IP;P; %), where IP is a set (the underlying set of the measure space),P is

a collection of subsets of IP (the measurable sets), and % : P ! [0;1] is a non-negative, countably

additive set function (themeasure function, or simply the measure). The countably additive property

means that

%

 
1[
i=1

Di

!
=

1X
i=1

%(Di)

whenever theDi are mutually disjoint measurable sets.

The measurable sets form a�-algebra, meaning that P contains IP, and is closed under the op-

erations of complementation and countable unions. For technical reasons,P is generally a proper

subset of 2IP, that is, some sets are not measurable. However, for the measure spaces we are inter-

ested in (those constructed as the product of Lebesgue measures), the unmeasurable sets represent

pathological situations that can be ignored in practice.

Sometimes, the measures we consider will not be finite; that is,%(IP) = 1. However, they

will always have the weaker property of being�-finite, meaning that there is an infinite sequence

D1;D2; : : : of measurable sets such that

1[
i=1

Di = IP ;

and %(Di) is finite for all i. That is, a �-finite measure space is one that can be decomposed into

countably many regions, each with finite measure.
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3.B.2 The photon event space

To define a radiometric quantity, we first choose an appropriatephoton event space. This is the subset

IP � 	 of the trajectory space containing all possible locations of the photon events we wish to count.

Thus, IP depends on the definition of a photon event; by defining photon events in different ways, we

will obtain different radiometric quantities. For example, consider the case ofvolume emission (e.g.

the light emitted by a fire). Without knowledge of the specific scene geometry, we must assume that

a photon could be emitted from any point inIR3, in any direction, at any wavelength, at any time;

thus we would set IP = 	 (the whole trajectory space). On the other hand, if photon events were

defined as crossings of a hypothetical surfaceS � IR3, then the photon event space would be

IP = IR� S � S2 � IR+ :

In this example, IP is a 6-dimensional manifold within the 7-dimensional trajectory space	.

3.B.3 The geometric measure

Next we define a measure % on the photon event space, called thegeometric measure, which will be

used to measure the density of photon events. It will normally be defined as product of the natural

Lebesgue measures on the components ofIP. For example, in the case of volume emission% is given

by

% = l � v � � � l+ ;

where l and l+ are the usual length measures on IR and IR+ respectively, and v is the usual volume

measure on IR3. Note that this definition also establishes the geometrically measurable setsP , ac-

cording to the usual rules for product measures [Halmos 1950, p. 140].11

3.B.4 The energy measure

To count the photon events in various regions ofIP, we also define an energy content function

Q : P ! [0;1] :

11Technically, we work with the completion of the product measure, which augments P to include sets of
the form D4N , where 4 denotes the symmetric difference of two sets, D is a measurable set, and N is an
arbitrary subset of a set of measure zero.
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To each measurable setD of the photon event space, it assigns a non-negative real numberQ(D)

that measures the total energy of the photon events inD. The function Q is assumed to obey the

following physically plausible axioms (see [Arvo 1995, p. 19]):

(A1) Q : P ! [0;1]

(A2) Q

 
1[
i=1

Di

!
=

1X
i=1

Q(Di) for mutually disjoint fDig � P

(A3) %(D) <1 =) Q(D) <1

(A4) %(D) = 0 =) Q(D) = 0

Axiom (A1) states that every region contains a non-negative quantity of energy. Axiom (A2)

states thatQ is countably additive; that is, if we consider a countable set of disjoint regionsDi, the

energy contained their union is simply the sum of their individual energies. Together, (A1) and (A2)

imply thatQ is a non-negative, countably additive set function, so that by definitionQ is a measure

(on the same measurable sets for which% is defined).

Axiom (A3) states that every region with finite%-measure contains a finite quantity of energy.

Intuitively, this says that the energy density is finite everywhere, a concept that will be made more

precise below. From a measure-theoretic point of view, it ensures that the�-finite property of % car-

ries over toQ.

Finally, (A4) states thatQ is continuous with respect to %, meaning that every set with zero %-

measure also has zeroQ-measure. This important property allows the “ratio” of two measures to be

defined rigorously, as we shall see below.

By translating these axioms into the language of measure theory, we obtain the following theo-

rem (cf. Arvo, Theorem 1 [Arvo 1995, p. 22]):

Theorem 3.1 (Existence of Energy Measures). Given a photon event space IP with geometric

measure %, and an energy content functionQ satisfying axioms (A1), (A2), (A3), and (A4), thenQ

defines a positive �-finite measure over IP, and Q is continuous with respect to%.

Thus, we will now refer toQ as the energy measure on IP.

3.B.5 Defining radiometric quantities as a ratio of measures

Loosely speaking, a radiometric quantity can now be defined by measuring the density ofQ with

respect to %, i.e. the ratio dQ=d% for a region D that becomes arbitrarily small. This idea can be
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made precise by means of the Radon-Nikodym theorem [Halmos 1950, p. 128]:12

Theorem 3.2 (Radon-Nikodym). If (IP;P; %) is a �-finite measure space, and if a�-finite measure

Q on P is continuous with respect to%, then there exists a non-negative, real-valued,%-measurable

function f on IP such that

Q(D) =

Z
D
f d%

for every measurable setD 2 P . The function f is unique up to a set of%-measure zero.

The function f is called the Radon-Nikodym derivative of Q with respect to %, denoted

f =
dQ

d%
: (3.22)

This notation emphasizes its similarity with ordinary differentiation, with which it shares many prop-

erties.

Using the Radon-Nikodym theorem, we can thus define a functionf corresponding to the density

of photon events. The meaning of this density obviously depends on how the events are defined.

However, we can summarize the fact of its existence as follows (cf. Arvo, Theorem 3 [Arvo 1995,

p. 23]):

Theorem 3.3 (Existence of Energy Density). Given a photon event space IP with geometric mea-

sure %, and an energy content functionQ satisfying axioms (A1), (A2), (A3), and (A4), then there

exists a %-measurable function f : IP ! (0;1), which is unique to within a set of%-measure zero,

satisfying

Q(D) =

Z
D
f d% ;

where D 2 P is a measurable subset of IP.

3.B.6 Examples of measure-theoretic definitions

We now give several examples showing how these concepts can be applied.

3.B.6.1 Spectral radiant sterisent

Consider again the case of volume emission. Recall from Section 3.B.2 that the photon event space

is the whole trajectory space IP = 	, while the geometric measure is% = l� v��� l+. By taking

12Notice that we have restricted our definition of a measure space to positive, total measures, which sim-
plifies the statement of the theorem somewhat.



100 CHAPTER 3. RADIOMETRY AND LIGHT TRANSPORT

the derivative dQ=d%, we obtain a quantity

L�� =
dQ

d%
=

dQ

dl dv d� dl+
:

This quantity is called spectral radiant sterisent [Nicodemus 1978, p. 55], and has units of power

per unit area per unit solid angle per unit wavelength [W � m�3 � sr�1 � nm�1]. It is used for the

measurement of emission, scattering, and absorption within volumes.

3.B.6.2 Spectral phase space density

As another example, consider the events defined by intersecting the photon trajectories with the sur-

face t = t0. This allows us to measure the instantaneous spatial distribution of the photons, a concept

that is particularly useful for steady-state systems. This was the situation studied by Arvo [1995],

who developed a measure-theoretic phase space density for photons distributed in IR3 � S2.

In our framework, the event space for this situation is

IP = ft0g �  ;

where ft0g denotes the set containing the single value t0, and recalling that  is the phase space

 = IR3 � S2 � IR+. The geometric measure % is just the natural measure on the phase space ,

with a slight technical modification to account for presence of the fixed timet0:

% = �t0 � v � � � l+ ;

where �t0(D) = 1 if t0 2 D and �t0(D) = 0 otherwise. Then the quantity

u� =
dQ

d%
=

dQ

dv d� dl+
(3.23)

measures the density of energy with respect to volume, direction, and wavelength[J �m�3 � sr�1 �
nm�1]. We call u� the spectral phase space density. It is similar to the phase space densityu de-

scribed by Arvo [1995], except that we have also taken the derivative with respect to wavelength.

3.B.6.3 Spectral radiance

As a final example, define the photon events as crossings of a surfaceS. The event space is

IP = IR� S � S2 � IR+ ;
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with the geometric measure defined by

% = l �A� �
?

x
� l+ :

Notice thatA� �?x is simply the measure that was used to define radiance. Thus the density

L� =
dQ

d%
=

dQ

dl dAd�?x dl
+

corresponds to spectral radiance as defined earlier (3.9). Notice that although this definition is valid

only on the surface S, the choice of S was arbitrary. Thus we can use this equation to defineL�

anywhere in the trajectory space	.

3.B.7 Discussion: fundamental vs. derived quantities

It is sometimes claimed that spectral radiance is the “fundamental” radiometric quantity, from which

all others can be derived. As we have seen, this is not so. All of the three quantities defined in Sec-

tion 3.B.6 are fundamental, because they measuredifferent sets of photon events. It is not possible to

obtain one from another by integration. Each quantity must be defined independently, by first spec-

ifying the photon events, and then describing their density using a Radon-Nikodym derivative.13

There is not even a unique geometric space that we can use, since different kinds of photon events

require different geometric measures. In some cases, the measure can be defined on all of	 (as with

L��), while in other cases it must be defined on a lower-dimensional subset of	 (as with u� and L�).

Note that many “derived” quantities (i.e. one that is obtained by integrating a fundamental quan-

tity, as we did in Section 3.4 to obtain radiance from spectral radiance) can be interpreted directly as

Radon-Nikodym derivatives, by reducing the dimension of the underlying measure space. For ex-

ample, to interpret radiance as a Radon-Nikodym derivative, we could redefine the trajectory space

to be IR� IR3 � S2 (omitting the wavelength parameter), and then proceed as for spectral radiance

13Note that by making additional assumptions, it is often possible to express one fundamental quantity in
terms of another. For example, Arvo [1995, p. 26] shows how radiance can be defined in terms of the phase
space density u, by assuming that all photons travel at the same speed c. He then observes that radiance and
phase space density are related according to L� = c u�, where c is the speed of light. (A similar observation
appears in [Milne 1930, p. 76].)

Note that this relationship is only true in a vacuum, since in general photons travel at the speed c=� (where
� is the local refractive index, which may vary with position). It is even possible that photons at same point
in space will travel at different speeds (i.e. if they have different wavelengths, in a dispersive medium). Thus
in general, u� and L� cannot be derived from each other without additional assumptions, so that we consider
both of them to be fundamental quantities.
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(Section 3.B.6). This technique can be used to give rigorous meaning to the various derivative no-

tations we used in Section 3.4, such asE = d2Q= (dt dA).



Chapter 4

A General Operator Formulation of

Light Transport

The goal of this chapter is to develop a rigorous theoretical basis for bidirectional light trans-

port algorithms. Current frameworks do not adequately describe the relationships between

light and importance transport; between finite element, recursive evaluation, and particle

tracing approaches; or between incident and exitant transport quantities, especially when

materials with non-symmetric BSDF’s are used. As a result, given a bidirectional algorithm

that uses some combination of these features, it can be difficult to verify whether it actually

solves the original transport equations. This can lead to significant mistakes when bidirec-

tional algorithms are implemented, as we will see in Chapter 5.

To remedy these problems, we need a better theoretical framework for light transport

calculations. This theory should clearly state the relationships between the various solution

techniques mentioned above, using only a small number of basic concepts. It should also

show how these techniques are affected by non-symmetric scattering, and specify a set of

rules that allow correct results to be obtained. All components of the framework should be

expressed in terms of standard mathematical concepts, and the notation should be concise

and yet rigorous.

In this chapter, we develop a light transport framework that addresses these goals. It

concisely expresses the relationships between light and importance transport, in both their

103
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incident and exitant forms, and also their relationship to particle tracing. The fundamen-

tal building blocks used are measures, function spaces, inner products, and linear opera-

tors. Our work builds directly on the elegant formulation of Arvo [1995], who consid-

ered light transport among reflective surfaces with symmetric BRDF’s. We also incorporate

ideas from Christensen et al. [1993], Schröder & Hanrahan [1994], and Pattanaik & Mudur

[1995].

However, many aspects of our framework are new. Most importantly, we do not make

any assumptions about the symmetry of BSDF’s. This leads to a framework with a richer

structure than previous approaches. There are four distinct transport quantitiesLi, Lo, Wi,

Wo, corresponding to incident/exitant radiance/importance. For each of these quantities,

there is a distinct transport operator and measurement equation. All of these are related

in a simple way, since they are constructed from just two basic elements: the scattering

and propagation operators, which describe independent aspects of the light transport pro-

cess. This additional structure actually helps to clarify the relationships among transport

quantities, since we can see which relationships are fundamental, and which depend on the

symmetry of the BSDF.

There are several other contributions. We characterize particle tracing in a new and more

useful way, as a condition on the probability distribution of a set of weighted sample rays.

We also introduce the ray space abstraction, which simplifies the notation and clarifies the

structure of light transport calculations. Finally, we point out that incident rather than field

radiance functions must be used to make certain transport operators self-adjoint.

This chapter is organized as follows. We start by defining the ray space and reviewing

some useful properties of functions on ray space. Next, we describe the scattering and prop-

agation operators, and we show how they can be used to represent light transport. We then

consider sensors and measurements, and show that the scattering and propagation opera-

tors can also be used for importance transport. In Section 4.7, we give a summary of the

complete transport framework.

Appendix 4.A considers particle tracing algorithms, and describes a new condition that

can be used to verify their correctness. Finally, Appendix 4.B gives an analysis of the in-

verses, adjoints, and norms of the operators we have defined.
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4.1 Ray space

We define the ray space and throughput measure, which together form a natural basis for

light transport calculations. We show that it is possible to represent the ray space in more

than one way, and we also discuss the advantages of defining the ray space abstractly, as

opposed to using an explicit representation of rays.

The ray spaceR consists of all rays that start at points on the scene surfaces. Formally,

R is the Cartesian product

R = M�S2 ; (4.1)

where as usual,M is the set of surfaces in the scene, and S2 is the set of all unit direction

vectors. The ray r = (x; !) has origin x and direction!. The reason for requiring the origin

to lie on a surface is that in the absence of participating media, the radiance along a given

ray is constant. Thus instead of representing the radiance at every point in an environment,

it is sufficient to represent the radiance leaving surfaces.

The throughput measure. We define a measure � onR, called the throughput measure,

that is used to integrate functions on ray space. Consider a small bundle of rays around a

central ray r = (x; !), such that the origins of these rays occupy an area dA, and their

directions lie within a solid angle of d�. Then the throughput of this small bundle is defined

as

d�(r) = d�(x; !) = dA(x) d�
?

x
(!) ; (4.2)

that is, � is simply the product of the area and projected solid angle measures. This is known

as the differential form of the throughput measure. Note that � is invariant under Euclidean

transformations, which makes it unique up to a constant factor [Ambartzumian 1990, p. 51].

To define �(D) for a general set of rays D � R, we integrate the differential measure

(4.2) over the domain D:

�(D) =
Z
D
dA(x) d�

?

x
(!) ;

which can be written more explicitly as

�(D) =
Z
M
�
?

x
(Dx) dA(x) where Dx = f! j (x; !) 2 Dg :
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The quantity �(D) measures the light-carrying capacity of a bundle of raysD, and corre-

sponds to the classic radiometric concept of throughput [Steel 1974, Nicodemus 1976, Co-

hen & Wallace 1993]. The measure � is also similar to the usual measure on lines in IR3

(see [Ambartzumian 1990]). However, note that the measures on line space and ray space

are not the same, since unlike line space, the ray spaceR can contain distinct rays that are

colinear (corresponding to lines that intersectM at more than one point).

The differential form (4.2) of the throughput measure can be written in several alterna-

tive forms that are sometimes useful. By expanding the definition (3.1) of projected solid

angle, we get

d�(x; !) = j! �Ng(x)j dA(x) d�(!) ; (4.3)

= dA
?

!(x) d�(!) ; (4.4)

where A? is the projected area measure (3.7). All of these definitions are equivalent.

The throughput measure also allows us to define radiance in a simpler and more natural

way, namely as power per unit throughput:

L(r) =
d�(r)

d�(r)
; (4.5)

It is easy to check that this definition is equivalent to the ones given in Section 3.4.3.

Other representations of ray space. Although we will most often use the representation

r = (x; !) for a ray, it is possible to represent the ray space in other ways. For example, we

could defineR as

R = M�M ; (4.6)

so that each ray is a pair r = x!x0 (where the arrow notation denotes the direction of the

ray). Notice that there is some redundancy in this representation, since the rays x!x0 and

x!x00 are equivalent whenever x0 and x00 lie in the same direction from x. However, this

redundancy is sometimes useful: for example, it allows us to construct a basis for functions

on ray space as a tensor product of bases defined on the scene surfaces. Also notice that with

this representation, there is no way to represent light that radiates out to infinity: thus, it is

most useful whenM is a closed environment, and we are only interested in light transport
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between elements ofM.

Even whenR is represented in different ways, the throughput measure � should be un-

derstood to have the same meaning. For example, with the representation above,� is defined

by

d�(x!x0) = V (x$x0) cos(�) cos(�
0)

kx� x0k2 dA(x) dA(x0) : (4.7)

Here � and �0 are the angles between the segmentx$x0 and the surface normals atx and x0

respectively, while V (x$x0) is the visibility function, which is 1 if x and x0 are mutually

visible and 0 otherwise.1 As usual, the notation x!x0 indicates the direction of a ray, and

f(x$x0) indicates a symmetric function.

Advantages of the ray space abstraction. There are several reasons to use the abstract

representation r 2 R for rays, rather than writing (x; !) explicitly. First, it clarifies the

structure of radiometric formulas, by hiding the details of the ray representation. Second,

it emphasizes that the representation is a superficial decision that can easily be changed.

Finally, it allows us to define concepts whose meanings do not depend on how the rays are

represented, e.g. the throughput measure �.

4.2 Functions on ray space

The distribution of radiance or importance in a given scene can be represented as a real-

valued function on ray space, i.e. a function of the form

f : R ! IR :

In this section, we study the properties of such functions (e.g. norms and inner products),

and review some terminology related to function spaces (i.e. collections of functions that

all have some specified property). These ideas will be used later to analyze the properties

of light transport operators.

1That is, V (x$x0) = 1 if the open line segment between x and x0 does not intersect M. Note that the
visibility factor can be removed from the definition (4.7), by restricting R to contain only those rays where
V (x$x0) = 1.



108 CHAPTER 4. GENERAL OPERATOR FORMULATION

Norms. We restrict our attention to the Lp norms, which are defined by

kfkp =
�Z

R
jf(r)jp d�(r)

�1=p
; (4.8)

where p is a positive integer. In the limit as p!1, we obtain the L1 norm:

kfk1 = ess sup
r2R

jf(r)j ; (4.9)

where ess sup denotes the essential supremum, i.e. the smallest real number m such that

f(r) � m almost everywhere.2 The most commonly used norms are the L1, L2, and L1

norms, which measure the average, root-mean-square (RMS), and maximum absolute val-

ues of a function respectively. When the particular norm being used is not important, we

will simply write kfk.
For the purposes of analysis, it is convenient to consider only the functions whose Lp

norm is finite. The collection of all such functions (for a given value of p) is called an Lp

space, which we will denote by Lp(R) (to emphasize the domain R of these functions).

These spaces have desirable analytic properties (which depend on the assumption of finite

norms).

There are a variety of terms that are used to describe Lp spaces, corresponding to the

various properties that they possess. At the most basic level, they are vector spaces, since

each spaceLp(R) is closed under the operations of addition and scalar multiplication. Vec-

tors spaces are also known as linear spaces, and in this context, as function spaces (since

each element of Lp(R) is a function).

The Lp spaces are also complete, meaning that all Cauchy sequences converge3 (this

property is useful for analysis). Thus, Lp(R) is a complete, normed, linear space; in the

terminology of functional analysis, this is called a Banach space.

2Almost everywhere means that the rays for which f(r) > m form a set of measure zero (with respect to
the throughput measure �). Thus according to this definition, the essential supremum ignores values of f that
are attained only at isolated points, etc.

3A sequence of functions f1; f2; : : : is a Cauchy sequence if for any � > 0, there is an index N such that
kfi � fjk < � for all i; j > N . Such a sequence converges if there is a function f 2 Lp(R) such that
limN!1 kfi � fk = 0.
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Inner products. Another useful operation is the inner product of two functions on ray

space, defined by

hf; gi =
Z
R
f(r) g(r) d�(r) : (4.10)

Notice that the inner product notation is more concise than writing the integral explicitly,

and yet it also imparts more information (since it can immediately be recognized as an inner

product, rather than some other kind of integral). A linear spaceF equipped with an inner

product is called an inner product space.

Every inner product has an associated norm defined by

kfk = hf; fi1=2 ;

which in this case is identical to theL2 norm. Thus, the spaceL2(R), together with the inner

product (4.10), is an example of an inner product space that is complete with respect to its

associated norm: this is called a Hilbert space.

It is also possible to define weighted inner products between functions on ray space, by

multiplying the integrand of (4.10) by a positive weighting function w(r). This technique

can also be used to define other norms. In this chapter, however, we will only have need for

the unweighted versions defined above.

4.3 The scattering and propagation operators

From a physical standpoint, we can consider light transport to be an alternation of two steps.

The first is scattering, which describes the interaction of photons with surfaces. The other

is propagation, in which photons travel in straight lines through a fixed medium. Following

Arvo et al. [1994], we will define each of these steps as a linear operator acting on radiance

functions.

A linear operator is simply a linear function A : F ! F whose domain is a vector

space F . In our case, F is a space of radiance functions, as defined above. The notation

Af denotes the application of an operator to a function, whose result is another function.
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The local scattering operator. We begin with the local scattering operator, defined by4

(Kh)(x; !o) =
Z
S2
fs(x; !i!!o) h(x; !i) d�

?

x
(!i) : (4.11)

When this operator is applied to an incident radiance function Li, it returns the exitant ra-

diance Lo = KLi that results from a single scattering operation. Equation (4.11) is similar

to the scattering equation (3.12), except thatK operates on entire radiance functions, rather

than being restricted to a single point x. It maps one function L into another functionKL,

where each function is defined over the whole ray spaceR.

The propagation operator. To define the propagation operator, we first give a more pre-

cise definition of the ray-casting function x
M
(x; !) mentioned in Section 3.7. First, let

d
M
(x; !) = inffd > 0 j x+ d! 2 Mg ; (4.12)

which is called the boundary distance function [Arvo 1995, p. 136]. We then define the

ray-casting function as

x
M
(x; !) = x+ d

M
(x; !)! ; (4.13)

so that x
M
(x; !) represents the first point ofM that is visible from x in the direction !.

When the ray (x; !) does not intersectM, we have d
M
(x; !) =1, and x

M
is not defined.5

The propagation of light in straight lines is now represented by the geometric or propa-

gation operatorG, defined by

(Gh)(x; !i) =

8<: h(x
M
(x; !i);�!i) if d

M
(x; !i) <1 ;

0 otherwise ;
(4.14)

This operator expresses the incident radianceLi in terms of the exitant radiance Lo leaving

the other surfaces of the environment, according to Li = GLo.

These definitions ofG andK are slightly different than those of Arvo [1995]. First, we

4Although this definition seems to depend on the particular ray representation r = (x; !), in fact it can
be used with any representation. To do this, simply replace the argument on the left-hand side by a single
parameter r, and replace the symbols x and !o by functions x = x(r) and !o = !o(r) (whose definitions
depend on the representation used).

5With respect to equation (4.12), we have used the convention that inf ; =1, where ; is the empty set.



4.4. THE LIGHT TRANSPORT AND SOLUTION OPERATORS 111

have considered transmission as well as reflection, by using the BSDF in the definition ofK.

Second, we have used incident and exitant radiance rather than field and surface radiance

(see Section 3.5), so that the direction of!i is reversed compared to [Arvo 1995]. The main

advantage of this convention is that G and K are both self-adjoint when fs is symmetric,

which greatly increases the symmetry between light and importance transport (as we will

see in Section 4.6). On the other hand, theG andK defined by Arvo are not self-adjoint. He

handles this by introducing an isomorphismH between surface and field radiance functions,

such that HG and KH are equivalent to theG and K defined here [Arvo 1995, p. 151].

Locality. Notice that to evaluate the radiance scattered along a given ray (x; !), we only

need to know the incident radiance at the same point x. In other words, the evaluation of

(Kh)(x; !) only requires the evaluation of h on rays of the form (x; !0). This property of

the scattering operatorK is called locality.

In general, we say that a transport operatorA is local if the evaluation of (Ah)(r) only

requires the evaluation of h on a small set of rays r0. In this sense, the propagation operator

G is also local, since to evaluate (Gh)(x; !) we only need the value of h on a single ray

(x0;�!). In fact we could say thatG is more local than K, since (Gh)(r) depends on the

value of h on a single ray, while (Kh)(r) depends on the value of h on a two-dimensional

subset ofR.

Locality is important, since it dictates how much of the domain of h must be examined

in order to compute (Ah)(r) for a given ray r. This type of locality has been successfully

exploited in radiosity calculations, in order to handle textures more efficiently [Gershbein

et al. 1994].

4.4 The light transport and solution operators

The composition of the scattering and propagation operators is called the light transport

operator,

T = KG :
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This operator maps an exitant radiance functionLo into the exitant functionTLo that results

after a single scattering step. (When there is no ambiguity, we will drop the subscript on

exitant functions and simply write L.)

Recall that our goal is to measure the equilibrium radiance L. The condition that must

be satisfied in equilibrium is that

L = Le +TL ; (4.15)

where Le(r) is the emitted radiance function (specified as part of the scene model). This is

called the light transport equation. It is simply a reformulation of (3.19), which says that at

equilibrium, the exitant radiance must be the sum of emitted and scattered radiance.

The solution operator. Formally, the solution can be obtained by inverting the operator

equation (4.15):

(I�T)L = Le

L = (I�T)�1 Le ;

where I is the identity operator. It is convenient to rewrite this equation in terms of the

solution operator6

S = (I�T)�1 ; (4.16)

in which case the solution is simply L = SLe.

Conditions for invertibility. These formal manipulations are valid only if the operator

I � T is invertible. A sufficient condition is that kTk < 1, where kTk is the standard

operator norm

kTk = sup
kfk�1

kTfk ; (4.17)

6Note that S is closely related to the resolvent operator R� used in spectral analysis, except that R� has
a parameter �, and does not have a universally accepted definition (e.g. compare [Delves & Mohamed 1985,
p. 74], [Taylor & Lay 1980, p. 272]). It is also closely related to the “GRDF” of Lafortune & Willems [1994],
which is simply a new name for the kernel of the solution operator S.
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where the norms on the right are function norms.7 Given that kTk < 1, the inverse of I�T
exists and is given by

S = (I�T)�1 =
1X
i=0

Ti = I+T+T2 + � � � : (4.18)

This is called the Neumann series (after C. Neumann, though the method goes back as far as

Liouville [Taylor & Lay 1980, p. 191]). This expansion has a physical interpretation when

applied to L = SLe, since

L = Le +TLe +T
2Le + � � �

expresses L as the sum of emitted light, plus light that has been scattered once, twice, etc.

The validity of (4.18) raises the issue of whether kTk < 1. In general, this depends on

physical assumptions about the scene model, as well as the norm used for radiance functions.

We will consider several cases.

For (one-sided) reflective surfaces, Arvo has shown that kGkp � 1 for any 1 � p � 1
[Arvo 1995, Theorem 14]. Furthermore, he has shown thatkKkp � 1, as long as all BRDF’s

in the scene are energy-conserving and symmetric. By making the additional assumption

that no surface is perfectly reflective, he obtains kKkp < 1 [Arvo 1995, Theorem 13], and

thus

kTkp = kKGkp � kKkp kGkp < 1 :

In the case of general scattering (i.e. transmission as well as reflection), things are

slightly more complicated. Arvo’s proof that kGk � 1 requires some modifications, be-

cause it depends on the fact thatG2 = I whenM forms an enclosure (which does not hold

under the more general assumptions considered here). We will give a different proof below

(Appendix 4.B). As forK, it is no longer true that kKk < 1. In fact, it is only true that

kKk <
�2max

�2min

;

7Each function norm induces a distinct operator norm. The notation k � kp can mean either the Lp norm
on functions (4.8), or the corresponding operator norm, depending on the type of its argument.
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where �min and �max denote the minimum and maximum refractive indices in the environ-

ment. This corresponds to the fact that radiance can increase during scattering, due to re-

fraction. Putting these facts together, it is possible that kTkp > 1.

However, the condition kTk < 1 is not strictly necessary, since the inverse of I�T ex-

ists whenever the series given by (4.18) converges [Taylor & Lay 1980, p. 192]. A weaker

yet sufficient condition for convergence is thatkTkk < 1 for some k � 1.8 In Section 4.B.3,

we will show that this condition is satisfied for any physically valid scene model, and there-

fore the Neumann series converges (which makes S well-defined).

4.5 Sensors and measurements

The goal of light transport algorithms is to estimate a finite number of measurements of the

equilibrium radiance L. For example, if the algorithm computes an image directly, then the

measurements consist of many pixel values I1, : : :, IM , whereM is the number of pixels in

the image. If the algorithm computes a finite-element solution, on the other hand, then the

measurements Ij would simply be the basis function coefficients (with one measurement

for each basis function).

Each measurement can be thought of as the response of a hypothetical sensor placed

somewhere in the scene. For example, we can imagine that each pixel is a small piece of

film within a virtual camera, and that the pixel value is proportional to the radiant power

that it receives. Of course, most of the time the camera and lens system are not modeled

explicitly. However, for any given pixel it is still possible to identify the set of rays in world

space that contribute to its value, and assume that there is an imaginary sensor that responds

to the radiance along these rays.

The sensor response can vary according to the position and direction of the incident ra-

diance. We will only deal with linear sensors, in which case the response is characterized

by a function

We(x; !) =
dS(x; !)

d�(x; !)
(4.19)

8Note that this condition implies that perfectly reflective mirrors are allowable, as long as it is not possible
for light to continue bouncing indefinitely between these mirrors without some light escaping to another (more
absorptive) portion of the scene.
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that specifies the sensor response per unit of power arriving at x from direction !. For real

sensors, We is called the flux responsivity of the sensor [Nicodemus 1978, p. 59]. The cor-

responding units are [S �W�1], where S is the unit of sensor response. Depending on the

sensor, S could represent a voltage, current, change in photographic film density, deflection

of a meter needle, etc.

For the hypothetical sensors used in graphics, We is called an exitant importance func-

tion (we think of the sensor as emitting importance).9 The corresponding sensor response

is unitless, and thus importance has units of [W�1]. However, the symbol S is a convenient

reminder that something is being measured. We assume that We is defined over the entire

ray spaceR, although it will be zero over most of this domain for typical sensors. In the case

where measurements represent pixel values, note thatWe can model arbitrary lens systems

used to form the image, as well as any linear filters used for anti-aliasing.

The measurement equation. To compute a measurement, we integrate the response

dS(r) = We(r) d�(r) = We(r)Li(r) d�(r)

for all the incident radiance falling on the sensor. This is summarized by Nicodemus’ mea-

surement equation [Nicodemus 1978, p. 85], expressed in our notation as

I = hWe; Lii =
Z
R
We(r)Li(r) d�(r) ; (4.20)

where I is a measurement, We is the emitted importance, and Li is the incident radiance.10

Notice that we have defined bothLe andWe as exitant quantities. This is natural, since it

lets us define their values at points on the source or sensor. It would not be intuitive to define

9This follows the terminology of [Lewins 1965, p. 7, p. 21], where each importance function pertains to a
single “meter reading” (measurement). The alternative term potential function [Pattanaik & Mudur 1995] is
undesirable because it has a well-known, different meaning in physics (a function satisfying Poisson’s equa-
tion, e.g. the electric or gravitational potential functions).

It is also allowable for an importance function to represent the average of a set of measurements (e.g. the
average of all pixel values in an image). This is the case with importance-driven radiosity methods [Smits
et al. 1992, p. 275], where the importance function is used only to guide the solution (and the value of the
corresponding “measurement” is irrelevant).

10Strictly speaking, the measurement equation should also integrate over frequency (since Li and We are
spectral quantities, defined separately at each frequency �). However, to simplify the notation we will usually
ignore this detail.
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Le(x; !) as the amount of light arriving at x from direction !, since the actual emission

takes place somewhere else. Similarly, it is more natural to define sensor response in terms

of radiance arriving at the sensor, rather than radiance leaving points elsewhere in the scene

(e.g. as with the “visual potential” proposed by Pattanaik & Mudur [1995]). The definitions

ofLe andWe as exitant quantities also increases the symmetry between light and importance

transport [Christensen et al. 1993], as we discuss below.

Also notice that although we have defined the equilibrium solution L = SLe as an exi-

tant quantity, the measurement equation (4.20) requires an incident function. This problem

can be solved with theG operator, by using the relationshipLi = GL.11 Each measurement

now has the form

I = hWe; Lii = hWe;GLi = hWe;GSLei : (4.21)

Notice that it is the explicit inclusion of G in this equation that allows us to use the exitant

forms of both Le and We.

4.6 Importance transport via adjoint operators

Adjoint operators are a powerful tool for understanding light transport algorithms. They

allow us to evaluate measurements in a variety of ways, which can lead to new insights and

rendering algorithms.

The adjoint of an operatorH is denoted H�, and is defined by the property that12

hH�f; gi = hf;Hgi for all f; g : (4.22)

An operator is self-adjoint if H = H�. This corresponds to the familiar concept of a sym-

metric matrix in real linear algebra.

To show how the adjoint can be used, we apply the identity (4.22) to the measurement

11In order for Li = GL to represent the radiance arriving at the sensors, the sensors must be modeled as
part of the domainM. For the purposes of this framework, the sensors can be modeled without affecting light
transport in the rest of the scene by making them completely transparent.

12The adjoint of an operator depends on the inner product used. In this chapter, we always use the inner
product (4.10).
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equation (4.21), yielding

I = hWe;GSLei = h(GS)�We; Lei : (4.23)

This suggests that we can evaluate I by transporting importance in some way. To deter-

mine exactly what this means, we must express the operator (GS)� in terms of the known

operators G and K.

We start by examining the adjoints ofG and K. It is relatively straightforward to show

that G = G�. On the other hand, the adjoint ofK is given by

(K�h)(x; !o) =
Z
S2
f �s (x; !i!!o) h(x; !i) d�

?

x
(!i) (4.24)

(see Appendix 4.B for proofs of these results). Notice thatK� is the same asK, except that

it uses the adjoint BSDF

f �s (x; !i!!o) = fs(x; !o!!i) :

For now, let us suppose that fs is symmetric at every point x 2 M, so that K = K�.

Putting these facts together with standard identities (Appendix 4.B), it is easy to show that

(GS)� = GS ; (4.25)

i.e. the operator (GS) is self-adjoint as well.

Thus according to (4.23), measurements can be evaluated using either

I = hWe;GSLei or I = hGSWe; Lei : (4.26)

The only difference between these two expressions is thatWe and Le have been exchanged.

Importance transport. The significance of this symmetry is that any algorithms that ap-

ply to light transport may also be used for importance transport. There is an exact corre-

spondence between the concepts, quantities, and equations in the two cases. In particular,

the equilibrium importance function is given by W = SWe , and satisfies the importance

transport equation

W = We +TW :
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Similarly, the relationship Li = GLo for incident radiance becomes Wi = GWo for

incident importance. Rewriting (4.26) using these definitions, we get the symmetric mea-

surement equations

I = hWe; Lii or I = hWi; Lei :

However, if the scene model contains any surface with a non-symmetric BSDF, then

K 6= K�. This does not affect the light transport operatorT = KG, which we will rename

TL, but the importance transport operator becomes

TW = K�G

(see Appendix 4.B). This means that in general, light and importance obey different trans-

port equations.

Furthermore, we have not yet considered the transport operators for the corresponding

incident quantities, Li andWi. This leads to a multitude of possibilities for evaluating mea-

surements, all with different transport equations. Fortunately, all of these equations share

the same general structure, as described in the next section.

4.7 Summary of the operator framework

We consider the four basic transport quantitiesLo, Li, Wo, andWi, corresponding to exitant

radiance, incident radiance, exitant importance, and incident importance respectively. The

propagation operatorG maps exitant quantities to incident ones, according to the relation-

ships

Li = GLo and Wi = GWo : (4.27)

Similarly, the local scattering operatorK maps incident quantities to exitant ones:

Lo = KLi and Wo = K�Wi : (4.28)

Recall that the operators K and K� differ only in the ordering of the BSDF arguments !i

and !o (see (4.24)).

By putting these relationships together in various ways, we obtain a different transport
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operatorTX for each quantityX , whereX is one of Li, Lo, Wi, or Wo. These operators are

summarized in the table below:

Exitant Incident

Light TLo
= KG TLi

= GK

Importance TWo
= K�G TWi

= GK�

To solve for the equilibrium value of any of these quantities, we use the transport equation

X = Xe +TXX ;

where Xe is the given emission function for X . The formal solution to this equation is

X = SXXe ;

where SX = (I�TX)
�1 is called the solution operator for X . Finally, a measurement I

can be computed using any of the following expressions:

I = hWe; Lii = hWi; Lei
= hWe;i; Loi = hWo; Le;ii :

(4.29)

To apply these equations, recall that we are initially given two emission functions, one

that describes the emitted radiance, and one that describes the emitted importance (i.e. the

sensor responsivity). Most often, both are given as exitant functions (Le orWe), but for some

problems, the incident form is more natural (Le;i orWe;i). For example, suppose that we wish

to project the equilibrium radiance Lo onto a set of orthonormal basis functionsBj (e.g. as

with finite element approaches). In this situation, the coefficient of each basis functionBj is

given by the inner product hBj; Loi. Comparing this “measurement” against the templates

above (4.29), we see thatBj is considered to be an incident importance function (We;i). This

is because Bj specifies the response to radiance leaving the corresponding surface, rather

than radiance arriving at it.

If the emitted radiance and importance are supplied in opposite forms (one incident and

one exitant), the equations above can be applied in a straightforward manner by solving
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for the equilibrium function of one quantity (e.g. Lo), and computing an inner product with

the emitted function of the other (e.g. We;i). On the other hand, if two exitant functions are

supplied (Le and We), one of them must be converted to an incident quantity using the re-

lationships Li = GLo or Wi = GWo(4.27), before a measurement can be computed (e.g.

one possibility is hGWe; Loi). Similarly, if two incident emission functions are provided

(Le;i andWe;i), one of them must be converted to an exitant function using the relationships

Lo = KLi or Wo = KWi (e.g. a measurement of the form hWe;i;SLo
KLe;ii).

Together, these equations specify many ways in which measurements can be made. Ev-

erything is constructed from only two basic operators,G and K, which represent indepen-

dent components of the light transport process. It is clear which relationships are fundamen-

tal, and which depend on the assumption of symmetric BSDF’s (i.e.K = K�). The notation

has been chosen to simplify the structure as much as possible, by using the concepts of ray

space, measures, inner products, and linear operators.

Previous authors have stated special cases of these results. For example, Christensen

et al. [1993] show that Lo and Wo satisfy the same transport equation, provided that all

BSDF’s are symmetric. Similarly, Pattanaik & Mudur [1995] show that Lo and Wi satisfy

adjoint transport equations (i.e. TWo
= T�

Lo

), although their arguments are not rigorous.

Arvo [1995] derives the adjoints of G and K for one-sided, reflective surfaces, but does

not discuss their significance. Adjoint relationships have also been used extensively in the

field of neutron transport [Spanier & Gelbard 1969, Lewins 1965], but those results apply

to volume scattering rather than surfaces.
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Appendix 4.A A new characterization of particle tracing

Intuitively, particle tracing consists of following the paths of “photons” as they are emitted, scattered,

and eventually absorbed. Theseparticle histories are then used to approximate the equilibrium radi-

ance function, either as a discrete set of measurements (e.g. pixel values, basis function coefficients),

or in some other way (e.g. density estimation [Shirley et al. 1995]). This simple idea can be made

quite sophisticated by applying different estimators to the particle histories, or by sampling the par-

ticles in clever ways [Spanier & Gelbard 1969].

Several explanations of particle tracing have been proposed in computer graphics. Most often

these methods are justified intuitively, by appealing to the notion that each particle carries a certain

amount of “energy” (e.g. [Shirley et al. 1995]). Pattanaik & Mudur [1995] propose a different ap-

proach, by interpreting particle tracing as a random walk solution of the importance transport equa-

tion. Our goal is to relate particle-based methods to the transport framework of this chapter, and

study the conditions that must be satisfied to ensure that particle tracing algorithms are correct.

Our approach. We present a new characterization of particle tracing that addresses these issues.

We define a particle tracing algorithm as a method for generating a set ofN weighted sample rays

(�i; ri) ;

where each ri is a ray, and �i is its corresponding weight. These samples must be an unbiased rep-

resentation of the equilibrium radianceL, such that the estimate

E

"
1

N

NX
i=1

�iWe(ri)

#
= hWe; Li (4.30)

holds for any importance functionWe. Essentially, this identity states that an arbitrary linear mea-

surement can be estimated by taking a weighted sum over the given set of random sample rays.

Formally, this is a condition on the joint density functionp(�; r) of the weighted sample rays:Z
IR
� p(�; r) d� = L(r) ; (4.31)

since this ensures that

E

"
1

N

NX
i=1

�iWe(ri)

#
=

Z
R

Z
IR
�We(r) p(�; r) d� d�(r)

=

Z
R
We(r)L(r) d�(r) = hWe; Li :
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Using these ideas, rendering algorithms based on particle tracing can be decomposed into two

independent steps. First, there must be a method for generating a set of sample rays that satisfy the

conditions above. The simplest way of doing this involves tracingn independent particle histories

starting from the light sources, as described below. Second, the algorithm must use these samples

in some way to compute the desired set of measurements. In addition to unbiased estimators of the

form (4.30), other (biased) possibilities include density estimation [Shirley et al. 1995] and various

forms of interpolation (e.g. see [Jensen 1996]).

The conditions (4.30) and (4.31) are a specification of theinterface between these two compo-

nents of a rendering algorithm. On the one hand, there are a variety of ways to prove them for specific

particle generation schemes. On the other hand, they concisely state the properties that the generated

particles possess, i.e. the properties that higher-level rendering algorithms are allowed to depend on.

Essentially, these conditions are a rigorous interpretation of the “energy packets” approach: they pre-

serve the idea that particles represent the equilibrium radiance itself, independent of any particular

sensor.

Generating the particles. The simplest way to generate a set of weighted ray samples satisfying

condition (4.30) is to follow a random walk. This process can be summarized as follows:

1. Choose a random ray r0 = (x0; !0) starting on a light source, and let its weight be

�0 =
Le(r0)

p0(r0)

where p0(r) is the density from which r0 was sampled. The initial state of the particle is de-

fined to be (�0; r0).

2. Given the current state (�i; ri), decide whether to continue the random walk. We letqi+1

denote the probability with which the random walk is continued (whereqi+1 depends on the

current path in some way). If the walk is terminated (which happens with probability1�qi+1),

we let k = i denote its length.

3. Otherwise, let xi+1 be the first intersection point of the rayri = (xi; !i) with a surface (see

Figure 4.1). Choose a random scattering direction!i+1 according to some density function

pi+1 that approximates the BSDF there. The particle weight�i+1 is then computed from�i

using the formula

�i+1 = �i
1

qi+1

f�s (xi+1; !i+1!�!i)
pi+1(!i+1)

; (4.32)
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xi

ω i

ω i+1

xi+1

Figure 4.1: A scattering step in particle tracing.

where the density pi+1(!) is measured with respect to projected solid angle. (If this density

is measured with respect to ordinary solid angle instead, the corresponding update formula is

�i+1 = �i
1

qi+1

f�s (xi+1; !i+1!�!i) j!i+1 �N(xi+1)j
pi+1(!i+1)

; (4.33)

whereN(x) is the normal atx.) Notice that we have used the adjoint BSDF in this expression,

according to the sampling conventions of Section 3.7.6.

4. Return to step 2.

This process yields a set of ray samples r0; : : : rk, where k is the length of the random walk.

Each ray ri = (xi; !i) is assigned the weight

�i =
Le(x0; !0)

p0(x0; !0)

i�1Y
j=0

1

qj+1

f�s (xj+1; !j+1!�!j)
pj+1(!j+1)

; (4.34)

which was obtained by expanding the recursion (4.32). There are a variety of ways to show that these

samples satisfy the desired condition (4.30), either directly from the light transport equation (similar

to [Spanier & Gelbard 1969, p. 62]), or from the importance transport equation (as we discuss below).

There are many other possibilities for generating a suitable set of particles, by modifying and

extending the basic particle tracing technique. For example, different density functions could be used

for sampling, Russian roulette or splitting could be applied, the samples could be resampled to make

the weights all equal, and so on. Our new characterization (4.30) applies to all of these possibilities:

this makes it clear that the essence of particle tracing is not how the samples are obtained, but what

they represent.
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Particle tracing as importance transport. For comparison, we summarize the approach of

Pattanaik & Mudur [1995] (in our notation, and in a more general form). Given a set of basis func-

tions

B1; : : : ; BM ;

they consider the problem of approximating the equilibrium radiance as a linear combination

Lo �
MX
i=1

Ij Bj ;

where Ij = hBj ; Loi is the coefficient of the j-th basis function. Notice that since the inner product

hBj ; Loimeasures the radiance leaving the corresponding surface, we can interpretBj as an incident

importance functionW (j)
e;i , and rewrite the expression for each coefficientIj as

Ij = hW (j)
e;i ; Loi : (4.35)

To evaluate this expression, they first rewrite it as an importance transport problem:

Ij = hW (j)
i ; Lei : (4.36)

This equation is then evaluated by recursively sampling the importance transport equation. This

leads to a random walk that is very similar to the one that we have already described above.

They start by letting r0 = (x0; !0) be a random ray sampled on a light source, from whichIj

can be estimated using

Ij = E

"
W

(j)
i (r0)Le(r0)

p0(r0)

#
(4.37)

where p0(r0) is the density for samplingr0. Notice that this expression is just the usual Monte Carlo

estimate f(x)=p(x), applied to equation (4.36).

The factorsLe and p0 in (4.37) can easily be evaluated, leaving only the equilibrium importance

W
(j)
i (r0). This factor is evaluated recursively, using the transport equation

W
(j)
i = W

(j)
e;i +GK

�W
(j)
i : (4.38)

Starting with i = 0, this is done by casting the ray ri = (xi; !i) to find the first intersection point

xi+1 with a surface. Next, a new ray direction!i+1 is chosen, according to a density functionpi+1

that approximates the BSDF atxi+1 (recall Figure 4.1). It is then easy to check thatW (j)
i (ri) can be
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estimated as

W
(j)
i (ri) = W

(j)
e;i (ri) + (GK�W

(j)
i )(ri)

= W
(j)
e;i (ri) +

8>>>>>><>>>>>>:

0 if d(ri) =1 or !i+1 = � ;

E

"
f�s (xi+1; !i+1!�!i)W (j)

i (ri+1)

qi+1 pi+1(!i+1)

#
otherwise ;

(4.39)

where pi+1 is measured with respect to projected solid angle. The recursion stops when a ray fails

to intersect a surface (d(ri) =1), or when the walk is randomly terminated (as indicated by setting

xi+1 = �), which happens with probability 1� qi+1.

Discussion. This process is superficially quite similar to particle tracing: it generates a random

walk that starts at a light source, is scattered at each surface, and is eventually absorbed. Furthermore,

it is theoretically well-founded, since it computes an unbiased estimate of the measurementI .

However, this view of particle tracing also has several disadvantages. First, there is no obvi-

ous relationship to the concepts of photons or particle energies. Furthermore, the sampling process

seems to depend on which particular measurementIj we evaluate (since equation (4.38) describes

the equilibrium importance for a specific sensor). This would seem to imply that different particle

histories are needed to estimate each measurement, which would be very inefficient. In contrast, in

practice the random walks are chosennot to depend on any particularIj , since this allows each ran-

dom walk to be used for all measurements simultaneously. The formal dependence on a particular

measurement Ij is rather non-intuitive.

Relationship to particle weights. Finally, observe that the importance transport process gen-

erates a set of ray samples r0; : : : ; rk. Furthermore, if we expand the recursion (4.39) and multiply

together the factors that weight the emitted importanceWe;i(ri), we obtain exactly the same weights

�i that were used for particle tracing (see equation (4.34)). Thus, if we insert this set of weighted

ray samples into equation (4.30), we obtain the same estimate for a given measurementI that would

have been obtained by recursively sampling the importance transport equation (we have simply re-

arranged the calculations). Since we have already shown that the importance transport scheme gives

an unbiased estimate (for any importance functionWe;i), it follows that this set of weighted ray sam-

ples satisfies the desired condition (4.30). This validates the expression for the particle weights given

earlier.
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Appendix 4.B Properties of the operatorsG,K, T, and S

This appendix gives some formal results on the invertibility, adjoints, and norms of the operatorsG,

K, TX , and SX . In some cases, these results are parallel to those of Arvo [1995], who considered

the case of purely reflective, one-sided surfaces. However, different proof techniques are required

for the general case considered here, and in most cases the specific results are different as well.

The proofs are not difficult; however, it is surprisingly tricky to state the results correctly. There

are often exceptions to “intuitively obvious” properties that require careful thought. We have also

emphasized some of the more subtle issues that arise in the proofs.

We will need various properties of the sceneM, so it is important to clarify exactly what is al-

lowed. Recall that in Section 3.1, we definedM to be the union of a finite number of closed, piece-

wise differentiable, two-dimensional manifolds (possibly with boundary). In particular, we allow

manifolds to be unbounded (e.g. a plane), to have any number of handles (e.g. a torus), and to have

any number of holes (e.g. an annulus). A manifold can even be disconnected; for example, a single

manifold may represent several spheres (this could arise naturally as an implicit surface). On the

other hand, true fractals are not allowed (since they are not manifolds), andM must always be rep-

resentable as a finite union of manifolds.13 Note that despite this restriction,M may still contain an

infinite number of connected surfaces, since one manifold could represent an infinite stack of planes,

or an infinite grid of spheres.

4.B.1 Invertibility

Invertibility is an important property for computer vision problems. For example, suppose that we

wish to determine the incident radianceLi at a surface point, given the exitant radianceLo. This sit-

uation is described by the inverse of the operator that applies to the corresponding graphics problem.

In this section, we show thatG and K are not invertible in general. We also show that it is

possible to construct special scene models where their inverses do exist.14

13If countable unions were allowed, then M could be a dense subset of IR3. For example, let q1, q2, : : : be
an enumeration of the rational numbers, and define M as the union of the planes x = qi.

14In the case of one-sided, reflective surfaces that form an enclosure, G is invertible [Arvo 1995]. In fact,
G is its own inverse (G2 = I). However, for this to be true, the space of radiance functions f must be defined
carefully. In particular, the domain of these functions is not M�S2; it is the set of rays (x; !) where x 2M
and ! 2 H2

+(x) (the upward hemisphere at x).
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Recall the definition of the boundary distance function

d
M
(x; !) = inffd > 0 j x+ d! 2Mg ;

and the ray casting function

x
M
(x; !) = x+ d

M
(x; !)! :

For brevity, we will omit theM subscripts on these functions in this appendix.

We begin with the following definitions:

1. A ray r is reversible if d(r) <1.

2. The reversible ray space ~R is the set of all reversible rays inR.

3. The reversal map is a function M : ~R!R whose value is given by

M(x; !) = (x(x; !);�!) :

The following lemma implies that the range ofM is actually the reversible ray space ~R (rather

than all ofR, as we defined it above), and that furthermoreM : ~R! ~R is a bijection.

Lemma 4.1. If r is reversible, thenM(r) is also reversible, andM(M(r)) = r.

Proof. Let r = (x; !) and r0 = M(r). Also let d = d(x; !) and x0 = x + d!, so that r0 =

(x0;�!). Now by definition,

d(r0) = inffd > 0 j x0 � d! 2Mg :

Since x0 � d! = x 2M, we have d(r0) � d, and so r0 is reversible.

Now assume that d(r0) = d0, where 0 < d0 < d. Then x0 � d0! = x + (d � d0)! is a point of

M, which contradicts the fact thatd(x; !) = d.

With respect to these definitions, the propagation operator (4.14) is defined by

(Gh)(r) =

8<: h(M(r)) for r 2 ~R ;

0 otherwise :

Theorem 4.2. Whenever M is non-empty and bounded, thenG is not invertible. However,G is

invertible for some unbounded scenes.
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Proof. Assuming that M is non-empty and bounded, we first show that some rays are not re-

versible, i.e. �(R � ~R) > 0. (These are the “outward-pointing” rays that do not intersectM.)

This may seem obvious, but since there are scenes for which all rays are reversible (see below), we

must be a bit careful.

Consider the non-reversible rays (x; !) for a fixed direction ! 2 S2. The origins of these rays

are the maximal points ofM along lines in the direction!. Thus, there is an exact correspondence

between non-reversible rays, and directed lines that intersectM. Given that! occupies an infinites-

imal solid angle d�(!), the measure of these rays is

A!(�!(M)) d�(!) ;

where �! denotes orthogonal projection onto the plane perpendicular to!, and A! is the area mea-

sure on that plane. Thus, the total measure of the non-reversible rays is exactly

�(R� ~R) =

Z
S2
A!(�!(M)) d�(!) :

This is simply 4� times the average projected surface area ofM, which is positive.15

Now let L1, L2 be any two radiance functions such that

L1(r) = L2(r) for r 2 ~R :

Then clearlyGL1 = GL2, no matter what values theLi have for r 2 R� ~R. Since �(R� ~R) > 0,

the functions L1 and L2 can be distinct, which shows thatG is not invertible in general.

For an example whereG is invertible, letM be an infinite stack of planes, or an infinite set of

concentric spheres. In this case, all rays are reversible (up to a set of�-measure zero). This can also

be achieved with a single infinite surface that is diffeomorphic to a plane. In general,G is invertible

if and only ifM has a non-empty intersection with the interior of every infinite cone inIR3 (or ifM
is empty).

Note especially thatG is not its own inverse, so that the relationshipLi = GLo does not imply

Lo = GLi.

15Technically, this is also a bit tricky. It is possible make the average projected surface area ofM arbitrarily
small, while keeping the same total area, by makingM very convoluted. However, we can use the assumption
thatM is a finite union of piecewise differentiable manifolds. This implies that for almost every point x 2 M,
we can find a neighborhood Ux that is arbitrarily close to being a disc (of very small radius). The average
projected surface area of any such Ux is positive (because it is almost a disc), and this is a lower bound on the
average projected surface area of M.
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Theorem 4.3. The operatorK is not invertible in general. However,K is invertible for some spe-

cial scene models.

Proof. Suppose that every point ofM has a constant BSDF (with regard to both reflection and

transmission):

fs(x; !i!!o) = g(x) for all x 2M and !i; !o 2 S2 :

In this case,K reduces to

(KL)(x; !o) =

Z
S2
g(x)L(x; !i) d�

?

x(!i) :

Since the right-hand side does not depend on!o,KL is a function of position only. That is, for every

L there is a functionh0 :M! IR such that (KL)(x; !) = h0(x). However, it is clear that infinitely

many distinct functionsL map to each such h0, and thusK is not invertible.

It is easy to see that this argument still holds if any part of the scene has a diffuse BRDF or BTDF,

thusK is not invertible for most graphics models.

On the other hand, suppose that every point ofM is a mirror. In this case, it is easy to see that

K is an isomorphism. There are also less trivial examples. For example,fs could be chosen so that

K encodes the two-dimensional Fourier transform of the input signal.

With regard to the other operators we have defined, it is easy to see that the transport operators

TX are not invertible in general, since they are compositions ofK andG. For the operators I�TX ,

on the other hand, invertibility depends on the norms ofK andG (to be discussed in Section 4.B.3).

These operators must be invertible in order for the solution operatorsSX = (I�TX)
�1 to exist.

4.B.2 Adjoints

We derive the adjoints ofG andK, and use them to prove the relationship

hWe;GSLo
Lei = hGSWo

We; Lei :

(The operators TX and SX are defined in Section 4.7.) Our approach is unique in that we use this

identity to define the equilibrium importance, according to

Wo = SWo
We :
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From this we derive the transport equation satisfied byWo, and we derive similar results for the in-

cident quantitiesLi and Wi.

We begin by showing thatG is self-adjoint.16 The following lemma states thatM preserves the

measure �.

Lemma 4.4. Let � be the throughput measure (4.2), and letD � ~R be a measurable set. Then

�(M(D)) = �(D) ;

where M(D) = fM(x) j x 2 Dg.

Proof. Since M is a bijection, it is sufficient to show that� is preserved locally. Let dA(x) �
d�(!) be an infinitesimal neighborhood of the ray(x; !) 2 D, and define

(x0; !0) = M(x; !) = (x(x; !);�!) :

We must show that d�(x; !) = d�(x0; !0). Recall that one expression for� is given by

d�(x; !) = dA
?

!(x) d�(!) :

We immediately have d�(!0) = d�(�!) = d�(!). As for the other factor, recall thatA?! measures

projected surface area on a plane perpendicular to!. By definition of x(x; !), however, x0 � x is

always parallel to!. Thus two corresponding areasdA(x); dA(x0) onMwill always have the same

projected area,

dA
?

!(x
0) = dA

?

!(x(x; !)) = dA
?

!(x) :

In terms of the composition measure notation (5.29), the preceding lemma states that��M = �

(restricted to reversible rays).

Theorem 4.5. The operatorG is self-adjoint (for any scene model).

Proof. Given f; g 2 L2, we have

hf;Ggi =

Z
~R
f(r) g(M(r)) d�(r)

=

Z
~R
f(r) g(M(r))

d�(r)

d(� �M)
d�(M(r))

16Our proof is necessarily different than the one in [Arvo 1995], which assumed that G2 = I when M
forms an enclosure.
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=

Z
~R
f(M(r0)) g(r0) d�(r0)

= hGf; gi ;

where we have used the fact thatM is a bijection, that � �M = �, and (5.32).

The following theorem and proof are similar to [Arvo 1995, Theorem 16].

Theorem 4.6. The adjoint ofK is given by

(K�h)(x; !o) =

Z
S2
f�s (x; !i!!o)h(x; !i) d�

?

x(!i) :

In particular,K is self-adjoint if and only iffs is symmetric for almost everyx 2M (i.e. except on

a set ofA-measure zero).

Proof. We have

hf;Kgi =

Z
R
f(x; !)

Z
S2
fs(x; !

0!!) g(x; !0) d�
?

x(!
0) d�(x; !)

=

Z
M

Z
S2

Z
S2
f(x; !) fs(x; !

0!!) g(x; !0) d�
?

x(!
0) d�

?

x(!) dA(x)

=

Z
M

Z
S2

Z
S2
f(x; !) fs(x; !

0!!) g(x; !0) d�
?

x(!) d�
?

x(!
0) dA(x)

=

Z
R

Z
S2
f�s (x; !!!0)f(x; !) d�

?

x(!) g(x; !
0) d�(x; !0)

= hK�f; gi ;

where we have used Fubini’s theorem to change the order of integration.

We are now in a position to study importance transport, which usually proceeds by writing down

a formula for the equilibrium importanceW and verifying that it has the desired properties. We will

take the opposite approach, by starting with the fundamental relationship (4.21) for light transport,

I = hWe;GSLo
Lei ;

and then deriving the equations for importance based on the principle that we wish to compute the

same value for the measurement I .

We start with the identity

I = h(GSLo
)�We; Lei ;

which follows from the definition (4.22) of an adjoint operator.
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Lemma 4.7. (GSLo
)� = GSWo

, provided that SLo
and SWo

exist.

Proof. We will make use of the following simple identities, which follow directly from the defini-

tion (4.22):

I
� = I

(A+B)� = A
� +B�

(AB)� = B
�
A
�

(A�1)� = (A�)�1

Provided that the operators (I�KG)�1 and (I�K�
G)�1 exist, we now have

(GSLo
)� = (G(I�KG)�1)� = (I�GK�)�1G

=
P1

i=0(GK
�)iG =

P1
i=0G(K�

G)i

= G(I�K�
G)�1 = GSWo

:

We have thus proven that I = hWe;GSLo
Lei = hGSWo

We; Lei, which is the basis for the fol-

lowing definition:

Definition 4.8. The exitant equilibrium importance functionWo is defined by

Wo = SWo
We :

Theorem 4.9. Wo satisfies the transport equationWo = We + TWo
Wo, where TWo

= K
�
G. In

particular, Lo and Wo obey the same transport equation whenK = K
�.

Proof. This follows directly from Lemma 4.7, Definition 4.8, and the definitionSWo
= (I �

K
�
G)�1 from Section 4.7.

Theorem 4.10. The incident equilibrium quantitiesLi and Wi satisfy

Li = Le;i +GKLi ;

Wi = We;i +GK
�Wi :

Proof. We have
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Lo = Le +KGLo

GLo = GLe +GKGLo

Li = Le;i +GKLi ;

where we have used the definitionLi = GLo, and we have assumed that emitted radiance is specified

as an incident quantityLe;i. A similar relationship holds forWi.

The complete results are summarized in Section 4.7.

4.B.3 Norms

In this section, we prove conditions on the norms ofG and K that are sufficient to ensure that the

various solution operators SX are well-defined. This is possible despite the fact that we can have

kKk > 1 for physically valid scene models.

The following theorem is similar to [Arvo 1995, Theorem 14]. However, our proof holds for

two-sided surfaces, and involves only geometric concepts (Arvo’s proof requires the principle that

radiance is constant along straight lines in free space).

Theorem 4.11. For any 1 � p � 1, we have kGkp � 1. Furthermore, kGkp = 1 unless M is

contained by a plane in IR3, in which case kGkp = 0.

Proof. For any 1 � p <1 and any L 2 Lp, we have

kGLkp =

�Z
R
j(GL)(r)jp d�(r)

�1=p
=

�Z
~R
jL(M(r))jp d�(r)

�1=p
=

�Z
~R
jL(M(r))jp d�(r)

d(� �M)
d�(M(r))

�1=p
=

�Z
~R
jL(r0)jp d�(r0)

�1=p
�

�Z
R
jL(r0)jp d�(r0)

�1=p
= kLkp ;

where we have used the fact thatM is a measure-preserving bijection on ~R (Lemma 4.4). The case

p = 1 is similar, but only needs the fact thatM is measure-preserving on sets of measure zero.

Thus kGkp � 1 for all 1 � p � 1.
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Now we consider the conditions for whichkGkp = 1 exactly. If �( ~R) > 0 (i.e. there are re-

versible rays), then consider the functionL defined by

L(r) =

8<: 1 for r 2 ~R ;

0 otherwise :

Then kGLkp = kLkp > 0, and so kGkp = 1. On the other hand, if �( ~R) = 0, then kGLkp = 0

for all L, and we have kGkp = 0.

Thus we must show that �( ~R) = 0 if and only ifM is contained by a plane in IR3. The “if”

direction is clear. For the converse, recall thatM is a union of piecewise differentiable manifolds.

Choose points x;x0 2 M each lying in the differentiable interior of some manifold, and such that

x
0 does not lie in the tangent plane atx. (This is possible sinceM is not contained by any plane.)

BecauseM is differentiable atx and x0, we can choose small disk-shaped regionsdA(x); dA(x0) �
M that are arbitrarily close to lying in the tangent planes atx and x0 respectively. The set of rays

leaving dA(x) toward dA(x0) now has positive �-measure (even if x happens to lie in the tangent

plane of x0). Furthermore, these rays are reversible (even if there are other surfaces betweenx and

x
0).

The following results will be proven in Section 7.B.2. They are stated here for completeness.

Theorem 4.12. For any physically valid scene, and for any1 � p � 1,

kKkp <
�2max

�2min

;

where �min and �max denote the minimum and maximum refractive indices in the environment.

Theorem 4.13. For any physically valid scene, the solution operatorsSX exist and are well-defined.



Chapter 5

The Sources of Non-Symmetric

Scattering

In this chapter, we study two examples of non-symmetric scattering that have not previ-

ously been recognized. Specifically, we show that non-symmetric scattering occurs when-

ever light is refracted, and also whenever shading normals are used. We show how to handle

these situations correctly in bidirectional light transport algorithms, by deriving and using

the corresponding adjoint BSDF’s.

It is important to note that these sources of non-symmetry are not obvious, and that shad-

ing normals and refraction are widely assumed to be described by symmetric BSDF’s. We

show that this can cause significant problems when bidirectional algorithms are used. For

example, it can cause rendered images to have large errors, even when the scene model is

physically valid. It can also cause rendering algorithms that are supposedly equivalent to

converge to different solutions (whether the scene model is physically valid or not). Finally,

it can cause shading artifacts that should not be present, such as brightness discontinuities.

These problems can occur whenever a non-symmetric BSDF is used without recognizing it

(i.e. when it is handled as though it were symmetric).

We show that there are two distinct situations where non-symmetric BSDF’s can arise.

First, some scattering models in computer graphics are not physically valid. A good exam-

ple of this is the use of shading normals (which are commonly applied to make polygonal

135
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surfaces look smooth, or to add detail to coarse geometric models). Although shading nor-

mals do not have any well-defined physical basis, they are very convenient and useful for

many graphics applications. Thus it is important to be able to handle these non-physical

materials correctly when bidirectional light transport algorithms are used.

The other situation where non-symmetric BSDF’s arise is the refraction of light between

two different media. Notice that in this case, the BSDF describes a real physical effect. This

implies that even when a scene model is physically valid, it is sometimes necessary to use

different transport rules for light and importance (or path tracing and particle tracing) in

order for bidirectional algorithms to converge to the correct result.

This chapter is organized as follows. In Section 5.1 we explain why non-symmetric

BSDF’s are sometimes difficult to recognize, and we describe the significant problems that

this can cause. We also discuss several elementary sources of non-symmetric scattering that

are well-known in graphics. We then analyze in detail two sources of non-symmetry de-

scribed above: namely refraction (Section 5.2) and the use of shading normals (Section 5.3).

We also present test cases demonstrating the errors that occur in computed images when

these BSDF’s are not handled correctly.

Another contribution is the idea of Dirac distributions with respect to general measures,

which can be used to model specular scattering and transport singularities in general. This

concept is described in Appendix 5.A, along with several identities that can be used to ma-

nipulate and evaluate them in a consistent way. (Although this idea seems quite basic, we

are unable to give a reference for it.)

5.1 Introduction

5.1.1 The problems caused by non-symmetric scattering

We explain the problems that arise when non-symmetric BSDF’s are treated as though they

were symmetric. This provides some motivation for the rest of this chapter, where we study

the various reasons that non-symmetric scattering occurs.

The main problem with non-symmetric BSDF’s is that they are sometimes difficult to

recognize. Most often this occurs when a scattering model is defined procedurally (rather
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than by giving the BSDF as an explicit function). For example, refraction is generally im-

plemented as a procedure that maps an incident direction !i into a transmitted direction !t.

The BSDF itself is not evaluated or even represented (because as we will see, it is a Dirac

distribution rather than an ordinary function). Another example of a procedurally defined

scattering model is the use of shading normals. With this technique, the true surface normal

Ng is replaced by a different vectorNs (the shading normal) when the BSDF is evaluated.

This can be interpreted as a procedural modification of an existing BSDF.

In these cases, it is easy to use a non-symmetric BSDF without realizing it. When this

happens, the same BSDF fs is used in all situations (even those where the adjoint BSDF f �s
should be used instead). This creates problems, because the BSDF is not used consistently.

For example, consider a bidirectional algorithm that uses particle tracing in one phase, and

path tracing in another. Recall that in order to get correct results with such an algorithm, the

adjoint BSDF f �s must be used during the particle tracing phase (see Section 3.7.5). There-

fore, using the ordinary BSDF fs for particle tracing is equivalent to solving a light transport

equation that uses the adjoint BSDF f �s . By using the same BSDF fs in both phases, we get

results that are almost certainly wrong: they could converge to the solution of a light trans-

port equation that uses fs, f �s , or any combination of the two. This has a number of practical

consequences:

� Computed images can have substantial errors (even when the scene model is physi-

cally correct). The computed radiance values can easily be wrong by a factor of two

or more.

� Rendering algorithms that are supposed to be equivalent may in fact converge to dif-

ferent answers. This can happen whether the model is physically valid or not. For ex-

ample, path tracing might converge to a different result than particle tracing, because

particle tracing must use the adjoint BSDF to get results that are consistent with path

tracing.

� Computed images can have spurious, visually objectionable artifacts. For example, if

the adjoint BSDF for shading normals is not used correctly, there can be false discon-

tinuities in the image reminiscent of flat-shaded polygons. (This will be explained in

Section 5.3.)
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Note that these errors can occur with all types of bidirectional algorithm. For example, this

includes importance-driven finite element methods, multi-pass algorithms, particle tracing

approaches, and bidirectional path tracing.1

Fortunately, these problems are easy to fix. It is only necessary to recognize non-

symmetric BSDF’s whenever they exist, and make appropriate use of the corresponding

adjoint BSDF.

5.1.2 Elementary sources of non-symmetric scattering

There are several reasons why the BSDF’s used in graphics are sometimes not symmetric.

One reason is that shading models are sometimes derived empirically, without regard for

the laws of physics. Another reason is that shading models are sometimes approximated,

to make them faster to evaluate. These sources of non-symmetry are well-known, and they

are relatively easy to recognize and handle correctly.

On the other hand, some sources of non-symmetry are not so easily recognized. This

category includes non-symmetry due to refraction and the use of shading normals, which

are discussed separately in Sections 5.2 and 5.3.

5.1.2.1 Empirical shading models

The most obvious source of non-symmetric scattering is that some shading models are de-

rived empirically, using formulas that are convenient to calculate and happen to give inter-

esting visual results. Probably the best-known example of this is the original Phong model

for glossy reflection [Phong 1975].2 Translating his formula into our terminology, the re-

flected radiance from a glossy surface is computed according to

Lo(!o) =
Z
H2
i

Cr max(0; !i �MN(x)(!o))
n Li(!i) d�(!i) ; (5.1)

1Note that with importance-drivenalgorithms, the adjoint BSDF is only used to compute importance. Thus
if we use the wrong BSDF, it will not cause errors in the solution (provided that importance is only used to
guide mesh refinement). However, any error estimates that depend on importance will be wrong.

2Phong also proposed the use of shading normals, which is another source of non-symmetry.



5.2. NON-SYMMETRY DUE TO REFRACTION 139

where Cr controls the color and intensity of the glossy highlights, n controls the apparent

specularity of the surface, andMN(!o) is the mirror direction (see Section 5.2.1.2).

Although this “shading formula” is symmetric, notice that the integration is with respect

to solid angle �, whereas in the scattering equation (3.12) the projected solid angle �?
x

is

used. Thus when this shading formula is expressed as a BRDF, it has an extra factor of

1 = j!i �N(x)j

that makes it non-symmetric. (This factor is required to cancel the factor of j!i �N(x)j that

is hidden by the projected solid angle notation (3.1).) It is easy to fix the non-symmetry,

of course, by changing the definition (5.1) to use integration with respect to projected solid

angle.

5.1.2.2 Approximations of symmetric BSDF’s

Non-symmetric BSDF’s can also arise when physically valid scattering models are approx-

imated (to make their computation more efficient). For example, the Cook-Torrance model

[Cook & Torrance 1982] has the form

fs(!i!!o) =
DGF

cos �i cos �o
;

where D, G, and F are symmetric functions of !i and !o. This BSDF is clearly symmet-

ric. However, notice that when it is inserted into the scattering equation (3.12), the factor of

cos �i is canceled by the corresponding factor in the projected solid angle notation. When

this formula is implemented in hardware, it is common to throw away the factor of cos �o

as well. This saves a division operation, but destroys the symmetry of the corresponding

BSDF. For example, this is the approach taken by the OpenGL specification [OpenGL Ar-

chitecture Review Board 1992].

5.2 Non-symmetry due to refraction

We show that when light is refracted, the corresponding BSDF is not symmetric. In partic-

ular, we show that radiance crossing the interface must be scaled by a factor of (�t=�i)2, but
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(a) (b)

Figure 5.1: Two-pass rendering of caustics on a pool bottom. (a) First pass: particles are
traced from the light sources, and their distribution on the pool bottom is recorded.(b) Sec-
ond pass: an image is rendered using ray tracing. When rays intersect the pool bottom, the
light distribution recorded by the first pass is sampled. To obtain correct results in this exam-
ple, it is essential to handle particles and viewing rays differently at the air-water interface:
radiance is scaled by (�t=�i)2, while particle weights are left unchanged.

that no scaling is required for importance. (For simplicity we will ignore partial reflection

in this section; in other words, we assume that all light is transmitted through the interface.)

We derive explicit formulas for corresponding BSDF and its adjoint, and we discuss the

implications for bidirectional rendering algorithms.

Note that there can be substantial errors if the (�t=�i)2 scaling factor for radiance is ig-

nored. For example, consider a light source shining on a swimming pool with a diffuse bot-

tom and sides (see Figure 5.1). Suppose that particle tracing is used to accumulate the caus-

tic pattern on the bottom of the pool, followed by a ray tracing pass to render the final image.

If the radiance of the viewing rays is not scaled at the air-water interface, the caustics in the

image will be too bright by a factor of (�t=�i)2 (about 1.78 for water). In particular, the

caustics will be brighter than they would be in a path-traced image. On the other hand, if

the (�t=�i)2 scaling factor is applied to both the viewing rays and the particles, the caustics

will be too dim by a factor of (�t=�i)2.

The main point of this section is not that radiance must be scaled when it enters a medium

with a different refractive index; this fact is well-known in radiometry and optics, although

it does not seem to have been implemented in many graphics systems. Rather, the point is

that the adjoint BSDF does not involve any such scaling. Thus the BSDF is not symmetric,

and so different rules must be used for radiance and importance (or particle tracing and path
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tracing) in order to obtain correct results.

5.2.1 Background material

We review two results that will be used to derive the BSDF for refraction (and its adjoint).

First, we show that when light is refracted, radiance is scaled by a factor of (�t=rii)2 as it

crosses the interface. Second, we show how to write the BSDF for reflection from a perfect

mirror, using a new notation involving a Dirac distribution with respect to the projected solid

angle measure.

5.2.1.1 Radiance scaling at a refractive interface

Intuitively, when light enters a medium with a higher refractive index, the same light energy

is squeezed into a smaller volume. To see this, consider a small patch dA(x) that is exposed

to uniform radiance over the incident hemisphereH2
i , and assume that this light is transmit-

ted into a medium with a higher refractive index (Figure 5.2). Then the transmitted light

does not fill the entire hemisphereH2
t , since by Snell’s law, the angle of refraction satisfies

sin �t <
�i
�t
:

Thus radiance must increase as light crosses the interface (at least on some subset of the

rays), by conservation of energy.

In fact, the incident and transmitted radiance are related by

Lt =
�2t
�2i
Li : (5.2)

This can be shown using Snell’s law (e.g. [Milne 1930, p. 74], [Nicodemus 1963], [Hall

1989, p. 30]). We repeat this argument here, since we will need some of the intermediate

results.

Consider a beam of light that strikes small surface patch dA(x), and occupies a solid

angle d�(!i) (see Figure 5.3). Let !t be the direction of the refracted beam (determined

using Snell’s law), and suppose that it occupies a solid angle d�(!t). The power carried by
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Figure 5.2: When light enters a medium with a higher refractive index, the same light energy
is squeezed into a smaller volume. This causes the radiance along each ray to increase.
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Figure 5.3: Geometry for deriving the (�t=�i)2 scaling of radiance due to refraction.
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the incident beam is

d�i = Li dA(x) d�
?
(!i) ;

where Li is the radiance of the incident beam (see (3.8)), and similarly

d�t = Lt dA(x) d�
?
(!t) :

Thus by conservation of energy,

Lt =
d�?(!i)

d�?(!t)
Li : (5.3)

We now turn to the angular parameterization ! � (�; �), for which we have

d�
?
(!) = cos � sin � d� d�

(see Section 3.6.3). Using this relationship, we can relate d�?(!i) and d�?(!t) by differen-

tiating Snell’s law:

�i sin �i = �t sin �t (Snell’s law)

�i cos �i d�i = �t cos �t d�t :

Similarly, the relationship �t = �i � � implies

d�i = d�t :

Multiplying these three equations together and using (3.16), we get

�2i d�
?
(!i) = �2t d�

?
(!t) ; (5.4)

which together with (5.3) gives the desired relationship

Lt =
�2t
�2i
Li :

To be precise, this equation only applies to spectral radiance that is measured with re-

spect to frequency (L�). For spectral radiance that is measured with respect to wavelength

(L�), the correct relationship is Lt = (�t=�i)
3Li (as we will discuss in Section 6.2).
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5.2.1.2 The BSDF for specular reflection

We will study in detail the BSDF that describes specular reflection, i.e. a perfect (two-sided)

mirror. This BSDF sometimes causes confusion, because it involves Dirac distributions. We

will introduce a new, simpler notation for this BSDF, using Dirac distributions defined on

the unit sphere. The concepts developed here will be needed below, when we study perfect

specular refraction. (Further information on the mirror BSDF can be found in Nicodemus

et al. [1977], Cohen & Wallace [1993], and Glassner [1995].)

For a perfect mirror, the desired relationship betweenLi and Lo is that

Lo(!o) = Li(MN(!o)) : (5.5)

Here MN(!o) is the mirror direction, obtained by reflecting !o around the normalN. (Al-

gebraically, the mirror direction is defined byMN(!o) = 2(!o �N)N� !o.)
We would like to find a BSDF that produces the relationship (5.5) when it is inserted into

the scattering equation (3.12). We will show how to define this BSDF in terms of a special

Dirac distribution ��? , which is defined by the property thatZ
S2
f(!) ��?(! � !0) d�?(!) = f(!0)

for any function f that is continuous at !0.

Our notion of a Dirac distribution is slightly more general than the one usually encoun-

tered. Often, the Dirac distribution (or delta function) is understood to be a “function” �(x)

defined on IR with the following properties:

1. �(x) = 0 for all x 6= 0.

2.
R
IR �(x) dx = 1.

These imply the more useful identity thatZ
IR
f(x) �(x� x0) dx = f(x0) ; (5.6)

provided that f is continuous at x0.

Our notation simply extends the identity (5.6) to integration on more general domains.

Given a domain 
, a measure � on 
, and a function f : 
 ! IR that is continuous at x0,
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the notation ��(x� x0) refers to a “function” with the following property:Z


f(x) ��(x� x0) d�(x) = f(x0) : (5.7)

The rigorous meaning of this notation is discussed in Appendix 5.A.

Given this background, we can write the BSDF for a perfect mirror as

fs(!i!!o) = ��?(!i �MN(!o)) : (5.8)

It is easy to see that this is a correct representation of the mirror BSDF, by inserting these

definitions into the scattering equation (3.12) to obtain (5.5).

This BSDF can be written in several other equivalent ways. For example, suppose that

we write the scattering equation (3.12) in the form

Lo(!o) =
Z
S2
Li(!i) fs(!i!!o) j!i �Nj d�(!i) (5.9)

(by expanding the definition of the projected solid angle measure). From this equation, it is

clear that the mirror BSDF could also be written as

fs(!i!!o) =
��(!i �MN(!o))

j!i �Nj : (5.10)

Note that expressions containing Dirac distributions must be evaluated with great care. This

is particularly true when the measure function associated with the Dirac distribution is dif-

ferent than the measure function used for integration (e.g. suppose that we are given the

form (5.8) of the mirror BSDF, together with the form (5.9) of the scattering equation). In

Appendix 5.A, we derive several identities that allow such expressions to be evaluated cor-

rectly and easily.

5.2.2 The BSDF for refraction

We will write the BSDF for refraction using the Dirac distribution notation developed in

Section 5.2.1.2 and Appendix 5.A. It can also be written with ordinary �-functions, using

the (�; �) parameterization of BSDF’s, as we will discuss in Appendix 5.C.

For a fixed point x 2 M, let 
R be the set of directions !i 2 S2 that are not subject to
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total internal reflection. We now define a mapping

R : 
R ! 
R ;

such that R(!i) is the transmitted direction corresponding to the incident direction !i:3

!t = R(!i) :

Note that R is easily seen to be its own inverse:

R(R(!)) = ! for all ! 2 
R : (5.11)

Given this mapping, the relationship between Li and Lt due to refraction can be ex-

pressed as

Lt(!t) =
�2t
�2i
Li(R(!t)) ; (5.12)

where we have used the self-inverse property (5.11) to obtain!i = R(!t). The correspond-

ing BSDF is thus

fs(!i!!t) =
�2t
�2i
��?(!i � R(!t)) ; (5.13)

where ��? is the Dirac distribution with respect to �?, as defined in Section 5.2.1.2. Inserting

this BSDF into the scattering equation (3.12), it is easy to check that we get the desired

relationship (5.12).

This is the simplest way to write the BSDF from a conceptual point of view; it expresses

the desired relationship between!i and!t, and also the fact that radiance is scaled by a factor

of (�t=�i)2, with a minimum of extra clutter.

3Algebraically, R is defined by

R(�i; �i) = (�t; �t) = (sin�1(
�t
�i

sin �i); �i � �) ;

where �t is chosen to lie on the opposite side of the surface as �i, i.e. cos �i cos �t � 0. The symbols �i and
�t denote the refractive indices on the side of the surface containing !i and !t respectively. (Since !i can lie
on either side of the surface, this means that �i is actually a function of �i.)

Notice that we have used the angular parameterization ! � (�; �) to defineR. It is possible to defineR(!)
directly in terms of the unit vector !, but the result is relatively complicated. The vector form is commonly
used in implementations, for example see [Glassner 1989, p. 298]).
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5.2.3 The adjoint BSDF for refraction

We now derive the adjoint BSDF for refraction. We will make use of the following general

symmetry relationship, which holds for any physically valid BSDF:4

fs(!i!!o)

�2o
=

fs(!o!!i)

�2i
: (5.14)

This fact will be derived in Chapter 6. For now, we can use it to immediately obtain the

adjoint BSDF for refraction:

f �s (!i!!t) = fs(!t!!i)

= (�i=�t)
2fs(!i!!t)

= ��?(!i �R(!t)) ; (5.15)

where we have used (5.14) and (5.13) in the second and third lines respectively.

The main thing to notice is that the (�t=�i)
2 factor is not present in the adjoint BSDF.

Thus, importance and light particles are not scaled when they cross the interface. (Notice

that this corresponds to the intuitive idea that light particles carry “power”, since power (un-

like radiance) is conserved when light enters a different medium.)

In an implementation, the difference between fs and f �s must be represented explicitly.

It is not possible to evaluate the adjoint BSDF by just exchanging the directional arguments,

since there is no way to evaluate the BSDF at all. Specular BSDF’s contain Dirac distribu-

tions, which means that the only allowable operation is sampling: there must be an explicit

procedure that generates a sample direction and a weight. When the specular BSDF is not

symmetric, the direction and/or weight computation for the adjoint is different, and thus

there must be two different sampling procedures, or an explicit flag that specifies whether

the direct or adjoint BSDF is being sampled.

In Appendix 5.B, we give a different derivation of the adjoint BSDF for refraction. The

problem with the derivation given here is that it depends on the laws of physics, by way of

the symmetry condition (5.14). Since the adjoint BSDF is a purely mathematical concept,

4Equation (5.14) applies to the BSDF’s of a much larger class of surfaces than we consider here, including
frosted glass for example. Perfect refraction corresponds to the special case of an optically smooth interface
between two dielectric media.
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it should be possible to derive it mathematically, and this is what is done in Appendix 5.B.

5.2.4 Results

Figure 5.4 shows a pool of water with small waves, illuminated by two area light sources.

This image simulates the results of a two-pass rendering algorithm, consisting of a particle

tracing pass followed by a ray tracing pass (Figure 5.1).5 The waves (and the floor) were

modeled using bump mapping.

Figure 5.4(a) shows the correct image, whose computation requires that viewing rays

and particles be handled differently at the air-water interface. The radiance along viewing

rays is scaled by (�t=�i)
2 when they cross the interface, but the particle weights are left un-

changed.

Figure 5.4(b) shows the errors that occur when the BSDF at the air-water interface is

assumed to be symmetric, i.e. when the same scattering rules are used for viewing rays and

particles (for this image, neither one was scaled). This leads to caustics that are too bright,

by a factor of (�t=�i)2.

5.2.5 Discussion

Hall [1989] pointed out that radiance should be scaled by (�t=�i)
2 at a refractive interface,

but this fact has been ignored by most ray tracing systems. Our results take this one step

further, by showing that the (�t=�i)
2 scaling should not be applied to importance or light

particles. We are not aware of any system (other than ours) that implements different scat-

tering rules for radiance vs. importance or path tracing vs. particle tracing in this way. As we

have shown, this is easy to do, and essential for the correctness of bidirectional algorithms.6

5Both of these images were actually computed using the Metropolis light transport algorithm (Chapter 11),
with modifications that simulate the results of two-pass algorithms such as [Shirley et al. 1995, Jensen 1996].

6The radiance scaling is not as important for ray tracing or path tracing, since when a path enters and exits a
given medium, the two factors cancel out. However, the results of these algorithms will be incorrect when the
sources and sensors are in different media (e.g. underwater lights). Here we have assumed that the underwater
lights are modeled as direct emitters, rather than as a filament surrounded by a glass shell (since most rendering
algorithms would be very inefficient if this representation were used). However, note that errors occur in both
cases when bidirectional methods are used (e.g. recall the pool example, for which the source and sensor were
in the same medium).
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(a)

(b)

Figure 5.4: (a) A pool of water as it would be rendered by a particle tracing algorithm (refer-
ence image). (b) Incorrect caustics (too bright), caused by assuming that refraction between
air and water is modeled by a symmetric BSDF.
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Another approach to correctly handling refraction is to find a way to represent it by a

symmetric function. This seems plausible, given the existence of the general symmetry con-

dition (5.14). This topic is explored further in Chapter 7, where we derive a framework for

light transport in which light, importance, and particles all obey the same scattering rules.

5.3 Non-symmetry due to shading normals

Shading normals are used to change the apparent orientation of a surface without changing

its geometry. The mechanism is simple: when the surface is shaded (e.g. using the scatter-

ing equation (3.12)), the surface normalN(x) is replaced by a different, arbitrary direction

vector. The new direction is called the shading normal Ns(x), and corresponds to the de-

sired orientation of the surface. To avoid confusion, we will refer to the true surface normal

as the geometric normalNg(x).

Shading normals are useful tool for many graphics applications. For example, their orig-

inal purpose was to make polygonal surfaces appear more smooth [Phong 1975]. To do this,

a vertex normal is defined at each vertex of a polygonal mesh. Shading normals are obtained

by linearly interpolating the vertex normals across each polygonal face, to give the appear-

ance of a smoothly changing surface orientation. This simple technique is still widely in

use today, because computer models of smooth surfaces are usually converted to polygons

before they are rendered.

Shading normals are also used for bump mapping [Blinn 1978]. This is a technique for

adding detail to surfaces that are otherwise smooth and uninteresting. By perturbing the

surface normal, it is possible to create the impression of high geometric complexity; for

example, a flat rectangle can be given the appearance of a stucco wall.

However, there is a “catch”. As we will explain, shading normals modify the BSDF of

the material to which they are applied. (In some sense this is obvious, since shading nor-

mals change the surface appearance, and surface appearance is completely determined by

the BSDF.) Unfortunately, the modified BSDF does not possess the same properties as the

original: in general it is not symmetric, and it does not conserve energy. It should not be

surprising that shading normals cause problems, since they do not have any physical basis.

Nevertheless, shading normals are a useful tool for many graphics applications, and we
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observe that there is still a well-defined set of equations to be solved. By deriving and us-

ing the correct adjoint BSDF, we can ensure that different bidirectional light transport al-

gorithms all converge to the same mathematically correct solution. On the other hand, we

show that if the non-symmetry due to shading normals is not recognized (i.e. the adjoint

BSDF is not used), then different rendering algorithms will converge to different results.

This is clearly undesirable.

One way to see the problems caused by shading normals is to observe that some certain

calculations still depend on the geometric normal. By changing the normal used in some

calculations, but not in others, we get an inconsistent representation of the scene model.

In a particle tracing simulation, for example, consider the number of particles received by a

given polygonA. Clearly this depends on the geometric normal ofA, rather than its shading

normal. Similarly, observe that the solid angle subtended by a polygon is not affected by its

shading normal. These inconsistencies between geometric and shading normals can cause

problems, unless the correct adjoint BSDF is used.

5.3.1 How shading normals modify the BSDF

Letx 2 M be a fixed point, so that we can omitx from our notation. When shading normals

are not considered, recall that the radiance leaving x can be evaluated using the scattering

equation (5.9),

Lo(!o) =
Z
S2
Li(!i) fs;Ng(!i!!o) d�

?
(!i)

=
Z
S2
Li(!i) fs;Ng(!i!!o) j!i �Ngj d�(!i) :

With shading normals, however, the following equation is used instead (see Figure 5.5):

Lo(!o) =
Z
S2
Li(!i) fs;Ns(!i!!o) j!i �Nsj d�(!i) ; (5.16)

i.e. the shading normal is used when evaluating the BSDF and the projected solid angle.

This formula is very effective at changing the apparent orientation of a surface (from

Ng toNs). However, it does not actually change the surface geometry. Instead, the shading

normal should be thought of as a parameter that modifies the BSDF. We can write an explicit
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Figure 5.5: Geometry for defining the effect of shading normals.

formula for this modified BSDF, by converting the shading formula (5.16) to the standard

form (3.12). In other words, we would like to write it in the form

Lo(!o) =
Z
S2
Li(!i) �fs(!i!!o) j!i �Ngj d�(!i) :

This can be achieved by letting �fs be the modified BSDF given by

�fs(!i!!o) = fs;Ns(!i!!o)
j!i �Nsj
j!i �Ngj : (5.17)

It is easy to verify that the formula obtained by using this BSDF is indistinguishable from

the original shading formula (5.16) (notice that the two j!i �Ngj factors cancel each other).

We have simply interpreted the calculation in a different way.

5.3.2 The adjoint BSDF for shading normals

However, even if the original BSDF was symmetric, the modified BSDF is not. Its adjoint
�f �s is given by

�f �s (!i!!o) = �fs(!o!!i)

= fs;Ns(!o!!i)
j!o �Nsj
j!o �Ngj : (5.18)

This is the BSDF that must be used for importance transport and particle tracing.
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For example, the scattering equation for importance is given by

Wo(!o) =
Z
S2
Wi(!i) �f

�
s (!i!!o) d�

?
(!i)

=
Z
S2
Wi(!i) fs;Ns(!o!!i)

j!o �Nsj
j!o �Ngj j!i �Ngj d�(!i) :

This will give results that are consistent with the formula (5.16) for radiance evaluation.

Notice that the formula for evaluating importance is more complex than the formula for

evaluating radiance, because there is no cancelation of the j!i �Ngj factors.

Similarly, recall that the adjoint BSDF is used in particle tracing (see Sections 3.7.5

and 4.A). Given a particle that arrives from direction !o and is scattered in direction !i,

the particle weight should be multiplied by

�(!i) =
�f �s (!i!!o) j!i �Ngj

P�(!i)

=
fs;Ns(!o!!i)

P�(!i)

j!o �Nsj
j!o �Ngj j!i �Ngj ; (5.19)

where P�(!i) is the density with respect to solid angle for sampling direction !i (see equa-

tions (4.33) and (5.18)). If particles are weighted in this way, the results will be consistent

with the desired shading formula (5.16).

5.3.3 Examples of shading normal BSDF’s and their adjoints

We show how these results apply to diffuse surfaces (i.e. Lambertian), and perfect specular

surfaces (i.e. mirrors).

For a diffuse surface, we will show that the importance sampling techniques needed for

ray tracing and particle tracing are different. We start with the constant BRDF:

fr(!i!!o) = Kd :

For radiance evaluation (ray tracing), we insert this in (5.16) to obtain

Lo(!o) =
Z
S2
Kd Li(!i) j!i �Nsj d�(!i) :
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For particle tracing, according to (5.19) scattered particle weights should be multiplied by

�(!i) =
Kd

p!o(!i)

j!o �Nsj
j!o �Ngj j!i �Ngj ;

where we have used the convention that particles go from !o to !i.

These equations imply that the importance sampling techniques needed for ray tracing

and particle tracing are completely different. In both cases, the task is to sample an appro-

priate direction !i, when !o is already given. For ray tracing, !i should be chosen with

probability proportional to j!i �Nsj, since this is the factor by which incoming radiance is

weighted. However, for particles, !i should be chosen according to the cosine with the ge-

ometric normal, j!i � Ngj. (The weighting factors involving !o are irrelevant, since they

depend only on the direction the particle arrived from.) The fact that two different density

functions are needed for sampling can have important implications for rendering system de-

sign (see Section 5.3.4).

As another example, consider a perfect (two-sided) mirror. We will show that reflected

particles (or importance) must be weighted by an extra factor of

� =
j!i �Ngj
j!o �Ngj

to get correct results.

To show this, recall that the BSDF for a perfect mirror was derived in Section 5.2.1.2 as

fs;N(!i!!o) =
��(!i �MN(!o))

j!i �Nj :

To apply equation (5.19) to this BSDF, we must also know the density function p!o(!i) that

the reflected particles are sampled from. For a perfect mirror, the direction !i is chosen

deterministically, as represented by the density function

p!o(!i) = ��(!i �MN(!o)) :

Plugging these into equation (5.19), and noting that !i �Ns = !o �Ns, we get

�(!i) =
fs;Ns(!o!!i)

p!o(!i)

j!o �Nsj
j!o �Ngj j!i �Ngj
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=
j!o �Nsj
j!o �Ngj

j!i �Ngj
j!i �Nsj

=
j!i �Ngj
j!o �Ngj :

As a final example, recall the pool test case of Section 5.2.4. The waves in this scene

were modeled using bump mapping, so that the air-water interface involves both refraction

and shading normals. This means that both sets of results apply: radiance is scaled by a

factor of (�o=�i)2 when it crosses the interface, while particle weights are scaled by

j!o �Nsj j!i �Ngj
j!o �Ngj j!i �Nsj ;

where as usual particles go from!o to !i (since this is a representation of the adjoint BSDF).

5.3.4 Pseudocode for the correct use of shading normals

In Figure 5.6, we give pseudocode to evaluate the factor

K(!i!!o) = �fs(!i!!o) j!i �Ngj (5.20)

that appears in the scattering equation (5.9), and also the adjoint factor

K�(!i!!o) = �f �s (!i!!o) j!i �Ngj (5.21)

that is used for importance evaluation and light particles. We will call these quantities the

scattering kernel and the adjoint scattering kernel respectively. In Figure 5.6, the adjoint

flag controls which of these is returned.

It may seem redundant to provide both the direct and adjoint kernels (because �f �s (!i!
!o) = �fs(!o!!i)). However, this is actually quite useful. First, it allows higher-level ren-

dering algorithms to always have the same form, whether they use radiance, importance, or

particles. By supplying the appropriate adjoint flag, the BSDF is “transposed” appropriately

for sampling or evaluation.7 Second, it allows different density functions to be used for sam-

pling in the direct and adjoint cases, as was shown to be necessary in Section 5.3.3. Given a

7In any case, the adjoints of specular BSDF’s must always be represented explicitly, as mentioned in Sec-
tion 5.2.5.
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function EVAL-KERNEL(!i!!o; adjoint)

assert Ng �Ns � 0 (if not, flip Ng)

if (!i �Ng)(!i �Ns) � 0 or (!o �Ng)(!o �Ns) � 0

then return 0

if adjoint

then return fs;Ns(!o!!i) j!o �Nsj j!i �Ngj = j!o �Ngj
else return fs;Ns(!i!!o) j!i �Nsj

Figure 5.6: Evaluation of the scattering kernelK when the geometric and shading normals
are different. The adjoint flag controls whetherK or K� is returned (these are used for ray
tracing and particle tracing respectively). The return value includes the factor ofj!i �Ngj
that is hidden by the projected solid angle notation.

direction !o, the ideal density function for !i is proportional to either K or K� (depending

on the adjoint flag). These density functions can be attached to the BSDF and returned as a

single object during ray casting. Notice that for materials with symmetric BSDF’s, we have

K = K� and the adjoint flag can be ignored by the material implementation.

5.3.4.1 The prevention of “light leaks”

The pseudocode in Figure 5.6 also shows how to prevent light from “leaking” through the

surface [Snyder & Barr 1987]. The problem is that an opaque surface can actually transmit

light when shading normals are used. This happens when !i and !o lie geometrically on

opposite sides of the surface, and yet they are on the same side of the surface according to

the shading normal (see Figure 5.7(a)), so that the BSDF is evaluated as though light were

“reflected” from one side of the surface to the other.

The simplest way to prevent this is to check that !i lies on the same side of the surface

with respect to both normals, i.e. that!i �Ng and!i �Ns have the same sign. We also perform

this test on !o, and if either test fails, we return a zero value for the BSDF (see Figure 5.6).

This technique is effective in preventing the “light leaks” described above. However, it can

also cause ordinary surfaces to appear completely black. This happens when the shading

normal faces away from the viewing direction, i.e. when !o lies on opposite sides of the
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Figure 5.7: (a) The directions !i and !o are on opposite sides of the surface geometrically,
yet they are on the same side with respect to the shading normal. Thus if we simply evaluate
the BSDF using the shading normal, light can be “reflected” from one side of the surface to
the other. The gives the visual impression that light is somehow leaking through the surface.
(b) The easiest solution to this problem is check if!i lies on opposite sides of the surface
with respect to Ng and Ns. A similar test is performed on !o, and if either test fails, we
return a zero value for the BSDF. However, this creates a new problem: if the test for!o
fails (as shown in the diagram), then the BSDF is zero for all!i. This leads to sporadic
“black patches” on the rendered surface.

surface with respect toNg and Ns (see Figure 5.7(b)).

We now describe a way to solve both the light leak and black surface problems. To do

this, we represent reflection and transmission by separate functions:

fr;N : S2 ! S2 and ft;N : S2 ! S2 :

Notice that both of these functions are defined for all !i; !o 2 S2, i.e. they can be thought

of as extensions of the BRDF and BTDF.

To evaluate the BSDF with shading normals, we proceed as follows (see Figure 5.8).

If !i and !o lie on the same (geometric) side of the surface, then fr is used, and otherwise

ft is used. Then, the chosen function f is evaluated with respect to the shading normalNs

(correcting for the adjoint if necessary).

With respect to this framework, fr specifies how much light would be reflected between

any two directions!i and!o, even if!i and!o lie on opposite sides of the surface. Similarly,
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function EVAL-KERNEL-EXTENDED(!i!!o; adjoint)

if (!i �Ng)(!o �Ng) � 0

then f  fr

else f  ft

if adjoint

then return fNs(!o!!i) j!o �Nsj j!i �Ngj = j!o �Ngj
else return fNs(!i!!o) j!i �Nsj

Figure 5.8: This pseudocode shows a different way to prevent light from leaking through
a surface, by extending the BRDF and BTDF to be functions defined for all directions. We
use the extended BRDF when!i and !o lie on the same side of the surface (with respect to
the geometric normal), and otherwise we use the extended BTDF.

ft is extended to describe transmission between directions on the same side of the surface.

This extra information is used only when the shading and geometric normals give conflicting

information.

For example, a diffuse surface would be represented by

fr(!i!!o) = Kd and ft(!i!!o) = 0 ;

for all !i; !o 2 S2. With these definitions, no light will leak through the surface in Fig-

ure 5.7(a), and yet the surface will not appear to be black in Figure 5.7(b).

Many other BRDF’s, such as those based on microfacet theory, can naturally be ex-

tended to a function defined over all directions. Thus, this idea can be applied quite gen-

erally to solve the problem of light leaks. However, it is important to note that these are not

the only artifacts associated with shading normals; see [Snyder & Barr 1987] for further

examples.

5.3.5 Shading normals violate conservation of energy

In Section 6.3, we will show that any energy-conserving BSDF must satisfyZ
S2
fs(!i!!o) d�

?

(!o) � 1 for all !i :
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Figure 5.9: (a) A flat, diffuse surface facing toward a point light source, withNs = Ng.
The surface is assumed to not to absorb any light, so that the incident and reflected power is
the same. (b) A ridged surface with shading normals that point toward the light. It receives
the same power as (a), but reflects far more due to its larger surface area.

When shading normals are used, this condition applies to the modified BSDF �fs defined by

(5.17), leading toZ
S2
fs;Ns(!i!!o)

j!i �Nsj
j!i �Ngj d�

?

(!o) � 1 for all !i :

However, if Ng and Ns are different, then the factor j!i �Nsj = j!i �Ngj can be arbitrarily

large (by choosing !i nearly perpendicular to Ng, but not Ns). Notice that this factor can

be taken outside the integral, since it does not depend on !o. Thus energy is not conserved

(for some values of !i).

For intuition about this, consider Figure 5.9(a), which shows a point light source shining

on a flat, perfectly reflective, diffuse surface. To determine whether energy is conserved, we

compare the power received by the surface to the power that is reflected. In Figure 5.9(a),

these two quantities are equal.

In Figure 5.9(b), the surface is covered with steep ridges, but the shading normals point

toward the light source as though the surface were flat. This surface receives the same to-

tal power as (a), since it occupies the same solid angle with respect to the light source. It

also has the same apparent brightness as (a) at every point, because it has the same shading

normal. In other words, the reflected radiance at every point and in every direction is the

same in both cases, so that (b) reflects the same power per unit area as (a). However, the

total surface area of (b) is much larger than (a). Thus, surface (b) reflects far more power

than it receives.
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Figure 5.10: Light of uniform intensity (represented by equally spaced particles) arrives
from direction !o at the polygonal surface shown. The shading normalNs is continuous
across the boundary between polygonsA and B, implying that the shading should be con-
tinuous as well. However, suppose that an image is computed by estimating the apparent
particle density from some other direction!i. This density is discontinuous at the boundary,
as shown; to get continuous shading, the particles must be weighted according to equation
(5.19).

This lack of energy conservation has an important consequence for particle tracing algo-

rithms: namely, that sometimes particle weights will increase during a scattering operation.

This is especially important for algorithms that use unweighted particles (e.g. density es-

timation [Shirley et al. 1995]), since splitting of particles may be required. That is, rather

than multiplying the current particle’s weight by �, we replace it by b�c new particles, plus

an extra particle with probability �� b�c.

5.3.6 Shading normals can cause brightness discontinuities

It is very important to use the adjoint BSDF �f �s in particle tracing algorithms. Otherwise,

there can be noticeable artifacts in the shading of polygonal meshes.

Consider Figure 5.10. Light of uniform intensity is arriving from direction !o at the

polygonal surface shown. The shading normal Ns is continuous (in fact, constant) across

the boundary between polygons A and B, implying that the shading of the mesh should

appear smooth (no matter what rendering algorithm is used).

However, suppose that a particle tracing algorithm is used, and that an image is com-

puted directly by making a dot for each particle collision at the corresponding point in the
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image. (This is an example of an image space rendering algorithm, as discussed in Sec-

tion 1.4.3.) We let !o denote the direction that particles arrive from, while !i denotes the

direction toward the viewer, following our convention that !i is always the sampled direc-

tion in a random walk (Section 3.7.5).

We will show that the computed brightness of the polygons A and B is not the same,

implying that there is a discontinuity at the boundary betweenA andB. To see this, observe

that the brightness of the image regions corresponding to A and B is proportional to the

number of dots per pixel made there. In turn, this is proportional to the apparent density of

particles on A and B, measured perpendicular to the viewing direction !i.

To compute this apparent density, first note that the geometric normals of A and B are

different, so that fewer particles per unit area are received byB than byA. It is easy to show

that the particle densities on the polygons A and B are in the ratio

EA

EB
=
j!o �Ng(A)j
j!o �Ng(B)j :

(This is also the ratio of the irradiances on A and B.) From this, we can now compute the

apparent particle density as seen from the viewpoint. This is simply the density of particles

on the surface, divided by j!i �Ngj. (Observe that if j!i �Ngj is small, then we are looking

at the surface edge-on, and thus the particles will appear much more dense.)

Putting this all together, the image brightnesses of A and B are in the ratio

IA
IB

=
j!o �Ng(A)j
j!o �Ng(B)j

j!i �Ng(B)j
j!i �Ng(A)j ; (5.22)

and so there is a discontinuity in the image brightness at the boundary betweenA and B.

Our original goal was that this boundary should appear smooth (sinceNs is continuous

there). We will show that if the particles are weighted according to the adjoint BSDF �f �s

(as they should be), this will be achieved. Referring to (5.19), the particles strikingA are

weighted by a factor of

�A =
j!i �Ng(A)j
j!o �Ng(A)j ;

where we have ignored weighting factors that are the same for particles on A and B. A
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similar weighting factor applies to particles striking B, and the ratio of these weights is

�A
�B

=
j!i �Ng(A)j
j!o �Ng(A)j

j!o �Ng(B)j
j!i �Ng(B)j :

Comparing this with (5.22), we see that the change in particle weight exactly compensates

for the change in particle density, resulting in smooth shading across the boundary.

Particle tracing techniques are not often used to compute direct illumination, as we have

supposed here, because other techniques are usually more efficient. However, it is quite

common that particle tracing is used to render at least some component of the lighting on

visible surfaces; for example, particle tracing is often used to render caustics. If the adjoint

BSDF is not used for these particles, there will be false discontinuities in the image as we

have outlined above.

5.3.7 Results

Figure 5.11 shows a bump-mapped teapot, and a polygonalized sphere with smooth shading

normals. The images are simulations of a particle tracing algorithm: for each particle that

strikes a surface, a dot is made at the corresponding point in the image, where the dot inten-

sity is proportional to how much light is reflected toward the viewer. Figure 5.11(a) shows

the correct result (using the adjoint BSDF), while Figure 5.11(b) shows what happens if

particles are scattered just like viewing rays (i.e. if the non-symmetry caused by shading

normals is not recognized). Both images use the same shading normals; the flat-shaded ap-

pearance of Figure 5.11(b) is an example of the shading artifacts described in Section 5.3.6.

5.3.8 Alternatives to shading normals

One way to avoid the problems associated with shading normals is to simply not use them.

After all, they are not physically plausible. However, they are almost too useful to give up,

both for approximating smooth surfaces with polygonal meshes, and for adding apparent

surface detail without increasing geometric complexity.

At first, it might appear that some problems can be avoided by using the shading formula:

Lo(!o) =
Z
S2
Li(!i) fs;Ns(!i!!o) j!i �Ngj d�(!i) ; (5.23)
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(a)

(b)

Figure 5.11: (a) Bump mapping and Phong interpolation, reference image. Shows direct
lighting as it would be computed by particle tracing.(b) The same model, with errors caused
by assuming that shading normals do not affect the symmetry of BSDF’s.
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where we have used j!i �Ngj instead of j!i �Nsj. This method preserves the symmetry of fs

(assuming that it was symmetric in the first place), and will often conserve energy (but not

always). However, the results obtained with this formula are not very useful. For example,

consider a diffuse surface. The proposed shading formula (5.23) computes the same surface

appearance for all values ofNs, because the BRDF fr is a constant. Thus, it is impossible to

make a polygonal surface look smooth, or make a flat surface look bumpy with this formula.

Similarly, consider a perfect mirror. Using (5.23) and the representation (5.10) of the

mirror BSDF, we see that the radiance reflected by the mirror would be

Lo(!o) =
jMNs(!o) �Ngj
j!o �Nsj Li(MNs(!o)) :

The weighting factor in this equation causes the reflectivity of the mirror to change with

Ns, varying in the range 0 < � < 2.8 Again, this formula does not achieve what we would

expect with shading normals, since it changes the reflectivity of the surface as well as the

direction of reflection.

Other BSDF’s produce similarly strange effects when used with (5.23), but they do not

create the appearance of a changing surface orientation (as shading normals do). Thus the

usefulness of (5.23) is quite limited. It seems far better to just use traditional shading nor-

mals, and accept the fact that their use corresponds to a non-symmetric BSDF.

Another possibility is to look for new BSDF models that serve the same purpose as shad-

ing normals, and yet are symmetric and energy-conserving. This is an interesting area for fu-

ture research. Perhaps it could be accomplished with a microfacet shading model [Torrance

& Sparrow 1967, Glassner 1995], where the distribution of microfacets is not symmetric

about the surface normal.

However, it is important to realize that this kind of approach will never replace shading

normals. One of the big advantages of shading normals is that they can be applied to any

BSDF, while a microfacet approach would obviously be limited to a particular scattering

model. Second, shading normals are designed to be as effective as possible at changing the

apparent surface orientation. The results achieved using any symmetric, energy-conserving

8Because it is possible that � > 1, this is an example of a BSDF which was originally energy conserving,
but not when formula (5.23) is used.
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approach will necessarily be less convincing. Note that it is impossible to duplicate the sur-

face appearance achieved by shading normals, since if two shading formulas always pro-

duce the same surface appearance, then they are represented by the same BSDF.
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Appendix 5.A Dirac distributions for general measures

Our goal in this section is to give a rigorous definition of the notation��(x � x0) that was used

to define the mirror BSDF (Section 5.2.1.2). This concept of a Dirac distribution with respect to

a general measure is apparently new (although it seems quite basic), and we have found it to be a

useful tool for many problems in graphics. We show how these distributions fit into the standard

framework, and we also derive several identities that give them a consistent meaning as they are

manipulated during calculations.

5.A.1 Linear functionals and distributions

Although the notation�(x) looks like a function, it is properly called ageneralized functionor distri-

bution. A rigorous theory of distributions was first developed by Laurent Schwartz in the late 1940’s

and early 1950’s [Schwartz 1966]. However, physicists had been using similar ideas well before that;

for example, Dirac introduced his famous “delta function” in 1925 [L̈utzen 1982].

To define distributions rigorously would take us too far afield, but we will at least summarize the

basic concepts. Further information can be found in [Rudin 1973, Al-Gwaiz 1992].

First, the notation Z
IR
f(x) �(x� x0) dx (5.24)

should be thought of as purely symbolic (there is nothing being integrated in the traditional sense).

Rather, this notation defines a mapping that takes a continuous functionf , and yields a real number

f(x0). The mapping is called a linear functional, and we will denote it by�x0 .

Formally, a linear functional is a linear operator� : X ! F from a vector space X onto its

scalar fieldF [Taylor & Lay 1980, p. 31]. In the example (5.24), the vector space is the setC(IR) of

all continuous functionsf : IR! IR, with the usual operations of addition and scalar multiplication,

and the scalars are simply the real numbers (F = IR). The functional �x0 : C(IR) ! IR is defined

by

�x0(f) = f(x0) :

Thus, the notation (5.24) is just a long way of writing�x0(f).

The mapping�x0 is actually a special kind of functional called adistribution. Distributions have

many desirable properties: they are infinitely differentiable, they obey the usual formal rules of cal-

culus, they are equipped with many convergence theorems, and furthermore every continuous func-

tion is a distribution [Rudin 1973, p. 135]. To achieve these wonderful properties, however certain
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technical restrictions must be made (see Schwartz [1966] and Rudin [1973, p. 137,141]).

5.A.2 General Dirac distributions

Returning to our notation for general Dirac distributions, the expressionZ


f(x) ��(x� x0) d�(x) (5.25)

represents a distribution�x0 acting on a function f : 
! IR, where �x0 is defined by9

�x0(f) = f(x0) : (5.26)

At this point, the notation ��(x � x0) may seem rather odd, because the measure� does not

appear anywhere in the definition of�x0 . That is, given a different measure�0 on the domain
, the

expression Z


f(x) ��0(x� x0) d�0(x)

denotes exactly the same distribution�x0 that we defined above. However, the point is that we have

defined the meaning of the notationZ


f(x) ��(x� x0) d�0(x) (5.27)

only when the measures � and �0 are the same. The subscript on �� is a reminder of this, since it

is possible to get meaningless results if an expression such as (5.27) is evaluated carelessly. For

example, if we take definition (5.8) of the mirror BSDF, and substitute it in the expanded version

(5.9) of the scattering equation, we obtain

Lo(!o) =

Z
S2
Li(!i) ��?(!i �MN(!o)) j!i �Nj d�(!i) : (5.28)

If it were not for the subscript on�, we might apply the identity (5.7) to obtain

Lo(!o) = Li(MN(!o)) j!o �Nj ;

which is incorrect.

9The fact that �x0 is a distribution, and not merely a functional, is because the formula ��(f) =
R


f d�

defines a distribution whenever � is a �-finite positive measure [Rudin 1973, p. 143]. In our case, the measure
� is defined by �(D) = 1 if x0 2 D, and �(D) = 0 otherwise.
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5.A.3 Identities for evaluating general Dirac distributions

For future reference, we give several identities that are useful for evaluating expressions containing

general Dirac distributions. We can summarize these as follows:

(D1) ��(x0 � x) = ��(x� x0)

(D2) ��(x� x0) =
d�0

d�
(x0) ��0(x� x0)

(D3) ��(�(x)� �(x0)) = ����(x� x0)

For property (D3), � denotes a bijective function� : 
! 
, and � � � is the composition measure

defined by

(� � �)(D) = �(�(D)) ; (5.29)

where �(D) = f�(x) j x 2 Dg. Property (D3) may look more familiar when it is specialized to

the case of ordinary Dirac distributions on the real line, yielding

�(f(x) � f(x0)) =
1

jf 0(x0)j �(x � x0) ; (5.30)

where f is a bijective function that is differentiable atx0.

Note that all three of these properties are actuallydefinitions, whose purpose is to extend the

notation (5.25) in a consistent way. The definitions are designed to be compatible with the usual

rules of calculus, so that we may formally apply them as though Dirac distributions were ordinary

functions.

Property (D1). This defines the meaning of the notation��(x0 � x). Note that the expressions

x�x0 and x0�x are purely symbolic; they do not imply that subtraction is defined on the domain


.

Property (D2). This definition gives a consistent meaning to expressions of the formZ


f(x) ��(x� x0) d�0(x) ; (5.31)

where the measures� and�0 are different. One way to evaluate an expression of this kind is to change

the integration measure, a concept similar to a change of variables. To do this, we require that�

and �0 are continuous with respect to each other, i.e. they have the same sets of measure zero. This
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guarantees the existence of the Radon-Nikodym derivatived�=d�0 (see Theorem 3.2), and allows

us to switch from one integration measure to the other usingZ


f(x) d�(x) =

Z


f(x)

d�

d�0
(x) d�0(x) (5.32)

[Rudin 1987, p. 23]. For example, we could use this relationship to evaluate (5.28) correctly, by first

substituting

j!i �Nj = d�?(!i)

d�(!i)
;

and then applying (5.32) and (5.7) to get the right answer.

Definition (D2) allows us to evaluate (5.31) in another way, by changing thedistribution rather

than the integration measure. To obtain this identity, we rewrite (5.31) asZ


f(x) ��(x� x0) d�0(x) =

Z


f(x) ��(x� x0)d�

0

d�
(x) d�(x) (5.33)

=
d�0

d�
(x0)

Z


f(x) ��(x� x0) d�(x)

=
d�0

d�
(x0) f(x0) :

We now simply observe that if the substitution (D2) is made on the left-hand side of (5.33), the same

result is obtained. Thus, the definition (D2) is consistent. (Note that we have not previously defined

the meaning of expressions such as (5.31).)

Property (D3). The definition gives a consistent meaning to the notationZ


f(x) ��(�(x) � �(x0)) d�(x) ; (5.34)

where � be a bijective function � : 
 ! 
. Our goal is to define this in such a way that�� can be

treated as an ordinary function.

To do this, we make the definition

��(�(x)� �(x0))
d(� � �)
d�

(x0) = ��(x� x0) ; (5.35)

where � � � is the composition measure (5.29). We require that� � � is continuous with respect to

�, so that the Radon-Nikodym derivative exists in (5.35). Notice that property (D3) can be obtained

from (5.35) by applying property (D2).



170 CHAPTER 5. NON-SYMMETRIC SCATTERING

To show that definition (5.35) is consistent, we evaluateZ


f(x) ��(�(x) � �(x0))

d(� � �)
d�

(x0) d�(x)

=

Z


f(x) ��(�(x) � �(x0))

d�(�(x))

d�(x)
d�(x)

=

Z


f(x) ��(�(x) � �(x0)) d�(�(x))

=

Z


f(��1(x0)) ��(x

0 � �(x0)) d�(x0)
= f(��1(�(x0)))

= f(x0)

=

Z


f(x) ��(x� x0) d�(x) ;

where we have definedx0 = �(x) and used the fact the� is a bijection. Comparing the first and last

lines, we get (5.35).

Another form of this identity is sometimes useful, when we are given an expression of the form

��(�(x) � x00). By letting x0 = ��1(x00) in (5.35), we obtain

��(�(x) � x00) =

�
d(� � �)
d�

(��1(x00))

��1
��(x� ��1(x00)) : (5.36)
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Appendix 5.B Derivation of the adjoint BSDF for refraction

We derive the adjoint BSDF for refraction (5.15). Unlike the derivation in Section 5.2.3, this one

does not depend on physical laws.

Recall from Section 5.2.3 that refraction is described by the following BSDF:

fs(!i!!t) =
�2t
�2i
��?(!i �R(!t)) :

From the definition (3.21) of the adjoint BSDF, we can immediately write it as

f�s (!i!!t) = fs(!t!!i)

=
�2i
�2t
��?(!t �R(!i)) ;

where �i and �t have been exchanged because they are functions of!i and !t respectively.

This is a valid expression for the adjoint BSDF, but it is certainly not obvious that it is equivalent

to the expression (5.15) given in Section 5.2.3. To show that it is, we first observe that althoughR

is a bijection, it does not preserve the measure�?, since from (5.4) we have

d�?(R(!i))

d�?(!i)
=

d�?(!t)

d�?(!i)
=

�2i
�2t
:

Thus, we can apply the identity (5.36) to get

f�s (!i!!t) =
�2i
�2t
��?(R(!i)� !t)

=
�2i
�2t

"
d(�? �R)
d�?

(R�1(!t))

#�1
��?(!i �R�1(!t))

=
�2i
�2t

"
d�?(!t)

d�?(!i)

#�1
��?(!i �R(!t))

= ��?(!i �R(!t)) ;

which agrees with the expression (5.15) that we obtained before.
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Appendix 5.C Angular forms of perfect specular BSDF’s

Although we prefer to use general Dirac distributions to represent specular BSDF’s, it may be helpful

to see how reflection and refraction can be represented using ordinary�-functions. We will use the

identities from Section 3.6.3 and Appendix 5.A.

5.C.1 The BSDF for a mirror

Starting with mirrors, recall that the desired relationship betweenLi and Lo is

Lo(�o; �o) = Li(�o; �o � �) :

The corresponding BSDF is thus

fs(�i; �i; �o; �o) =
�(�i � �o) �(�i � (�o � �))

jcos �ij sin �i :

To verify this, simply substitute fs in the scattering equation (3.17).

By using different expressions (3.16) for the projected solid angle, we can also write the mirror

BSDF as

fr(�i; �i; �o; �o) =
�(cos �i � cos �o) �(�i � (�o � �))

cos �i
(5.37)

= 2 �(sin2 �i � sin2 �o) �(�i � (�o � �)) ;

where the last expression is valid only for one-sided mirrors (since there are two solutions for�i in

the range 0 � �i � �). These forms of the mirror BRDF were given in [Nicodemus et al. 1977,

p. 44] and [Cohen & Wallace 1993, p. 31].

5.C.2 The BSDF for refraction

The BSDF for refraction can also be written in terms of the angles(�; �). This form is given by

fs(�i; �i; �t; �t) =
�2t
�2i

2 �(sin2 �i � �2t
�2i

sin2 �t) �(�i � (�t � �)) : (5.38)

(compare with (5.8)). Strictly speaking, this only represents the BTDF for light flowing in one

direction (rather than the full BSDF), since equation (5.38) has two solutions for�i in the range

0 � �i � �.
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The adjoint BSDF for refraction is given by

f�s (�i; �i; �t; �t) =
�2i
�2t

2 �(sin2 �t � �2i
�2t

sin2 �i) �(�t � (�i � �))

= 2 �(sin2 �i � �2t
�2i

sin2 �t) �(�i � (�t � �)) ;

where we have used (5.30).
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Chapter 6

Reciprocity and Conservation Laws for

General BSDF’s

In this chapter, we derive a new reciprocity principle that holds for materials that transmit as

well as reflect light.1 According to this principle, the BSDF of any physically valid material

must satisfy
fs(!i!!o)

�2o
=

fs(!o!!i)

�2i
; (6.1)

where �i and �o are the refractive indices of the materials containing!i and !o respectively.

This is a generalization of the well-known condition for reflective materials, which states

that the corresponding BRDF must be symmetric:

fr(!i!!o) = fr(!o!!i) :

We also investigate how light scattering is constrained by the law of conservation of en-

ergy, and we derive a simple condition that must be satisfied by any BSDF that is energy-

conserving.

These conditions are important for two reasons. First, they provide a convenient test of

the plausibility of BSDF models in computer graphics. Second, they provide a minimal set

1A reciprocity principle is a statement that expresses some form of symmetry in the laws governing a phys-
ical system. Such principles have been proposed throughout physics and chemistry, and are often stated as a
pair of hypothetical experiments whose outcomes are supposed to be the same.

175
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of facts that can be assumed by any physically valid rendering system. Along these lines,

in Chapter 7 we use the reciprocity condition mentioned above to derive a framework for

which light, importance, and particles all obey the same transport rules (for any physically

valid scene). This can make many rendering algorithms significantly easier to implement.

The main goal of this chapter is to derive the new reciprocity principle (6.1). Given an

arbitrary material, we analyze its scattering properties when it is placed within an isothermal

enclosure (i.e. one where all objects have the same temperature, and no heat is lost to the ex-

ternal environment). For such a system, which is said to be in thermodynamic equilibrium,

the exchange of light energy between various parts of the enclosure is highly constrained by

the laws of thermodynamics. This allows us to derive the reciprocity condition (6.1) from

only two basic principles, namely Kirchhoff’s equilibrium radiance law, and the principle

of detailed balance. Note that even though our analysis takes place within an isothermal en-

closure, the resulting reciprocity principle is valid generally (since the BSDF of a material

is an inherent property).

We also discuss the historical origins of reciprocity principles. One of the first physicists

to study these ideas was Helmholtz, who proposed a famous principle concerning the prop-

agation of light through an optical system. However, it is important to note that Helmholtz

himself did not make any statement that would imply the symmetry of BRDF’s. As we will

see, his reciprocity principle only applies to reflection from mirrors (rather than arbitrary

materials), and thus it does not have any direct implications for the symmetry of general

BRDF’s.

We also discuss the subtleties that arise in rigorously justifying such principles. For ex-

ample, we explain why the symmetry of BRDF’s cannot be derived directly from the second

law of thermodynamics, or from the principle of time reversal invariance.

This chapter is organized as follows. Section 6.1 describes the second law of thermo-

dynamics, Kirchhoff’s laws, and the principle of detailed balance. Section 6.2 shows how

these ideas can be put together in a “thought experiment” to prove the desired reciprocity

condition (6.1). Section 6.3 derives a separate condition to ensure that BSDF’s are energy-

conserving.

In the appendices we examine the history of reciprocity principles, and also their limita-

tions. Appendix 6.A describes the Helmholtz reciprocity principle, and explains why it does
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not have any implications regarding the symmetry of BRDF’s. Appendix 6.B describes a

different reciprocity principle due to Lord Rayleigh, who appears to be the first person to

state a principle for reflection from arbitrary surfaces. Appendix 6.C considers the principle

of time reversal invariance, and explains why observable light scattering processes are irre-

versible in general. Finally, Appendix 6.D investigates the limitations of these reciprocity

principles, by describing two situations in which they fail: namely, in the presence of ab-

sorbing media or external magnetic fields.

6.1 Thermodynamics, Kirchhoff’s laws, and detailed bal-

ance

Consider an enclosure containing various kinds of matter, which is completely insulated

from its surrounding environment. Eventually, the contents will reach a uniform tempera-

ture, and the system is said to be in thermodynamic equilibrium. At equilibrium, each por-

tion of matter will be emitting, scattering, and absorbing energy at various wavelengths (e.g.

in the thermal, visible, and ultraviolet portions of the spectrum), in a manner that depends on

both the local material properties and the surrounding radiation field. Thus, energy is con-

stantly being exchanged among different regions of the enclosure, but in such a way that the

temperature everywhere remains constant.

In this section, we explain two basic facts about systems in thermodynamic equilibrium,

which will be used to derive the reciprocity condition (6.1). These facts are:

1. The radiance in an isothermal enclosure is uniform, i.e. it is the same for all positions

and directions. More precisely, it depends only on the temperature of the enclosure

and the local refractive index, such that

L�(x; !; �)

�(x; !; �)2

is constant throughout the enclosure (this is called Kirchhoff’s equilibrium radiance

law). Here (x; !) is a ray, � is a frequency,L�(x; !; �) is the spectral radiance for this

ray and frequency, and �(x; !; �) is the refractive index of the medium that surrounds
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this ray. (The reason that � is a function of ! is to handle the case when x is on the

boundary between two different media.)

2. For every process that transfers energy from one part of an isothermal system to an-

other, there is a reverse process that transfers energy at the same rate in the opposite

direction. This is known as the principle of detailed balance. For example, this prin-

ciple states that for a system in thermodynamic equilibrium, the rates of emission and

absorption for any given surface are equal.

We now explain these concepts in more detail. We first discuss the second law of thermo-

dynamics, followed by Kirchhoff’s equilibrium radiance law, and finally the principle of

detailed balance. Our discussion of these ideas is based mainly on the excellent summary

of [Milne 1930]; more detailed information can be found in Drude [1900], Siegel & Howell

[1992], and [de Groot & Mazur 1962].

The second law of thermodynamics. Using the second law of thermodynamics, it is pos-

sible to derive important facts about the distribution of light energy in an isothermal enclo-

sure. According to this principle, no ideal experiment can produce a temperature difference

within the enclosure unless the experiment does work or modifies the external environment.

For example, suppose that we divide the enclosure into two compartments separated by a

surface S. Furthermore, suppose thatS is transparent to light in a particular frequency band

[�1; �2], but reflects light at all other frequencies. Then by the second law, the rate of energy

flow across this surface must be the same in both directions. Otherwise, the net flow would

produce a temperature difference between the two sides of S, which could then be used to

perform work.

The second law can be stated more precisely in terms of entropy. Entropy measures

the amount of energy that can be transferred from one system to another, in the form of

work. For a given system with a fixed energy, the entropy can range from zero to some

maximum: if it is zero, then all of the energy in the system can be converted into work;

while if it is at a maximum, then no work can be done at all. With respect to this concept, the

second law states that the entropy of a closed, insulated system can never decrease, unless

work is performed on it from some external source (see [de Groot & Mazur 1962, p. 20]
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for further details). Thus, once a system has reached thermodynamic equilibrium (the state

of maximum entropy), it will remain in equilibrium, even if we perform ideal experiments

such as adding barriers or mirrors, changing the locations of objects, etc.

Kirchhoff’s laws. By proposing ideal experiments of this kind, Gustav Kirchoff was able

to derive many interesting facts about the radiation in an isothermal enclosure [Milne 1930,

p. 79], which are collectively known as Kirchhoff’s laws.2 Of these facts, we will need only

his equilibrium radiance law mentioned above, which states that the quantity

L�(x; !; �)

�(x; !; �)2
(6.2)

is constant throughout the enclosure.3 For example, if the objects in the enclosure are sur-

rounded by a single medium, such as air, then this law states that the observed spectral ra-

diance for all positions and directions will be the same. This is true even though the objects

within the enclosure may have very different emission, scattering, and absorption proper-

ties. In fact, the observed spectral radiance depends only on temperature; given any two

enclosures with different contents, but at the same temperature, the observed spectral radi-

ance in these enclosures will be the same.

If the objects in the enclosure are surrounded by several different media, the spectral

radiance will be proportional to �2, as indicated by equation (6.2). This is one of the key

facts that we will need to derive the reciprocity condition for general BSDF’s.

Detailed balance. The other fact we need is the principle of detailed balance, which as-

serts that for a system in thermodynamic equilibrium, every detailed process that we choose

to consider has a reverse process, and that the rates of these two processes are equal [van de

Hulst 1980, p. 17]. For example, this principle asserts that in an isothermal enclosure, the

2In the heat transfer literature, Kirchhoff’s law generally refers to one of these facts in particular, namely
that the emissivity and absorptivity of real materials are the same [Siegel & Howell 1992, p. 66]. This was
derived by Kirchhoff as a consequence of his equilibrium radiance law. Note that these results are not related
to Kirchhoff’s laws for electric circuits, which he proposed much earlier in 1845. Also note that the invariance
of L=�2 is often falsely attributed to Clausius (cf. Drude [1900, p.504]).

3Strictly speaking, this law is true only when some material in the enclosure is capable of emitting or ab-
sorbing radiation at the given frequency � [Milne 1930, p. 80]. We can ensure that this is always true by
assuming that the enclosure contains a black body (which absorbs and emits radiation at all frequencies).
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emission and absorption rates of every surface are equal. This principle also applies to scat-

tering, as we will see in the next section.

Detailed balance has been formulated and proven for any system that possesses time

reversal invariance, both in classical systems and in quantum mechanics [de Groot &

Mazur 1962], [van Kampen 1954], [Wigner 1954]. Time reversal invariance is one of the

basic principles of physics, which states if the time variable is negated in all formulas and

equations, then the laws of physics at their most microscopic level are unchanged (see Ap-

pendix 6.C). The only significant restriction of detailed balance is that for it to be valid,

there must not be any external magnetic fields [de Groot 1963].

6.2 A reciprocity principle for general BSDF’s

By combining Kirchhoff’s equilibrium radiance law with the principle of detailed balance,

we derive a reciprocity principle that holds for arbitrary physically valid materials. We also

show that this principle cannot be derived from the second law alone.

Consider a small area dA(x) within an isothermal enclosure (see Figure 6.1). We as-

sume that x lies either on an opaque surface, or on the boundary between two non-absorbing

media. We also assume that no external magnetic fields are present, so that the principle of

detailed balance applies.

Consider the light that arrives from a small cone of directions d�(!i), and is scattered

toward another cone d�(!o), where !i and !o can lie on either side of the surface. The scat-

tering can be of any type: reflection or transmission, specular or non-specular. According

to the definition of the BSDF (3.11), the power scattered from!i to !o is

d�1 = Lo(!o) dA(x) d�
?
(!o)

= Li(!i) d�
?

(!i) fs(!i!!o) dA(x) d�
?

(!o) :

On the other hand, the power scattered from !o to !i is

d�2 = Li(!o) d�
?
(!o) fs(!o!!i) dA(x) d�

?
(!i) :

By the principle of detailed balance, the rates of scattering in these two directions are equal.
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dA(x)
ds(wo)

ds(w i)

dF1

dF2

Figure 6.1: To prove a reciprocity condition for general BSDF’s, we consider the light en-
ergy scattered between two directions!i and !o at a point x in an isothermal enclosure. By
the principle of detailed balance, the rates of scattering from!i to !o and from !o to !i are
equal (d�1 = d�2), while by Kirchhoff’s equilibrium radiance law, the incident radiance
from each direction is proportional to the refractive index squared. Putting these facts to-
gether, we get the desired reciprocity condition (6.1).

Thus we have d�1 = d�2, so that

Li(!i) fs(!i!!o) = Li(!o) fs(!o!!i) :

Next, we consider the incident radiance values,Li(!i) and Li(!o). According to Kirch-

hoff’s equilibrium radiance law, Li=�
2 is constant throughout the enclosure, so that

Li(!i)

�2i
=

Li(!o)

�2o
:

Putting these two facts together, we get the following result for physically valid BSDF’s:

Theorem 6.1. Let fs be the BSDF for a physically valid surface, which is either the bound-

ary of an opaque object or the interface between two non-absorbing media. Provided that

there are no external magnetic fields, then

fs(!i!!o)

�2o
=

fs(!o!!i)

�2i
; (6.3)
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where �o = �(!o) is a function of !o, and similarly for �i.

This condition is clearly a generalization of the usual symmetry condition for BRDF’s.

The most significant change concerns BSDF’s that describe the interface between two dif-

ferent refractive media. For this case, the ratio of fs to f �s is (�o=�i)2, so that radiance and

importance are scaled differently when they are transmitted through the interface. This law

is not limited to perfect specular refraction; it also includes diffusely transmitting materials,

such as frosted glass.

Note that although this relationship was derived in an isothermal enclosure, it is valid in

general. The BSDF is an inherent property of the surface, and does not change simply be-

cause the surrounding environment is isothermal. Also note that the enclosure does not have

to be at a high temperature for this argument to hold, since even at ordinary temperatures,

there is a small amount of thermal radiation in the visible wavelengths.

Insufficiency of the second law. Returning to the simpler case of opaque materials

(BRDF’s), it is sometimes claimed that the reciprocity condition for these materials can be

derived directly from the second law of thermodynamics.4 We show that this is false, by

giving an example of a BRDF which is not symmetric, but where this lack of symmetry

cannot be detected by any ideal experiment in an isothermal enclosure.

We consider a hypothetical surface that is similar to a mirror. For an ordinary mirror,

light is reflected from the incident direction !i to the mirror direction !o, where the mirror

direction is obtained by rotating !i by 180 degrees about the surface normal. We consider

a new BRDF that modifies this rule: the mirror vector is obtained by rotating the incident

vector by only 90 degrees about the surface normal, in a clockwise direction. Clearly, this

new BRDF is not symmetric.

However, the new BRDF and the original mirror BRDF are indistinguishable in an

isothermal enclosure. The reason is that the incident radiance is guaranteed to be uniform,

and both of these BRDF’s will map a uniform incident radiance function into a uniform ex-

itant radiance function. Thus, there is no ideal experiment in an isothermal enclosure that

4For example, the BRDF reciprocity argument of Siegel & Howell [1992, p. 73] appears to depend only
on the second law. However, their argument is flawed. To fix it, they require the principle of detailed balance;
in which case their proof could be simplified by neglecting the transport path labeled dA1 dA3 in their figure.
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can distinguish between these two situations. This is why the principle of detailed balance

is necessary; it provides more detailed information about how the incident and exitant radi-

ance functions are related, by considering the energies traveling in opposite directions along

the same path.

Reciprocity for spectral radiance. To be precise, the reciprocity condition (6.3) applies

to spectral radiance (rather than radiance), and in fact it applies only to spectral radiance

that is measured with respect to frequency (L�). When spectral radiance is measured with

respect to wavelength (L�), this condition must be modified, since light undergoes a change

in wavelength when it is transmitted into a different medium. In particular, the incident and

transmitted wavelengths are related by

�t = (�i=�t)�i ;

i.e. the wavelength is smaller in media with a higher refractive index. Notice that accord-

ing to this equation, the product �� = �0 is constant across the interface, where �0 is the

wavelength of light in a vacuum.

For spectral radiance with respect to wavelength, Kirchhoff’s equilibrium radiance law

now states that the quantity
L�(x; !; �0=�)

�(x; !; �0)3

is constant throughout the enclosure. This equation applies separately at each wavelength

�0. The factor of �3 instead of �2 occurs because L� is defined as a derivative with re-

spect to wavelength (see [Nicodemus 1976, p. 51]). Effectively, when light enters a medium

of higher refractive index, the same light energy is squeezed into a smaller band of wave-

lengths, which causes the spectral radiance to increase proportionately.

Applying this version of Kirchhoff’s equilibrium radiance law, the reciprocity condition

for BSDF’s becomes

fs;�(!i!!o; �0=�i)

�o(�0)3
=

fs;�(!o!!i; �0=�o)

�i(�0)3
; (6.4)

where the wavelength parameter of fs;�(!i!!o; �) refers to the incident light, and �0 is the

wavelength in a vacuum.
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6.3 Conservation of energy

We show that the following condition is implied by conservation of energy:

Theorem 6.2. If fs is the BSDF for a physically valid surface, which is either the boundary

of an opaque object or the interface between two non-absorbing media, thenZ
S2
fs(!i!!o) d�

?
(!o) � 1 for all !i 2 S2 : (6.5)

This is very similar to the energy-conservation condition for BRDF’s, which was mentioned

in Section 3.6.2.

Proof. Equation (6.5) can be proven from the relations

E =
Z
S2
Li(!) d�

?
(!)

Lo(!o) =
Z
S2
Li(!) fs(!!!o) d�

?
(!)

M =
Z
S2
Lo(!) d�

?

(!) ;

where E denotes the irradiance (i.e. the incident power per unit area), andM denotes the

radiant exitance (i.e. the scattered power per unit area, see Section 3.4). By conservation of

energy, we require that M � E for all possible incident radiance functions Li; that is, the

surface should never scatter more light than it receives.

To obtain the desired condition (6.5), we fix a particular direction !i, and consider the

incident radiance distribution Li(!) = ��?(! � !i), i.e. we let the incident power be con-

centrated in a single direction !i.5 With this choice of Li, we obtain

E =
R
S2 Li(!) d�

?(!) = 1

Lo(!o) =
R
S2 Li(!) fs(!!!o) d�

?(!) = fs(!i!!o)

M =
R
S2 Lo(!) d�

?(!) =
R
S2 fs(!i!!o) d�

?(!o) ;

from which the requirement thatM � E gives the desired result.

5Alternatively, we could use a sequence of radiance functions that approximate Li, to avoid the issue of
whether Li is allowed to be a Dirac distribution.



6.A. HELMHOLTZ RECIPROCITY 185

Appendix 6.A Helmholtz reciprocity

In the graphics and radiometry literature, the symmetry of BRDF’s is often attributed to the

Helmholtz reciprocity principle. Apparently this notion first arose in the radiometry literature (see

the references in Section 6.A.3), and migrated to graphics through the work of Nicodemus (e.g. see

[Nicodemus et al. 1977, p. 40], [Nicodemus 1965, p. 769]).

In this section, we examine the original statement of Helmholtz reciprocity, and show that it does

not imply the symmetry of BRDF’s. Helmholtz stated his principle only for classical optical systems

(consisting of mirrors and lenses), and thus with regard to the reflection of light from surfaces, his

principle applies only to mirrors. He does not mention non-specular reflection of any sort (e.g. diffuse

or glossy surfaces). (Of course, we would not expect Helmholtz to mention BRDF’s in any case,

since the concept of a BRDF was not invented at that time.)

6.A.1 Summary of the principle

The Helmholtz reciprocity principle is found in his famous treatise on physiological optics, first pub-

lished in 1856 [von Helmholtz 1856, p. 231]. This three-volume work concerns human vision: the

anatomy of the eye, the mechanisms of sensation, and the interpretation of those sensations. With

regard to optics, Helmholtz’ main concern was to analyze the properties of the eye within the frame-

work of classical geometric optics.

In this context, Helmholtz proposed the following reciprocity principle for beams traveling

through an optical system (i.e. a collection of mirrors, lenses, prisms, etc). Suppose that a beam

of lightA undergoes any number of reflections or refractions, eventually giving rise (among others)

to a beam B whose power is a fraction f of beam A. Then on reversing the path of the light, an

incident ray B0 will give rise (among others) to a beamA0 whose power is the same fraction f of

beamB0.6 In other words, the path of a light beam is always reversible, and furthermore the relative

power loss is the same for propagation in both directions.

The main point is that the only type of reflection considered by Helmholtz is specular reflec-

tion from mirrors. Thus, his principle does not have any direct implications for general BRDF’s (or

BSDF’s).

Note that Helmholtz reciprocity can easily be extended to materials that are composed of many

6Our paraphrasing follows that of Chandrasekhar [1960, p. 176].
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small mirrors. By considering the limit as these mirrors become very small, a variety of interest-

ing materials can be obtained (this is the basic idea behindmicrofacet reflection models [Torrance &

Sparrow 1967, Cook & Torrance 1982]). However, note that this approach is not adequate to prove a

reciprocity principle for real materials, since it only applies to a particularmodel for reflection from

surfaces. That is, real surfaces are not necessarily composed of microfacets, so this type of argument

cannot be used to make statements about the properties of real BRDF’s. (Microfacet models were

only proposed as a model to explain reflection from metals, and in any case the microfacets are gen-

erally so small that geometric optics is not applicable: diffraction theory must be used instead [He

et al. 1991].)

6.A.2 Helmholtz’ original statement

We now examine the original statement of Helmholtz reciprocity7, to explain in more detail why it

applies only to specular reflection. Note that the following quotation is for polarized light, which

makes it slightly more complicated. With respect to the paraphrasing of the previous section, it as-

sumes that beam A is polarized in a given planePA, and that we only measure the component of

beam B that is polarized in a given planePB . Helmholtz’ principle then states that the same frac-

tion of power is lost for a beam traveling in either direction:

Suppose light proceeds by any path whatever from a pointA to another point B,
undergoing any number of reflections or refractionsen route. Consider a pair of rect-
angular planes a1 and a2 whose line of intersection is along the initial path of the ray
at A; and another pair of rectangular planes b1 and b2 intersecting along the path of
the ray when it comes toB. The components of the vibrations of the aether particles
in these two pairs of planes may be imagined. Now suppose that a certain amount of
light J leaving the pointA in the given direction is polarised in the planea1, and that
of this light the amountK arrives at the pointB polarised in the plane b1; then it can
be proved that, when the light returns over the same path, and the quantity of lightJ
polarised in the planeb1 proceeds from the pointB, the amount of this light that arrives
at the pointA polarised in the planea1 will be equal toK .

Apparently the above proposition is true no matter what happens to the light in
the way of single or double refraction, reflection, absorption, ordinary dispersion, and
diffraction, provided that there is no change of its refrangibility, and provided it does
not traverse any magnetic medium that affects the position of the plane of polarisation,
as Faraday found to be the case.

7Translated from the German [von Helmholtz 1856, p.231]. A somewhat shorter statement of this principle
appears in [von Helmholtz 1903, Section 42, p. 158], but the apparent meaning is the same.
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It is absolutely clear that Helmholtz did not intend this principle to be applied to diffuse reflec-

tion. In the cited reference, he consistently uses the wordreflection to mean only specular (mirror-

like) reflection. For example, in the discussion leading up to the statement of the principle above

[von Helmholtz 1856, p. 230], Helmholtz states and proves a similar theorem where it is obvious

that only specular reflection is considered. The very phrasereflections and refractions implies spec-

ularity, since otherwise the theorem would be stated in terms of reflection andtransmission.

Also, the principle refers to theamounts of light leavingA and arriving atB. In the terminology

of the day, an “amount” of light referred to total flux or power.8 Thus, the principle does not even

make sense for diffuse reflection: the power arriving on beamB would always be zero, since only an

infinitesimal quantity of power is reflected by a diffuse surface in any particular direction. In order to

make sense for non-specular reflection, the law would need to relate the power atA to a differential

quantity atB, such as irradiance. (This is exactly what was done by Lord Rayleigh, in the reciprocity

principle discussed below.)

Another important fact is that Helmholtz reciprocity is not always valid, as we will discuss

in Appendix 6.D). Interestingly, Helmholtz did not provide a proof of his principle, claiming

that “anybody who is at all familiar with the laws of optics can easily prove it for himself” [von

Helmholtz 1856, p. 231].

6.A.3 Further reading on Helmholtz reciprocity

This section gives a sampling of the various sources of information available concerning reciprocity

principles. It is by no means exhaustive.

First, there are references that interpret the Helmholtz reciprocity principle correctly, in the lim-

ited sense discussed above (beams propagating through an optical system, rather than general scatter-

ing from surfaces). These include Planck [1914, p. 49], von Fragstein [1955], Chandrasekhar [1960,

p. 176], and Born & Wolf [1986, p. 381].

Second, there are sources in the radiometry literature that claim (in passing) that Helmholtz reci-

procity implies the symmetry of physically valid BRDF’s. These include McNicholas [1928], de Vos

[1954], de la Perrelle et al. [1963], Nicodemus [1965, p. 769], and Nicodemus et al. [1977, p. 40].

8It is important that Helmholtz stated his law in terms of power, rather than radiance, since this way his law
is valid even when A andB lie in media with different refractive indices. If it were stated in terms of radiance
(which Helmholtz calls “brightness”), there would need to be an �2 scaling factor as discussed in Section 5.2.
Helmholtz was aware of this scaling factor [von Helmholtz 1856, p. 233], and thus phrased his law to make
it as general as possible.
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Another worthwhile reference is Minnaert [1941], who recognized that the original statement of

Helmholtz reciprocity does not apply to general scattering, but shows how the statement can be rein-

terpreted to have greater generality.

Third, there are general reciprocity principles in the physics literature regarding the scattering

of electromagnetic waves. These include Kerr [1987], Saxon [1955], and de Hoop [1960]. These

principles are unrelated to Helmholtz’, and require additional physical assumptions for their validity.

This brings up an important point, which is that many reciprocity principles in optics are derived

by starting with a relationship of the sort that we want to prove (i.e. an assumption that is equivalent

to the symmetry of BRDF’s). For example, several reciprocity principles for volume scattering are

proven in [Case 1957], by assuming that the phase function is symmetric (bottom p. 653). By making

additional assumptions of this sort (e.g. that all scattering particles have random orientations), it is

possible to derive a wide variety of reciprocity principles in optics [van de Hulst 1957, Chapter 5],

[Hovenier 1969], [van de Hulst 1980, Chapter 3]. It would be an easy mistake to derive a reciprocity

principle for BSDF’s by starting with results such as these.
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Appendix 6.B Lord Rayleigh’s reciprocity principle

In 1900, Lord Rayleigh stated a reciprocity principle for non-specular reflection, and apparently he

was the first to do so.9 Essentially, this principle asserts that real materials have symmetric BRDF’s.

The original statement is as follows:

Suppose that in any direction (i) and at any distance r from a small surface (S)
reflecting in any manner there be situated a radiant point (A) of given intensity, and
consider the intensity of the reflected vibrations at any pointB situated in direction �
and at distance r0 from S. The theorem is to the effect that the intensity is the same as it
would be atA if the radiant point were transferred toB. [Footnote: I have not thought
it necessary to enter into questions connected with polarization, but a more particular
statement could easily be made.]

Translated into modern terminology, we are given a small reflective surface, exposed to a small

light source and a smallirradiance sensor (which measures the power per unit area falling on a square

facing toward the reflective surface). His principle states that if the positions of the source and sensor

are exchanged, the measured irradiance will be the same. This implies that the corresponding BRDF

must be symmetric, as may easily be verified.

Observe that Rayleigh’s principle is merely a statement of fact; no proof was given in terms of

more basic physical laws. Although it was claimed as a consequence of “a fundamental principle of

reciprocity, of such generality that escape from it is difficult” (to be found in hisTheory of Sound

[Rayleigh 1877, Sec. 109, p. 154]), the methods used there are not rigorous by modern standards,

and are not explicitly related to light. Furthermore, they require symmetry assumptions about the

underlying system (e.g. see [Rayleigh 1877, Sec. 103a, p. 139]) that seem no more justifiable than

assuming the symmetry of the BRDF in the first place.

9This observation was made by Chandrasekhar [Chandrasekhar 1960, p. 177]. Rayleigh’s statement of
reciprocity can be found in a short letter to the Philosophical Magazine [Rayleigh 1900, p. 324] (reprinted in
[Rayleigh 1964, p. 480]).



190 CHAPTER 6. RECIPROCITY AND CONSERVATION LAWS

Appendix 6.C Time reversal invariance and the irreversibility of light

scattering

The symmetry of BRDF’s is sometimes attributed to a physical law known astime reversal invari-

ance. In this section, we explain why such claims are incorrect. Time reversal invariance does not

have any direct consequences for the symmetry of BRDF’s, because most observable light scattering

processes are irreversible.

We first explain the principle of time reversal invariance, which applies the laws of physics at

a microscopic level (e.g. interactions between individual particles). Next, we explain why observ-

able processes are usually irreversible, even though they are governed by microscopically reversible

laws. Finally, we explain how this applies to light scattering: we show that observable light scatter-

ing processes are almost always irreversible, so that time reversal invariance does not have any direct

implications for the symmetry of BRDF’s.

Time reversal. It is known that the fundamental laws of physics are invariant under the oper-

ation of time reversal, in which the time variable is negated in formulas and equations. More pre-

cisely, this principle should be calledmotion reversal invariance, since it asserts that if the motions of

all particles and waves in a system are reversed, then they will retrace their former paths [de Groot

& Mazur 1962, p. 35]. This principle holds in any physical system, as long as there are no exter-

nal magnetic fields; otherwise, the direction of the field must be reversed along with the wave and

particle motions, in order for time reversal invariance to hold ([de Groot & Mazur 1962, p. 38],

[de Groot 1963]).10

This principle can be stated more precisely as follows. LetA and B be any two microscopic

states of the given system, where each state completely specifies the attributes of all particles and

waves. We let p(A;B; t) denote the transition function for this system, i.e. the probability density

that if the system is in stateA, it will evolve to stateB over a time interval of length t. (Note that

according to quantum mechanics, the universe is not deterministic; thus, we can only compute the

probability with which the system evolves from state to state.) Finally, given a stateX , we let �X
denote the state obtained by motion reversal of all particles and waves (including the reversal of

magnetic fields, if necessary). Given these definitions, the principle of time reversal invariance then

10Technically, there are some known exceptions to time reversal invariance, however these involve nuclear
interactions and are not significant for optics [Brittanica Online 1996].
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states that

p(A;B; t) = p(�B;�A; t) for all A, B, and t

(see [de Groot 1963]).

Irreversible processes. It is important to realize that time reversibility applies only at a micro-

scopic level, and that most physically observable processes areirreversible. As a simple example of

an irreversible process, consider a box that is divided into two compartments, one containing vac-

uum and another filled with air. If a hole is made in the separating wall, air will rush from one side

to the other until the pressures on both sides are the same. This process is irreversible, since if the

motions of all the particles are reversed, they will not revert to their original configuration.

How can we explain this paradox, given that the underlying physical laws are time reversible?

Briefly, the reason is that observable states and microscopic states are not in one-to-one correspon-

dence. In fact, each observable stateX 0 can be realized in a large number of different microscopic

ways, all of which are indistinguishable with respect to measurable properties (such as pressure or

temperature). This idea is closely related to the concept ofentropy: letting W denote the number

of ways that an observable stateX 0 can be realized, its entropy is given byS = k lnW , where k

is the Boltzmann constant. Thus, states with higher entropy can be realized in a greater number of

microscopic ways.

Given these facts, irreversible processes can arise as follows. Consider a discrete system where

there are only 100 microscopic statesX1, : : :, X100, and the transition probabilities between them

are all equal: p(Xi;Xj) = p(Xj ;Xi) for all i and j. We suppose that motion reversal is simply the

identity operation, i.e.�Xi = Xi (recalling that�X denotes motion reversal). Clearly this system

is microscopically time reversible, since

p(A;B) = p(�B;�A) for all A and B :

However, now suppose that the system has only two observable statesA0 and B0, which corre-

spond to 1 and 99 microscopic states respectively. It is easy to verify thatp(A0; B0) = 99=100, while

p(B0; A0) = 1=100. Thus from an observable point of view, the system is not time reversible: if the

system moves fromA0 to B0, and motion reversal is applied to the microscopic state underlyingB0,

then the system is far more likely to move to another microscopic state ofB0, than it is to return to the

original microscopic state underlyingA0. The general reason for this behavior is thatB0 corresponds

to a much larger number of microscopic states thanA0: that is, it has a higher entropy.
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In a real thermodynamic system, any measurable increase in entropy corresponds to a huge in-

crease in the number of equivalent microscopic states. For all practical purposes, the probability of

returning to the original observable state is zero, and thus any process which increases entropy is said

to be irreversibleprocess. This is the essence of the second law of thermodynamics: given a closed,

isolated system, it will always move from less probable to more probable observable states. (These

are only the basic ideas behind irreversible processes; for more rigorous arguments, see van Kampen

[1954], de Groot & Mazur [1962], or de Groot [1963].)

Irreversibility of light scattering. As we mentioned, the symmetry of BRDF’s is sometimes

attributed directly to the time reversibility of physical laws. This is incorrect, because the scattering

of light at an ordinary surface is irreversible. (Here we are referring to theobservable behavior of

light scattering, which corresponds to an average behavior over many indistinguishable microscopic

states.) There are two reasons for this: first, when a light beam strikes a surface, some of the en-

ergy is absorbed (and converted into heat). Motion reversal of all photons and other particles will

not convert this heat back into light. Second, the incident beam will generally be scattered in many

directions (e.g. by a diffuse surface); and if the direction of this scattered light is reversed to form

an incident distribution, it does not recreate the original beam. Both of these situations represent

an increase in entropy, and are not reversible.11 Thus, time reversal invariance does not have any

direct implications for ordinary BRDF’s, where some light is absorbed and/or scattered in multiple

directions.

Light scattering is only reversible at a perfect mirror (if such a thing could be constructed), or

at an optically smooth interface between two dielectric materials, as pointed out by Stokes in 1849

(see [Lekner 1987, p. 36] or [Knittl 1962]). It is occasionally claimed that Maxwell’s equations them-

selves are time reversible, but this is true only in special cases. Obviously Maxwell’s equations are

not time reversible in general, since they describe phenomena such as absorption.12

Although time reversal invariance is not useful to us directly, recall that it underlies the principle

of detailed balance. Since detailed balance holds even for irreversible processes, it can be applied to

light scattering, as we did in Section 6.2. The main limitation of detailed balance (as compared to

time reversal) is that it only holds for systems in thermodynamic equilibrium.

11See [Jones 1953] for an intuitive discussion of the irreversibility of light scattering; however, note that
this paper has a few technical errors.

12Although Maxwell’s equations are not invariant under the operation of time reversal, they do have other
symmetry properties. This has been studied by Šantavý [1961], who describes an operation closely related to
time reversal under which Maxwell’s equations are indeed invariant.
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Appendix 6.D Exceptions to reciprocity

When we derived the reciprocity condition (6.3) for BSDF’s, we needed two important assumptions:

that there are no external magnetic fields, and that there are no absorbing media.13 In this section,

we give some insight into why these assumptions are necessary, by showing what goes wrong when

they are violated.

First, we discuss magnetic fields, which cause problems for polarized light. Then we discuss

absorbing media, which at first appear to violate not only the reciprocity condition (6.3), but also the

principles of detailed balance and conservation of energy. We explain the apparent contradictions,

and we also derive a reciprocity condition that applies to absorbing media (in Section 6.D.2.3).

6.D.1 Magnetic fields and the Faraday effect

We show how magnetic fields can cause reciprocity principles to fail. This includes both Helmholtz

reciprocity, and the reciprocity condition (6.3) for general BSDF’s.

The source of these problems is theFaraday effect, which states that when plane-polarized light

propagates within an external magnetic field, the plane of polarization is rotated. For example, con-

sider a polarized beam of light that passes through an electromagnet. According to the Faraday effect,

the plane of polarization will rotate in the same direction as the current flow in the magnet. This ro-

tation does not depend on the direction of light propagation, but only on the magnetic field: thus,

if the same beam is reflected back and forth through the magnet, the rotation increases each time.

This obviously represents an exception to the Helmholtz reciprocity principle, as it was stated for

polarized light, and Helmholtz himself was aware of this (see the quotation in Section 6.A.2).

Lord Rayleigh’s light trap. As a more dramatic example of how reciprocity can fail, Lord

Rayleigh proposed the following light trap. Consider a horizontal cylinder filled with a magnetic

medium,14 together with an external field such that polarized light passing through the cylinder is

rotated by 45 degrees. Now suppose that a polarizer is placed at either end of the cylinder, oriented

so that their planes of polarization are 45 degrees apart. In this situation, light passing in one di-

rection through the cylinder is completely blocked by the second polarizer, while light traveling the

13An absorbing medium is one that absorbs some of the light energy passing through it, so that the intensity
of a light beam decreases with distance.

14Note that the Faraday effect only occurs in substances that are magnetically active. Oxygen, hydrogen,
and water are all magnetically active to some degree [Born & Wolf 1986, p. 3], although the Faraday effect is
strongest in substances such as carbon bisulphide [Drude 1900, Chapter 7].
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other direction is transmitted. Thus, a source of light at one end of the cylinderA would be visible

at the other endB, while a source atB would not be visible fromA.

Using this idea, we can show the existence of BSDF’s that do not obey the reciprocity con-

dition (6.3) in the presence of a magnetic field. For example, consider a thin film of magnetized

iron. When plane-polarized light passes through this film, its plane of polarization is rotated slightly

[Drude 1900, p. 451]. Now suppose that the iron is coated with polarizing films on both sides; this

will produce an effect similar to the “light trap”, i.e. the transmissivity of the surface will be different

for light traveling through it in opposite directions. The same can be achieved for reflective surfaces,

for example by coating a magnetized mirror with certain kinds of optical crystals [Drude 1900].

6.D.2 Transmission between absorbing media

Reciprocity also fails when light is transmitted intoabsorbing media. For these media, the radiance

of a light beam decreases exponentially with the distance traveled. The absorption is due to electri-

cal conduction, which transforms light energy into electron vibrations (which then appear as heat).

The medium may be only slightly absorbing, as with imperfect dielectric materials, or it may be a

conductor (metals), in which case light is virtually extinguished after propagating only a few wave-

lengths.

For absorbing media, there are two separate ways in which reciprocity fails [von Fragstein 1955].

We give a brief introduction to them here, and provide more detail in the following sections.

First, the path of a light beam is not always reversible. For example, consider a light wave that

is transmitted from air into metal (Figure 6.2). For some metals, there exists an non-zero angle of

incidence where the transmitted beam does not change its direction (i.e. it is not refracted), and yet

light beams that go in the opposite direction from metal into air are refracted for all non-zero incident

angles. For other metals, the reverse is true: beams are always refracted upon entering the metal, but

for beams exiting the metal, there is a non-zero angle where the direction of propagation does not

change. Note that these situations do not happen in the familiar case of non-absorbing media, where

light beams are refracted for all non-zero angles of incidence, and the path of a light beam is always

reversible.

The second effect concerns thetransmissivity of the interface between two media, i.e. the fraction

of incident power that is transmitted through the surface. For absorbing media, a larger fraction of

light can be transmitted in one direction than the other. Letting�i;j denote the transmissivity from
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Figure 6.2: When absorbing media such as metals are present, the path of a light beam is
not always reversible. For example, when a light beamAi is transmitted from air into some
metals, there is a non-zero angle of incidence �0 for which the beam does not change its
direction of propagation (Figure (a)). However, a beam of lightBi traveling in the reverse
direction (from metal into air) is refracted at the surface, and follows a different path (Figure
(b)).

medium i to medium j, the transmissivities in opposite directions are related by

�1;2
�2;1

=
1 + �21
1 + �22

;

where �i is the attenuation index for medium i (which measures the rate of light absorption in that

medium).15 Furthermore, the reflectivity and transmissivity at such an interface can sum to more

than one (which cannot happen with non-absorbing media).

At first sight, these properties appear to violate the principles of detailed balance and conser-

vation of energy, respectively. However, this is not the case. In the following sections, we explain

these apparent contradictions, and we also derive a more general reciprocity condition for BSDF’s

that holds even when there are absorbing media.

15The attenuation index is defined so that when a light wave travels a single wavelength �, its amplitude is
reduced by a factor of e�2��. This is not the same as the absorption coefficient �a used in the volume rendering
and radiation transport literature, which measures the rate of absorption per unit length. The two quantities
are related by �a = 4��=� [Born & Wolf 1986, p. 614]. Adding further to the confusion, � is often called
the extinction coefficient, which is the same name given in the transport literature to the sum of the absorption
and scattering coefficients.
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6.D.2.1 Non-reversibility of optical paths

We have stated that the path of a light beam between air and metal is not always reversible. To explain

this, consider a homogeneous plane waveAi traveling through the air (i.e. an infinitely wide beam,

propagating in a given direction). Suppose that this wave strikes the planar boundary of an absorbing

medium, where the angle of incidence is�(Ai) = �0 (see Figure 6.2(a)).

In [von Fragstein 1955], it is shown that for some metals, there is a non-zero value of�0 for

which the incoming wave will not be refracted (i.e.�(At) = �(Ai) = �0). On the other hand, a

homogeneous wave Bi traveling in the reverse direction will be refracted; that is, if it strikes the

boundary at an angle�(Bi) = �0 from inside the metal, it will exit at an angle�(Bt) that is different

from �0 (Figure 6.2(b)).

At first sight, this appears to contradict the principle of detailed balance. At thermodynamic equi-

librium, we must have the same energy flowing both ways between any given pair of directions; thus,

it would seem that if the waveAi is not refracted, then the waveBi should not be refracted as well.

(Otherwise, power arriving from the given direction!i would be scattered to�!i, but not vice versa.)

The crucial observation is that the two situations we have considered are actuallynot the reverse

of each other. To obtain the refraction results above, the wavesAi andBi must both be homogeneous,

i.e. their amplitude must be constant along each wavefront [von Fragstein 1955]. However, when the

wave Ai is refracted into metal, the resultAt is not a homogeneous wave: the wavefronts are per-

pendicular to the direction of propagation�(At) = �0, while the surfaces of constant amplitude are

parallel to the boundary between the two media [Born & Wolf 1986, p. 616]. This happens because

each point on a given wavefront has traveled a different distance through the absorbing medium, and

the amplitude of the wave falls off according to the distance traveled.

Because of this, the irreversibility of optical paths between absorbing media is a bit misleading.

The situation considered by von Fragstein is not a true reversal of the optical path, because he as-

sumes that the incident wave is homogeneous in both directions. Suppose that instead, we letBi be

an inhomogeneous wave of the same type asAt, where the wavefronts are perpendicular to the di-

rection �0, but the surfaces of constant amplitude are parallel to the boundary. It is possible to show

that this yields a transmitted waveBt of the same form asAi: a homogeneous wave, propagating in

the desired direction �0. Thus, the requirements of detailed balance are satisfied.

To see that this is true, consider the following experiment. Suppose that the metal forms a thin

layer, with air on both sides, and consider a homogeneous waveAi that is incident at the angle �0.

This wave enters the metal, where it is refracted into an inhomogeneous waveAt traveling in the

same direction. This wave propagates to the far side of the metal layer, where we will rename itBi,
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and is then transmitted into air yielding a waveBt. This wave Bt must clearly be homogeneous,

since all parts of the wave have traversed the same thickness of metal. Furthermore, from Snell’s

law it is straightforward to show that the wavesAi and Bt have the same direction of propagation

[Born & Wolf 1986, p. 629]. Thus, the second refraction (which acts on an inhomogeneous wave

Bi) exactly reverses the action of the first, as we claimed above.

6.D.2.2 Apparent non-conservation of energy

Next, we turn to the transmissivity of the interface between absorbing media. We have claimed that

the reflectivity and transmissivity at such an interface can sum to more than one, which appears to

violate conservation of energy. This can be explained in terms of interference between the incident

and reflected light waves.

In particular, consider a planar boundary between air and metal, where the metal has an attenua-

tion index of�. Suppose that an incident waveAi strikes the boundary from within the metal, giving

rise to a reflected waveAr and a transmitted waveAt. Then according to von Fragstein [1950], the

transmissivity satisfies

� = (1 + �2)(1� �) ;

where the reflectivity � can be determined from the Fresnel laws [Born & Wolf 1986, p. 628]. Note

that the factor 1+�2 can be rather large; e.g. for silver it is approximately 400 [von Fragstein 1950,

p. 65]. Thus, the amount of transmitted light can be much larger than it would be if�+ � = 1.

To understand this, we must examine the definitions of reflectivity and transmissivity. They mea-

sure the power of the reflected and transmitted waves, as compared to the incident wave:

� =
�(Ar)

�(Ai)
; � =

�(At)

�(Ai)
:

However, the key observation is that the incident and reflected waves are propagating in the same

medium, and that these two waves can interfere with each other. The power carried toward the

boundary by the combined waveAi + Ar can be either more or less than the intuitively expected

value �(Ai)� �(Ar).

For transmission from metal to air, the combined waveAi +Ar carries more power toward the

boundary than expected. This can be shown from Maxwell’s equations, where the additional energy

appears as mixed product terms in the Poynting vector [von Fragstein 1950]. In the one-dimensional
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case [Salzberg 1948], the power carried by the combined wave can be written in the form

(1=2)Re(EiH
�
i )� (1=2)Re(ErH

�
r )� (1=2)Re(EiH

�
r �ErH

�
i ) ;

whereE andH denote the complex amplitudes of the electric and magnetic components of the wave,

respectively, and� denotes complex conjugation. The first two terms denote the power of the incident

and reflected waves, while the third term measures the additional energy flow due to interference.

Effectively, the interference between incident and reflected waves causes there to be less ab-

sorption in the metal near the boundary [von Fragstein 1955]. That is, for a wave propagating far

inside the metal, absorption will occur at the usual rate (as determined by�). However, as the wave

approaches the boundary, the rate of absorption becomes smaller, due to interference from the re-

flected wave. Thus, when the wave finally exits from the metal, it will have much more power than

it would if the reduced absorption were not taken into account.

6.D.2.3 A reciprocity condition for BSDF’s with absorbing media

We derive a reciprocity condition for BSDF’s that applies even when absorbing media are present.

This requires only one small change to the argument in Section 6.2.

Recall that for a system in thermodynamic equilibrium, where only non-absorbing media are

present, that the quantity L=�2 is constant throughout the enclosure. When absorbing media are

present, this must be modified: it is possible to show that the quantity

L(x; !) (1 + �2)

�2

is constant throughout the enclosure [von Fragstein 1950, Tingwaldt 1952], whereL, �, and � are

parameterized by frequency �. Thus according to this formula, the equilibrium radiance is smaller

in an absorbing medium than in a non-absorbing one.

By repeating the argument of Section 6.2, we can now show that an arbitrary, physically valid

BSDF must satisfy
fs(!i!!o) (1 + �2o)

�2o
=

fs(!o!!i) (1 + �2i )

�2i
; (6.6)

where all quantities are parameterized by frequency�. This is clearly a generalization of the condi-

tion (6.3) given for non-absorbing media.

To put this into perspective, however, the difference between (6.6) and (6.3) is utterly insignifi-

cant for the typical participating media used in graphics, because the attenuation indices are so small.
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For example, consider a medium that is so dense that 99% of the incident light is absorbed after a

distance of one millimeter. This corresponds to an attenuation index of only� = 0:00037 (for light

with a wavelength of 500nm), so that the(1 + �2) change in transmissivity is inappreciable.

Also, note that the participating media in graphics are often not true absorbing media, but instead

consist of small particles (e.g. clouds, fog, smoke). These materials are described byscattering the-

ory [van de Hulst 1957], rather than the theory of absorbing media described here. (In a true absorb-

ing medium, the particles must be of negligible size compared to the wavelength: for example, an

iodine solution, or a cloud of chlorine gas.)

6.D.2.4 Discussion

Given these bizarre examples, it is clear that absorbing media cannot be described with familiar

optical concepts. The idea of independent waves propagating and reflecting, each with its own

power, is simply meaningless in an absorbing medium [Salzberg 1948]. For example, consider

the standard Fresnel formulas for reflection and transmission between absorbing media [Born &

Wolf 1986, p. 628]. According to these formulas, there is non-zero reflection even at a ficticious in-

terface between two identical media; furthermore, the corresponding transmissivity is greater than

one. To handle such situations correctly, it is necessary to work with explicit wave descriptions (e.g.

monochromatic waves described by their phase and amplitude), rather than with secondary concepts

such as power.

It is reassuring to note that the strange effects we have described are restricted to the absorbing

media themselves. For example, consider a waveAi that is transmitted from air, through a metal film,

and then back into air to yield a waveAt. It can be shown that the optical path is reversible, and that

the transmissivity of the film is the same in both directions [Lekner 1987]. This holds even if the

film consists of many layers of absorbing and non-absorbing media (known as astriated medium).
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Chapter 7

A Self-Adjoint Operator Formulation of

Light Transport

As we have mentioned, it is very convenient for implementations to use the same scattering

rules for light, importance, and particles. This is desirable for theoretical work as well, so

that we may avoid the use of adjoint operators. However, the existing light transport models

in graphics fail to achieve this, even when the scene model is physically valid. To obtain

symmetry, the typical solution is to limit the scene to reflective surfaces (or more generally,

to require that all media have the same refractive index). This is a major restriction, since

it disallows materials such as glass and water, which occur frequently in graphics models.

In this chapter, we develop a framework where light, importance, and particles obey the

same scattering rules, for any physically valid scene. Technically, this requires us to define

operators that are self-adjoint, so that the same operators apply in all situations. The major

issue, of course, is how to deal with transmission between media with different indices of

refraction. The solution turns out to very simple and practical, and also reveals interesting

connections with classical geometric optics.

7.1 Concepts of the new framework

We would like to find a framework where light and importance always obey the same trans-

port equation, even when there are media with different refractive indices. We show how to

201
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achieve this by modifying the framework of Chapter 4. In this section, we discuss only the

formal changes that are required, leaving interpretation and discussion for later. We assume

throughout this chapter that only physically valid materials are used in the scene model.

The problem. The problem with the framework that we described in Chapter 4 is that

sometimes the local scattering operatorK is not self-adjoint. In this case, the light and im-

portance transport operators are different, since they are given byTL = KG and TW =

K�G respectively.

To fix this, recall thatK is defined by

(KL)(x; !o) =
Z
S2
fs(x; !i!!o)L(x; !i) d�

?

x
(!i) ;

and that K = K� whenever fs is symmetric. From Section 6.2, we also know that

fs(!i!!o)

�2o
=

fs(!o!!i)

�2i
(7.1)

for any physically valid BSDF; that is, fs(!i!!o)=�
2
o is a symmetric function. Thus, if we

could change the definition ofK to use this symmetric function fs=�2o , rather than fs itself,

then we would haveK = K� for any physically valid scene model.

The solution. There is a very simple way to achieve this. The idea is to define a new

solid angle measure �0, which replaces the usual measure � in all radiometric quantities

and definitions. We call the new measure basic solid angle, and it is defined by1

d�0
x
(!) = �2(x; !) d�(!) ; (7.2)

where �(x; !) is the refractive index of the medium that is adjacent to x in the direction

!. Note that unlike the usual solid angle measure �, the basic solid angle measure �0
x

is

1As always, when measures are defined using “infinitesimals”, it should be understood as shorthand for a
formal definition involving integration. For example, a more precise definition of equation (7.2) would be

�0
x
(D) =

Z
D

�2(x; !) d�(!) ;

where D � S2 is a �-measurable set of directions.



7.1. CONCEPTS OF THE NEW FRAMEWORK 203

a function of position, since its value depends on the refractive indices of the surrounding

media.

By mechanically substituting this new measure into all of our old definitions, we obtain

a framework with very desirable symmetry properties. The symbols for the new quantities

are obtained by appending a prime symbol (e.g. L0), while their names are obtained by pre-

fixing the word basic (e.g. basic radiance). This naming convention is justified by the unique

invariance properties of these quantities, which will be studied further in Appendix 7.A. It

also extends the terminology of Nicodemus, who first introduced the ideas of basic radiance

and basic throughput [Nicodemus 1976]. By replacing the solid angle measure as outlined

above, we obtain these concepts along with a variety of new ones (which generally differ

from their original definitions by a factor of �2):

� The basic projected solid angle measure (�?0
x

) on S2:

d�
?0
x
(!) = j! �N(x)j d�0

x
(!)

= �2(x; !) d�
?

x
(!) : (7.3)

� The basic throughput measure (�0) on the ray spaceR:

d�0(x; !) = dA(x) d�
?0
x
(!)

= �2(x; !) dA(x) d�
?

x
(!) ;

or in other words, d�0(r) = �2(r) d�(r) : (7.4)

� Basic radiance (L0):

L0(r) =
d�(r)

d�0(r)
=

L(r)

�2(r)
: (7.5)

Basic spectral radiance (L0�) is defined in a similar way.

� The basic inner product on L2(R):

hf; gi0 =
Z
R
f(r) g(r) d�0(r)

=
Z
R
f(r) g(r) �2(r) d�(r) : (7.6)
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This inner product will be used to define adjoint operators in this chapter, i.e. two

operatorsH and H� are adjoint if hH�f; gi0 = hf;Hgi0 for all f and g.

� The basic BSDF (f 0s ):

f 0s(x; !i!!o) =
dL0o(x; !o)

dE(x; !i)
=

fs(x; !i!!o)

�2o
; (7.7)

where we have once again used the convention that �o = �(x; !o).

Note that we have only redefined quantities whose definitions depend on solid angle. All

other quantities (e.g. irradiance) are left unchanged.

These new quantities have interesting symmetry properties. Most importantly, the basic

BSDF of any physically valid material is guaranteed to be symmetric:

f 0s(x; !i!!o) = f 0s(x; !o!!i) :

This follows directly from the general reciprocity principle (7.1) that was proven in Chap-

ter 6. (As a special case of this, Appendix 7.C derives the basic BSDF for perfect specular

refraction and shows how to express it in a symmetric form.)

The other quantities defined above also have interesting symmetry properties, some of

which take the form of optical invariants (a notion from classical geometric optics). These

properties are discussed in Appendix 7.A.

7.2 The self-adjoint operator formulation

We now show how to put these concepts together into a framework of self-adjoint transport

operators. The main idea is to use basic radiance (L0) for all light transport calculations,

while for importance transport the standard definitions are used.2 As we will see, this leads

to the desired symmetry properties, because basic radiance and importance satisfy the same

transport equation. Furthermore, this framework computes exactly the same value for every

measurement as before.

2Recall that importance has units of [S �W�1], and thus it is not affected by the new solid angle measure.
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We now give the details of our framework. Measurements are computed using the basic

inner product (7.6):

I = hWe; L
0
ii0 : (7.8)

This equation gives the same results as the original measurement equation (4.20), since

hWe; L
0
ii0 =

Z
R
We(r)

Li(r)

�2(r)

h
�2(r) d�0(r)

i
= hWe; Lii :

The propagation operatorG is unchanged; however, we define the new basic local scatter-

ing operator (K0) by

(K0h)(x; !o) =
Z
S2
f 0s(x; !i!!o) h(x; !i) d�

?0
x
(!i) : (7.9)

It is helpful to expand the basic scattering equation L0o = K0L0i, to see how the old and new

quantities are related:

Lo

�2o
=
Z
S2

fs(x; !i!!o)

�2o

Li(x; !i)

�2i

h
�2i d�

?

x
(!i)

i
: (7.10)

We see that the �2i and �2o factors are handled consistently. The most important difference

is that the BSDF has been replaced by a symmetric quantity (the basic BSDF f 0s ). Because

of this, it is straightforward to check that the scattering operatorK0 is self-adjoint (see Ap-

pendix 7.B for details). Also notice that when there is only a single medium at x, then K0

is identical to the original operatorK (since the hidden factor of �2o in f 0s cancels the hidden

factor of �2i in �?0).

Light and importance transport operators. We define the transport operatorsTX and

solution operatorsSX in the same way as before (see Section 4.7). These can be summarized

as follows:

Exitant Incident

Light TL0
o

= K0G TL0
i

= GK0

Importance TWo
= K0�G TWi

= GK0�
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However, because G = G� and K0 = K0� for physically valid scenes, these definitions

simplify to

TL0
o

= TWo
= K0G ;

TL0
i

= TWi
= GK0 :

Thus, basic radiance and importance obey the same transport equation.

We should emphasize that only the light transport operators have been changed in this

framework; the importance transport operators have the same definitions as before. This

is not immediately obvious, since we originally defined TWo
= K�G, and now we have

defined TWo
= K0�G. However, K� and K0� are actually the same operator (as will be

shown in Appendix 7.B). Because of this fact (which holds in all environments, physically

valid or not), we continue to use the same symbolsTWi
andTWo

for the importance transport

operators.

To summarize, the main idea of the self-adjoint framework is to use basic radiance rather

than radiance for light transport calculations, and to compensate for this by including a fac-

tor of �2 in the measurement equation. With these simple changes, light, importance, and

particles can be scattered and propagated in the same way. Further details of the framework

are described in Appendix 7.B.

7.3 Consequences for implementations

We show how this framework affects the implementation of path tracing and bidirectional

rendering algorithms. It is actually very simple to use the self-adjoint framework, since no

scaling factors are required for transmission between different media, and the same scatter-

ing rules apply to light, importance, and particles.

Consider the structure of an ordinary path tracing algorithm. The calculation starts at the

viewpoint, where a particular pixel value Ij = hW (j)
e ; Loi is estimated by sampling a ray that

contributes to this integral. The initial ray lies in a medium with some refractive index �1.

We then proceed by following a path backward, through a sequence of media with indices

�2, : : :, �k, until finally a light source is reached, and the emitted radiance Le is computed.

With a standard framework (e.g. that of Chapter 4), a scaling factor of �2i =�
2
i+1 is required
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between each pair of media i and i + 1 to account for the change in radiance.

With the self-adjoint framework, we obtain the same result in a simpler way. Start-

ing again at the viewpoint, we sample a ray r to estimate the basic inner product Ij =

hW (j)
e ; L0oi0. Since r lies in medium �1, the weight for this ray has an extra factor of �21 com-

pared to the standard path tracing implementation. However, we now evaluate the basic ra-

diance along this ray, which means that no special scaling factors are required as we follow

a path backward through media �2, : : :, �k. When the path finally reaches a light source, we

must divide its emitted radiance by �2k to obtain basic radiance.3 Thus the combined scaling

factor for this path is �21=�
2
k, which is identical to the product of all the scaling factors above.

With bidirectional algorithms, some of the calculations are carried out by propagating

information forward from the light sources. For example, consider the “pool of water” scene

from Section 5.2. Suppose that a particle tracing pass is used to accumulate the caustics on

the pool bottom in a view-independent form (e.g. a texture map), which is then rendered

using a ray tracing pass. With the self-adjoint framework, the particle tracing pass does not

require any changes. The ray tracing pass is similar to the path tracing algorithm described

above, except that now the “emission function” consists of a texture map on the pool bottom,

which must be expressed in the form of basic radiance before it is used. This is done looking

up the irradiance value in the texture map, and dividing it by the �2 value of the surrounding

medium (i.e. water).

Similarly, the self-adjoint framework can be used with algorithms such as density esti-

mation [Shirley et al. 1995], the photon map [Jensen 1996], and bidirectional path tracing,

by making changes of a similar nature.

We should mention that it is also possible to obtain a symmetric transport framework by

working with the quantities L=� and W=� (rather than L and W ), and computing measure-

ments using the ordinary inner product. With this convention, light and importance are both

scaled by the same factor of �t=�i when they enter a new medium. However, this scheme

only gives correct results when all sources and sensors are located in media whose refractive

index is � = 1.

3Alternatively, the emission from light sources can be expressed using basic radiance in the first place.
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Appendix 7.A Classical optical invariants

The quantities defined in Section 7.1 have several important symmetry properties. Some of these

correspond to the classical notion of an optical invariant, a topic that we explore here.

Optical invariants are defined within the framework of classical geometric optics, which studies

the formation of images by systems of mirrors and lenses. Anoptical invariant is a quantity that

preserved by such systems, that is, a numerical measurement that has the same value for any real

object and its image.

7.A.1 The Smith-Helmholtz invariant

Of the classical optical invariants, the most famous is theSmith-Helmholtz or Lagrange invariant,

which was first stated by Smith in his Compleat System of Opticks (Cambridge, 1738), and subse-

quently rediscovered by Lagrange (1803) and von Helmholtz [1856, p. 74].

Consider a lens system that has rotational symmetry about the lens axis, so that it can be rep-

resented by a planar diagram (see Figure 7.1). Given some object and its corresponding image, the

Smith-Helmholtz invariant states that

�h� = �0h0�0 ; (7.11)

where � is the refractive index of the medium containing the object,h is the object height, and� is

the angle over which light is radiated from the object toward the lens system. The quantities�0, h0,

and �0 denote the corresponding quantities for the image (where�0 is now the angle over which light

is received from the lens system, at a given point of the image). The ratioh0=h is called the linear

magnification of the lens system, while �0=� is called the angular magnification; equation (7.11)

shows that these quantities are related in a simple way.

7.A.2 The invariance of basic throughput

Another classical invariant is basic throughput [Nicodemus 1976, p. 37], which is also known as

etendue [Steel 1974]. This quantity has already been defined (Section 7.1), but we repeat its defini-

tion here:

�0(D) =

Z
D
�2(r) d�(r) ;
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Figure 7.1: The Smith-Helmholtz invariant relates the geometry of an object and its corre-
sponding image, according to the equation�h� = �0h0�0.
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Figure 7.2: When a beam of light is refracted, its basic throughput is preserved.

whereD � R is a set of rays. With respect to classical geometric optics,Dwould represent the beam

of rays that leave an object toward the lens system, eventually forming an image. The invariance of

this quantity implies that as this light beam propagates through an optical system, its basic throughput

�0 is preserved.

An example: perfect specular refraction. We show how this invariance can be proven, for

the special case of perfect specular refraction. Consider a beam of light that strikes small surface

patch dA(x), occupying a solid angle ofd�(!i) (see Figure 7.2). Let !t be the direction of the re-

fracted beam, which occupies a solid angle ofd�(!t). In Section 5.2.1.1, we have already shown
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that the incident and transmitted beams are related by

�2i d�
?

(!i) = �2t d�
?

(!t) ; (7.12)

recalling that �? denotes the projected solid angle. Since these beams travel through the same area

dA(x) on the surface, we thus have

�2i dA(x) d�
?

(!i) = �2t dA(x) d�
?

(!t)

�2i d�(ri)=) = �2t d�(rt)

d�0(ri)=) = d�0(rt) ; (7.13)

where ri = (x; !i) and rt = (x; !t) represent the incident and transmitted rays. By integrating

this relationship, we can show that basic throughput�0 is invariant for an arbitrary set of raysD

that strike the surface. This affirms the invariance of�0 in the special case of refraction. It is also

straightforward to show that basic throughput is preserved when light is reflected, or when it propa-

gates through a constant medium (see Appendix 7.B). Using more advanced techniques, it is possible

to show that basic throughput is actually preserved in any system that obeys the laws of geometric

optics [Nicodemus 1963].

Note that the Smith-Helmholtz invariant can be derived as a special case of this law. To see this,

observe that for rotationally symmetric lens systems, the areadA of an object is proportional toy2,

while the solid angle d� over which light radiates is proportional to�2. Thus the Smith-Helmholtz

invariant follows immediately from (7.13).4

7.A.3 The invariance of basic radiance

If we assume that each light beam follows a single path through an optical system (i.e. partial reflec-

tion is not allowed), and that there are no losses due to absorption, we can also show the invariance

of basic radiance [Nicodemus 1976, p. 26]. That is, as a beam of light propagates through an optical

system, its basic radianceL0 = L=�2 is preserved (this is known asAbbe’s law [Keitz 1971, p. 195]).

The invariance of basic radiance can be derived directly from its definition,

L0(r) =
d�(r)

d�0(r)
:

4Note that the Smith-Helmholtz equation (7.11) is strictly valid only for infinitesimally small objects that
are aligned with the optical axis.
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That is, as a beam of light propagates through an optical system, its powerd� and its basic through-

put d�0 are both preserved (by conservation of energy, and the invariance of basic throughput). Thus,

basic radiance is invariant as well. This can be shown under very general conditions by using ther-

modynamic principles [Liebes 1969].

Basic spectral radiance L�=�2 is an optical invariant as well, when it is parameterized by fre-

quency. However, if spectral radiance is parameterized by wavelength, thenL�=�3 is invariant in-

stead [Nicodemus 1976, p. 52], since wavelengths (unlike frequencies) are modified at the interface

(see Section 6.2).

The other “basic” quantities we have defined also possess symmetry properties, however they

do not take the form of optical invariants. For example, the basic BSDF is symmetric, but does not

correspond to any property that is preserved by beams propagating through an optical system. Simi-

larly, equation (7.12) implies that the basic projected solid angle is preserved at a refractive interface

(d�?0(!i) = d�
?0(!t)).
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Appendix 7.B Properties of the new operators

We consider the adjoints and norms of the operators defined in this chapter. (The invertibility prop-

erties are unchanged from Section 4.B.1.)

7.B.1 Adjoints

Recall that adjoint operators in this chapter are defined with respect to the basic inner product, i.e.

two operatorsH andH� are adjoint if hH�f; gi0 = hf;Hgi0 for all f and g.

Lemma 7.1. The reversal mapM preserves the measure �0. In other words, �0(M(D)) = �0(D)

for any measurable setD � ~R.

The proof depends on the fact that the refractive indices ofr and M(r) are always equal. It is

otherwise similar to the proof of Lemma 4.4.

Theorem 7.2. The operatorG is self-adjoint (with respect to the basic inner product).

The proof is similar to Theorem 4.5, but requires the preceding lemma.

Theorem 7.3. The adjoint ofK0 is given by

(K0�h)(x; !o) =

Z
S2
f 0�s (x; !i!!o)h(x; !i) d�

?0
x (!i) :

In particular,K0 is self-adjoint for any physically valid scene model.

The proof is similar to Theorem 4.6. The last statement follows from the fact thatf 0s = f 0�s for

physically valid scenes (7.1).

Corollary 7.4. The operatorsK0� andK� are the same (for all scenes).

Proof. We have

(K0�h)(x; !o) =

Z
S2
f 0�s (x; !i!!o)h(x; !i) d�

?0
x (!i)

=

Z
S2
f 0s(x; !o!!i)h(x; !i) d�

?0
x (!i)

=

Z
S2

fs(x; !o!!i)

�2i
h(x; !i)

h
�2i d�

?

x(!i)
i

=

Z
S2
fs(x; !o!!i)h(x; !i) d�

?

x(!i)

= (K�h)(x; !o) :
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Thus importance obeys the same scattering rules in both frameworks. In physically valid scenes,

we also haveK0 = K
0�, so thatK0,K0�, and K� are all the same operator.

7.B.2 Norms

Since the new operators are defined using the basic throughput measure�0, it will be convenient to

define a new set ofLp norms, denoted k � k0p:

kfk0p =

�Z
R
jf(r)jp d�0(r)

� 1
p
: (7.14)

(The norm k�k1 defined by equation (4.9) is not affected by this change, but we will relabel itk�k01
for consistency.)

The old and new norms are always within a constant factor of each other, as stated by the fol-

lowing lemma:

Lemma 7.5. Let �min and �max denote the minimum and maximum refractive indices in the given

scene. Then for any 1 � p � 1 and any f 2 Lp(R), we have

(�2min)
1=pkfkp � kfk0p � (�2max)

1=pkfkp : (7.15)

Furthermore ifH is any bounded operator onLp(R), then

kHkp �
 
�2max

�2min

!1
p

kHk0p : (7.16)

The proofs follow directly from the corresponding definitions.

As a corollary, note that the spaceLp(R) contains the same functions when it is defined using

either of the norms k � kp or k � k0p, since the two norms are always within a constant factor. Thus we

can refer to Lp(R) in either case without ambiguity.

Theorem 7.6. kK0k0p < 1 for any physically valid scene, and for any1 � p �1.

Proof. The proof is very similar to [Arvo 1995, Appendix A.8]. First, we consider the casep = 1.

To bound the operator normkK0k01, we must find a numberm such that

kK0hk01 � m khk01 for any function h 2 L1(R) :
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To obtain such a bound, we compute

kK0hk01 =

Z
R
(K0h)(r) d�0(r)

=

Z
S2

Z
M
(K0h)(x; !o) dA(x) d�

?0
x
(!o)

=

Z
S2

Z
M

Z
S2
f 0s(x; !i!!o)h(x; !i) d�

?0
x
(!i) dA(x) d�

?0
x
(!o)

=

Z
M

Z
S2

�Z
S2
f 0s(x; !i!!o) d�

?0
x
(!o)

�
h(x; !i) d�

?0
x
(!i) dA(x)

(where we have dropped the absolute value signs, since all quantities are positive).

To obtain an upper bound on this expression, we letm denote the maximum value attained by

the bracketed quantity over the entire domain of the outer integrals:

m = ess sup
(x;!i)2R

Z
S2
f 0s(x; !i!!o) d�

?0
x (!o) :

We thus have

kK0hk01 � m

Z
M

Z
S2
h(x; !i) d�

?0(!i) dA(x) = m khk01 ;

so that m is an upper bound on the operator normkK0k01.

To better understand the meaning of this bound, we re-express it in terms of the ordinary BSDF

fs:

m = ess sup
(x;!i)2R

Z
S2
f 0s(x; !i!!o) d�

?0
x (!o) (7.17)

= ess sup
(x;!i)2R

Z
S2

fs(x; !i!!o)

�2(x; !o)

h
�2(x; !o) d�

?

x(!o)
i

= ess sup
(x;!i)2R

Z
S2
fs(x; !i!!o) d�

?

x(!o) :

Comparing this to the BSDF energy-conservation condition (6.5) derived in Chapter 6, we see that

if the scene model uses only physically valid BSDF’s, then we are guaranteed thatm � 1. Further-

more, real materials will always have at least a small amount of absorption, so that for physically

valid scenes we may assume thatm < 1.5 This establishes the theorem in the casep = 1.

5Even for situations such as total internal reflection, or reflection from metals at grazing angles, there will
always be some absorption due to tiny imperfections and impurities in the materials.
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The case p =1 is very similar; it is straightforward to show that

kK0k01 � ess sup
(x;!i)2R

Z
S2
f 0s(x; !o!!i) d�

?0
x
(!o)

:

Notice that this expression is identical to (7.17), except that the directional arguments to the basic

BSDF f 0s have been exchanged. Sincef 0s is guaranteed to be symmetric for physically valid scenes,

we obtain the same bound as forp = 1, namely

kK0k01 � m < 1 :

For values of p with 1 < p <1, we use the fact that

kK0k0p � maxfkK0k01; kK0k01g :

This was shown by Arvo [1995, Theorems 12 and 13], whose results apply to any operator of the

formK or K0.

From this result and the bound (7.16), we obtain the following:

Corollary 7.7. For any physically valid scene, and for any1 � p � 1,

kKkp <
�2max

�2min

;

where �min and �max denote the minimum and maximum refractive indices in the environment.

This was previously stated as Theorem 4.12.

Finally, we can put these results together to show that the solution operatorsSX are well defined,

i.e. that the operators (I�TX) are invertible.

Theorem 7.8. For any physically valid scene, the solution operatorsSX exist and are well-defined,

where X is any of L0i, L
0
o, Li, Lo, Wi, or Wo.

This was previously stated as Theorem 4.13.

Proof. When X is one of L0i, L
0
o, Wi, or Wo, then TX is a composition ofK0 andG. Therefore

kTXk0 � kK0k0 kGk0 < 1 ;

and thus (I�TX) is invertible.
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For the cases X = Li and X = Lo, it is sufficient to show that kTk
X
k < 1 for some integer

k � 1. To do this, observe that since kTXk0 < 1, there is some integer k such that

kTk
X
k0 < (�min=�max)

2 :

Applying the relationship (7.16) between the operator normsk � k and k � k0, we obtain the desired

result.
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Appendix 7.C The basic BSDF for refraction

In Section 5.2.2 we showed that the BSDF for perfect specular refraction is

fs(!i!!t) =
�2t
�2i
��?(!i �R(!t))

whereR is the refraction mapping, and�� is the Dirac distribution with respect to the given measure

�. Thus the corresponding basic BSDF is

f 0s(!i!!t) =
1

�2t
fs(!i!!t) =

1

�2i
��?(!i �R(!t)) : (7.18)

We have given two separate arguments showing that this quantity is symmetric: the first was a di-

rect mathematical derivation (Appendix 5.B), while the second was based on a general reciprocity

principle (Chapter 6).

In this appendix, we show how the basic BSDF for refraction can be rewritten to make its sym-

metry more obvious. The idea is to rewrite it as a Dirac distribution with respect to the basic projected

solid angle measure (�?0). Using the relationship (7.3) between basic and ordinary projected solid

angle, and the identity (5.35) between Dirac distributions with respect to different measures, we have

f 0s(!i!!t) =
1

�2i
��?(!i �R(!t)) = ��?0(!i �R(!t)) :

The symmetry of this quantity can then be expressed as

��?0(!i �R(!t)) = ��?0(!t �R(!i)) ;

which follows from the fact that the mappingR is a bijection, and that it preserves the basic projected

solid angle measure (see Section 5.2 and equation (5.36)).

With respect to the angular parameterization(�; �), the basic BSDF for refraction can be written

as

f 0s(�i; �i; �t; �t) = 2 �(�2i sin
2 �i � �2t sin

2 �t) �(�i � (�t � �)) ;

which follows from equations (5.38), (7.7), and (5.30). In this form, the symmetry of the basic BSDF

is clear.
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Chapter 8

A Path Integral Formulation of Light

Transport

In this chapter, we show how to transform the light transport problem into an integration

problem. This path integral formulation expresses each measurement in the form of a sim-

ple integral (rather than as the solution to an integral equation or operator equation, as with

the other formulations we have described). More precisely, each measurement Ij is written

in the form

Ij =
Z


fj(�x) d�(�x) ;

where 
 is the set of transport paths of all lengths, � is a measure on this space of paths,

and fj is called the measurement contribution function (to be defined below).

The path integral model has several benefits. The main advantage is that by reducing

light transport to an integration problem, it allows general-purpose integration methods to

be applied. For example, we will show how light transport problems can be solved more

robustly using multiple importance sampling (Chapter 9), an integration method that allows

several different sampling strategies to be efficiently combined.

The path integral model also leads to new techniques for sampling paths. The problem

with models based on integral equations is that they only describe scattering from one sur-

face at a time. This leads to light transport algorithms that construct paths incrementally,

by recursive sampling of the integral equation. The path integral model takes a more global

219
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view, which has led directly to techniques such as bidirectional path tracing (Chapter 10)

and the Metropolis light transport algorithm (Chapter 11). These new techniques can only

be properly understood within the path integral framework.

Finally, the path integral model is a useful tool for understanding the limitations of un-

biased Monte Carlo algorithms. It provides a natural way to classify transport paths, and to

identify those that cannot be sampled by certain kinds of techniques.

This chapter is organized as follows. First, we review the three-point form of the light

transport equations, and show how to transform them into an integral over paths. We then

discuss the advantages of the path integral model in more detail, and show how it can be

used to construct unbiased Monte Carlo estimators. Finally, introduce the idea of full-path

regular expressions (extending a notation of Heckbert [1990]), and discuss the limitations

of path sampling approaches to light transport.

In Appendix 8.A, we describe several other ways that the path integral model can be for-

mulated, by introducing new measures on the space of paths. These measures have natural

physical interpretations whose meanings are described.

8.1 The three-point form of the transport equations

We show how to rewrite the transport equations to eliminate the directional variables!i; !o.

This first step is to write the equilibrium radiance in the form L(x!x0), where x;x0 2 M
are points on the scene surfaces. In terms of the function L(x; !) we have been using up

until now, we define

L(x!x0) = L(x; !)

where ! = dx0 � x is the unit-length vector pointing from x to x0. (This representation

of the ray space R was described in Section 4.1; recall that it has some redundancy, since

L(x!x0) = L(x!x00) whenever x0 and x00 lie in the same direction from x.)

Similarly, we write the BSDF as a function of the form

fs(x!x0!x00) = fs(x
0; !i!!o) ;

where !i = dx� x0 and !o = dx00 � x0. The arrow notation x!x0 symbolizes the direction
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x'

x

N

N

x''

q'i

qo

Figure 8.1: Geometry for the light transport equation in three-point form.

of light flow.

The three-point form of the light transport equation can now be written as

L(x0!x00) = Le(x
0!x00) +

Z
M
L(x!x0) fs(x!x0!x00)G(x$x0) dA(x) (8.1)

(see Figure 8.1). This is simply a reformulation of the original version of the light transport

equation (3.19) that we have already described. As before,M is the union of all scene sur-

faces, A is the area measure onM, and Le is the emitted radiance function. The function

G represents the change of variables from the original integration measure d�? to the new

integration measure dA, which are related by

d�
?

x0
(!i) = d�

?

x0
( dx� x0) = G(x$x0) dA(x) ; (8.2)

where

G(x$x0) = V (x$x0) jcos(�o) cos(�
0
i)j

kx� x0k2 : (8.3)

Here �o and �0i are the angles between the segment x$x0 and the surface normals at x and

x0 respectively, while V (x$x0) = 1 if x and x0 are mutually visible and is zero otherwise.

We also use the change of variables (8.2) to rewrite the original measurement equation

(3.18) as

Ij =
Z
M�M

W (j)
e (x!x0)L(x!x0)G(x$x0) dA(x) dA(x0) ; (8.4)
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where as usual, the notation x ! x0 indicates the direction of light flow. In particular,

W (j)
e (x! x0) represents the importance that is emitted from x0 toward x (opposite to the

arrow notation). This is, we define W (j)
e (x!x0) = W (j)

e (x0; !), where ! = dx� x0.1

8.2 The path integral formulation

In this section, we first define the components of the path integral formulation: the integra-

tion domain, measure, and integrand. Next, we discuss the advantages of this formulation.

Finally, we show how to use the path integral framework in Monte Carlo algorithms, and in

particular how to calculate the probability densities with which paths are sampled.

Recall that our goal is to express each measurement in the form

Ij =
Z


fj(�x) d�(�x) : (8.5)

To do this, let 
k represent the paths of length k, i.e. the set of paths of the form

�x = x0 x1 : : : xk ;

where 1 � k < 1 and xi 2 M for each i. We define a measure �k on this set of paths,

called the area-product measure, according to

�k(D) =
Z
D
dA(x0) � � � dA(xk) ;

whereD � 
k is a set of paths. Formally,�k is a product measure [Halmos 1950]; we could

also have written its definition as

d�k(x0 : : :xk) = dA(x0) � � � dA(xk) ;
or �k = A� � � � � A| {z }

k times

:

1Notice that the visibility factor V (x$x0) hidden in the function G is essential, sinceL(x!x0) refers to
the radiance leaving x, while W (j)

e (x!x0) applies to the radiance arriving at x0. To put this another way, L
andW (j)

e are both exitant quantities, sinceW (j)
e specifies the importance leavingx0, rather than the importance

arriving at x.
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Next, we define the path space 
 as


 =
1[
k=1


k ;

i.e. 
 represents the set of paths of all finite lengths. We extend the area-product measure�

to this space in the natural way, by letting

�(D) =
1X
k=1

�k(D \ 
k) : (8.6)

That is, the measure of a set of paths is simply the sum of the measures of the paths of each

length.2

To complete the definition of the path integral formulation (8.5), we must define the inte-

grand fj . To do this, we start with the measurement equation (8.4), and recursively expand

the transport equation (8.1) to obtain

Ij =
1X
k=1

Z
Mk+1

Le(x0!x1)G(x0$x1)
k�1Y
i=1

fs(xi�1!xi!xi+1)G(xi$xi+1)

�W (j)
e (xk�1!xk) dA(x0) � � �dA(xk) (8.7)

=
Z
M2

Le(x0!x1)G(x0$x1)W (j)
e (x0!x1) dA(x0) dA(x1)

+
Z
M3

Le(x0!x1)G(x0$x1) fs(x0!x1!x2)G(x1$x2)
�W (j)

e (x1!x2) dA(x0) dA(x1) dA(x2)
+ � � � :

The integrand fj is defined for each path length k separately, by extracting the appro-

priate term from the expansion (8.7). For example, given a path �x = x0x1x2x3, we have

fj(�x) = Le(x0!x1)G(x0$x1) fs(x0!x1!x2)
�G(x1$x2) fs(x1!x2!x3)G(x2$x3)W (j)

e (x2!x3)

(see Figure 8.2). This function fj is called the measurement contribution function.

2This measure on paths is similar to that of Spanier & Gelbard [1969, p. 85]. However, in our case the path
space 
 does not include any infinite-length paths. This makes it easy to verify that (8.6) is in fact a measure,
directly from the axioms [Halmos 1950].
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We(x2fix3)

fs(x0fix1fix2) fs(x1fix2fix3)

G(x0fix1)Le(x0fix1)
G(x1fix2)

G(x2fix3)
x0

x1 x2

x3

Figure 8.2: The measurement contribution functionfj is a product of many factors (shown
for a path of length 3).

We have now defined all the terms of path integral model (8.5): the integration domain,

integrand, and measure. There is nothing particularly complicated about this transforma-

tion; we have just expanded and rearranged the transport equations. The most significant

aspect is that we have removed the sum over different path lengths, and replaced it with a

single integral over an abstract measure space of paths.

8.2.1 Advantages of the path integral formulation

The path integral formulation has several advantages. First, the expression for each mea-

surement has the form of an integral (as opposed to some other mathematical object). This

allows us to derive new rendering algorithms by applying general-purpose integration tech-

niques, such as multiple importance sampling (Chapter 9).

Second, the path integral model has a much simpler structure: a single expression de-

fines the value of each measurement. In contrast, the integral equation approach requires

two equations (the light transport and measurement equations), one of which is defined re-

cursively. With the path integral approach, there are no adjoint equations, no intermediate

quantities such as light or importance, and no need to choose between these alternatives.

Measurements are defined and computed directly, by organizing the calculations around a

geometric primitive (the path), rather than radiometric quantities.

By dealing with whole paths rather than rays, the path integral framework also provides

a more explicit and complete description of light transport. Each path specifies the emission,

scattering, and measurement events along a complete photon trajectory. On the other hand,
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integral equations describe the scattering events in isolation, by specifying the interaction

of light with each surface separately.

This has practical consequences for sampling paths: the natural strategy for solving an

integral equation is to sample the equation recursively, leading to paths that are built starting

entirely from the lens, or entirely from a light source (depending on whether the light trans-

port equation or its adjoint is sampled). With the path integral approach, on the other hand,

it is possible to construct paths in arbitrary ways, e.g. by starting with a vertex in the middle,

and building the path outwards in both directions. This leads directly to sampling strategies

such as bidirectional path tracing (Chapter 10), and the Metropolis algorithm (Chapter 11).

Furthermore, the path integral approach gives a convenient framework for computing

probability densities on paths (as described in the next section). This allows us to easily

compare the probabilities with which a given path is sampled by different techniques. This

is an essential prerequisite for the use of the multiple importance sampling and Metropolis

techniques.

8.2.2 Applying the path integral formulation

In this section, we explain how the path integral framework can be used in Monte Carlo

algorithms. We first show how measurements can be estimated, by randomly generating

transport paths �X , and computing an estimate of the form fj( �X)=p( �X). This requires the

evaluation of the probability density p( �X) with which each path was sampled. We consider

how to do this within the framework of local path sampling, which is general enough to

describe virtually all unbiased path sampling algorithms that are used in practice.

Our goal is to estimate the path integral

Ij =
Z


fj(�x) d�(�x)

for each measurement Ij . To do this, the natural Monte Carlo strategy is to first sample a

random path �X according to some chosen density function p, and then compute an estimate

of the form

Ij � fj( �X)

p( �X)
: (8.8)
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This is an unbiased estimate of the measurement Ij , since its expected value is

E

"
fj( �X)

p( �X)

#
=

Z



fj(�x)

p(�x)
p(�x) d�(�x) (8.9)

=
Z


fj(�x) d�(�x)

= Ij ;

where we have assumed that p is measured with respect to the area-product measure �, in

order for the first line of this equation to hold.

To apply this strategy, we must be able to evaluate the functions fj and p for the given

path �X . An explicit formula for the measurement contribution function fj has already been

given; thus, the main question is how to evaluate the probability density p( �X). Obviously,

this depends not only on the particular path �X, but also on how this path was generated. For

example, one way to generate paths is with ordinary path tracing: the vertexxk is chosen on

the lens, and subsequent vertices xk�1, : : :, x1 are generated by following random bounces

backward, until eventually we connect the path to a random vertexx0 on a light source. The

probability p( �X) depends on all of the random choices made during this process, as we will

discuss in more detail below.

8.2.2.1 Local path sampling

We will concentrate on a particular family of methods for generating paths, called local path

sampling algorithms. These methods generate vertices one at a time, based on local infor-

mation at existing vertices (such as the BSDF). There are three basic mechanisms that can

be used to construct paths in this framework:

� A vertex can be chosen according some a priori distribution over the scene surfaces.

For example, this can be used to sample a vertex on a light source, with a probability

density proportional to the radiant exitance (i.e. the power per unit area emitted over

the light source). Similarly, this technique can be used to sample the initial vertex on

a finite-aperture lens. It can also be used to sample intermediate vertices along the

path, e.g. to sample a vertex on a window between two adjacent rooms.
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� The second method for generating a vertex is to sample a direction according to a lo-

cally defined probability distribution at an existing vertexx, and then cast a ray to find

the first surface intersection x0 (which becomes the new vertex). For example, this is

what happens when the BSDF at an existing vertex is sampled (or an approximation

to the BSDF). This mechanism can also used to sample a direction for emission, once

a vertex on a light source has been chosen.

� The third mechanism for path sampling is to connect two existing vertices, by check-

ing the visibility between them. In effect, this step verifies the existence of an edge

between two vertices, rather than generating a new vertex.

By combining these three simple techniques, it is possible to sample paths in a great variety

of ways. Subpaths can be built up starting from the light sources, the lens, or from an arbi-

trary scene surface. These subpaths can then be joined together to create a full path from a

light source to the lens. This local sampling framework is general enough to accommodate

virtually all path sampling techniques that are used in practice.3

8.2.2.2 Computing the path probabilities

In this section, we describe how to compute the probability densityp(�x) for sampling a given

path �x. As mentioned above (equation (8.9)), we wish to compute the probability density

with respect to the area-product measure �, that is:

p(�x) =
dP

d�
(�x) :

Given a path �x = x0 : : :xk, this expands to

p(�x) =
dP

d�
(x0 : : :xk)

=
kY
i=0

dP

dA
(xi) :

3As an example of a non-local sampling technique, suppose that the location of a new vertex is computed
by solving an algebraic equation involving two or more existing vertices. For example, this could be used to
determine the point y on a curved mirror that reflects light from a given vertex x to another vertex x0. This is
not allowed in the local path sampling framework, since the position of y depends on more than one existing
vertex. This type of non-local sampling will be discussed further in Section 8.3.4.
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Figure 8.3: Geometry for converting between area and directional probabilities.

Thus to evaluate p( �X), we must compute the probability per unit area (dP=dA) with which

each vertex xi was generated, and multiply them together.

We now consider how to compute the probability for sampling a given vertex. Accord-

ing to the local path sampling model, each vertex xi can be generated according to one of

two methods: either xi is sampled from a distribution over the scene surfaces (in which the

probability density dP=dA(xi) can be computed directly), or else it is generated by casting

a ray from an existing vertex, in a randomly chosen direction.

To calculate the density in the latter case, let x be the existing vertex, and let x0 = xi be

the new vertex. We assume that x0 was generated by casting a ray from x in the direction

!o, where

!o = dx0 � x
(see Figure 8.3). We are also given the probability density p(!o) with which !o was chosen

(measured with respect to solid angle). To compute the density p(x0) with respect to surface

area, we must express it in terms of the given density p(!o). These two densities are related

by

dP

dA
(x0) =

dP

d�
(!o)

d�(!o)

dA(x0)

p(x0)=) = p(!o)

 jcos(�0i)j
kx� x0k2

!
(8.10)

(see Figure 8.3). The parenthesized expression is the solid angle subtended at x per unit of
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surface area at x0.

Using these rules, it is straightforward to compute the probability density p(�x) for the

whole path. We simply consider the vertices in the order that they were generated, and mul-

tiply together the densities dP=dA for each vertex (converting from directional to area prob-

abilities as necessary). There are few restrictions on how the paths are generated: starting

from the lens (as with path tracing), starting from the lights (as with particle tracing), or

a combination of both (as with bidirectional path tracing). Paths can also be constructed

starting from the middle, by sampling vertices according to predefined distributions over the

scene surfaces: this could be useful in difficult geometric settings, e.g. to generate transport

paths that pass through a known small portal.

In the path integral framework, all of these possibilities are handled in the same way.

They are viewed as different sampling strategies for the measurement equation (8.5), lead-

ing to different probability distributions on the space of paths. They are unified under one

simple equation, namely the estimate fj( �X)=p( �X).

Densities with respect to projected solid angle. In many cases, it is more natural and

convenient to represent directional distributions as densities with respect to projected solid

angle �? (rather than ordinary solid angle �). We summarize the equations here for future

reference.

Given an existing vertex x (Figure 8.3), let p(!o) and p?(!o) be the probability densi-

ties with respect to ordinary and projected solid angle respectively for sampling the given

direction !o. These two densities are related by

dP

d�?
(!o) =

dP

d�
(!o)

d�(!o)

d�?(!o)

p
?
(!o)=) = p(!o)

1

cos(�o)
; (8.11)

where we have used the relationship

d�
?
(!o) = j!o �N(x)j d�(!o) :

Putting this together with equation (8.10), we can convert between densities with respect
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to projected solid angle and densities with respect to surface area using

p(x0) = p
?
(!o)

jcos(�o) cos(�0i)j
kx� x0k2

= p
?
( dx0 � x)G(x$x0) ;

where G is the geometric factor (8.2).4 Notice that this conversion factor is symmetric, un-

like the conversion factor (8.10) for densities with respect to ordinary solid angle.

8.3 The limitations of path sampling

Although algorithms based on path sampling tend to be simple and general, they do have

limits. For example, if point light sources and perfect mirrors are allowed, then there are

some types of transport paths that cannot be sampled at all. Images computed by path sam-

pling algorithms will be missing the contributions made by these paths. As a typical exam-

ple of this problem, consider a scene where a point light source reflects off a mirror, creat-

ing caustics on a diffuse surface. Although algorithms such as bidirectional path tracing are

capable of rendering these caustics when viewed directly, they will fail if the caustics are

viewed indirectly through a second mirror. (The indirectly viewed caustics will simply be

missing from the image.)

More generally, there are some light transport problems that are provably difficult for

any algorithm. In this regard, it has been shown that some ray tracing problems are unde-

cidable, i.e. they cannot be solved on a Turing machine [Reif et al. 1994]. These examples

are not physically realizable, since they rely on perfect mirrors and infinite geometric preci-

sion. However, we can expect that as the geometry and materials of the input scene approach

a provably difficult configuration, any light transport algorithm will perform very badly.

Our goals in this section are more practical. We are mainly concerned with the limi-

tations of local path sampling algorithms, as described in Section 8.2.2.1. For this type of

algorithm, problems are caused not only by mirrors and point sources, but also by refraction,

4Note that the visibility term V (x$ x0) hidden in G is required only when the visibility between x and
x0 is not known.
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perfectly anisotropic surfaces, parallel light sources, pinhole lenses, and orthogonal view-

ing projections. Our goal is to determine which combinations of these features can cause

local path sampling algorithms to fail.

We start by reviewing Heckbert’s regular expression notation for paths. Next, we show

how to extend this notation to describe the properties of light sources and sensors, in order

to allow features such as point light sources and orthographic lenses to be represented in a

compact and consistent way. We then give a criterion for determining which types of paths

cannot be generated by local path sampling. Finally, we consider some ways to lift this

restriction using non-local sampling methods.

8.3.1 Heckbert’s regular expression notation for paths

Heckbert [1990] introduced a useful notation for classifying paths by means of regular ex-

pressions. Originally, it was used to describe the capabilities of multi-pass global illumi-

nation algorithms, e.g. algorithms that combine radiosity and ray tracing. In this context,

it was assumed that all BSDF’s can be written as a linear combination of an ideal diffuse

component and an ideal specular component. For example, a typical surface might reflect

50% of the incident light diffusely, reflect 10% in a mirror-like fashion, and absorb the rest.

Paths are then described using regular expressions of the form5

L (SjD)�E :

Each symbol represents one vertex of a path: L denotes the first vertex of the path, which

lies on a light source, while E denotes the last vertex (the camera position or “eye”). The

remaining vertices are classified as S or D, according to whether the light was reflected by

the specular or diffuse component of the surface respectively. Note that the symbolsS and

D represent the type of the scattering event at each vertex, not the type of the surface, since

the surface itself is allowed to be a combination of specular and diffuse.

5In regular expressions, X+ denotes one or more occurrences of X , X� denotes zero or more occur-
rences of X , X jY denotes a choice between X or Y , � denotes the empty string, and parentheses are used
for grouping.
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Definitions for general materials. This notation is easily extended to scenes with general

materials, by redefining the symbols S and D appropriately. We show how to make these

definitions rigorously, by relating them to the BSDF.

Let �x = x0 : : :xk be a path, and consider the scattering event at a vertex xi (where

0 < i < k). For general materials, we let the symbol D represent any scattering event

where the BSDF is finite, i.e. where

fs(xi�1!xi!xi+1) < 1 :

All other scattering events (where the BSDF is not finite) are denoted by the symbolS. This

category includes not only pure specular reflection and refraction, where light is scattered in

a zero-dimensional set of directions, but also pure anisotropic scattering, where light is scat-

tered in a one-dimensional set of directions (similar to the reflection properties of brushed

aluminum). These possibilities will be discussed in more detail below.

8.3.2 Full-path regular expressions

Heckbert’s notation describes only the scattering events along a path. We show how to ex-

tend these regular expressions in a natural way, to describe the properties of light sources

and sensors as well.

Each light source is classified according to a two-letter combination, of the form

(SjD) (SjD). The first letter represents the surface area of the light source: D denotes a

finite-area source, while S denotes a source with zero area (e.g. a point or linear source).

The second letter represents the directional properties of the emission: D denotes emission

over a finite solid angle, while S denotes emission over a set of angles with measure zero.

Thus, a point light source that radiates light in all directions would be denoted by the

regular expression LSD. Note that unlike Heckbert’s notation, the symbol L does not

represent a real vertex; it is simply a placeholder that indicates the ordering of vertices (i.e.

the fact that the first vertex is on a light source rather than a sensor).

Similarly, to represent the properties of the sensor we use a suffix of the form

(SjD) (SjD)E :



8.3. THE LIMITATIONS OF PATH SAMPLING 233

LDD a diffusely emitting sphere

LDS sunlight shining through a window, where the window itself is mod-
eled as the light source

LSD a point spotlight

LSS a laser beam

DDE a finite-aperture lens

SDE an orthographic projection lens (where the image plane located
within the scene, rather than at infinity)

DSE a pinhole lens

SSE an idealized spot meter (which measures radiance along a single
given ray)

Table 8.1: Examples of regular expressions that approximate various kinds of real light
sources and sensors (e.g. by treating the sun as a point at infinity, etc.)

The first letter represents the directional sensitivity of the sensor, i.e. whether it is sensitive

to light over a finite solid angle (D), or to light that arrives from a set of directions with

measure zero (S). The second letter represents the surface area of the sensor, with the same

conventions used for the first letter of the light source classification.

Table 8.1 gives some examples of light sources and lens models which are good ap-

proximations to the various letter combinations (e.g. if we treat the sun as a point source at

infinity).

Combining this notation for light sources and sensors with Heckbert’s notation for scat-

tering events, an entire path is thus described by a regular expression such as

LDDS�DDE :

This example represents a path that starts on an ordinary area light source, is scattered by

zero or more specular surfaces, and terminates at an ordinary finite-aperture lens. This ex-

tended notation is called a full-path regular expression.

The main advantage of full-path expressions is that they give a compact way to describe

the paths generated by specific sampling strategies. For this purpose, it is essential to specify
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the properties of the light source and sensor, since some strategies do not work for sources

or sensors with zero area, or those that emit or measure light over a zero solid angle. (For

example, “pure” path tracing cannot handle point light sources, since they will never be

intersected by a path that is randomly generated starting from the lens.) We will make ex-

tensive use of full-path expressions to describe the sampling strategies of bidirectional path

tracing and Metropolis light transport, and also to investigate the limitations of local path

sampling.

Formal definitions of the full-path notation. Full-path regular expressions can be de-

fined more rigorously in the following way. First, we show how to split the emitted radi-

ance function Le into a product of two factors L(0)
e and L(1)

e , which represent the spatial and

directional components of the emission respectively. The factor L(0)
e is defined by

L(0)
e (x) =

Z
S2
Le(x; !) d�

?

(!) ; (8.12)

and represents the radiant exitance (emitted power per unit area) associated with a point x

on a light source. The second factor L(1)
e is given by

L(1)
e (x; !) = Le(x; !)=L(0)

e (x) ; (8.13)

and represents the directional distribution of the emitted radiance atx. These factors corre-

spond to the fact that sampling for emission is naturally subdivided into two steps, consisting

of first choosing a point on a light source, and then a direction for the emitted ray. Notice

that by definition, Z
S2
L(1)
e (x; !) d�

?
(!) = 1 ;

so that L(1)
e is simply the probability density function for !, for a given choice of x.

With these definitions, the light source notation LXY has the following meaning:

X =

8<: D if L(0)
e (x0) <1

S otherwise ;

Y =

8<: D if L(1)
e (x0!x1) <1

S otherwise :
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Likewise, we can rigorously define the meaning of the notationY XE for sensors. This

is done by splitting the emitted importance function We into a product of two factors W (0)
e

and W (1)
e , and making a definition similar to the one for LXY .

Thus far, we have only distinguished between light that is emitted or scattered in a two-

dimensional set of directions (D), vs. all other cases (S). It is sometimes useful to classify

the S vertices further, according to whether light is scattered in a zero- or one-dimensional

set of directions (S0 vs. S1). This extended notation is discussed in Appendix 8.B, and can

be used to describe the properties of light sources, sensors, and materials more precisely.

Note that Langer & Zucker [1997] have independently proposed a classification system

for light sources that is similar to the one described here. However, they do not attempt to

give a general definition of their classification scheme, they do not develop any notation for

it, and they do not consider the classification of sensors or scattering events.

8.3.2.1 Interpreting sources and sensors as scattering events

The definitions above are somewhat cumbersome to use, because sources and sensors are

treated as special cases. In other words, the first two (SjD) symbols and the last two (SjD)

symbols of each path cannot be handled in the same way as the rest, since they represent

emission and measurement rather than scattering. It would be easier to reason about these

regular expressions if the S and D symbols had a consistent meaning.

In this section, we show how the S and D symbols describing light sources and sen-

sors can be interpreted as “scattering events” in a natural way. To do this, we introduce an

imaginary vertex at each end of the path, and extend the definition of the BSDF to describe

light transport to and from these imaginary vertices. With these changes, all of the symbols

in a full-path regular expression have a consistent interpretation, so that the special cases

associated with sources and sensors can be avoided.

The conversion from emission to scattering is described in two steps. We first consider

the directional component of the emission, and then the spatial component.

Scattering events atx0 andxk. We show how the directional components of the emission

functions Le and We can be interpreted as scattering at the vertices x0 and xk. To do this,

we introduce two imaginary vertices 	L and 	W , which become the new path endpoints.



236 CHAPTER 8. PATH INTEGRAL FORMULATION

A complete path thus has the form

	L x0 x1 : : : xk 	W ;

where the vertices 	L and 	W always occur at positions x�1 and xk+1 respectively.

We regard the vertex 	L as the source of all light, while 	W is the source of all impor-

tance. That is, rather than allowing surfaces to emit light directly, we assume that emission

occurs only at the vertex 	L. Light is emitted along imaginary rays of the form 	L! x,

and is then scattered at x into physical rays of the form x ! x0. This process is defined

so that we obtain the same results as the original emission function Le. Similarly, all sen-

sor measurements are made at the point 	W . This corresponds to the following symbolic

definitions:

Le(	L!x) = L(0)
e (x) ;

fs(	L!x!x0) = L(1)
e (x!x0) ;

fs(x
0!x!	W ) = W (1)

e (x0!x) ;
We(x!	W ) = W (0)

e (x) ;

where L(i)
e and W (i)

e are the spatial and directional components of emission (8.12, 8.13).

Scattering events at	L and	W . We now show how the spatial components of emission

can be interpreted as scattering at the imaginary vertices	L and	W . To do this, we assume

that the emitted light is initially concentrated on the single imaginary ray 	L!	L. This

light is scattered at 	L, to obtain a distribution along rays of the form 	L! x. We then

proceed as before (with a second scattering step at x), to obtain emission along physical

rays x!x0. Similarly, measurements are handled by scattering light from rays of the form

x!	W into the single ray 	W!	W , where the actual measurement takes place.

This idea corresponds to the following symbolic definitions. First we define�L and �W

to represent the total power and the total importance emitted over all surfaces of the scene:

�L =
Z
M
L(0)
e (x) dA(x) ;

�W =
Z
M
W (0)

e (x) dA(x) :



8.3. THE LIMITATIONS OF PATH SAMPLING 237

Next, we change the emission functions so that light and importance are emitted on a single

imaginary ray:
Le(	L!	L) = �L ;

We(	W!	W ) = �W :

Finally, we extend the BSDF to scatter this light and importance along rays of the form

	L!x and x!	W respectively:

fs(	L!	L!x) = L(0)
e (x) =�L ;

fs(x!	W!	W ) = W (0)
e (x) =�W :

Notice that these BSDF’s are normalized to integrate to one, so that there is a natural corre-

spondence with scattering.

With these conventions, every S andD symbol corresponds to a unique scattering event

at some vertex of the full path x�1 : : :xk+1. Furthermore, these symbols have a consistent

meaning. Given any vertex xi of a path, the symbol D means that the BSDF at that ver-

tex is finite (so that energy is spread over a two-dimensional set of adjacent vertices), while

S means that the BSDF is not finite (in which case power is distributed to a zero- or one-

dimensional set of adjacent vertices). This consistency will be useful as we study the limi-

tations of local path sampling below.

8.3.3 The limitations of local path sampling

In this section, we show that local sampling strategies can only generate paths that contain

the substringDD. Any path that does not contain this substring cannot be sampled, and the

contributions of these paths will be missing from any computed images. Examples of paths

that cannot be sampled are shown in Table 8.2.

We start by consider specular vertices, and the constraints that they impose on path sam-

pling. Next, we show that paths can be sampled by local sampling strategies if and only if

they contain the substring DD. Finally, we discuss the significance of these results.

Lemma 8.1. Let �x be any path generated by a local sampling algorithm, for which the mea-

surement contribution function fj(�x) is non-zero. If this path contains a specular vertex xi,
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LS DSDS E a point light source reflected in a mirror, viewed with a pin-
hole lens

LDS S D SDE caustics from a parallel light source, viewed with an ortho-
graphic lens

LS DSDSDS E caustics from a point light source, viewed indirectly through
a mirror with a pinhole lens

Table 8.2: Examples of path types that cannot be generated by local sampling algorithms.

then one of the adjacent vertices xi+1 or xi�1 was necessarily generated by sampling the

BSDF at xi.

Proof. For any fixed positions of xi and xi�1, consider the positions of xi+1 for which

fs(xi�1!xi!xi+1) = 1 ;

i.e. for which xi is a specular vertex. By definition, the possible locations of xi+1 form a

set of area measure zero, since they subtend a zero solid angle at xi. Similarly, if we fix

the positions of xi and xi+1, the possible locations of xi�1 for which xi is a specular vertex

form a set of measure zero.

Thus, if the vertices xi�1 and xi+1 are generated independently by the local sampling

algorithm, then xi has typeD with probability one. Thus if xi has type S, then one of these

two vertices must be generated by sampling the BSDF at xi (since this is the only other

alternative that is allowed within the framework of local path sampling).

It is easy to extend this result to the case where several specular vertices are adjacent.

Corollary 8.2. Let �x be a path as described above, and suppose that �x contains a subpath

xi : : :xj of the form DS+D. Then one of the endpoints xi or xj must be generated by sam-

pling the BSDF of the adjacent S-vertex (that is, either xi+1 or xj�1).

We are now ready to consider the sampling of full paths.
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Theorem 8.3. Let �x be a path generated by a local sampling algorithm for which the mea-

surement contribution function is non-zero. Then �x necessarily has the form

L (SjD)�DD (SjD)�E ;

i.e. it must contain the substring DD. Furthermore, it is possible to generate any path of

this form using local sampling strategies.

Proof. If �x does not contain the substring DD, then it has the form

L (Dj�)S+ (DS+)� (Dj�)E :

This path has n specular substrings of the formS+, but only n�1 vertices of typeD separat-

ing them.6 Thus according to the corollary above, one of theseD vertices must be generated

by sampling the BSDF of both adjacent specular vertices (which is not possible). In effect,

there are not enoughD vertices to allow this path to be sampled by local techniques.

Conversely, let �x be a path that contains an edge xixi+1 of the formDD. Then this path

can be generated by at least one local sampling strategy: namely, by generating the subpath

x0 : : :xi starting from a light source, and the subpath xi+1 : : :xk starting from the lens.

Thus, the DD condition is necessary and sufficient for local path sampling. Of course,

specific algorithms may have more restrictive requirements. With ordinary path tracing, for

example, all vertices are generated starting from the camera lens, except for the vertexx0

which is chosen directly on the surface of a light source. This implies that ordinary path

tracing can only sample paths of the form

L (SjD)DD (SjD)+E :

These results are significant for two reasons. First, it is very common for graphics sys-

tems to support point light sources and perfect mirrors, even though these are mathematical

idealizations that do not physically exist. If scenes are modeled that use these primitives,

then some lighting effects will simply be missing from the computed images. Second, even

6The symbol following L and the symbol preceding E do not count, because they are not sampled: they
represent the fixed, imaginary vertices 	L and 	W .
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if we disallow these features (e.g. by disallowing point and parallel light sources, so that ev-

ery path starts with the prefix LDD), we should expect that path sampling algorithms will

perform badly as the scene model approaches a difficult configuration. In this case, the con-

tributions from the difficult paths will not be missing; however, they will be sampled with

high variance, leading to noisy regions in resulting images.

8.3.4 Approaches to non-local sampling

We outline several approaches for handling paths that cannot be sampled locally. The easiest

solution is to not allow these paths in the first place, by placing mild restrictions on the scene

model. For example, any of the following strategies are sufficient:

� Allow only (ordinary) area light sources, so that all paths start with LDD.

� Allow only finite-aperture lenses, so that all paths end withDDE.

� Do not allow perfectly specular surfaces.

These strategies ensure that path sampling algorithms will produce unbiased results, al-

though there can still be high variance in limiting cases as discussed above.

A second approach is to use a more sophisticated path sampling strategy. We first intro-

duce some new terminology.

Chains and chain separators. Given a path, we divide its edges into a sequence of chains

as follows. A vertex is called a chain separator if it has typeD, or if it is one of the special

vertices 	L or 	W . A chain is now defined to be a maximal subpath bounded by chain

separators (not including the symbols L and E, which do not correspond to any vertex).

For example, the path

LDS DDS S DS E

consists of four chains. The first chain isDSD, consisting of the imaginary edge from 	L

to x0, and the real edge from x0 to x1. The second chain isDD (the edge x1x2), the third is

DSSD (three edges connectingx2 to x5), and the last chain isDS, an imaginary edge from

x5 to 	W . Notice that each chain separator vertex is shared between two chains (except for

the special vertices 	L and 	W ).
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Connectors. We can extend the class of paths that can be sampled by implementing meth-

ods that generate connecting chains. That is, given two vertices x and x0 of type D, we

would like to generate a chain of zero or more specular vertices that connect them. Strate-

gies that do this are called connectors. The simplest connector consists of joining the two

vertices with an edge, by checking the visibility between them. This yields a chain of the

form DD.

Another simple form of connector can be used with planar mirrors, by computing the

point y on the mirror that reflects light from x to x0. If such a point y does not exist, or if ei-

ther of the segmentsxy or yx0 is occluded, then the connection attempt fails. Otherwise, we

have generated a connecting chain of the formDSD. This is similar to the idea of “virtual

worlds” and “virtual light sources” used in radiosity and elsewhere [Rushmeier 1986, Wal-

lace et al. 1987, Ward 1994].

Connectors can also be used to handle parallel light sources (LDS) and orthogonal view-

ing projections (SDE) in a simple way. For example, a connecting chain between a real

vertex x and the imaginary vertex 	L can be generated by projecting x onto the surface of

the light source along the direction of emission.

The general case is closely related to the problem of computing illumination from curved

reflectors [Mitchell & Hanrahan 1992]. The connecting chains problem can be equivalently

stated as follows: given a point source at x, what is the irradiance received at x0 over spec-

ular paths? Light flows from x to x0 along paths of stationary optical length, also known as

Fermat paths. In general, there are a countable set of such paths, and they can be found by

solving an optimization problem [Mitchell & Hanrahan 1992]. Once a path has been found,

the irradiance received atx0 along that path can be determined by keeping track of the shape

of the wavefront as light is reflected, refracted, and propagated, and computing the Gaussian

curvature of the wavefront at x0.

In our case, we seek an algorithm that can either generate all such paths (in which case

their contributions are summed), or one that can generate a single path at random (in which

case there must be a non-zero probability of generating each candidate path, and this proba-

bility must be explicitly computable). This would make it possible to generate paths of any

type in an unbiased Monte Carlo algorithm.

Although it seems unlikely that the general case will ever be practical, these ideas are
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still useful for handling planar mirrors, short sequences of such mirrors, or simple curved

surfaces. With more sophisticated geometric search techniques, it may eventually be pos-

sible to handle moderately large numbers of specular surfaces in this way with reasonable

efficiency.
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Appendix 8.A Other measures on path space

We describe several new measures on the path space�. These include the measurement contribu-

tion measure, the power throughput measure, the scattering throughput measure, and the geometric

throughput measure. Each of these measures has a natural physical significance, which is described.

We also show that it is possible to base the path integral framework on any of these measures (rather

than using the area-product measure�). To avoid confusion, we will use the symbol�a for the area-

product measure throughout this appendix.

The measurement contribution measure. The most important of these new measures is the

measurement contribution measure, defined by

�mj (D) =

Z
D
fj(�x)�

a(�x) : (8.14)

This equation combinesfj and�a into a single measure�mj , with the following physical significance:

�mj (D) represents the portion of measurementIj that is due to light flowing on the given set of paths

D. In particular, the value of Ij itself is given by

Ij = �mj (
) ;

i.e. Ij is the measure of the whole path space. The units of�mj (D) are [S] (the unit of sensor re-

sponse).

This measure �mj is actually the fundamental component of our path integral framework. It is

more basic than the measurement contribution functionfj , since fj implicitly depends on the mea-

sure used for integration (i.e. the area-product measure�a). By choosing different integration mea-

sures (e.g. the ones we define below), we can obtain any number of different but equivalent “mea-

surement contribution functions”. In contrast, the meaning of�mj does not depend on details such

as these.

The main reason for working with the functionfj (rather than the measure�mj ) is so that Monte

Carlo estimators can be written as a ratio of functions, rather than as Radon-Nikodym derivatives.

For example, the estimator fj( �X)=p( �X) corresponds to the Radon-Nikodym derivative

d�mj
dP

( �X) :

Although this may be an improvement from the standpoint of purism (since it avoids any reference
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to the auxiliary measure�a), it is undesirable from a practical standpoint. It makes use of the Radon-

Nikodym derivative (which is unfamiliar to many in graphics), and leaves us with a rather abstract

expression with no clear recipe for computing its value. This is why we have emphasized the formu-

lation of Section 8.2, where�mj is split into a function fj and a measure �a, and where the measure

is made as simple as possible.

The power throughput measure. We now consider another interesting measure called the

power throughput measure (�p), which is obtained from the previous measure by omitting the im-

portance functionW (j)
e . Explicitly, it is defined for paths of lengthk by

�pk(D) =

Z
D
Le(x0!x1)G(x0$x1) fs(x0!x1!x2)G(x1$x2) � � � (8.15)

� � � fs(xk�2!xk�1!xk)G(xk�1$xk) dA(x0) � � � dA(xk) ;

whereD � 
k, and then extended to a measure�p over the whole path space by the same technique

we used for the area-product measure (8.6).

Physically, �p(D) represents the power that is carried by a set of pathsD (units: [W]). A nice

property of this measure is that it is independent of any sensor: there is only one measure for the

whole scene, rather than one per sensor (as with�mk ). It can still be used to evaluate measurements,

however, using the relationship

Ij =

Z


W

(j)
e (xk�1!xk) d�

p(�x) :

This equation shows that Ij can be split into a function and a measure in more than one way. In this

case, we have moved almost all the factors offj into the integration measure, leaving onlyW (j)
e as

the “measurement contribution function”.

The scattering throughput measure. Next, we discuss the scattering throughput measure�s.

The value �s(D) represents the power-carrying capacity of a set of pathsD, in the following sense:

if a uniform radianceLe is emitted along the first segment of each path inD, then the power carried

by these paths and received by surfaces at the path endpoints will be

Le �
s(D) :

The definition of�s is identical to the previous measure (8.15), except that the emitted radiance func-

tion Le is omitted (as well as the importance functionW (j)
e ). A nice property of this measure is that

it depends only on the scene geometry and materials, not on the light sources or sensors. The units



8.A. OTHER MEASURES ON PATH SPACE 245

of �s(D) are [m2 � sr].

The geometric throughput measure. Finally, we consider the geometric throughput measure

�g, which measures the geometric “size” of a set of paths. To do this, we start with the expression

for the scattering throughput�s, and set all of the BSDF factors to the constant value

fs(xi�1!xi!xi+1) =
1

2�
:

Physically, this corresponds to a scene where the surfaces scatter light in all directions uniformly; the

value 1=(2�) ensures that fs is energy-preserving (see Section 6.3).7 With this modification to the

scattering throughput measure�s, any differences in the power-carrying capacity of different path

sets are due entirely to their geometry.

Explicitly, the geometric throughput measure�g is defined at each path lengthk by

�gk(D) =

�
1

2�

�k�1 Z
D
G(x0$x1) � � � G(xk�1$xk) dA(x0) � � � dA(xk) ; (8.16)

and extended to a measure�g over the whole path space as before. The termgeometric throughput

measure is particularly appropriate for�g, since it is a natural extension of the throughput measure

� defined on the space of rays (see Section 4.1): these two measures are identical for paths of length

one. The units of �g are the same as the previous measure, namely[m2 � sr].
Notice that �g has several properties that we should expect of a geometric measure on paths.

First, it does not encode any preference for directional scattering at surfaces (since this is a property of

materials rather than geometry). Second, in general the measure�g is not finite, even for scenes with

finite surface area.8 This corresponds to the fact that there is no geometric reason for light energy to

diminish as it propagates over long paths.

In fact, by comparing the scattering and geometric throughput measures, it is possible to deter-

mine whether the power-carrying capacity of a given set of paths is limited primarily by materials

or geometry. A suitable quantitative measure of this is the ratio

�s(D) = �g(D) :

7This type of surface has the same radiance when viewed from all directions, on both sides of the surface.
In an environment where only reflection is allowed, i.e. where all surfaces are one-sided, the BRDF would be
fr = 1=� instead.

8If the scene has finite area, then �gk(
k) will be finite for each path length k. However, when we take the
union 
 over all path lengths, the resulting space has infinite geometric measure.
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The area-product measure. Finally, we return to the area-product measure�a. The chief ad-

vantage of this measure is that it is simple. This makes it easy to compute the probabilities of various

sampling techniques with respect to this measure, so that we may compare them. Like the geometric

throughput measure�g, the area-product measure is in general not finite.
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Appendix 8.B Subclassification of specular vertices

Specular vertices can be subclassified into two categories, according to whether light is scattered

into a zero- or one-dimensional set of directions. We distinguish between these possibilities with

the symbols S0 and S1. This notation allows the properties of sources, sensors, and materials to be

specified more precisely.

We first consider light sources, which are represented by a string of the formLXY . The first

symbolX represents the physical extent of the light source, so thatS0 denotes a point source, while

S1 denotes a linear, ring, or other one-dimensional source. The second symbolY represents the set

of directions over which light is emitted. The symbolS0 denotes emission in a discrete set of direc-

tions, while S1 denotes emission into a plane or other one-dimensional set. A similar classification

applies to sensors, which are represented by a string of the formY XE. Several examples are given

in Table 8.3.

For scattering events,S0 denotes a surface that scatters light from an incoming direction!i into

a discrete of directions (e.g. a mirror or a window). The symbolS1 denotes a surface such as an ideal

anisotropic reflector, where light from an incoming direction!i is scattered into a one-dimensional

set of outgoing rays.

For example, the full-path regular expression

LS1DS�0 S0DE

represents a path where light is emitted from a linear source, bounces off zero or more mirrors, and

then is measured by a camera with an orthographic lens.

Formal definitions of S0, S1, and D. For completeness, we give formal definitions of these

symbols. Consider a scattering event at a vertexxi. As we have already mentioned, this vertex has

type D is the BSDF at xi is finite:

fs(xi; !i!!o) < 1 ;

where !i and !o are the directions towardxi�1 and xi+1 respectively.

The scattering event at xi is defined to be S0 whenever the BSDF behaves locally like a

two-dimensional Dirac distribution (as was used to define the BSDF for mirror reflection in
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LS0D a uniform point source, point spotlight, etc.

LS0S1 emission from a point into a planar fan or sheet

LS0S0 an idealized laser beam

LS1D a typical linear or ring source

LS1S1 an area light source in “flatland” [Heckbert 1990]

LDS0 sunshine through a window

DS0E a typical pinhole lens model

DS1E a pinhole lens with motion blur due to movement of the camera (in a static
scene)

S0DE an orthographic viewing projection

S0S0E an idealized spot meter

Table 8.3: Examples of regular expressions for light sources and sensors, where the specular
components have been subclassified into zero- and one-dimensional components.

Section 5.2.1.2). More precisely, this happens when there is a constant� > 0 such thatZ
D
fs(xi; !!!o) d�

?

(!) � �

for every open setD � S2 that contains !i.

Finally, a vertex is defined to be S1 if it is not S0 or D. It is straightforward to extend these

definitions to the classification of light sources and sensors, using the functionsL(i)
e andW (i)

e defined

in Section 8.3.2.
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Chapter 9

Multiple Importance Sampling

We introduce a technique called multiple importance sampling that can greatly increase the

reliability and efficiency of Monte Carlo integration. It is based on the idea of using more

than one sampling technique to evaluate a given integral, and combining the sample values

in a provably good way.

Our motivation is that most numerical integration problems in computer graphics are

“difficult”, i.e. the integrands are discontinuous, high-dimensional, and/or singular. Given

a problem of this type, we would like to design a sampling strategy that gives a low-variance

estimate of the integral. This is complicated by the fact that the integrand usually depends on

parameters whose values are not known at the time an integration strategy is designed (e.g.

material properties, the scene geometry, etc.) It is difficult to design a sampling strategy that

works reliably in this situation, since the integrand can take on a wide variety of different

shapes as these parameters vary.

In this chapter, we explore the general problem of constructing low-variance estimators

by combining samples from several different sampling techniques. We do not construct new

sampling techniques — we assume that these are given to us. Instead, we look for better

ways to combine the samples, by computing weighted combinations of the sample values.

We show that there is a large class of unbiased estimators of this type, which can be pa-

rameterized by a set of weighting functions. Our goal is to find an estimator with minimum

variance, by choosing these weighting functions appropriately.

A good solution to this problem turns out to be surprisingly simple. We show how to

251
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combine samples from several techniques in a way that is provably good, both theoretically

and practically. This allows us to construct Monte Carlo estimators that have low variance

for a broad class of integrands — we call such estimators robust. The significance of our

methods is not that we can take several bad sampling techniques and concoct a good one

out of them, but rather that we can take several potentially good techniques and combine

them so that the strengths of each are preserved.

This chapter is organized as follows. We start with an extended example to motivate our

variance reduction techniques (Section 9.1). Specifically, we consider the problem of com-

puting the appearance of a glossy surface illuminated by an area light source. Next, in Sec-

tion 9.2 we explain the multiple importance sampling framework. Several models for taking

and combining the sampling are described, and we present theoretical results showing that

these techniques are provably close to optimal (proofs may be found in Appendix 9.A). In

Section 9.3, we show that these techniques work well in practice, by presenting images and

numerical measurements for two specific applications: the glossy highlights problem men-

tioned above, and the “final gather” pass that is used in some multi-pass algorithms. Finally,

Section 9.4 discusses of a number of tradeoffs and open issues related to our work.

9.1 Application: glossy highlights from area light sources

We have chosen a problem from distribution ray tracing to illustrate our techniques. Given

a glossy surface illuminated by an area light source, the goal is to determine its appearance.

These “glossy highlights” are commonly evaluated in one of two ways: either by sampling

the light source, or sampling the BSDF. We show that each method works very well in some

situations, but fails in others. Obviously, we would prefer a sampling strategy that works

well all the time. Later in this chapter, we will show how multiple importance sampling can

be applied to solve this problem.

9.1.1 The glossy highlights problem

Consider an area light sourceS that illuminates a nearby glossy surface (see Figure 9.1). The

goal is to determine the appearance of this surface, i.e. to evaluate the radianceLo(x
0; !0o)
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Figure 9.1: Geometry for the glossy highlights computation. The radiance for each viewing
ray is obtained by integrating the light that is emitted by the source, and reflected from the
glossy surface toward the eye.

that leaves the surface toward the eye. Mathematically, this is determined by the scattering

equation (3.12):

Lo(x
0; !0o) =

Z
S2
fs(x

0; !0i!!0o)Le;i(x
0; !0i) d�

?
(!0i) ; (9.1)

where Le;i represents the incident radiance due to the area light source S.

We will examine a family of integration problems of this form, obtained by varying the

size of the light source and the glossiness of the surface. In particular, we consider spherical

light sources of varying radii, and glossy materials that have a surface roughness parame-

ter (r) that determines how sharp or fuzzy the reflections are. Smooth surfaces (r = 0)

correspond to highly polished, mirror-like reflections, while rough surfaces (r = 1) corre-

spond to diffuse reflection. It is possible to simulate a variety of surface finishes by using

intermediate roughness values in the range 0 < r < 1.

9.1.2 Two sampling strategies

There are two common strategies for Monte Carlo evaluation of the scattering equation

(9.1), which we call sampling the BSDF and sampling the light source. The results of these

techniques are demonstrated in Figure 9.2(a) and Figure 9.2(b) respectively, over a range of

different light source sizes and surface finishes. We will first describe these two strategies,
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and then examine why each one has high variance in some situations.

Sampling the BSDF. To sample the BSDF, an incident direction !0i is randomly chosen

according to a predetermined density p(!0i). Normally, this density is chosen to be propor-

tional to the BSDF (or some convenient approximation), i.e.

p(!0i) / fs(x
0; !0i!!0o) ;

where p is measured with respect to projected solid angle. To estimate the scattering equa-

tion (9.1), an estimate of the usual form

Lo(x
0; !0o) �

fs(x
0; !0i!!0o)Le;i(x

0; !0i)

p(!0i)

is used. The emitted radiance Le;i(x
0; !0i) is evaluated by casting a ray to find the corre-

sponding point on the light source. Note that some rays may miss the light source S, in

which case they do not contribute to the highlight calculation. The image in Figure 9.2(a)

was computed using this strategy.

Sampling the light source. To explain the other strategy, we first rewrite the scattering

equation as an integral over the surface of the light source:

Lo(x
0!x00) =

Z
M
fs(x!x0!x00)Le(x!x0)G(x$x0) dA(x) : (9.2)

This is called the three-point form of the scattering equation (previously described in Sec-

tion 8.1). The function G represents the change of variables from d�?(!0i) to dA(x), and is

given by

G(x$x0) = V (x$x0) jcos(�o) cos(�
0
i)j

kx� x0k2
(see Figure 9.1).

The strategy of sampling the light source now proceeds as follows. First, a point x on

the light source S is randomly chosen according to a predetermined density p(x), and then

a standard Monte Carlo estimate of the form

Lo(x
0!x00) � Le(x!x0)G(x$x0)

p(x)
fs(x!x0!x00)
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(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions !0i are chosen with probability proportional to the BSDF
fs(x

0; !0i!!0o), using n1 = 4 samples per pixel. We call this strategy sampling the BSDF.
(b) Sample points x are randomly chosen on each light sourceS, using n2 = 4 samples

per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by S at the current point x0. We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent isn = (1=r) � 1, where r is the surface roughness
parameter mentioned above, and0 � r � 1. The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.
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is used. The image in Figure 9.2(b) was computed with this type of strategy, where samples

were chosen according to the density

p(x) / Le(x!x0) jcos(�o)jkx� x0k2

(measured with respect to surface area). With this strategy, the sample points x are uni-

formly distributed within the solid angle subtended by the light source at the current point

x0. (See Shirley et al. [1996] for further details on light source sampling strategies.)

9.1.3 Comparing the two strategies

One of these sampling strategies can have a much lower variance than the other, depending

on the size of the light source and the surface roughness parameter. For example, if the light

source is small and the material is relatively diffuse, then sampling the light source gives

far better results than sampling the BSDF (compare the lower left portions of the images in

Figure 9.2). On the other hand, if the light source is large and the material is highly polished,

then sampling the BSDF is far superior (compare the upper right portions of Figure 9.2).

In both these cases, high variance is caused by inadequate sampling where the integrand

is large. To understand this, notice that the integrand in the scattering equation (9.2) is a

product of various factors — the BSDF fs, the emitted radiance Le, and several geometric

quantities. The ideal density function for sampling would be proportional to the product of

all of these factors, according to the principle that the variance is zero when p(x) / f(x)

(see Chapter 2).

However, neither sampling strategy takes all of these factors into account. For example,

the light source sampling strategy does not consider the BSDF of the glossy surface. Thus

when the BSDF has a large influence on the overall shape of the integrand (e.g. when it is

a narrow, peaked function), then sampling the light source leads to high variance. On the

other hand, the BSDF sampling strategy does not consider the emitted radiance function

Le. Thus it leads to high variance when the emission function dominates the shape of the

integrand (e.g. when the light source is very small). As a consequence of these two effects,

neither sampling strategy is effective over the entire range of light source geometries and

surface finishes.



9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 257

It is important to realize that both strategies are importance sampling techniques aimed

at generating sample points on the same domain. This domain can be modeled as either a

set of directions, as in equation (9.1), or a set of surface points, as in equation (9.2). For

example, the BSDF sampling strategy can be expressed as a distribution over the surface of

the light source, using the relationship

p(x) = p(!0i)
d�?(!0i)

dA(x)
= p(!0i)

jcos(�o) cos(�0i)j
kx� x0k2 (9.3)

(as discussed in Section 8.2.2.2). This formula makes it possible to convert a directional

density into an area density, so that we can express the two sampling strategies as different

probability distributions on the same domain.

9.1.4 Discussion

There are many problems in graphics that are similar to the glossy highlights example,

where a large number of integrals of a specific form must be evaluated. The integrands gen-

erally have a known structure (e.g. f(x) = f1(x)f2(x) + f3(x)), but they also depend on

various parameters of the scene model (e.g. the surface roughness and light source geometry

in the example above). This makes it difficult to design an adequate sampling strategy, since

the parameter values are not known in advance. Furthermore, different integrals may have

different parameter values even within the same scene (e.g. they may change from pixel to

pixel).

The main issue is that we would like low-variance results for the entire range of param-

eter values, i.e. for all of the potential integrands that are obtained as these parameters vary.

Unfortunately, it is often difficult to achieve this. The problem is that the integrand is usually

a sum or product of many different factors, and is too complicated to sample from directly.

Instead, samples are chosen from a density function that is proportional to some subset of

the factors (e.g. the BSDF sampling strategy outlined above). This can lead to high variance

when one of the unconsidered factors has a large effect on the integrand.

We propose a new strategy for this kind of integration problem, called multiple impor-

tance sampling. It is based on the idea of taking samples using several different techniques,
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designed to sample different features of the integrand. For example, suppose that the inte-

grand has the form

f = (f1 + f2) f3 :

If the functions fi are simple enough to be sampled directly, then the density functions pi /
fi would all be good candidates for sampling. Similarly, if the integrand is a product

f = f1 f2 � � � fk ;

then several different density functions pi could be chosen, each proportional to the product

of a different set of fi. In this way, it is often possible to find a set of importance sampling

techniques that cover the various factors that can cause high variance.

Our main concern in this chapter is not how to construct a suitable set of sampling tech-

niques, or even how to determine the number of samples that should be taken from each one.

Instead, we consider the problem of how these samples should be combined, once they have

been taken. We will show how to do this in a way that is unbiased, and with a variance is

provably close to optimal.

In the glossy highlights problem, for example, we propose taking samples using both the

BSDF and light source sampling strategies. We then show how these samples can be auto-

matically combined to obtain low-variance results over the entire range of surface roughness

and light source parameters. (For a preview of our results on this test case, see Figure 9.8.)

9.2 Multiple importance sampling

In this section, we show how Monte Carlo integration can be made more robust by using

more than one sampling technique to evaluate the same integral. Our main results are on

how to combine the samples: we propose strategies that are provably good compared to

any other unbiased method. This makes it possible to construct estimators that have low

variance for a broad class of integrands.

We start by describing a general model for combining samples from multiple techniques,

called the multi-sample model. Using this model, any unbiased method of combining the

samples can be represented as a set of weighting functions. This gives us a large space of
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possible combination strategies to explore, and a uniform way to represent them.

We then present a provably good strategy for combining the samples, which we call the

balance heuristic. We show that this method gives a variance that is smaller than any other

unbiased combination strategy, to within a small additive term. The method is simple and

practical, and can make Monte Carlo calculations significantly more robust. We also pro-

pose several other combination strategies, which are basically refinements of the balance

heuristic: they retain its provably good behavior in general, but are designed to have lower

variance in a common special case. For this reason, they are often preferable to the balance

heuristic in practice.

We conclude by considering a different model for how the samples are taken and com-

bined, called the one-sample model. Under this model, the integral is estimated by choosing

one of the n sampling techniques at random, and then taking a single sample from it. Again

we consider how to minimize variance by weighting the samples, and we show that for this

model the balance heuristic is optimal.

9.2.1 The multi-sample model

In order to prove anything about our methods, there must be a precise model for how the

samples are taken and combined. For most of this chapter, we will use the multi-sample

model described below. This model allows any unbiased combination strategy to be en-

coded as a set of weighting functions.

We consider the evaluation of an integralZ


f(x) d�(x) ;

where the domain 
, the function f : 
 ! IR, and the measure � are all given. We are

also given a set of n different sampling techniques on the domain 
, whose corresponding

density functions are labeled p1, : : :, pn. We assume that only the following operations are

available:

� Given any point x 2 
, f(x) and pi(x) can be evaluated.

� It is possible to generate a sample X distributed according to any of the pi.
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To estimate the integral, several samples are generated using each of the given tech-

niques. We letni denote the number of samples from pi, whereni � 1, and we letN =
P
ni

denote the total number of samples. We assume that the number of samples from each tech-

nique is fixed in advance, before any samples are taken. (We do not consider the problem of

how to allocate samples among the techniques; this is an interesting problem in itself, which

will be discussed further in Section 9.4.2.) The samples from technique i are denoted Xi;j,

for j = 1; : : : ; ni. All samples are assumed to be independent, i.e. new random bits are

generated to control the selection of each one.

9.2.1.1 The multi-sample estimator

We now examine how the samples Xi;j can be used to estimate the desired integral. Our

goal is generality: given any unbiased way of combining the samples, there should be a

way to represent it. To do this, we consider estimators that allow the samples to be weighted

differently, depending on which technique pi they were sampled from. Each estimator has

an associated set of weighting functions w1, : : :, wn which give the weight wi(x) for each

sample x drawn from pi. The multi-sample estimator is then given by

F =
nX
i=1

1

ni

niX
j=1

wi(Xi;j)
f(Xi;j)

pi(Xi;j)
: (9.4)

This formula can be thought of as a weighted sum of the estimators f(Xi;j)=pi(Xi;j) that

would be obtained by using each sampling technique pi on its own. Notice that the weights

are not constant, but can vary as a function of the sample pointXi;j .

For this estimate to be unbiased, the weighting functions wi must satisfy the following

two conditions:

(W1)
nX
i=1

wi(x) = 1whenever f(x) 6= 0, and

(W2) wi(x) = 0whenever pi(x) = 0 :

These conditions imply the following corollary: at any point where f(x) 6= 0, at least one

of the pi(x) must be positive (i.e., at least one sampling technique must be able to gener-

ate samples there). Thus on the other hand, it is not necessary for every pi to sample the
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whole domain; it is allowable for some of the pi to be specialized sampling techniques that

concentrate on specific regions of the integrand.1

Given that (W1) and (W2) hold, the following lemma states that F is unbiased:

Lemma 9.1. LetF be any estimator of the form (9.4), whereni � 1 for all i, and the weight-

ing functions wi satisfy conditions (W1) and (W2). Then

E[F ] =
Z


f(x) d�(x) :

Proof.

E[F ] =
nX
i=1

1

ni

niX
j=1

Z



wi(x) f(x)

pi(x)
pi(x) d�(x)

=
Z



nX
i=1

wi(x) f(x) d�(x)

=
Z


f(x) d�(x) :

The remainder of this section is devoted to showing the generality of the multi-sample

model. We show that by choosing the weighting functions appropriately, it is possible to

represent virtually any unbiased combination strategy. To make this more concrete, we first

give some examples of possible strategies, and show how to represent them by weighting

functions. We then show how the multi-sample estimator can be rewritten in a different

form that makes its generality more obvious. This leads up to Section 9.2.2, where we will

describe a new combination strategy that has provably good performance compared to all

strategies that the multi-sample model can represent.

9.2.1.2 Examples of weighting functions

Suppose that there are three sampling techniquesp1, p2, and p3, and that a single sampleXi;1

is taken from each one (n1 = n2 = n3 = 1). First, consider the case where the weighting

1If f is allowed to contain Dirac distributions, note that (W2) should be modified to state that wi(x) = 0
whenever f(x)=pi(x) is not finite. To relate this to graphics, consider a mirror which also reflects some light
diffusely. The modified (W2) states that samples from the diffuse component cannot be used to estimate the
specular contribution, since this corresponds to the situation where f(x) contains a Dirac distribution �(x �
x0), but p(x) does not.)
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functions are constant over the whole domain 
. This leads to the estimator

F = w1
f(X1;1)

p1(X1;1)
+ w2

f(X2;1)

p2(X2;1)
+ w3

f(X3;1)

p3(X3;1)
;

where thewi sum to one. This estimator is simply a weighted combination of the estimators

Fi = f(Xi;1) = pi(Xi;1) that would be obtained by using each of the sampling techniques

alone. Unfortunately, this combination strategy does not work very well: if any of the given

sampling techniques is bad (i.e. the corresponding estimator Fi has high variance), then F

will have high variance as well, since

V [F ] = w1V [F1] + w2V [F2] + w3V [F3] :

Another possible combination strategy is to partition the domain among the sampling

techniques. To do this, the integral is written in the form

Z


f(x) d�(x) =

nX
i=1

Z

i
f(x) d�(x) ;

where the 
i are non-overlapping regions whose union is 
. The integral is then estimated

in each region
i separately, using samples from just one techniquepi. In terms of weighting

functions, this is represented by letting

wi(x) =

8<: 1 if x 2 
i ;

0 otherwise :

This combination strategy is used a great deal in computer graphics; however, some-

times it does not work very well due to the simple partitioning rules that are used. For

example, it is common to evaluate the scattering equation by dividing the scene into light

source regions and non-light-source regions, which are sampled using different techniques

(e.g. samplingLe vs. sampling the BSDF). Depending on the geometry and materials of the

scene, this fixed partitioning can lead to a much higher variance than necessary (as we saw

in the glossy highlights example).

Another combination technique that is often used in graphics is to write the integrand

as a sum f =
P
gi, and use a different sampling technique to estimate the contribution of

each gi. For example, this occurs when the BSDF is split into diffuse, glossy, and specular
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components, whose contributions are estimated separately (by sampling from density func-

tions pi / gi). As before, it is straightforward to represent this strategy as a set of weighting

functions.

9.2.1.3 Generality of the multi-sample model

The generality of this model can be seen more easily by rewriting the multi-sample estimator

(9.4) in the form

F =
nX
i=1

niX
j=1

Ci(Xi;j) ; (9.5)

whereCi(Xi;j) is the called the sample contribution forXi;j. The functionsCi are arbitrary,

except that in order for F to be unbiased they must satisfy

nX
i=1

ni Ci(x) pi(x) = f(x) (9.6)

at each point x 2 
. In this form, it is clear that the multi-sample model can represent any

unbiased combination strategy, subject only to the assumptions that all samples are taken

independently, and that our knowledge of f and pi is limited to point evaluation. (This forces

the estimator to be unbiased at each point x independently, as expressed by condition (9.6).)

To see that this formulation of the multi-sample model is equivalent to the original one,

we simply let

Ci(x) =
wi(x) f(x)

ni pi(x)
: (9.7)

It is easy to verify that if the weighting functionswi satisfy conditions (W1) and (W2), then

the corresponding contributions Ci satisfy (9.6), and vice versa. The main reason for pre-

ferring the wi formulation is that the corresponding conditions are easier to satisfy.

9.2.2 The balance heuristic

The multi-sample model gives us a large space of unbiased estimators to explore, and a uni-

form way to represent them (as a set of weighting functions). Our goal is now to find the

estimator F with minimum variance, by choosing the wi appropriately.
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We will show that the following weighting functions are a good choice:

ŵi(x) =
ni pi(x)P
k nk pk(x)

: (9.8)

We call this strategy the balance heuristic.2 The key feature of the balance heuristic is that

no other combination strategy is much better, as stated by the following theorem:

Theorem 9.2. Let f , ni, and pi be given, for i = 1; : : : ; n. Let F be any unbiased estimator

of the form (9.4), and let F̂ be the estimator that uses the weighting functions ŵi (the balance

heuristic). Then

V [F̂ ]� V [F ] �
 

1

mini ni
� 1P

i ni

!
�2 ; (9.9)

where � = E[F ] = E[F̂ ] is the quantity to be estimated. (A proof is given in Appendix 9.A.)

According to this result, no other combination strategy can significantly improve upon

the balance heuristic. That is, suppose that we let F � denote the best possible combination

strategy for a particular problem (i.e. for a given choice of the f , pi, and ni). In general,

we have no way of knowing what this strategy is: for example, suppose that one of the pi

is exactly proportional to f , so that the best strategy is to ignore any samples taken with the

other techniques, and use only the samples from pi. We cannot hope to discover this fact

from a practical point of view, since our knowledge of f and pi is limited to point sampling

and evaluation. Nevertheless, even compared to this unknown optimal strategyF �, the bal-

ance heuristic is almost as good: its variance is worse by at most the term on the right-hand

side of (9.9).

To give some intuition about this upper bound on the “variance gap”, suppose that there

are just two sampling techniques, and thatn1 = n2 = 4 samples are taken from each one. In

this case, the variance of the balance heuristic is optimal to within an additive term of�2=8.

In familiar graphics terms, this corresponds to the variance obtained by sending 8 shadow

2The name refers to the fact that the sample contributions are “balanced” so that they are the same for all
techniques i:

Ci(x) =
ŵi(x) f(x)

ni pi(x)
=

f(x)P
k nk pk(x)

:

That is, the contribution Ci(Xi;j) of a sample Xi;j does not depend on which technique i generated it.
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rays to an area light source that is 50% occluded. Furthermore, notice that the variance gap

goes to zero as the number of samples from each technique is increased. On the other hand,

if a poor combination strategy is used then the variance can be larger than optimal by an

arbitrary amount. This is essentially what we observed in the glossy highlights images of

Figure 9.2: if the wrong samples are used to estimate the integral, the variance can be tens

or hundreds of times larger than �2.

Furthermore, the balance heuristic is practical to implement. The main requirement for

evaluating the weighting functions ŵi is that given any point x, we must be able to evaluate

the probability densities pk(x) for all k. This situation is different than for the usual esti-

mator f(X)=p(X), where it is only necessary to evaluate p(X) for sample points generated

using p. The balance heuristic requires slightly more than this: given a sampleXi;j gener-

ated using technique pi, we also need to evaluate the probabilities pk(Xi;j) with which all of

the other n�1 techniques generate that sample point. It is usually straightforward to do this;

it is just a matter of reorganizing the routines that compute probabilities, and expressing all

densities with respect to the same measure.

For example, consider the glossy highlights problem of Section 9.1. To evaluate the

weighting function ŵi for each sample point x, we compute the probability density for gen-

erating x using both sampling techniques. Thus if x was generated by sampling the light

source, then we also compute the probability density for generating the same point x by

sampling the BSDF (as discussed in Section 9.1.3). Note that the cost of computing these

extra probabilities is insignificant compared to the other calculations involved, such as ray

casting; details will be given in Section 9.3.

9.2.2.1 A simple interpretation of the balance heuristic

By writing the balance heuristic in a different form, we will show that it is actually a very

natural way to combine samples from multiple techniques.

To do this, we insert the weighting functions ŵi into the multi-sample estimator (9.4),

yielding

F̂ =
nX
i=1

1

ni

niX
j=1

 
ni pi(Xi;j)P
k nk pk(Xi;j)

!
f(Xi;j)

pi(Xi;j)
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=
nX
i=1

niX
j=1

f(Xi;j)P
k nk pk(Xi;j)

=
1

N

nX
i=1

niX
j=1

f(Xi;j)P
k ck pk(Xi;j)

; (9.10)

where N =
P

i ni is the total number of samples, and ck = nk=N is the fraction of samples

from pk.

In this form, the balance heuristic corresponds to a standard Monte Carlo estimator of

the form f=p. This can be seen more easily by rewriting the denominator of (9.10) as

p̂(x) =
nX
k=1

ck pk(x) ; (9.11)

which we call the combined sample density. The quantity p̂(x) represents the probability

density for sampling the given point x, averaged over the entire sequence ofN samples.3

Thus, the balance heuristic is natural way to combine the samples. It has the form of a

standard Monte Carlo estimator, where the denominator p̂ represents the average distribu-

tion of the whole group of samples to which it is applied. Pseudocode for this estimator is

given in Figure 9.3. However, it is important to realize that the main advantage of this esti-

mator is not that it is simple or standard, but that it has provably good performance compared

to other combination strategies. This is the reason that we introduced the more complex for-

mulation in terms of weighting functions, so that we could compare it against a family of

other techniques.

9.2.3 Improved combination strategies

Although the balance heuristic is a good combination strategy, there is still some room for

improvement (within the bounds given by Theorem 9.2). In this section, we discuss two

families of estimators that have lower variance than the balance heuristic in a common spe-

cial case. These estimators are unbiased, and like the balance heuristic, they are provably

good compared to all other combination strategies.

3More precisely, it is the density of a random variable X that is equal to each Xi;j with probability 1=N .
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function BALANCE-HEURISTIC()

N  Pn
i=1 ni

for i 1 to n

for j  1 to ni
X  TAKESAMPLE(pi)

p̂ Pn
k=1(nk=N) pk(X)

F  F + f(X)=p̂

return F=N

Figure 9.3: Pseudocode for the balance heuristic estimator.

We start by applying the balance heuristic to the glossy highlights problem of Sec-

tion 9.1. We show that it leads to more variance than necessary in exactly those cases where

the original sampling techniques did very well, e.g. where sampling the light source gave a

low-variance result. The problem is that the additional variance due to the balance heuristic

is additive: this is not significant when the optimal estimator already has substantial vari-

ance, but it is noticeable compared to an optimal estimator whose variance is very low.

We thus consider how to improve the performance of the balance heuristic on low-

variance problems, i.e. those for which one of the given sampling techniques is an excellent

match for the integrand. We show that the balance heuristic can be improved in this case

by modifying its weighting functions slightly. In particular, we show that it is desirable to

sharpen these weighting functions, by decreasing weights that are close to zero, and increas-

ing weights that are close to one. We propose two general strategies for doing this, which

we call the cutoff and power heuristics. The balance heuristic can be obtained as a limiting

case of both these families of estimators.

Finally, we give some theoretical results showing that these new combination strategies

are provably close to optimal. Thus, they are never much worse than the balance heuristic,

but for low-variance problems they can be noticeably better. Later in this chapter, we will

describe numerical tests that verify these results (Section 9.3). Based on these experiments,

we have found that one strategy in particular is a good choice in practice: namely, the power
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Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent � = 2.

9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.

This image combines the samples from Figure 9.2(a) and (b), which used the BSDF and light

source sampling strategies respectively. By combining both kinds of samples, we obtain a

strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well

as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the

balance heuristic against images that use the BSDF or light source samples alone. Columns

(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4

respectively. To make the differences more obvious, these images were computed using
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(a) Sampling the BSDF (b) Sampling the lights (c) The balance heuristic

Figure 9.5: These images show close-ups of the glossy highlights test scene, computed by
(a) sampling the BSDF, (b) sampling the light sources, and(c) the balance heuristic. Notice
that although the balance heuristic works much better than one of the two techniques in each
region, it does not work quite as well as the other. These images were computed with one
sample per pixel from each technique (n1 = n2 = 1), as opposed to the four samples per
pixel used in Figures 9.2 and 9.4, in order to reveal the noise differences more clearly.

only one sample per pixel (as opposed to the four samples per pixel used in the source im-

ages.) It is clear that although the balance heuristic works far better in each region than the

technique whose variance is high, it has some additional noise compared to the technique

whose variance is low.

The test cases in Figure 9.5 are examples of low-variance problems, which occur when

one of the given sampling techniques pi is an extremely good match for the integrand f . In

this situation it is possible to construct an estimator whose variance is nearly zero, by taking

samples using pi and applying the standard estimate f=pi. The balance heuristic can be no-

ticeably worse than the results obtained in this way, because Theorem 9.2 only states that the

variance of the balance heuristic is optimal to within an additive extra term. Even though

this extra variance is guaranteed to be small on an absolute scale, it can still be noticeable

compared to an optimal variance that is practically zero (especially if only a few samples

are taken).

Unfortunately, there is no way to reliably detect this situation under the point sampling
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0

f

p
1

p
2

Figure 9.6: Two density functions for sampling a simple integrand.

assumptions of the multi-sample model. Instead, our strategy is to take samples using all

of the given techniques, and compute weighting functions that automatically assign low

weights to any irrelevant samples. In the case where one of the pi is a good match for f , the

ideal result would be to compute weighting functions such that wi(x) = 1 over the whole

domain, while all of the otherwj are zero. This would achieve the same end result as using

pi alone, at the expense of taking several unnecessary samples from the other pj . However,

extra sampling is unavoidable if we do not know in advance which of the given sampling

techniques will work best.

We now consider how the balance heuristic can be improved, so that it performs better on

low-variance problems. To do this, we study the simple test case of Figure 9.6, which shows

an integrand f and two density functions p1 and p2 to be used for importance sampling. The

density function p1 is proportional to f , while p2 is a constant function. For this situation,

the optimal weighting functions are obviously

w�1(x) � 1 ;

w�2(x) � 0 ;

since this would give an estimator F � whose variance is zero.

The balance heuristic weighting functions ŵi are different than the optimal ones above,

and thus the balance heuristic will lead to additional variance. We now examine where this

extra variance comes from, to see how it can be reduced. We start by dividing the domain
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Figure 9.7: The integration domain is divided into two regionsA and B. Region A repre-
sents the set of points wherep1 > p2, while regionB represents the points wherep2 > p1.
The weights computed by the balance heuristic are considered in each region separately.

into two regions A and B, as shown in Figure 9.7. Region A represents the set of points

where p1 > p2, while region B represents the points where p2 > p1. We will consider

the weights computed by the balance heuristic in each region separately. To simplify the

discussion, we assume that n1 = n2 = 1 (i.e. a single sample is taken using each technique,

and their contributions are summed).

First consider the sample from p1, which is likely to occur in the central part of region

A. Since p1 is much larger than p2 in this region, the sample weight ŵ1 = p1=(p1+ p2) will

be close to one. This agrees with the optimal weighting function w�1 = 1, as desired.

Similarly, the sample from p2 is likely to occur in region B, where its weight ŵ2 =

p2=(p1 + p2) is close to one. Nevertheless, the contribution of this sample will be small,

since the integrand f is nearly zero in regionB. Therefore this situation is also close to the

optimal one, in which the samples from p2 are ignored.

However, there are two effects that lead to additional variance. First, the sample fromp1

sometimes occurs near the boundaries of regionA (or even in region B), where its weight

ŵ1 = p1=(p1+p2) is significantly smaller than one. In this case, the sample makes a contri-

bution that is noticeably smaller than the optimal value f=p1. (Recall that p1 is proportional

to f , so that f=p1 is the desired value � of the integral.) In Figure 9.5, this effect shows up

as occasional pixels that are darker than they should be (e.g. in the top image of column (c)).

The second problem is that the sample from p2 sometimes occurs in region A. When
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this happens, its weight ŵ2 = p2=(p1 + p2) is small. However, the contribution made by

this sample is

ŵ2
f

p2
=

p2
p1 + p2

f

p2
=

f

p1 + p2
;

which is approximately equal to f=p1 = � in this region. Since it is likely that the sample

from p1 also lies in regionA (contributing another� toward the estimate), this leads to a total

estimate of approximately2�. In Figure 9.5(c), this effect shows up as occasional pixels that

are approximately twice as bright as their neighbors.4

Thus, the additional noise of the balance heuristic can be attributed to two problems.

First, some of the samples from p1 have weights that are significantly smaller than one: this

happens near the boundary of regionA, where p1 and p2 have comparable magnitude. (Very

few of these samples will occur in the region wherep1 � p2, simply because p1 is very small

there.) The second problem is that some samples from p2 make contributions of noticeable

size (i.e. a significant fraction of �). Most of these samples have small weights, because

they occur in region A where p1 > p2. Some samples will also occur in the region where

p1 and p2 have comparable magnitude; however, the samples where p2 � p1 do not cause

any problems, since the sample contribution f=(p1 + p2) is negligible there.

9.2.3.2 Better strategies for low-variance problems

We now present two families of combination strategies that have better performance on

low-variance problems. These strategies are variations of the balance heuristic, where the

weighting functions have been sharpened by making large weights closer to one and small

weights closer to zero. This idea is effective at reducing both sources of variance described

above.

The basic observation is that most samples from p1 occur in region A, where p1 > p2.

We would like all of these samples to have the optimal weight w�1 = 1. Since the balance

heuristic already assigns these samples a weight ŵ1 = p1=(p1+p2) that is greater than 1=2,

we can get closer to the optimal weighting functions by applying the sharpening strategy

mentioned above. For example, one way to do this would be to set w1 = 1 (and w2 = 0)

4Note that this situation is entirely different than the “spikes” of Figure 9.5(a) and (b), which are caused
by sample contributions that are hundreds of times larger than the desired mean value.
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whenever ŵ1 > 1=2.

Similarly, this idea can reduce the variance caused by samples fromp2 in regionA. The

optimal weight for these samples is w�2 = 0, while the balance heuristic assigns them a

weight ŵ2 < 1=2, so that sharpening the weighting functions is once again an effective

strategy.5

We now describe two different combination strategies that implement this sharpening

idea, called the cutoff heuristic and the power heuristic. Each of these is actually a family

of strategies, controlled by an additional parameter. For convenience in describing them,

we will drop the x argument on the functions wi and pi, and define a new symbol qi as the

product qi = nipi. For example, in this notation the balance heuristic would be written as

ŵi =
qiP
k qk

:

The cutoff heuristic. The cutoff heuristic modifies the weighting functions by discarding

samples with low weight, according to a cutoff threshold � 2 [0; 1]:

wi =

8>><>>:
0 if qi < � qmax

qiP
k fqk j qk � � qmaxg otherwise

(9.12)

where qmax = maxk qk. The threshold � determines how small qi must be (compared to

qmax) before it is thrown away.

The power heuristic. The power heuristic modifies the weighting functions in a different

way, by raising all of the weights to an exponent �, and then renormalizing:

wi =
q�iP
k q

�
k

: (9.13)

5Note that sharpening the weighting functions is not a perfect solution for low-variance problems, since
it does not address the extra variance due to samples in region B (where p2 > p1). In this region, sharpen-
ing the weighting functions has the effect of decreasing w1 and increasing w2, which is opposite to what is
desired. The number of samples affected in this way is relatively small, however, under the assumption that
most samples from p1 occur where p1 � p2.



274 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

We have found the exponent � = 2 to be a reasonable value. With this choice, the sample

contribution (wi f)=(ni pi) is proportional to pi, so that it decreases gradually as pi becomes

smaller relative to the other pk. (Compare this with the balance heuristic, where a sample at

a given point x always makes the same contribution, no matter which sampling technique

generated it.)

Notice that the balance heuristic can be obtained as a limiting case of both strategies

(when � = 0 or � = 1). These two strategies also share another limiting case, obtained by

setting � = 1 or � =1. This special case is called the maximum heuristic:

The maximum heuristic. The maximum heuristic partitions the domain into n regions,

according to which function qi is largest at each point x:

wi =

8<: 1 if qi = qmax

0 otherwise :
(9.14)

In other words, samples from pi are used to estimate the integral only in the region
i where

wi = 1. The maximum heuristic does not work as well as the other strategies in practice; in-

tuitively, this is because too many samples are thrown away. However, it gives some insight

into the other combination strategies, and has an elegant structure.

9.2.3.3 Variance bounds

The advantage of these strategies is reduced variance when one of the pi is a good match

for f . Their performance is otherwise similar to the balance heuristic; it is possible to show

they are never much worse. In particular, we have the following worst-case bounds:

Theorem 9.3. Let f , ni, and pi be given, for i = 1; : : : ; n. Let F be any unbiased estimator

of the form (9.4), and let F 0 be one of the estimators described above. Then the variance of

F 0 satisfies a bound of the form

V [F 0] � c V [F ] +

 
1

mini ni
� 1P

i ni

!
�2 ;

where the constant c is given by the following table:
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Cutoff heuristic (with threshold �) c = 1 + � (n� 1)

Power heuristic (with exponent �) c = 1 + (1=�)1=� ((n� 1)(1� 1=�))1�1=�

Power heuristic (with exponent � = 2) c = (1=2) (1 +
p
n)

In particular, these bounds hold when F 0 is compared against the unknown, optimal es-

timator F �. A proof of this theorem in given in Appendix 9.A. However, the true test of

these strategies is how they perform on practical problems; measurements along these lines

are presented in Section 9.3.1.

9.2.4 The one-sample model

We conclude by considering a different model for how the samples are taken and combined,

called the one-sample model. Under this model, the integral is estimated by choosing one

of the n sampling techniques at random, and then taking a single sample from it. Again

we consider how to minimize variance by weighting the samples, and we show that for this

model the balance heuristic is optimal: no other combination technique has smaller vari-

ance.

Let p1, : : :, pn be the density functions for the n given sampling techniques. To gen-

erate a sample, one of the density functions pi is chosen at random according to a given

set of probabilities c1, : : :, cn (which sum to one). A single sample is then taken from the

chosen technique. This sampling model is often used in graphics: for example, it describes

algorithms such as path tracing, where sampling the BSDF may require a random choice

between different techniques for the diffuse, glossy, and specular components.

As before, we consider a family of unbiased estimators for the given integralR

 f(x) d�(x), where each estimator is represented by a set of weighting functions w1,

: : :, wn. The process of choosing a sampling technique, taking a sample, and computing a

weighted estimate is then expressed by the one-sample estimator

F =
wI(XI) f(XI)

cI pI(XI)
; (9.15)

where I 2 f1; : : : ; ng is a random variable distributed according to the probabilities ci, and
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XI is a sample from the corresponding technique pI . This estimator is unbiased under the

same conditions on the wi discussed in Section 9.2.1.

We now consider how to choose the weighting functions wi, to minimize the variance

of the resulting estimator. We can show that for this model, the balance heuristic is optimal:

Theorem 9.4. Let f , ci, and pi be given, for i = 1; : : : ; n. Let F be any unbiased estimator

of the form (9.15), and let F̂ be the corresponding estimator that uses the balance heuristic

weighting functions (9.8). Then

V [F̂ ] � V [F ] :

(A proof is given in Appendix 9.A.) Thus, for this sampling model the improved com-

bination strategies of Section 9.2.3 are unnecessary.

9.3 Results

In this section, we show how multiple importance sampling can be applied to two impor-

tant application areas: distribution ray tracing (in particular, the glossy highlights problem

from Section 9.1), and the final gather pass of certain light transport algorithms. (In the next

chapter we will describe a more advanced example of our techniques, namely bidirectional

path tracing.)

9.3.1 The glossy highlights problem

Our first test is the computation of glossy highlights from area light sources (previously de-

scribed in Section 9.1). As can be seen in Figure 9.8(a) and (b), sampling the BSDF works

well for sharp reflections of large light sources, while sampling the light source works well

for fuzzy reflections of small light sources. In Figure 9.8(c), we have used the power heuris-

tic with � = 2 to combine both kinds of samples. This method works very well for all light

source/BSDF combinations. Figure 9.8(d) is a visualization of the weighting functions that

were used to compute this image.

To compare the various combination strategies (the balance, cutoff, power, and maxi-

mum heuristics), we have measured the variance numerically as a function of the surface
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(a) Sampling the BSDF (b) Sampling the light sources

(c) The power heuristic with� = 2. (d) The weights used by the power heuristic.

Figure 9.8: Multiple importance sampling applied to the glossy highlights problem.(a) and
(b) are the images from Figure 9.2, computed by sampling the BSDF and sampling the light
sources respectively. (c) was computed by combining the samples from (a) and (b) using the
power heuristic with � = 2. Finally, (d) is a false-color image showing the weights used to
compute (c). Red represents sampling of the BSDF, while green represents sampling of the
light sources. Yellow indicates that both types of samples are assigned a significant weight.
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glossy surface

light
spherical

source

Figure 9.9: A scale diagram of the scene model used to measure the variance of the glossy
highlights calculation. The glossy surface is illuminated by a single spherical light source,
so that a blurred reflection of the light source is visible from the camera position. Variance
was measured by taking 100,000 samples along the viewing ray shown, which intersects the
center of the blurred reflection at an angle of 45 degrees. This calculation was repeated for
approximately 100 different values of the surface roughness parameterr (which controls
how sharp or fuzzy the reflections are), in order to measure the variance as a function of
surface roughness. The light source occupies a solid angle of 0.063 radians.

roughness parameter r. Figure 9.9 shows the test setup, and the results are summarized in

Figure 9.10. Three curves are shown in each graph: two of them correspond to the BSDF

and light source sampling techniques, while the third corresponds to the combination strat-

egy being tested (i.e. the balance, cutoff, power, or maximum heuristic). Each graph plots

the relative error �=� as a function of r, where � is the standard deviation of a single sample,

and � is the mean.

Notice that all four combination strategies yield a variance that is close to the minimum

of the two other curves (on an absolute scale). This is in accordance with Theorem 9.2,

which guarantees that the variance �2 of the balance heuristic is within �2=2 of the vari-

ance obtained when either of the given sampling techniques is used on its own. The plots

in Figure 9.10(a) are well within this bound.

At the extremes of the roughness axis there are significant differences among the var-

ious combination strategies. As expected, the balance heuristic (a) performs worst at the

extremes, since the other strategies were specifically designed to have better performance

in this case (i.e. the case when one of the given sampling techniques is an excellent match

for the integrand). The power heuristic (c) with � = 2 works especially well over the entire

range of roughness values.
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(a) The balance heuristic. (b) The cutoff heuristic (� = 0:1).
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(c) The power heuristic (� = 2). (d) The maximum heuristic.

Figure 9.10: Variance measurements for the glossy highlights problem using different com-
bination strategies. Each graph plots the relative error�=� as a function of the surface rough-
ness parameter r (where �2 represents the variance of a single sample, and� is the mean). A
fixed size, spherical light source was used (as shown in Figure 9.9). The three curves in each
graph correspond to sampling the BSDF, sampling the light source, and a weighted combi-
nation of both sample types using the (a) balance, (b) cutoff, (c) power, and (d) maximum
heuristics. (The three small circles on each graph are explained in Figure 9.11.)

Figure 9.11 shows how these numerical measurements translate into actual image noise.

Each image shows a glossy reflection of a spherical light source, using the same test setup

as for the graphs (see Figure 9.9). The three images in each group were computed using

different parameter values (namely r = 10�5, r = 10�3, and r = 10�1), which causes the

reflected light source to be blurred by varying amounts. The noise levels in these images

should be compared against the corresponding circled variance measurements in the graphs

of Figure 9.10. Notice that the cutoff, power, and maximum heuristics substantially reduce

the noise at the extremes of the roughness axis.
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r = 10�5 r = 10�3 r = 10�1 r = 10�5 r = 10�3 r = 10�1

(a) The balance heuristic. (b) The cutoff heuristic (� = 0:1).

r = 10�5 r = 10�3 r = 10�1 r = 10�5 r = 10�3 r = 10�1

(c) The power heuristic (� = 2). (d) The maximum heuristic.

Figure 9.11: Each of these test images corresponds to one of the circled points on the vari-
ance curves of Figure 9.10. Their purpose is to compare the different combination strategies
visually, by showing how the numerical variance measurements translate into actual image
noise. Each image shows a glossy reflection of a spherical light source, as shown in Fig-
ure 9.9 (the same test setup used for the graphs). The three images in each group were com-
puted using different values of the surface roughness parameterr (with one sample per pixel,
box filtered), which causes the reflected light source to be blurred by varying amounts (the
sharpest reflections are on the left). The noise levels in these images should be compared
against the corresponding circled variance measurements shown in Figure 9.10. Notice in
particular that the improved weighting strategies (b), (c), and (d) give much better results
when r = 10�1, and significantly better results whenr = 10�5.

In all cases, the additional cost of multiple importance sampling was small. The total

time spent evaluating probabilities and weighting functions in these tests was less than 5%.

For scenes of realistic complexity, the overhead would be even smaller (as a fraction of the

total computation time).

We have also made measurements of the cutoff and power heuristics using other values

of � and � (which represent the cutoff threshold and the exponent, respectively). In fact,

the graphs in Figure 9.10 already give results for three values of � and � each, since the

balance and maximum heuristics are limiting cases of the other two strategies. Specifically,

the cutoff heuristic for � = 0, � = 0:1, and � = 1 is represented by graphs (a), (b), and

(d), while the power heuristic for � = 1, � = 2, and � = 1 is represented by graphs (a),
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(c), and (d). The graphs we have obtained at other parameter values are not significantly

different than what would be obtained by interpolating these results.

Related work. Shirley & Wang [1992] have also compared BRDF and light source sam-

pling techniques for the glossy highlights problem. They analyze a specific Phong-like

BRDF and a specific light source sampling method, and derive an expression for when to

switch from one to the other (as a function of the Phong exponent, and the solid angle oc-

cupied by the light source). Their methods work well, but they apply only to this particular

BSDF and sampling technique. In contrast, our methods work for arbitrary BSDF’s and

sampling techniques, and can combine samples from any number of techniques.

9.3.2 The final gather problem

In this section we consider a simple test case motivated by multi-pass light transport algo-

rithms. These algorithms typically compute an approximate solution using the finite ele-

ment method, followed by one or more ray tracing passes to replace parts of the solution

that are poorly approximated or missing. For example, some radiosity algorithms use a lo-

cal pass or final gather to recompute the basis function coefficients more accurately.

We examine a variation called per-pixel final gather. The idea is to compute an approxi-

mate radiosity solution, and then use it to illuminate the visible surfaces during a ray tracing

pass [Rushmeier 1988, Chen et al. 1991]. Essentially, this type of final gather is equivalent

to ray tracing with many area light sources (one for each patch, or one for each link in a hi-

erarchical solution). That is, we would like to evaluate the scattering equation (9.2) where

Le is given by the initial radiosity solution.

As with the glossy highlights example, there are two common sampling techniques. The

brightest patches are typically reclassified as “light sources” [Chen et al. 1991], and are sam-

pled using direct lighting techniques. For example, this might consist of choosing one sam-

ple for each light source patch, distributed according to the emitted power per unit area.

The remaining patches are handling by sampling the BSDF at the point intersected by the

viewing ray, and casting rays out into the scene. If any ray hits a light source patch, the con-

tribution of that ray is set to zero (to avoid counting the light source patches twice). Within
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(a) (b) (c)

Figure 9.12: A simple test scene consisting of one area light source (i.e. a bright patch,
in the radiosity context), and an adjacent diffuse surface. The images were computed by
(a) sampling the light source according to emitted power, usingn1 = 3 samples per pixel,
(b) sampling the BSDF with respect to the projected solid angle measure, usingn2 = 6
samples per pixel, and (c) a weighted combination of samples from (a) and (b) using the
power heuristic with � = 2.

our framework for combining sampling techniques, this is clearly a partitioning of the inte-

gration domain into two regions.

Given some classification of patches into light sources and non-light sources, we con-

sider alternative ways of combining the two types of samples. To test our combination

strategies, we used the extremely simple test scene of Figure 9.12, which consists of a sin-

gle area light source and an adjacent diffuse surface. Image (a) was computed by sampling

the light source according to emitted power, while image (b) was computed by sampling the

BSDF and casting rays out into the scene. Twice as many samples were taken in image (b)

than (a); in practice this ratio would be substantially higher (i.e. the number of directional

samples, compared to the number of samples for any one light source).

Notice that the sampling technique in Figure 9.12(a) does not work well for points near

the light source, since this technique does not take into account the 1=r2 distance term of the

scattering equation (9.2). On the other hand Figure 9.12(b) does not work well for points far

away from the light source, where the light subtends a small solid angle. In Figure 9.12(c),

the power heuristic is used to combine samples from (a) and (b). As expected, this method

performs well at all distances. Although (c) uses more samples (the sum of (a) and (b)), this

still is a valid comparison with the partitioning approach described above (which also uses
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Figure 9.13: A plot of the relative error �=�, as a function of the distance from the light
source. Three curves are shown, corresponding to the three images of Figure 9.12. The
curves have been normalized to show the variance whenn1 = 1 and n2 = 2 (the same
ratio of samples used in Figure 9.12).

both kinds of samples).

Variance measurements for these experiments are plotted in Figure 9.13. There are three

curves, corresponding to the three images of Figure 9.12. Each curve plots the relative error

�=� as a function of the distance from the light source. Notice that the combined curve (c)

always lies below the other two curves, indicating that both kinds of samples are being used

effectively. Also, notice that unlike Figure 9.10, the variance curves do not approach zero

at the extremes of the distance axis (not even as the distanced goes to infinity). This implies

that neither of the given sampling techniques is an excellent match for the integrand, so that

the balance, cutoff, power, and maximum heuristics all perform similarly on this problem.

This is why we have only shown one graph, rather than four.

9.4 Discussion

There are several important issues that we have not yet discussed.

We start by considering how multiple importance sampling is related to the classical

Monte Carlo techniques of importance sampling and stratified sampling. We show that it

unifies and extends these ideas within a single sampling model. Next, we consider the prob-

lem of choosing the ni, i.e. how to allocate a fixed number of samples among the given
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sampling techniques. We argue that this decision is not nearly as important as choosing the

weighting functions appropriately. Finally, we discuss some special issues that arise in di-

rect lighting problems.

9.4.1 Relationship to classical Monte Carlo techniques

Multiple importance sampling can be viewed as a generalization of both importance sam-

pling and stratified sampling. It extends importance sampling to the case where more than

one sampling technique is used, while it extends stratified sampling to the case where the

strata are allowed to overlap each other. From the latter point of view, multiple importance

sampling consists of taking one or more samples in each of n given regions 
i. These re-

gions do not need to be disjoint; the only requirement is that their union must cover the

portion of the domain where f is non-zero.

This generalization of stratified sampling is useful, especially when the integrand is a

sum of several quantities. A good example in graphics is the BSDF, which is often written

as a sum of diffuse, glossy, and specular components (for reflection and/or transmission).

The process of taking one or more samples from each component is essentially a form of

stratified sampling, where the strata overlap.

When stratified sampling is generalized in this way, however, there is more than one

way to compute an unbiased estimate of the integral (since when two strata overlap, sam-

ples from either or both strata can be used). To address this, multiple importance sampling

assigns an explicit representation to each possible unbiased estimator (as a set of weighting

functions wi). Furthermore it provides a reasonable way to select one of these estimators,

by showing that certain estimators perform well compared to all the rest.

9.4.2 Allocation of samples among the techniques

In this section, we consider how to choose the number of samples that are taken using each

technique pi. We show that this decision is not as important as it might seem at first: no

strategy is that much better than that of simply setting all the ni equal.

To see this, suppose that a total ofN samples will be taken, and that these samples must

be allocated among the n sampling techniques. Let F be an estimator that allocates these
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samples in any way desired (provided that
P

i ni = N ), and uses any weighting functions

desired (provided that F is unbiased). On the other hand, let F̂ be the estimator that takes

an equal number of samples from each pi, and combines them using the balance heuristic.

Then it is straightforward to show that

V [F̂ ] � nV [F ] +
n� 1

N
�2

where as usual, � = E[F ] is the quantity to be estimated (see Theorem 9.5 in Appendix 9.A

for a proof).

According to this result, changing the ni can improve the variance by at most a factor

of n, plus a small additive term. In contrast, a poor choice of the wi can increase variance

by an arbitrary amount. Thus, the sample allocation is not as important as choosing a good

combination strategy.

Furthermore, the sample allocation is often controlled by other factors, so that the opti-

mal sample allocation is irrelevant. For example, consider the glossy highlights problem. In

a distribution ray tracer, the samples used to estimate the glossy highlights are also used for

other purposes: e.g. the light source samples are used to estimate the diffuse shading of the

surface, while the BSDF samples are used to compute glossy reflections of ordinary, non-

light-source objects. Often these other purposes will dictate the number of samples taken, so

that the sample allocation for the glossy highlights calculation cannot be chosen arbitrarily.

On the other hand, by computing an appropriate weighted combination of the samples that

need to be taken anyway, we can reduce the variance of the highlight calculation essentially

for free.

Similarly, the sample allocation is also constrained in bidirectional path tracing. In this

case, it is for efficiency reasons: it is more efficient to take one sample from all the tech-

niques at once, rather than taking different numbers of samples using each strategy. (This

will be discussed further in Chapter 10.)

9.4.3 Issues for direct lighting problems

The glossy highlights and final gather test cases are both examples of direct lighting prob-

lems. They differ only in the terms of the scattering equation that cause high variance: in
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the case of glossy highlights, it was the BSDF and the emission function Le, while for the

final gather problem it was the 1=r2 distance factor.

Although there are more sophisticated techniques for direct lighting that take into ac-

count more factors of the scattering equation [Shirley et al. 1996], it is still useful to combine

several kinds of samples. There are several reasons for this. First, sophisticated sampling

strategies are generally designed for a specific light source geometry (e.g. the light source

must be a triangle or a sphere). Second, they are often expensive: for example, taking a sam-

ple may involve numerical inversion of a function. Third, none of these strategies is perfect:

there are always some factors of the scattering equation that are not included in the approx-

imation (e.g. virtually all direct lighting strategies do not consider the BSDF or visibility

factors). Thus, in parts of the scene where these unconsidered factors are dominant, it can

be more efficient to use a simpler technique such as sampling the BSDF. Thus, combining

samples from two or more techniques can make direct lighting calculations more robust.

9.5 Conclusions and recommendations

As we have shown, multiple importance sampling can substantially reduce the variance

of Monte Carlo rendering calculations. These techniques are practical, and the additional

cost is small — less than 5% of the time in our tests was spent evaluating probabilities and

weighting functions. There are also good theoretical reasons to use these methods, since we

have shown strong bounds on their performance relative to all other combination strategies.

For most Monte Carlo problems, the balance heuristic is an excellent choice for a com-

bination strategy: it has the best theoretical bounds, and is the simplest to implement. The

additional variance term of (1=mini ni � 1=N)�2 is not an issue for integration problems

of reasonable complexity, because it is unlikely that any of the given density functions pi

will be an excellent match for f . Under these circumstances, even the optimal combination

F � has considerable variance, so that the maximum improvement that can be obtained by

using some other strategy instead of the balance heuristic is a small fraction of the total.

On the other hand, if it is possible that the given integral is a low-variance problem (i.e.

one of the pi is good match for f ), then the power heuristic with� = 2 is an excellent choice.

It performs similarly to the balance heuristic overall, but gives better results on low-variance
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problems (which is exactly the case where better performance is most noticeable). Direct

lighting calculations are a good example of where this optimization is useful.

In effect, multiple importance sampling provides a new viewpoint on Monte Carlo inte-

gration. Unlike ordinary importance sampling, where the goal is to find a single “perfect”

sampling technique, here the goal is to find a set of techniques that cover the important fea-

tures of the integrand. It does not matter if there are a few bad sampling techniques as well

— some effort will be wasted in sampling them, but the results will not be significantly af-

fected. Thus, multiple importance sampling gives a recipe for making Monte Carlo software

more reliable: whenever there is some situation that is not handled well, then we can sim-

ply add another sampling technique designed for that situation alone. We believe that there

are many applications that could benefit from this approach, both in computer graphics and

elsewhere.
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Appendix 9.A Proofs

Proof of Theorem 9.2 (from p. 264). Let Fi;j be the random variable

Fi;j =
wi(Xi;j) f(Xi;j)

pi(Xi;j)
;

and let �i be its expected value

�i = E[Fi;j ]

=

Z


wi(x) f(x) d�(x)

(which does not depend on j). We can then write the variance ofF as

V [F ] = V

24 nX
i=1

1

ni

niX
j=1

Fi;j

35
=

nX
i=1

1

n2i

niX
j=1

V [Fi;j ]

=

0@ nX
i=1

1

n2i

niX
j=1
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i;j ]

1A �
0@ nX
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1

n2i

niX
j=1

E[Fi;j ]
2

1A
=
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1
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niX
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Z



w2
i (x) f

2(x)

p2i (x)
pi(x) d�(x)

1A �
 

nX
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1

n2i
ni �

2
i

!

=

 Z



nX
i=1

w2
i (x) f

2(x)

ni pi(x)
d�(x)

!
�
 

nX
i=1

1

ni
�2i

!
: (9.16)

Notice that there are no covariance terms, because theXi;j are sampled independently.

We will bound the two parenthesized expressions separately. To minimize the first expressionZ



nX
i=1

w2
i (x) f

2(x)

ni pi(x)
d�(x) ; (9.17)

it is sufficient to minimize the integrand at each pointx separately. Noting that f2(x) is a constant

and dropping x from our notation, we must minimize

nX
i=1

w2
i

ni pi

subject to the condition
P

iwi = 1. Using the method of Lagrange multipliers, the minimum value
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is attained when alln+ 1 partial derivatives of the expression

X
i

w2
i

ni pi
+ �

 X
i

wi � 1

!

are zero. This yieldsn equations of the form�2wi = ni pi �, together with constraint
P

iwi = 1.

The solution of these equations is

ŵi =
ni piP
k nk pk

(the balance heuristic). Thus no other combination strategy can make the first variance term of (9.16)

any smaller.

We now consider the second variance term of (9.16), namely

nX
i=1

1

ni
�2i :

We will prove an upper bound of(1=mini ni)�
2 and a lower bound of(1=

P
i ni)�

2, such that these

bounds hold for any functionswi. (Recall that� = E[F ] is the quantity to be estimated.) Combining

this with the previous result, we immediately obtain the theorem.

For the upper bound, we have

X
i

1

ni
�2i �

1

mini ni

X
i

�2i �
1

mini ni

 X
i

�i

!2

=
1

mini ni
�2 ;

where the second inequality holds because all the�i are non-negative.

For the lower bound, we minimize
P

i �
2
i =ni subject to the constraint

P
i �i = �. Using the

method of Lagrange multipliers, the minimum is attained when alln + 1 partial derivatives of the

expression X
i

�2i
ni

+ �

 X
i

�i � �
!

are zero. This yields n+ 1 equations whose solution is�i = (ni=
P

k nk)�, so that the minimum

value of the second variance term of (9.16) is

X
i

1

ni

�
niP
k nk

�

�2
=

1P
k nk

�2

as desired.
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Proof of Theorem 9.3 (from p. 274). According to the arguments of the previous theorem, it is

sufficient to prove a bound of the form

X
i

w2
i (x) f

2(x)

ni pi(x)
� c

X
i

ŵ2
i (x) f

2(x)

ni pi(x)

at each point x, where the wi are the weighting functions given by one of the heuristics of Theo-

rem 9.3, and the ŵi are given by the balance heuristic. Dropping the argumentx, letting qi = nipi,

and substituting the definition

ŵi =
qiP
k qk

;

we must show that X
i

w2
i

qi
� c

X
i

1

qi

�
qiP
k qk

�2
=

cP
k qk

: (9.18)

For the cutoff heuristic, we have

X
i

w2
i

qi
=

X
ijqi�� qmax

1

qi

 
qiP

kjqk�� qmax
qk

!2

=
1P

ijqi�� qmax
qi
:

Thus according to (9.18), we must find a value ofc such that

1P
ijqi�� qmax

qi
� cP

k qk

c
X

ijqi��qmax

qi() �
X
k

qk

(c� 1)
X

ijqi��qmax

qi() �
X
k

qk �
X

ijqi�� qmax

qi

c� 1() �
P

ijqi<�qmax
qiP

ijqi�� qmax
qi
:

To find a value of c for which this is true, it is sufficient to find an upper bound for the right-hand

side. Examining the numerator and denominator, we haveP
ijqi<�qmax

qiP
ijqi�� qmax

qi
� (n� 1)� qmax

qmax
= � (n� 1) :

Thus the variance claim is true wheneverc � 1 + � (n� 1), as desired.

Next, we consider the power heuristic with the exponent� = 2. Starting with the inequality
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(9.18), we have X
i

w2
i

qi
=
X
i

1

qi

 
q2iP
k q

2
k

!2

=

P
i q

3
i�P

k q
2
k

�2 : (9.19)

Thus we must find a value of c such thatP
i q

3
i�P

k q
2
k

�2 � cP
k qk

(
P

i qi)
�P

i q
3
i

�() � c
�P

k q
2
k

�2
: (9.20)

Notice that this inequality is unchanged if all theqi are scaled by a constant factor. Thus without loss

of generality we can assume that X
i

q2i =
X
i

qi ; (9.21)

so that our goal reduces to finding a value ofc such that

c � �P
i q

3
i

�
=
�P

i q
2
i

�
:

We proceed as before, by finding an upper bound for the right-hand side. Without loss of generality,

let q1 be the largest of the qi. Observing that

�P
i q

3
i

�
=
�P

i q
2
i

� � max
i
qi = q1 ;

it is sufficient to find an upper bound forq1. According to (9.21), we have

q21 � q1 =
nX
i=2

qi � q2i :

LettingS denote the quantity on the right-hand side, we haveS � (1=4) (n�1), since the maximum

value of qi � q2i is attained when qi = 1=2. Thus using the quadratic formula, we have

q21 � q1 � (1=4) (n � 1)

q1=) � (1=2) (1 +
q
(�1)2 + 4 (1=4) (n � 1))

= (1=2) (1 +
p
n) :

Thus, the original inequality (9.18) is true for any value ofc larger than this.

For an exponent in the range1 � � � 1, the argument is similar. We find that

X
i

w2
i

qi
=
�P

i q
2��1
i

�
=
�P

k q
�
k

�2
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(compare this with (9.19)), and we must find a value ofc for which X
i

qi

!  X
i

q2��1i

!
� c

 X
k

q�k

!2

(compare with (9.20)). By scaling all the qi by a constant factor, we can assume without loss of

generality that X
i

q�i =
X
i

qi ; (9.22)

so that we must find a value of c that satisfies

c �
P

i q
2��1
iP
i q

�
i

:

Letting q1 be the largest of the qi, a trivial upper bound for the right-hand side isq��11 . Our strategy

will be to find an upper bound for this quantity, in terms of� and n.

Defining

S =
nX
i=2

qi � q�i (9.23)

and using the restriction (9.22), we have

q�1 � q1 = S

q��11=) = 1 + S=q1 : (9.24)

To find an upper bound for the right-hand side, we must find an upper bound forS, and a lower bound

for q1. For q1, we have

q�1 = q1 + S

q�1=) � S

q1=) � S1=� ;

and inserting this in (9.24) yields

q��11 � 1 + S1�1=� : (9.25)

Now to find an upper bound forS, from (9.23) we have

S � (n� 1) sup
x�0

(x� x�) : (9.26)
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The maximum value of f(x) = x� x� occurs when f 0(x) = 0, yielding

1� �x��1 = 0

x=) = (1=�)1=(��1) :

Substituting this in (9.26), we obtain an upper bound forS:

S � (n� 1)
�
(1=�)1=(��1) � (1=�)�=(��1)

�
= (n� 1) (1=�)1=(��1) (1� 1=�) :

Finally, we combine this with (9.25) to obtain an upper bound forq��11 :

q��11 � 1 + S1�1=�

� 1 +
h
(n� 1) (1=�)1=(��1) (1� 1=�)

i(��1)=�
= 1 + (1=�)1=� ((n� 1)(1 � 1=�))1�1=�

as desired.

Notice that for the case� = 2, this argument gives a bound of

c = (1=2) (2 +
p
n� 1) ;

which is slightly larger than the bound ofc = (1=2) (1 +
p
n) previously shown.

Tightness of the bounds. For the cutoff heuristic, the constantc cannot be reduced for any value

of �. (To see this, let q1 = 1, and let qi = � � � for all i = 2; : : : ; n, where � > 0 can be made as

small as desired.)

For the power heuristic, the given bounds are tight when� = 1 and � = 1 (corresponding to

the balance and maximum heuristics respectively, and yielding the constantsc = 1 and c = n. For

other values of �, the bounds are not tight. However, they are not as loose as might be expected,

considering the simplifications that were made to obtain them. For example, letq1 = 1 +
p
n, and

qi = 1 for i = 2; : : : ; n. Substituting these values into the defining equation (9.20) forc, we obtain

c = (1=4) (3 +
p
n) :

Thus, the bounds c = (1=2) (1+
p
n) and c = (1=2) (2+

p
n� 1) proven above cannot be reduced

by more than a factor of two.
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Proof of Theorem 9.4 (from p. 276). The variance ofF is

V [F ] = E[F 2]�E[F ]2 :

Since E[F ]2 = �2 is the same for all unbiased estimators, it is enough to show that the balance

heuristic minimizes the second momentE[F 2]. We have

E[F 2] =
nX
i=1

ci

Z



w2
i (x) f

2(x)

c2i p
2
i (x)

pi(x) d�(x)

=

Z



nX
i=1

w2
i (x) f

2(x)

ci pi(x)
d�(x) :

Except for the substitution ofci for ni, this expression is identical to the second moment term (9.17)

that was minimized in the proof of Theorem 9.2. Thus, the balance heuristic minimizesE[F 2], and

we are done.

The following theorem concerns the allocation of samples among the given sampling techniques.

Before stating it, we first rewrite the multi-sample estimator (9.4) to allow for the possibility that

some ni are zero:

F =
nX
i=1

niX
j=1

wi(Xi;j) f(Xi;j)

ni pi(Xi;j)
; (9.27)

where ni � 0 for all i. The possibility that ni = 0 also requires a modification to condition (W2)

for F to be unbiased:

(W2’) wi(x) = 0whenever nipi(x) = 0 :

We now have the following theorem (which was informally summarized in Section 9.4.2):

Theorem 9.5. Let f , p1, : : :, pn, and the total number of samplesN be given, whereN = kn for

some integer k. Let F be any unbiased estimator of the form (9.27), and letF̂ be the corresponding

estimator that uses the weighting functions

ŵi(x) =
ni pi(x)P
k nk pk(x)

(the balance heuristic), and takes an equal number of samples from eachpi. Then

V [F̂ ] � nV [F ] +
n� 1

N
�2 ;

where � = E[F ] is the quantity to be estimated.
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Proof. Given any unbiased estimator F , let F+ be the estimator that uses the same weighting

functions F (w+
i = wi), but takes an equal number of samples using each sampling technique

(n+i = N=n). We will show that V [F+] � nV [F ]. Starting with equation (9.16) forV [F ], we

have

V [F ] =

Z



nX
i=1

w2
i (x) f

2(x)

ni pi(x)
d�(x) �

nX
i=1

1

ni
�2i

=
nX
i=1

1

ni

 Z



w2
i (x) f

2(x)

pi(x)
d�(x) � �2i

!

�
nX
i=1

1

N

 Z



w2
i (x) f

2(x)

pi(x)
d�(x) � �2i

!

=
1

n

nX
i=1

1

N=n

 Z



w2
i (x) f

2(x)

pi(x)
d�(x) � �2i

!

=
1

n
V [F+] :

We now compare the variance ofF+ to the variance of F̂ . These two estimators take the same

number of samples from eachpi, so that we can apply Theorem 9.2:

V [F̂ ] � V [F+] +

 
1

mini n
+
i

� 1P
i n

+
i

!
�2

� nV [F ] +

�
1

N=n
� 1

N

�
�2

= nV [F ] +
n� 1

N
�2 :
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Chapter 10

Bidirectional Path Tracing

In this chapter, we describe a new light transport algorithm called bidirectional path tracing.

This algorithm is a direct combination of the ideas in the last two chapters: namely, express-

ing light transport as an integration problem, and then applying more than one importance

sampling technique to evaluate it. The resulting algorithm handles arbitrary geometry and

materials, is relatively simple to implement, and can handle indirect lighting problems far

more efficiently and robustly than ordinary path tracing.

To sample each transport path, we generate one subpath starting from a light source, a

second subpath starting from the eye, and join them together. By varying the number of ver-

tices generated from each side, we obtain a family of sampling techniques for paths of all

lengths. Each sampling technique has a different probability distribution over the space of

paths, and takes into account a different subset of the factors of the integrand (i.e. the mea-

surement contribution function). Samples from all of these techniques are then combined

using multiple importance sampling.

This chapter is organized as follows. We start in Section 10.1 with an overview of the

bidirectional path tracing algorithm. This is followed by a more detailed mathematical de-

scription in Section 10.2, where we derive explicit formulas for the sample contributions.

Section 10.3 then discusses the issues that arise when implementing the algorithm, includ-

ing how to generate the subpaths and evaluate their contributions efficiently, how to handle

specular materials, and how to implement the important special cases where the light or

297
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eye subpath contains less than two vertices. In Section 10.4 we describe an important op-

timization to reduce the number of visibility tests, using a new technique called efficiency-

optimized Russian roulette. Section 10.5 then presents some results and measurements of

the algorithm, Section 10.6 compares our algorithm to other related work in this area, and

Section 10.7 summarizes our conclusions.

10.1 Overview

Recall that according to the path integral framework of Chapter 8, each measurement can

be written in the form

Ij =
Z


fj(�x) d�(�x) ; (10.1)

where �x = x0 : : :xk is a path, 
 is the set of such paths (of any length),� is the area-product

measure d�(�x) = dA(x0) � � � dA(xk), and fj is the measurement contribution function

fj(�x) = Le(x0!x1)G(x0$x1)W (j)
e (xk�1!xk)

�
k�1Y
i=1

fs(xi�1!xi!xi+1)G(xi$xi+1) : (10.2)

Bidirectional path tracing consists of a family of different importance sampling tech-

niques for this integral. Each technique samples a path by connecting two independently

generated pieces, one starting from the light sources, and the other from the eye. For exam-

ple, in Figure 10.1 the light subpath x0x1 is constructed by choosing a random point x0 on

a light source, followed by casting a ray in a random direction to find x1. The eye subpath

x2x3x4 is constructed by a similar process starting from a random point x4 on the camera

lens. A complete transport path is formed by concatenating these two pieces. (Note that the

integrand may be zero on this path, e.g. if x1 and x2 are not mutually visible.)

By varying the number of vertices in the light and eye subpaths, we obtain a family of

sampling techniques. Each technique generates paths of a specific length k, by randomly

generating a light subpath with s vertices, randomly generating an eye subpath with t ver-

tices, and concatenating them (where k = s + t � 1). It is important to note that there is

more than one sampling technique for each path length: in fact, for a given length k it is

easy to see that there are k + 2 different sampling techniques (by letting s = 0; : : : ; k+ 1).



10.1. OVERVIEW 299

x3
x4

x2

x1

x0

Figure 10.1: A transport path from a light source to the camera lens, created by concatenat-
ing two separately generated pieces.

(a) s = 0; t = 3 (b) s = 1; t = 2

(c) s = 2; t = 1 (d) s = 3; t = 0

Figure 10.2: The four bidirectional sampling techniques for paths of lengthk = 2. In-
tuitively, they can be described as (a) Monte Carlo path tracing with no special handling
of light sources, (b) Monte Carlo path tracing with a direct lighting calculation,(c) tracing
photons from the light sources and recording an image sample whenever a photon hits a vis-
ible surface, and (d) tracing photons and recording an image sample only when photons hit
the camera lens. Note that technique (a) can only be used with an area light source, while
technique (d) can only be used with a finite-aperture lens.

These techniques generate different probability distributions on the space of paths,
which makes them useful for sampling different kinds of effects. For example, although
technique (b) works well under most circumstances (for paths of length two), technique (a)
can be superior if the table is very glossy or specular. Similarly, techniques (c) or (d) can
have the lowest variance if the light source is highly directional.
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Figure 10.2 illustrates the four bidirectional sampling techniques for paths of length k = 2.

The reason that these techniques are useful is that they correspond to different density

functions ps;t on the space of paths. All of these density functions are good candidates for

importance sampling, because they take into account different factors of the measurement

contribution function fj (as we will explain below). In practical terms, this means that each

technique can efficiently sample a different set of lighting effects.

To take advantage of this, bidirectional path tracing generates samples using all of the

techniques ps;t and combines them using multiple importance sampling. Specifically, the

following estimate is computed for each measurement Ij:

F =
X
s�0

X
t�0

ws;t(�xs;t)
fj(�xs;t)

ps;t(�xs;t)
: (10.3)

Here �xs;t is a path generated according to the density function ps;t, and the weighting func-

tions ws;t represent the combination strategy being used (which is assumed to be one of the

provably good strategies in Chapter 9, such as the balance heuristic). By combining sam-

ples from all the bidirectional techniques in this way, a wide variety of scenes and lighting

effects can be handled well.

Efficiently generating the samples. So far, we have assumed that all the paths �xs;t are

sampled independently, by generating a separate light and eye subpath for each one. How-

ever, in practice it is important to make the sampling more efficient. This is achieved by

generating the samples in groups. For each group, we first generate a light subpath

y0 : : :ynL�1

with nL vertices, and an eye subpath

znE�1 : : : z0

with nE vertices (where y0 is a point on a light source, and z0 is a point on the camera lens).

The length of each subpath is determined randomly, by defining a probability for terminating

the subpath at each vertex (details are given in Section 10.3.3). We can then take samples

from a whole group of techniques ps;t at once, by simply joining each prefix of the light
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subpath to each suffix of the eye subpath. The sample from ps;t is taken to be

�xs;t = y0 : : :ys�1 zt�1 : : : z0 ;

which is a path with s+ t vertices and k = s+ t�1 edges (where 0 � s � nL, 0 � t � nE,

and k � 1). The vertices ys�1 and zt�1 are called the connecting vertices, and the edge

between them is the connecting edge.

The contributions of all the samples �xs;t are then computed and summed according to

the multi-sample estimator (10.3). In order to evaluate the contribution of each path, the

visibility of the connecting edge must be tested (except when s = 0 or t = 0). If the con-

necting edge is obstructed, or if the BSDF at either connecting vertex does not scatter any

light toward the other, then the contribution for that path is zero. (The following section

gives further details.)

There is an important detail that we have not mentioned yet. Notice that we have mod-

eled the multi-sample estimator (10.3) as a sum over an infinite number of samples, one

from each bidirectional technique ps;t. We did this because of the way that multiple impor-

tance sampling was defined: it assumes that an integer number of samplesns;t is taken from

each sampling technique, so in this case we set ns;t = 1 for all s; t. (Note that if we placed

an upper bound on the allowable values of s and t, the result would be biased.) Of course,

the strategy above does not take a sample from all of the techniques ps;t, since there are an

infinite number of them. However, notice that there is always some finite probability of tak-

ing a sample from each technique, no matter how large s and t are. This is because for any

given values of s and t, there is some probability of generating a light subpath with nL � s

and an eye subpath with nE � t (since there lengths are chosen randomly).

Formally, we can show how this corresponds to the multi-sample model as follows. First

we introduce the notion of an empty path �, which is defined to have a contribution of zero.

We then re-interpret the strategy above to be method for sampling all of the techniques ps;t

simultaneously, by defining the sample from ps;t to be �xs;t = � whenever s > nL or t > nE.

In other words, although the estimator (10.3) is formally a combination of samples from an

infinite number of techniques, in fact all but a finite number of them will be the empty path �

on each evaluation, so that their contributions can be ignored. Another way of interpreting

this is to say that the density functions ps;t are allowed to integrate to less than one, since
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any remaining probability can be assigned to the empty path. (Notice that having an infinite

number of sampling techniques does not cause any problems when computing the weights

ws;t(�xs;t), since there are only k + 2 sampling techniques that can generate paths of any

given length k.)

10.2 Mathematical formulation

In this section we derive the formulas for determining the contribution of each sample, and

we show how to organize the calculations so that they can be done efficiently.

Letting �xs;t be the sample from technique ps;t, we must evaluate its contribution

Cs;t � ws;t(�xs;t)
fj(�xs;t)

ps;t(�xs;t)

to the estimator (10.3), which can be rewritten as

F =
X
s�0

X
t�0

Cs;t :

We will evaluate this contribution in several stages. First, we define the unweighted contri-

bution C�s;t as

C�s;t �
fj(�xs;t)

ps;t(�xs;t)
:

We will show how to write this as a product

C�s;t = �Ls cs;t �
E

t ;

where the factor�Ls depends only on the light subpath, �Et depends only on the eye subpath,

and cs;t depends only on the connecting edge ys�1zt�1. The weighted contribution then has

the form

Cs;t = ws;t C
�
s;t ;

where ws;t depends on the probabilities with which all the other sampling techniques gen-

erate the given path �xs;t.

We now discuss how to compute these factors in detail.
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The density ps;t. We start by showing how to compute the probability density

ps;t � ps;t(�xs;t)

with which the path �xs;t was generated. As previously discussed in Chapter 8.2, this is

simply the product of the densities PA(xi) with which the individual vertices are generated

(measured with respect to surface area). The vertex y0 is chosen directly on the surface of

a light source, so that PA(y0) can be computed directly (and similarly for z0).

The remaining vertices yi are chosen by sampling a direction and casting a ray from the

current subpath endpoint yi�1. We let P�?(yi�1! yi) denote the density for choosing the

direction from yi�1 to yi, measured with respect to projected solid angle.1 Now the density

PA(yi) for choosing vertex yi is simply

PA(yi) = P�?(yi�1!yi)G(yi�1$yi)

recalling that

G(x$x0) = V (x$x0) jcos(�o) cos(�
0
i)j

kx� x0k2
(see Section 8.2.2.2 for further details).

We define symbols pLi and pEi to represent the probabilities for generating the first i ver-

tices of the light and eye subpaths respectively. These are defined by

pL0 = 1 ;

pL1 = PA(y0) ;

pLi = P�?(yi�2!yi�1)G(yi�2$yi�1) pLi�1 for i � 2 ;

and similarly

pE0 = 1 ;

pE1 = PA(z0) ;

pEi = P�?(zi�2!zi�1)G(zi�2$zi�1) pEi�1 for i � 2 :

1More precisely, it should be written as P
�
? (yi�1! yi j yi�2;yi�1), since the probability is conditional

on the locations of the previous two vertices in the subpath.
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Using these symbols, the density for generating the path �xs;t = y0 : : :ys�1 zt�1 : : : z0 is

simply

ps;t(�xs;t) = pLs p
E

t : (10.4)

The unweighted contributionC�
s;t. Next, we consider the unweighted contribution

C�s;t �
fj(�xs;t)

ps;t(�xs;t)
: (10.5)

To calculate this quantity efficiently, we precompute the weights �Li and �Ei given below.

These weights consist of all the factors of the definition (10.5) that can be computed using

the first i vertices of the light and eye subpaths respectively. Specifically, we have

�L0 = 1 ;

�L1 =
L(0)
e (x0)

PA(y0)
;

�Li =
fs(yi�3!yi�2!yi�1)
P�?(yi�2!yi�1)

�Li�1 for i � 2 ; (10.6)

and similarly

�E0 = 1 ;

�E1 =
W (0)

e (z0)

PA(z0)
;

�Ei =
fs(zi�1!zi�2!zi�3)
P�?(zi�2!zi�1)

�Ei�1 for i � 2 : (10.7)

Here we have used the conventions previously described in Section 8.3.2: the emitted radi-

ance is split into a product

Le(y0!y1) = L(0)
e (y0)L(1)

e (y0!y1) ;

whereL(0)
e andL(1)

e represents the spatial and directional components ofLe respectively, and

we define fs(y�1!y0!y1) � L(1)
e (y0!y1). The quantitiesW (0)

e and fs(z1!z0!z�1) �
W (1)

e are defined similarly. The purpose of this convention is to reduce the number of special

cases that need to be considered, by interpreting the directional component of emission as
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a BSDF. Also, notice that the geometry factors G(x$ x0) do not appear in the formulas

for �Li and �Ei , because these factors occur in both the numerator and denominator of (10.5)

(see the definitions of pLi and pEi ).

As mentioned above, the unweighted contribution can now be computed as

C�s;t = �Ls cs;t �
E

t ; (10.8)

where cs;t consists of the remaining factors of the integrand fj that are not included in the

precomputed weights. Examining the definitions of fj , �Li , and �Ei , we obtain

c0;t = Le(zt�1!zt�2) ;
cs;0 = We(ys�2!ys�1) ; and

cs;t = fs(ys�2!ys�1!zt�1)G(ys�1$zt�1) fs(ys�1!zt�1!zt�2)
for s; t > 0 :

Note that the factor G(ys�1$ zt�1) includes a visibility test (for the case s; t > 0), which

is the most expensive aspect of the evaluation.

The weighting functionws;t. Finally we consider how to evaluate

ws;t � ws;t(�xs;t) ;

whose value depends on the probability densities with which �x is generated by all of the

s+ t+ 1 possible sampling techniques for paths of this length. We define pi as the density

for generating �xs;t using a light subpath with i vertices, and an eye subpath with s + t � i
vertices:

pi = pi;(s+t)�i(�xs;t) for i = 0; : : : ; s+ t :

In particular, ps is the probability with which the given path was actually generated, while

p0 : : : ps�1 and ps+1 : : : ps+t represent all the other ways that this path could have been gen-

erated.

The evaluation of the pi can be simplified by observing that their values only matter up to

an overall scale factor. For example, if the samples are combined using the power heuristic
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with � = 2, we must compute

ws;t =
p2sP
i p

2
i

=
1P

i(pi=ps)2
:

The same is true for all the other combination strategies of Chapter 9. Thus we can arbitrar-

ily set ps = 1, and compute the values of the other pi relative to ps.

To do this, we consider the ratio pi+1=pi. It will be convenient to ignore the distinction

between vertices in the light and eye subpaths, and to write the path �xs;t as

�x = x0 : : :xk

where k = s+t�1. In this notation, the only difference between pi and pi+1 lies in how the

vertex xi is generated: for pi, it is generated as part of the eye subpath xi : : :xk, while for

pi+1 it is generated as part of the light subpathx0 : : :xi. All other vertices of �x are generated

with the same probability by both techniques. Thus, the ratio of pi+1 to pi is

p1
p0

=
PA(x0)

P�?(x1!x0)G(x1$x0)
;

pi+1
pi

=
P�?(xi�1!xi)G(xi�1$xi)
P�?(xi+1!xi)G(xi+1$xi)

for 0 < i < k ; (10.9)

pk+1
pk

=
P�?(xk�1!xk)G(xk�1$xk)

PA(xk)
:

This equation can be applied repeatedly starting with ps to find ps+1, : : :, pk+1. Similarly,

the reciprocal ratio pi=pi+1 can be used to compute ps�1, : : :, p0.

Once the pi have been calculated, it is straightforward to computews;t according to the

combination strategy being used. The final weighted sample contribution is then

Cs;t = ws;tC
�
s;t

= ws;t �
L

s cs;t �
E

t :

Note that the samples in each group are dependent (since they are all generated from the

same light and eye subpath). However this does not significantly affect the results, since

the correlation between them goes to zero as we increase the number of independent sample



10.3. IMPLEMENTATION ISSUES 307

groups for each measurement. For example, if N independent light and eye subpaths are

used, then all of the samples from each ps;t are independent, and each sample from ps;t is

correlated with only one of theN samples from any other given technique ps0;t0 . From this

fact it is easy to show that the variance results of Chapter 9 are not affected by more than a

factor of (N � 1)=N due to the correlation between samples in each group.

10.3 Implementation issues

This section describes several aspects of our implementation. We start by explaining how

the image is sampled and filtered. Next we describe how the light and eye subpaths are

generated. This includes a summary of the information that is precomputed and stored with

each subpath (in order to evaluate the sample contributions more efficiently), and the meth-

ods used to determine the length of each subpath. Following this, we describe how to im-

plement the important special cases where the light or eye subpath has at most one vertex.

Finally, we consider how to handle specular surfaces correctly, and we consider several sit-

uations where the weighting functionsws;t cannot be computed exactly (so that approxima-

tions must be used).

10.3.1 Image sampling and filtering

So far, our discussion of bidirectional path tracing could be applied to any kind of mea-

surements Ij . Here we discuss the special issues that arise when computing an image (as

opposed to some other set of measurements).

Overall, the image sampling of bidirectional path tracing is similar to ray tracing or path

tracing. The camera and lens model determine a mapping from rays in world space onto

the image plane. This mapping is used to define an image function I such that I(u; v) is

proportional to the irradiance on the image plane at the point (u; v).2 Each pixel value Ij is

2Strictly speaking, the units of I(u; v) are sensor response per unit area [S �m�2] rather than irradiance.
(When I(u; v) is integrated, the resulting pixel values have units of sensor response [S] rather than power.)
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then defined as a weighted average

Ij =
Z Z

D
hj(u; v) I(u; v) du dv ;

where D is the image region, and hj is the filter function for pixel j (which integrates to

one). In general, the filter functions are all translated copies of one another, and each one is

zero except on a small subset of D.

To estimate the values of all the pixels I1, : : :, IM , a large number of sample points are

chosen across the image region. We do this by taking a fixed number of stratified samples

per pixel (e.g. to take n = 25 samples, the nominal rectangle corresponding to each pixel

would be subdivided into a 5 by 5 grid). Each sample can contribute to the value of several

pixels, since the filter functions hj generally overlap one another. Specifically, the pixel

values are estimated using3

Ij �
PN

i=1 hj(ui; vi) I(ui; vi)PN
i=1 hj(ui; vi)

; (10.11)

where N = nM is the total number of samples. This equation can be evaluated efficiently

by storing the current value of the numerator and denominator of (10.11) at each pixel, and

accumulating samples as they are taken. Note that each sample (ui; vi) contributes to only

a few nearby pixels (because of the filter functions hj), and that it is not necessary to store

the samples themselves.

10.3.2 Estimation of the image function

The image function I(u; v) is estimated using bidirectional path tracing. The initial vertex

of the light subpath is chosen according to the emitted power at each surface point, while the

remaining vertices are chosen by sampling from the BSDF (or some convenient approxima-

tion). Sampling the camera lens is slightly trickier: the vertex z0 can be chosen anywhere

3Note that this estimate is slightly biased. The corresponding unbiased estimate is simply

Ij = E
h
(jDj =N)

PN

i=1 hj(ui; vi) I(ui; vi)
i
; (10.10)

where jDj is the area of the image regionD. However, equation (10.11) typically gives better results (a smaller
mean-squared error) because it compensates for random variations in the sum of the filter weights.
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on the lens surface, but the direction z0!z1 is then uniquely determined by the given point

(u; v) on the image plane (since there is only one direction at z0 that is mapped to the point

(u; v) by the lens).4 Note that the density P�?(z0!z1) is determined by the fact that (u; v)

is uniformly distributed over the image region.

After generating the light and eye subpaths, we consider all possible connections be-

tween them as described above. In order to do this efficiently, we cache information about

the vertices in each subpath. The vertex itself is stored in the form of a special Event object

that has methods for sampling and evaluating the BSDF, and for evaluating the probability

with which a given direction is sampled (according to a built-in sampling strategy associated

with each BSDF). The verticesy0 and z0 are also stored in this form, so that the distribution

of emitted radiance and importance at these vertices can be queried using the same methods.

Other per-vertex information includes the cumulative subpath weights �Li and �Ei de-

fined above, the geometric factors G(xi�1 $ xi), and the probability densities P�?(xi !
xi�1) and P�?(xi ! xi+1) for sampling the adjacent subpath vertices on either side. The

latter three fields are used in equation (10.9) to efficiently evaluate the probabilitiespi with

which a given path is sampled using all the other possible techniques.

When information about the subpaths is cached, then the work required to evaluate the

contributionsCs;t is minimal (except for the visibility test, if necessary). The only quantities

that need to be evaluated are those associated with the connecting edgeys�1zt�1 (since this

edge is not part of either subpath).

10.3.3 Determining the subpath lengths

To control the lengths of the light and eye subpaths (nL and nE), we define a probability for

the subpath to be terminated or absorbed after each vertex is generated. We let qi denote

the probability that the subpath is continued past vertex xi, while 1 � qi is the probability

that the subpath is terminated. This is a form of Russian roulette (Chapter 2).

4For real lens models [Kolb et al. 1995], it is difficult to determine the direction z0!z1 once the point z0
has already been chosen, since this requires us to find a chain of specular refractions that connects two given
points on opposite side of the lens (i.e. z0 and the point (u; v) on the film plane). A better approach in this
case is to generate z0 and z0!z1 together, by starting on the film plane at (u; v) and tracing a ray toward the
exit pupil.



310 CHAPTER 10. BIDIRECTIONAL PATH TRACING

In our implementation, we set qi = 1 for the first few vertices of each subpath, to avoid

any extra variance on short subpaths (which typically make the largest contribution to the

image). After that, qi is determined by first sampling a candidate direction xi!xi+1, and

then letting

qi = minf1; fs(xi�1!xi!xi+1)
P �
�?
(xi!xi+1) g ;

where P �
�?

is density function used for sampling the direction xi ! xi+1. Notice that if

P �
�?
(xi!xi+1) is proportional to the BSDF, then qi is simply the albedo of the material, i.e.

the fraction of energy that is scattered rather than absorbed for the given incident direction.

This procedure does not require any modification to the formulas for the sample contri-

butions described in Section 10.2. However, it is important to realize that the final proba-

bility density for sampling each direction is now a product:

P�?(xi!xi+1) = qi P
�
�?(xi!xi+1) :

The densityP�?(xi!xi+1) can integrate to less than one, since there is a discrete probability

associated with terminating the subpath at xi.

10.3.4 Special cases for short subpaths

Subpaths with less than two vertices require special treatment for various reasons. The most

important issues are: taking advantage of direct lighting calculations when the light subpath

has only one vertex, and allowing samples to contribute to any pixel of the image in the cases

when the eye subpath has zero or one vertices. In addition, the cases when the light or eye

subpath is empty require special handling since no visibility test is needed.

10.3.4.1 Zero light subpath vertices (s = 0)

These samples occur when the eye subpath randomly intersects a light source. For this to

occur, the light sources must be modeled as part of the scene (so that it is possible for a ray

to intersect them). We also require the ability to determine whether the current eye sub-

path endpoint zt�1 is on a light source, and to evaluate the emitted radiance along the ray

zt�1! zt�2. In order to evaluate the combination weight w0;t, we must also compute the
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probability densities for generating the point zt�1 and the direction zt�1 ! zt�2 by sam-

pling the light sources (in order to compute the densities pi with which the other sampling

techniques generate this path).

The s = 0 sampling technique is very important for the rendering of certain lighting

effects. These include: directly visible light sources; lights that are seen by reflection or

refraction in a specular surface; caustics due to large area light sources; and caustics that

are viewed indirectly through a specular surface.

A nice thing about this sampling technique is that no visibility test is required. Thus its

contributions are cheap to evaluate, compared to the otherCs;t. In our implementation, we

accumulate these contributions as the eye subpath is being generated.

10.3.4.2 One light subpath vertex (s = 1)

This sampling technique connects a given eye subpath zt�1 : : : z0 to a randomly chosen

point on the light sources. Recall that in the basic algorithm, this point is simply the first

vertex y0 of the light subpath (which was chosen according to emitted power). However,

the variance of these samples can be greatly reduced by choosing the vertex using special

direct lighting techniques. That is, we simply ignore the vertex y0, and connect the eye sub-

path to a new vertex yd0 chosen using a more sophisticated method (such as those described

by Shirley et al. [1996]). This strategy is applied to each eye subpath suffix zt�1 : : : z0 sep-

arately, by choosing a different light source vertex for each one.

This optimization is very important for direct illumination (i.e. paths of length two),

since it allows the same low-variance lighting techniques used in ray tracing to be applied. It

is also an important optimization for longer paths; this corresponds to standard path tracing,

where each vertex of the path is connected to a point on the light source. A direct lighting

strategy is essentially an importance sampling technique that chooses a light source vertex

yd0 according to how much it contributes to the illuminated point zt�1 (or some approxima-

tion of this distribution).

This strategy requires some changes in the way that sample contributions are evaluated:

� The unweighted contribution C�1;t is computed using the density P d
A (yd0 ) with which

the light vertex yd0 was chosen. This calculation is identical to standard path tracing.
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� The evaluation of the combination weight w1;t is slightly trickier, because the direct

lighting strategy does not affect the sampling of light subpaths with two or more ver-

tices. Thus we must evaluate the density with which yd0 is sampled according to emit-

ted power; this is used to compute the probabilities pi for sampling the current path

using the other possible techniques.

� The direct lighting strategy also affects the combinations weights for paths where s 6=
1. The correct probabilities pi can be found by computing them as usual, and then

multiplying the density for p1 by P d
A (x0) = PA(x0). Here PA(x0) is the density for

generating x0 according to emitted power, and P d
A (x0) is the density for generating

x0 using direct lighting for the point x1.

It is also possible to use a direct lighting strategy that takes more than one sample, e.g.

a strategy that iterates over the light sources taking a few samples from each one. This is

equivalent to using more than one sampling technique to generate these paths; the samples

are simply combined as usual according to the rules of multiple importance sampling.

10.3.4.3 One eye subpath vertex (t = 1)

These samples are generated by connecting each light subpath prefixy0 : : :ys�1 to the vertex

z0 on the camera lens. These samples are important for rendering caustics (especially those

from small or point light sources), some forms of direct illumination, and a variety of other

lighting effects.

The main issue with this technique is that the samples it generates can lie anywhere in the

image, not just at the current point (u; v). One way to handle this is to discard samples that

do not contribute to the current measurement Ij. However, this is inefficient; much more

information can be obtained by letting these samples contribute to any pixel of the image.

To implement this, we allocate a separate image to record the contributions of paths

where 0 or 1 vertices are generated from the eye. We call this the light image, as opposed

to the eye image that holds the contributions of paths where t � 2 eye subpath vertices are

used.

To accumulate each sample, we first determine the point (u0; v0) on the image plane that

corresponds to the ray ys�1!z0. We then compute the contribution Cs;1 of this sample as
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usual, and record it at the location (u0; v0). This is done by finding all of the pixels whose

filter value hj(u0; v0) is non-zero, and updating the pixel values ILj of the light image using

ILj  ILj + hj(u
0; v0)Cs;1 :

Note that the estimate I(u; v) at the current image point is not affected by this calculation.

Also note that it is not necessary to store the light and eye images in memory (although this

is what is done in our implementation). The eye image can be sampled and written to disk

in scanline order, while the light image can be handled by repeatedly accumulating a fixed

number of samples in memory, sorting them in scanline order, and merging them with an

image on disk.

When the algorithm has finished, the final estimate for each pixel has the form

Ij � (jDj =N) ILj + IEj ;

where jDj is the area of the image region, N is the total number of bidirectional samples

that were taken, and IEj is the estimate for pixel j from the eye image (sampled and filtered

as described in Section 10.3.1). Note that the eye and light images are filtered differently:

the eye image is normalized at each pixel by dividing by the sum of the filter weights, while

the light image is not (see equations (10.11) and (10.10) respectively). Thus the final pixel

values of the light image are determined by the sample density as well as the sample values;

more samples per pixel correspond to a brighter image.

Note that to evaluate the contributionCs;1 of each sample, we must evaluate the impor-

tance emitted from z0 toward ys�1 (or more precisely, the directional componentW (1)
e of the

importance). The functionW (1)
e is defined so thatZ

D
W (1)

e (z0; !) d�
?

(!)

is equal to the fraction of the image region covered by the points (u; v) that are mapped by

the lens to directions ! 2 D. It is important to realize that this function is not uniform for

most lens models in graphics, since pixels near the center of the image correspond to a set

of rays whose projected solid angle is larger than for pixels near the image boundary.
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10.3.4.4 Zero eye subpath vertices (t = 0)

These samples occur when the light subpath randomly intersects the camera lens. Because

the camera lens is a relatively small target, these samples do not contribute significantly

for most scenes. On the other hand, these samples are very cheap to evaluate (because no

visibility test is required), and can sometimes make the computation more robust. For ex-

ample, this can be an effective sampling strategy for rendering specular reflections of small

or highly directional light sources.

To implement this method, the lens surface must have a physical representation in the

scene (so that it can be intersected by a ray). In particular, this sampling technique cannot

be used for pinhole lens models. As with the case for t = 1 eye subpath vertices, samples

can contribute to any pixel of the image. The image point (u0; v0) is determined from the

ray ys�2!ys�1, and samples are accumulated and filtered in the light image as before.

10.3.5 Handling specular surfaces

Specular surfaces require careful treatment, because the BSDF and the density functions

used for importance sampling both contain Dirac distributions. This is not a problem when

computing the weights �Li and �Ei , since the ratio

fs(xi�3!xi�2!xi�1)
P�?(xi�2!xi�1)

of equation (10.6) is well-defined. Although this ratio cannot be directly evaluated (since

the numerator and denominator both contain a Dirac distribution), it can be returned as a

“weight” when the specular component of the BSDF is sampled.

Similarly, specular surfaces do not cause any problems when computing the unweighted

contribution C�s;t that connects the eye and light subpaths. The specular components of the

BSDF’s can simply be ignored when computing the factor

cs;t = fs(ys�2!ys�1!zt�1)G(ys�1$zt�1) fs(ys�1!zt�1!zt�2) ;

since there is a zero probability that these BSDF’s will have a non-zero specular component
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in the direction of the given connecting edge.5

On the other hand, specular surfaces require careful treatment when computing the

weights ws;t for multiple importance sampling. To compute the densities pi for the other

possible ways of sampling this path, we must evaluate expressions of the form

pi+1
pi

=
P�?(xi�1!xi)G(xi�1$xi)
P�?(xi+1!xi)G(xi+1$xi)

(10.12)

(see equation (10.9)). In this case the denominator may contain a Dirac distribution that is

not matched by a corresponding factor in the numerator.

We handle this problem by introducing a specular flag for each vertex. If the flag is

true, it means that the BSDF and sampling probabilities at this vertex are represented only

up to an unspecified constant of proportionality. That is, the cached values of the BSDF

fs(xi�1 ! xi ! xi+1) and the probability densities P�?(xi ! xi�1) and P�?(xi ! xi+1)

are all considered to be coefficients for a single Dirac distribution � that is shared between

them.6 When applying equation (10.12), we use only the coefficients, and simply keep track

of the fact that the corresponding density also contains a Dirac distribution.

Specifically, consider a path whose connecting edge isxs�1xs. We start with the nomi-

nal probability ps = 1, and compute the relative values of the other pi by applying (10.12)

repeatedly. It is easy to check that a specular vertex at xj causes a Dirac distribution to

appear in the denominator of pj and pj+1, so that these probabilities are effectively zero.

(Notice that these densities correspond to the sampling techniques wherexj is a connecting

vertex.) However, these are the only pi that are affected, since for other values of i the Dirac

distributions in P�?(xj!xj�1) and P�?(xj!xj+1) are canceled by each other.

The end result is particularly simple: we first compute all of the pi exactly as we would

for non-specular vertices, without regard for the fact the some of the densities are actually

coefficients for Dirac distributions. Then for every vertex wherexj is specular, we set pj and

5Even if the connecting edge happened to have a direction for which one of the BSDF’s is specular (a set of
measure zero), the value of the BSDF is infinite and cannot be represented as a real number. Thus we choose
to ignore such paths (by assigning them a weight �s;t = 0), and instead we account for them using one of the
other sampling techniques.

6From another point of view, we can say that BSDF and probability densities are expressed with respect
to a different measure function, one that assigns a positive measure to the discrete direction xi�2!xi�1.
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pj+1 to zero (since these probabilities include a symbolic Dirac distribution in the denom-

inator). Note that these techniques apply equally well to the case of perfectly anisotropic

reflection, where light from a given direction is scattered into a one-dimensional set of out-

going directions. In this case, the unspecified constant of proportionality associated with

the specular flag is a one-dimensional Dirac distribution.

10.3.6 Approximating the weighting functions

Up until now, we have assumed that the densities pi for sampling the current path using

other techniques can be computed exactly (as required to evaluate the weightws;t). How-

ever, there are some situation where it is difficult or impossible to do this; examples will be

given below. In these situations, the solution is to replace the true densities pi with approx-

imations p̂i when evaluating the weights. As long as these approximations are reasonably

good, the optimality properties of the combination strategy being used will not be signifi-

cantly affected. But even if the approximations are bad, the results will at least be unbiased,

since the weighting functions sum to one for any values of the p̂i.7 We now discuss the rea-

sons that approximations are sometimes necessary.

Adaptive sampling is one reason that the exact densities can be difficult to compute.8 For

example, suppose that adaptive sampling is used on the image plane, to take more samples

where the measured variance is high. In this case, it is impossible to compare the densities

for sampling techniques where t � 2 eye vertices are used to those where t � 1, since

the densities for t � 2 depend on the eventual distribution of samples over the image plane

(which has not yet been determined). A suitable approximation in this case is to assume that

the density of samples is uniform across the image.

Similarly there are some direct lighting strategies where approximations are necessary,

because the strategy makes random choices that cannot be determined from the final light

source vertex yd0 . For example, consider the following strategy [Shirley et al. 1996]. First,

7Note that to avoid bias, the unweighted contribution C�s;t must always be evaluated exactly; this part of
the calculation is required for any unbiased Monte Carlo algorithm. The evaluation of C�s;t should never be
a problem, since all the random choices that were used to generate the current path are explicitly available
(including random choices that are cannot be determined from the resulting path itself).

8Note that adaptive sampling can introduce bias, unless two-stage sampling is used [Kirk & Arvo 1991].
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a candidate vertex xi is generated on each light source Si. Next we compute the contribu-

tion that each vertex xi makes to the illuminated point zt�1, under the assumption that the

corresponding visibility ray is not obstructed. Finally, we choose one of the candidatesxi at

random according to its contribution, and return it as the light source vertex yd0 . The prob-

lem with this strategy is that given an arbitrary pointx on a light source, it is very difficult to

evaluate the probability density P d
A (x) with which x is sampled. This is because the sam-

pling procedure makes random choices that are not reflected in the final resultyd0 : namely,

the locations of the other candidate points xi, which are generated and then discarded. To

evaluate the density exactly would require analytic integration over the all possible loca-

tions of the xi. A suitable approximation in this case is to use the conditional probability

A?(xi jSi), i.e. the density for sampling xi given that the light source Si has already been

chosen.

10.4 Reducing the number of visibility tests

To make bidirectional path tracing more efficient, it is important to reduce the number of

visibility tests. The basic algorithm assumes that all of theO(nLnE) contributions are eval-

uated; however, typically most of these contributions are so small that a visibility test is not

justified. In this section, we develop a new technique called efficiency-optimized Russian

roulette that is an effective solution to this problem. We start with an introduction to ordi-

nary Russian roulette and a discussion of its shortcomings. Next, we describe efficiency-

optimized Russian roulette as a general technique. Finally we describe the issues that arise

when applying this technique to bidirectional path tracing.

We consider the following abstract version of the visibility testing problem. Suppose

that we must repeatedly evaluate an estimator of the form

F = C1 + � � �+ Cn ;

where the number of contributionsn is a random variable. We assume that each contribution

Ci can be written as the product of a tentative contribution ti, and a visibility factor vi (which

is either 0 or 1).

The number of visibility tests can be reduced using Russian roulette. We define the
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roulette probability qi to be the probability of testing the visibility factor vi. Each contri-

bution then has the form

Ci =

8<: (1=qi) vi ti with probability qi ;

0 otherwise :

It is easy to verify that E[Ci] = E[vi ti], i.e. this estimator is unbiased.

The main question, of course, is how to choose the roulette probabilities qi. Typically

this is done by choosing a fixed roulette threshold �, and defining

qi = min(1; ti = �) :

Thus contributions larger than � are always evaluated, while smaller contributions are ran-

domly skipped in a way that does not cause bias.

This approach is not very satisfying, however, because the threshold � is chosen arbi-

trarily. If the threshold is chosen too high, then there will be a substantial amount of extra

variance (due to visibility tests that are randomly skipped), while if the threshold is too low,

then many unnecessary visibility tests will be performed (leading to computation times that

are longer than necessary). Russian roulette thus involves a tradeoff, where the reduction

in computation time must be balanced against the corresponding increase in variance.

10.4.1 Efficiency-optimized Russian roulette

In this section, we show how to choose the roulette probabilities qi so as to maximize the

efficiency of the resulting estimator F . Recall that efficiency is defined as

� =
1

�2 T
;

where �2 is the variance of the given estimator, and T is the average computation time re-

quired to evaluate it. We assume the computation time is simply proportional to the number

of rays that are cast (n). Note that n includes all types of rays, not just visibility rays; e.g.

for bidirectional path tracing, it includes the rays that are used to generate the light and eye

subpaths.
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To begin, we consider the effect that qi has on the variance and cost of F . For the vari-

ance, we return to the definition

Ci =

8<: (1=qi) vi ti with probability qi ;

0 otherwise :

We can treat ti as a fixed quantity (since we are only interested in the additional variance

relative to the case qi = 1), and we can also assume that vi = 1 (a conservative assump-

tion, since if vi = 0 then Russian roulette does not add any variance at all). The additional

variance due to Russian roulette can then be written as

V [Ci] = E[C2
i ]� E[Ci]

2

=
h
qi (ti = qi)

2 + (1� qi) 0
i
� t2i

= t2i (1=qi � 1) :

As for the cost, it is easy to see that the number of rays is reduced by 1� qi on average.

Next, we examine how this affects the overall efficiency of F . Here we make an im-

portant assumption: namely, that F is sampled repeatedly, so that estimates of its average

variance �20 and average sample cost n0 can be computed. Then according to the discussion

above, the modified efficiency due to qi can be estimated as

� =
1h

�20 + t2i (1=qi � 1)
i
� (n0 � (1� qi))

: (10.13)

The optimal value of qi is found by taking the derivative of this expression and setting it

equal to zero. After some manipulation, this yields

qi = ti =
q
(�20 � t2i )=(n0 � 1) :

Conveniently, this equation has the same form that is usually used for Russian roulette cal-

culations, where the tentative contribution is compared against a given threshold �. Since

qi is limited to the range (0; 1], the optimal value is

qi = min(1; ti=�)

�where =
q
(�20 � t2i )=(n0 � 1) : (10.14)



320 CHAPTER 10. BIDIRECTIONAL PATH TRACING

However, this choice of the threshold � has two undesirable properties. First, its value

depends on the current tentative contribution ti, so that it must be recalculated for every

sample. Second, there is the possibility that an unusually large sample will have t2i > �20 ,

in which case the formula for � does not make sense (although by returning to the original

expression (10.13), it is easy to verify that the optimal choice in this case is qi = 1).

To avoid these problems, we look for a fixed threshold �� that has the same transition

point at which qi = 1. It is easy to check that qi � 1 if and only if t2i � �20=n0. Thus, the

fixed threshold

�� =
q
�20=n0

leads to Russian roulette being applied to the same set of contributions as the original thresh-

old (10.14).9 Notice that �� is simply the estimated standard deviation per ray.

Summary. Efficiency-optimized Russian roulette consists of the following steps. Given

an estimator F that is sampled a number of times, we keep track of its average variance �20
and average ray count n0. Before each sample is taken we compute the threshold

�� =
q
�20=n0 ;

and apply this threshold to all of the individual contributions ti that require a visibility test.

The roulette probability qi is given by

qi = min(1; ti=�) :

Note that this technique does not maximize efficiency in a precise mathematical sense,

since we have made several assumptions in our derivation. Rather, it should be interpreted

as a heuristic that is guided by mathematical analysis; its purpose is to provide theoretical

insight about parameter values that would otherwise be chosen in an ad hoc manner.

9The roulette probabilities will be slightly different for qi < 1; it is easy to check that �� results in values
of qi that are slightly larger, by a factor between 1 and

p
n0=(n0 � 1). Thus, visibility is tested slightly more

often using the fixed threshold �� than the original threshold �.



10.4. REDUCING THE NUMBER OF VISIBILITY TESTS 321

10.4.2 Implementation

The main requirement for implementing this technique is that we must be able to estimate

the average variance and cost of each sample (i.e. �20 and n0). This is complicated by the

fact that the mean, variance, and sample cost can vary substantially over the image plane.

It is not sufficient to simply compute the variance of all the samples taken so far, since the

average variance of samples over the whole image plane does not reflect the variance at any

particular pixel. For example, suppose that the left half of the current image is white, and

the right half is black. The variance at most pixels might well be zero, and yet the estimated

variance will be large if all the image samples are combined.

Ideally, we would like �20 and n0 to estimate the variance and sample cost within the

current pixel. This could be done by taking samples in random order over the whole image

plane, and storing the location and value of each sample. We could then estimate�20 and n0

at a given point (u; v) by computing the sample variance and average cost of the nearestN0

samples.

In our implementation, we use a simpler approach. The image is sampled in scanline

order, and we estimate �20 and n0 using the last N0 samples (for some fixed value of N0).

Typically we let N0 be the number of samples per pixel; this ensures that all variance and

cost estimates are made using samples from either the current pixel or the one before. (To

ensure that the previous pixel is always nearby, scanlines are rendered in alternating direc-

tions. Alternatively, the pixels could be traversed according to a space-filling curve.)

The calculation of �20 and n0 can be implemented efficiently as follows. Let nj be the

number of rays cast for the j-th sample, and let Fj be its value. We then simply maintain

partial sums of nj , Fj , and F 2
j for the lastN0 samples, and set the Russian roulette threshold

for the current sample to

� =
q
�20 = n0 =

vuutPF 2
j � (1=N0) (

P
Fj)

2P
nj

;

where the sums are over the most recentN0 samples only. (Note that the variance calculation

is not numerically stable in this form, but we have not found this to be a problem.) It is most

efficient to update these sums incrementally, by adding the values for the current sample j

and subtracting the values for sample j�N0. For this purpose, the lastN0 values of Fj and
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nj are kept in an array. We have found the overhead of these calculations to be negligible

compared to ray casting.

An alternative would be to compute a running average of each quantity. This is done

using the update formula

Sj = �xj + (1� �)Sj�1 ;

where � is a small real number that determines how quickly the influence of each sample

drops off with time. (This technique is also known as exponential smoothing.)

10.5 Results

We have compared bidirectional path tracing against ordinary path tracing using the test

scene shown in Figure 10.3. The scene contains a floor lamp, a spotlight, a table, and a

large glass egg. Observe that diffuse, glossy, and pure specular surfaces are all present, and

that most of the room is illuminated indirectly.

Figure 10.3(a) was created by sampling paths up to lengthk = 5 using bidirectional path

tracing, and combining the sampling techniques ps;t using the power heuristic with � = 2

(see Chapter 9). The image is 500 by 500 with 25 samples per pixel. Observe the caustics

on the table, both directly from the spotlight and indirectly from light reflected on the ceil-

ing. The unusual caustic pattern to the left is caused by the square shape of the spotlight’s

emitting surface.

For comparison, Figure 10.3(b) was computed using standard path tracing with 56 sam-

ples per pixel (the same computation time as Figure 10.3(a)). Each path was generated start-

ing from the eye, and direct lighting calculations were used to calculate the contribution at

each vertex. Russian roulette was applied to reduce the number of visibility tests. Caus-

tics were rendered using paths that randomly intersected the light sources themselves, since

these paths would otherwise not be accounted for. (Direct lighting calculations cannot be

used for paths where a light source shines directly on a specular surface.)

Recall that bidirectional path tracing computes a weighted sum of the contributions

made by each sampling technique ps;t. Figure 10.4 is a visualization of how much each

of these techniques contributed toward the final image in Figure 10.3(a). Each row r shows
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(a) Bidirectional path tracing with 25 sam-
ples per pixel

(b) Standard path tracing with 56 samples per
pixel (the same computation time as (a))

Figure 10.3: A comparison of bidirectional and standard path tracing. The test scene con-
tains a spotlight, a floor lamp, a table, and a large glass egg. Image(a) was computed with
bidirectional path tracing, using the power heuristic with� = 2 to combine the samples for
each path length. The image is 500 by 500 with 25 samples per pixel. Image(b) was com-
puted using standard path tracing in the same amount of time (using 56 samples per pixel).

the sampling techniques for a particular path length k = r + 1 (for example, the top row

shows the sampling techniques for paths of length two). The position of each image in its

row indicates how the paths were generated: the s-th image from the left corresponds to

paths with s light source vertices (and similarly, the t-th image from the right of each row

corresponds to paths with t eye subpath vertices). Notice that the complete set of sampling

techniques ps;t is not shown; paths of length k = 1 are not shown because the light sources

are not directly visible, and paths with zero eye or light subpath vertices are not shown be-

cause these images are virtually black (i.e. their weighted contributions are very small for

this particular scene). Thus, the full set of images (for paths up to length 5) would have

one more image on the left and right side of each row, plus an extra row of three images on

the top of the pyramid. (Even though these images are not shown, their contributions are
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included in Figure 10.3(a).)

The main thing to notice about these images is that different sampling techniques ac-

count for different lighting effects in the final image. This implies that most paths are sam-

pled much more efficiently by one technique than the others. For example, consider the

image in the middle of the second row of Figure 10.4, corresponding to the sampling tech-

nique p2;2 (the full-size image is shown in Figure 10.5(a)). These paths were generated by

sampling two vertices starting from the eye, and two vertices starting from a light source.

Overall, this image is brighter than the other images in its row, which implies that samples

from this technique make a larger contribution in general. Yet observe that the glass egg

is completely black, and that the inside of the spot light looks at though it were turned off.

This implies that the paths responsible for these effects were sampled more efficiently (i.e.

with higher probability) by the other two sampling techniques in that row.

As paths get longer and more sampling techniques are used, the effects become much

more interesting. For example, consider the rightmost image of the bottom row in Fig-

ure 10.4 (enlarged in Figure 10.5(b)), which corresponds to paths with five light vertices and

one eye vertex (p5;1). Observe the caustics from the spotlight (especially the long “horns”

stretching to the right), which are due to internal reflections inside the glass egg. This sam-

pling technique also captures paths that are somehow associated with the corners of the room

(where there is a 1=r2 singularity in the integrand), and paths along the silhouette edges of

the floor lamp’s glossy surfaces. Notice that it would be very difficult to take all of these

factors into account if we needed to manually partition paths among the sampling tech-

niques; multiple importance sampling is absolutely essential in order to make bidirectional

path tracing work well.

It is also interesting to observe that the middle images of each row in Figure 10.4 are

brighter than the rest. This implies that for the majority of paths, the best sampling strategy

is to generate an equal number of vertices from both sides. This can be understood in terms

of the diffusing properties of light scattering, i.e. the fact that although the emitted radiance

is quite concentrated, each scattering step spreads the energy more evenly throughout the

scene. The same can be said for the emitted importance function; thus by taking several

steps from the light sources and the eye, we have a bigger “target” when attempting to con-

nect the two subpaths.
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Figure 10.4: This figures shows the weighted contribution that each bidirectional sampling
technique ps;t makes to Figure 10.3(a). Each rowr shows the contributions of the sampling
techniques for a particular path lengthk = r + 1. The position of each image in its row
indicates how the paths were generated: the s-th image from the left in each row uses s
light subpath vertices, while the t-th image from the right uses t eye subpath vertices. (For
example, the top right image usess = 2 light vertices and t = 1 eye vertex, while the bottom
left image uses s = 1 light vertex and t = 5 eye vertices.) Note that these images have been
over-exposed so that their details can be seen; specifically, the images in rowr were over-
exposed by r f-stops. The images were made by simply recording the contributionsCs;t in
a different image for each value ofs and t.
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(a) Two light vertices, two eye vertices (p2;2). (b) Five light vertices, one eye vertex (p5;1).

Figure 10.5: These are full-size images showing the weighted contributions to Fig-
ure 10.3(a) that are due to samples from two particular techniques (p2;2 and p5;1). These
are enlarged versions of the images in Figure 10.4, wherep2;2 is the middle image of the
second row, and p5;1 is the rightmost image of the bottom row.

10.6 Comparison with related work

A similar bidirectional path tracing algorithm has been described independently by Lafor-

tune & Willems [1993, 1994]. This section compares the two frameworks in detail, and

discusses some possible extensions of the algorithms.

The most important difference between our algorithm and Lafortune’s is that the samples

are combined using a provably good strategy. This requires a substantially different theo-

retical basis for the algorithm, in order that multiple importance sampling can be applied.

In particular, the path integral formulation of Chapter 8 makes two essential steps: it ex-

presses light transport in the form of an integration problem, and it provides a well-defined

basis for comparing the probabilities with which different sampling techniques generate the

same path. On the other hand, Lafortune formulates bidirectional path tracing as a recursive
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evaluation of the global reflectance distribution function (GRDF).10 This is certainly a valid

theoretical basis for bidirectional path tracing; however, it does not express the problem in

the form needed for multiple importance sampling.

Another difference is that our framework includes several important estimators that are

missing from Lafortune’s. These include the estimators where zero or one vertices are gen-

erated from the eye, and also the naive path tracing estimator where zero vertices are gener-

ated from the light source. These estimators are very important for generating caustics and

other “difficult” transport paths, and help to make the calculations more robust. We have

found that the estimator with one eye vertex (t = 1) is surprisingly useful for low-variance

rendering in general (it is essentially a particle tracing technique where samples are recorded

directly in the image). Also note that although Lafortune describes the estimator with one

light vertex (s = 1), his framework does not allow the use of direct lighting techniques.

This optimization is very important for making bidirectional path tracing competitive with

standard path tracing on “normal” scenes, i.e. those where most surfaces are directly lit.

More generally, the two frameworks have a different conception of what bidirectional

path tracing is. Lafortune describes it as a specific technique for generating a path from the

eye, a path from the light sources, and connecting all pairs of vertices via shadow rays. On

the other hand, we view bidirectional path tracing as a family of sampling techniques for

paths. The samples from each technique can be generated in any way desired; the specific

strategy of connecting every prefix of a light subpath to every suffix of an eye subpath is

simply an optimization that allows these samples to be generated more efficiently. Any other

desired method of generating the paths could be used instead, e.g. by connecting several

different eye subpaths to the same light subpath, or by maintaining a “pool” of eye and light

subpaths and making random connections between them, or by generating the paths in more

than two pieces (by sampling one or more pieces starting from the middle).

A minor difference between the two frameworks is that Lafortune assumes that light

sources are sampled according to emitted power, and that materials are sampled according

to the BSDF (exactly). Our formulation of bidirectional path tracing allows the use of ar-

bitrary probability distributions to choose each vertex. The direct lighting strategy applied

10The “GRDF” is simply a new name for the kernel of the solution operator S defined by equation (4.16).



328 CHAPTER 10. BIDIRECTIONAL PATH TRACING

to the case s = 1 is a simple example of why this is useful. Other possibilities include:

selecting certain scene objects for extra sampling (e.g. portals between adjacent rooms, or

small specular objects); using non-local sampling techniques to generate chains of spec-

ular vertices (see Section 8.3.4); or using an approximate radiance/importance solution to

increase the sample densities in bright/important regions of the scene. Bidirectional path

tracing is designed to be used in conjunction with these other sampling techniques, not to

replace them.

Another minor difference is that our development is in terms of general linear measure-

ments Ij, rather being limited to pixel estimates only. This means that bidirectional path

tracing could be used to compute a view-independent solution, where the equilibrium radi-

ance function L is represented as a linear combination of basis functions fB1; : : : ; BMg.11

Each measurement Ij is simply the coefficient of Bj , and is defined by

Ij = hW (j)
e ; Li

whereW (j)
e = ~Bj is the corresponding dual basis function.12 In this situation, each “eye sub-

path” starts from a surface of the scene rather than the camera lens. By using a fixed number

of eye subpaths for each basis function, we can ensure that every coefficient receives at least

some minimum number of samples. This bidirectional approach is an unexplored alterna-

tive to particle tracing for view-independent solutions, and may help to solve the problem

of surface patches that do not receive enough particles. (Note that particle tracing itself cor-

responds to the case where t = 0, and is included as a special case of this framework.)

Lafortune & Willems [1995b] has described an alternative approach to reducing the

number of visibility tests. His methods are based on standard Russian roulette and do not

attempt to maximize efficiency. We have not made a detailed numerical comparison of the

two approaches.

11Typically this representation is practical only when most surfaces are diffuse, so that the directional de-
pendence of L(x; !) does not need to be represented.

12The dual basis functions satisfy h ~Bi; Bji = 1 when i = j, and h ~Bi; Bji = 0 otherwise. For example,
when fB1; : : : ; BMg is an orthonormal basis, then ~Bj = Bj .
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10.7 Conclusions

Bidirectional path tracing is an effective rendering algorithm for many kinds of indoor

scenes, with or without strong indirect lighting. By using a range of different sampling tech-

niques that take into account different factors of the integrand, it can render a wide variety

of lighting effects efficiently and robustly. The algorithm is unbiased, and supports the same

range of geometry and materials as standard path tracing.

It is possible to construct scenes where bidirectional path tracing improves on the vari-

ance of standard path tracing by an arbitrary amount. To do so, it suffices to increase the

intensity of the indirect illumination. In the test case of Figure 10.3, for example, the vari-

ance of path tracing increases dramatically as we reduce the size of the directly illuminated

area on the ceiling, while bidirectional path tracing is relatively unaffected.

On the other hand, one weakness of the basic bidirectional path tracing algorithm is that

there is no intelligent sampling of the light sources. For example, if we were to simulate

the lighting in a single room of a large building, most of the light subpaths would start on a

light source in a room far from the portion of the scene being rendered, and thus would not

contribute. This suggests the idea of sampling light sources according to some estimate of

their indirect lighting contribution. Note that methods have already been developed to ac-

celerate the direct lighting component when there are many lights, for example by recording

information in a spatial subdivision [Shirley et al. 1996]. However, these methods do not

help with choosing the initial vertex of a light subpath. In general, we would like to choose

a light source that is nearby physically, but is not necessarily directly visible to the viewer.

Similarly, bidirectional path tracing is not suitable for outdoor scenes, or for scenes

where the light sources and the viewer are separated by difficult geometry (e.g. a door

slightly ajar). In these cases the independently chosen eye and light subpaths will proba-

bly not be visible to each other.

Finally, note that bidirectional path tracing can miss the contributions of some paths if

point light sources and perfectly specular surfaces are allowed. (This is true of standard

path tracing as well.) For example, the algorithm is not capable of rendering caustics from

a point source, when viewed indirectly through a mirror using a pinhole lens. This is be-

cause bidirectional path tracing is based on local path sampling techniques and thus it is
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will miss the contributions of paths that do not contain two adjacent non-specular vertices

(see Section 8.3.3). However, recall that such paths cannot exist if a finite-aperture lens is

used, or if only area light sources are used, or if there are no perfectly specular surfaces in

the given scene. Thus bidirectional path tracing is unbiased for all physically valid scene

models.



Chapter 11

Metropolis Light Transport

We propose a new Monte Carlo algorithm for solving the light transport problem, called Me-

tropolis light transport (MLT). It is inspired by the Metropolis sampling method from com-

putational physics, which is often used for difficult sampling problems in high-dimensional

spaces. We show how the Metropolis method can be combined with the path integral frame-

work of Chapter 8, in order to obtain an effective importance algorithm for the space of

paths.

Paths are sampled according to the contribution they make to the ideal image, by means

of a random walk through path space. Starting with a single seed path, we generate a se-

quence of light transport paths by applying random mutations (e.g. adding a new vertex to

the current path). Each mutation is accepted or rejected with a carefully chosen probability,

to ensure that paths are sampled according to the contribution they make to the ideal image.

This image is then estimated by sampling many paths, and recording their locations on the

image plane.

The resulting algorithm is unbiased, handles general geometric and scattering models,

uses little storage, and can be orders of magnitude more efficient than previous unbiased

approaches. It performs especially well on problems that are usually considered difficult,

e.g. those involving bright indirect light, small geometric holes, or glossy surfaces. Further-

more, it is competitive with previous unbiased algorithms even for scenes with relatively

simple illumination.

We start with a high-level overview of the MLT algorithm in Section 11.1, and then we

331
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describe its components in detail. Section 11.2 summarizes the classical Metropolis sam-

pling algorithm, as developed in computational physics. Section 11.3 shows how to com-

bine this idea with the path integral framework of Chapter 8, to yield an effective light trans-

port algorithm. Section 11.4 discusses the properties that a good mutation strategy should

have, and describes the strategies that we have implemented. In Section 11.5, we describe

several refinements to the basic algorithm that can make it work more efficiently. Results

are presented in Section 11.6, followed by conclusions and suggested extensions in Sec-

tion 11.7. To our knowledge, this is the first application of the Metropolis method to trans-

port problems of any kind.

11.1 Overview of the MLT algorithm

To make an image, we sample paths from the light sources to the lens. Each path �x is a

sequence x0x1 : : :xk of points on the scene surfaces, where k � 1 is the length of the path

(the number of edges). The numbering of the vertices along the path follows the direction

of light flow.

We will show how to define a function f on paths, together with a measure �, such thatR
D f(�x) d�(�x) represents the power flowing from the light sources to the image plane along

a set of paths D. We call f the image contribution function, since f(�x) is proportional to

the contribution made to the image by light flowing along �x. (It is closely related to the

measurement contribution function fj (described in Chapter 8), which specifies how much

each path contributes to a given pixel value.)

Our overall strategy is to sample paths with probability proportional to f , and record the

distribution of paths over the image plane. To do this, we generate a sequence of paths �X0,
�X1, : : :, �XN , where each �Xi is obtained by a random mutation to the path �Xi�1. The muta-

tions can have almost any desired form, and typically involve adding, deleting, or replacing

a small number of vertices on the current path.

However, each mutation has a chance of being rejected, depending on the relative con-

tributions of the old and new paths. For example, if the new path passes through a wall,

the mutation will be rejected (by setting �Xi = �Xi�1). The Metropolis framework gives a

recipe for determining the acceptance probability for each mutation, such that in the limit
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function METROPOLIS-LIGHT-TRANSPORT()

�x INITIALPATH()

image f array of zeros g
for i 1 to N

�y MUTATE(�x)

a ACCEPTPROB(�x! �y)

if RANDOM() < a

then �x �y

RECORDSAMPLE(image; �x)

return image

Figure 11.1: Pseudocode for the Metropolis light transport algorithm.

the sampled paths �Xi are distributed according to f (this is the stationary distribution of the

random walk).

As each path is sampled, we update the current image (which is stored in memory as a

two-dimensional array of pixel values). To do this, we find the image location (u; v) corre-

sponding to each path sample �Xi, and update the values of those pixels whose filter support

contains (u; v). All samples are weighted equally; the light and dark regions of the final

image are caused by differences in the number of samples recorded there.1

The basic structure of the MLT algorithm is summarized in Figure 11.1. We start with

an image of zeros, and a single path �x that contributes to the desired image. We then re-

peatedly propose a mutation to the current path, randomly decide whether or not to accept

it (according to a carefully chosen probability), and update the image with a sample at the

new path location.

The key advantage of the Metropolis approach is that the path space can be explored

locally, by favoring mutations that make small changes to the current path. This has several

consequences. First, the average cost per sample is small (typically only one or two rays).

1At least, this is true of the basic algorithm; in Section 11.5, we describe optimizations that allow the sam-
ples to be weighted differently.
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Second, once an important path is found, the nearby paths are explored as well, thus amor-

tizing the expense of finding such paths over many samples. Third, the mutation set is easily

extended. By constructing mutations that preserve certain properties of the path (e.g. which

light source is used) while changing others, we can exploit various kinds of coherence in

the scene. It is often possible to handle difficult lighting problems efficiently by designing

a specialized mutation in this way.

In the remainder of this chapter, we will describe the MLT algorithm in more detail.

11.2 The Metropolis sampling algorithm

In 1953, Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller introduced an algorithm for

handling difficult sampling problems in computational physics [Metropolis et al. 1953]. It

was originally used to predict the material properties of liquids, but has since been applied

to many areas of physics and chemistry.

The method works as follows (our discussion is based on Kalos & Whitlock [1986]).

We are given a state space 
, and a non-negative function f : 
! IR+. We are also given

some initial state �X0 2 
. The goal is to generate a random walk �X0, �X1, : : : such that �Xi

is eventually distributed proportionally to f , no matter which state �X0 we start with. Unlike

most sampling methods, the Metropolis algorithm does not require that f must integrate to

one.

Each sample �Xi is obtained by making a random change to �Xi�1 (in our case, these are

the path mutations). This type of random walk, where �Xi depends only on �Xi�1, is called a

Markov chain. We letK(�x! �y) denote the probability density of going to state �y, given that

we are currently in state �x. This is called the transition function, and satisfies the conditionZ


K(�x! �y) d�(�y) = 1 for all �x 2 
 :

11.2.1 The stationary distribution

Each �Xi is a random variable with some density function pi, which is determined from pi�1

by

pi(�x) =
Z


K(�y! �x) pi�1(�y) d�(�y) : (11.1)
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With mild conditions on K (discussed further in Section 11.4.1), the pi will converge to a

unique density function p�, called the stationary distribution. Note that p� does not depend

on the initial state �X0.

To give a simple example of this idea, consider a state space consisting of n2 vertices

arranged in an n � n grid. Each vertex is connected to its four neighbors by edges, where

the edges “wrap” from left to right and top to bottom as necessary (i.e. with the topology of

a torus). A transition consists of randomly moving from the current vertex �x to one of the

neighboring vertices �y with a probability of 1=5 each, and otherwise staying at vertex �x.

Suppose that we start at an arbitrary vertex �X0 = �x0, so that p0(�x) = 1 for �x = �x0,

and p0(�x) = 0 otherwise. Then after one transition, �X1 is distributed with equal probability

among �x0 and its four neighbors. Similarly, �X2 is randomly distributed among 13 vertices

(although not with equal probability). If this process is continued, eventually pi converges

to a fixed density function p�, which necessarily satisfies

p�(�x) =
X
�y

K(�y! �x) p�(�y) :

For this example, p� is the uniform density p�(�x) = 1=n2.

11.2.2 Detailed balance

In a typical physical system, the transition function K is determined by the physical laws

governing the system. Given some arbitrary initial state, the system then evolves towards

equilibrium through transitions governed by K.

The Metropolis algorithm works in the opposite direction. The idea is to invent or con-

struct a transition functionK whose resulting stationary distribution will be proportional to

the given f , and which will converge to f as quickly as possible. The technique is simple,

and has an intuitive physical interpretation called detailed balance.

Given �Xi�1, we obtain �Xi as follows. First, we choose a tentative sample �X 0
i, which can

be done in almost any way desired. This is represented by the tentative transition function

T , where T (�x! �y) gives the probability density that �X 0
i = �y given that �Xi�1 = �x.
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The tentative sample is then either accepted or rejected, according to an acceptance prob-

ability a(�x! �y) which will be defined below. That is, we let

�Xi =

8<: �X 0
i with probability a( �Xi�1! �X 0

i) ;

�Xi�1 otherwise :
(11.2)

To see how to set a(�x! �y), suppose that we have already reached equilibrium, i.e. pi�1

is proportional to f . We must define K(�x! �y) such that the equilibrium is maintained. To

do this, consider the density of transitions between any two states �x and �y. From �x to �y,

the transition density is proportional to f(�x)T (�x! �y) a(�x! �y), and a similar statement

holds for the transition density from �y to �x. To maintain equilibrium, it is sufficient that

these densities be equal:

f(�x)T (�x! �y) a(�x! �y) = f(�y)T (�y! �x) a(�y! �x) ; (11.3)

a condition known as detailed balance. We can verify that if pi�1 / f and condition (11.3)

holds, then equilibrium is preserved:

pi(�x) = pi�1(�x)
�
1�

Z


T (�x! �y) a(�x! �y) d�(�y)

�
+
Z


pi�1(�y)T (�y! �x) a(�y! �x) d�(�y)

= pi�1(�x) +
Z


[pi�1(�x)T (�x! �y) a(�x! �y) � pi�1(�y)T (�y! �x) a(�y! �x)] d�(�y)

= pi�1(�x) :

Thus the unique equilibrium distribution must be proportional to f .

11.2.3 The acceptance probability

Recall that f is given, and T was chosen arbitrarily. Thus, equation (11.3) is a condition

on the ratio a(�x! �y)=a(�y! �x). In order to reach equilibrium as quickly as possible, the

best strategy is to make a(�x! �y) and a(�y! �x) as large as possible [Peskun 1973], which

is achieved by letting

a(�x! �y) = min

(
1;
f(�y)T (�y! �x)

f(�x)T (�x! �y)

)
: (11.4)
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According to this rule, transitions in one direction are always accepted, while in the other

direction they are sometimes rejected, such that the expected number of moves each way is

the same.

11.2.4 Comparison with genetic algorithms

The Metropolis method differs from genetic algorithms [Goldberg 1989] in several ways.

First, they have different purposes: genetic algorithms are intended for optimization prob-

lems, while the Metropolis method is intended for sampling problems (there is no search

for an optimum value). Genetic algorithms work with a population of individuals, while

Metropolis stores only a single current state. Finally, genetic algorithms have much more

freedom in choosing the allowable mutations, since they do not need to compute the condi-

tional probability of their actions.

Beyer & Lange [1994] have applied genetic algorithms to the problem of integrating

radiance over a hemisphere. They start with a population of rays (actually directional sam-

ples), which are evolved to improve their distribution with respect to the incident radiance

at a particular surface point. However, their methods do not seem to lead to a feasible light

transport algorithm.

11.3 Theoretical formulation of Metropolis light transport

To complete the MLT algorithm outlined in Section 11.1, there are several tasks. First, we

must formulate the light transport problem so that it fits the Metropolis framework. Second,

we must show how to avoid start-up bias, a problem that affects many Metropolis applica-

tions. Most importantly, we must design a suitable set of mutations on paths, such that the

Metropolis method will work efficiently. In this section we deal with the first two problems,

by showing how the Metropolis method can be adapted to estimate all of the pixel values

of an image simultaneously and without bias.

Recall that according to the path integral framework of Chapter 8, each measurementIj

can be expressed in the form

Ij =
Z


fj(�x) d�(�x) ;
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where
 is the set of all transport paths, � is the area-product measure, andfj is the measure-

ment contribution function. In our case, the measurements Ij are pixel values. This implies

that each integrand fj has the form

fj(�x) = hj(�x) f(�x) ; (11.5)

where hj represents the filter function for pixel j, and f represents all the other factors of fj

(which are the same for all pixels). In physical terms,
R
D f(�x) d�(�x) represents the radiant

power received by the image region of the image plane along a setD of paths.2 Note that

hj depends only on the last edge xk�1xk of the path, which we call the lens edge.

An image can now be computed by sampling N paths �Xi according to some density

function p, and using the identity

Ij = E

"
1

N

NX
i=1

hj( �Xi) f( �Xi)

p( �Xi)

#
: (11.6)

Notice that if we could take samples according to the density function p = (1=b) f (where

b is the normalization constant
R

 f(�x) d�(�x)), the estimate for each pixel would simply be

Ij = E

"
1

N

NX
i=1

b hj( �Xi)

#
:

This equation can be evaluated efficiently for all pixels at once, since each path contributes

to only a few pixel values.

This approach requires the evaluation of b, and the ability to sample from a density func-

tion proportional to f . Both of these are hard problems. For the second part, the Metropolis

algorithm will help; however, the samples �Xi will have the desired distribution only in the

limit as i!1. In typical Metropolis applications, this is handled by starting in some fixed

initial state �X0, and discarding the first k samples until the random walk has approximately

converged to the equilibrium distribution. However, it is often difficult to know how large

k should be. If it is too small, then the samples will be strongly influenced by the choice of

the initial path �X0, which will bias the results (this is called start-up bias).

2We define f(�x) to be zero for paths that do not contribute to any pixel value (so that we do not waste any
samples there).
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11.3.1 Eliminating start-up bias

We show how the MLT algorithm can be initialized to avoid start-up bias. The idea is to

start the walk in a random initial state �X0, which is sampled from some convenient density

function p0 on paths (we use bidirectional path tracing for this purpose). To compensate for

the fact that p0 is not the desired equilibrium distribution p� = (1=b) f , the sample �X0 is

assigned a weight:

W0 = f( �X0) = p0( �X0) :

Thus after one sample, the estimate for pixel j is W0 hj( �X0) (see equation (11.6). All of

these quantities are computable since �X0 is known.

Additional samples �X1, �X2, : : :, �XN are generated by mutating �X0 according to the Me-

tropolis algorithm (using f as the target density). Each of the �Xi has a different density

function pi, which only approaches the stationary distribution p� = (1=b) f as i!1. To

avoid bias, however, it is sufficient to assign these samples the same weight Wi = W0 as

the original sample, and use the following estimate for pixel j:

Ij = E

"
1

N

NX
i=1

Wi hj( �Xi)

#
: (11.7)

We give a proof that this estimate is unbiased in Appendix 11.A. However, the follow-

ing explanation may give some additional insight. Recall that the initial path is a random

variable, so that the expected value in (11.7) is an average over all possible values of �X0.

Thus, consider a large group of initial paths �X0;j obtained by sampling p0 many times. If p0

is the stationary distribution (1=b) f , and all the paths are weighted equally, then this group

of paths is in equilibrium: the distribution of paths does not change as mutations are applied.

Now suppose that we again sample a large group of initial paths, this time from an arbitrary

density function p0, and that we assign each path the weight f( �X0;j)=p0( �X0;j). Even though

this does not give the desired distribution of paths, the distribution of weight is proportional

to the desired equilibrium f . The equilibrium is preserved as the paths are mutated (just as

in the first case), which leads to an unbiased estimate of Ij.

This technique for removing start-up bias is not specific to light transport. However, it

requires the existence of an alternative sampling method p0, which is difficult to obtain in
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some cases. (Often the reason for using the Metropolis method in the first place is the lack

of suitable alternatives.)

11.3.2 Initialization

In practice, initializing the MLT algorithm with a single seed path does not work well. If

we generate only one path �X0 (e.g. using bidirectional path tracing), it is likely thatW0 = 0

(for example, the path may go through a wall). Since all subsequent samples use the same

weightWi = W0, this would lead to a completely black final image. Conversely, the initial

weight W0 on other runs may be much larger than expected. This does not contradict the

fact that the algorithm is unbiased, since bias refers only to the expected value on a particular

run.

The obvious solution is to run n copies of the algorithm in parallel (with different ran-

dom initial paths), and accumulate all the samples into one image. The strategy we have

implemented has two phases. First we sample a moderately large number of paths �X0;1,

: : :, �X0;n, and let W0;1, : : :, W0;n be the corresponding weights. We then select a represen-

tative sample of n0 of these paths (where n0 is much smaller than n), and assign them equal

weights. (The reasons for doing this are discussed below.) These paths are used as indepen-

dent seeds for the Metropolis phase of the algorithm.

Specifically, each representative path �X 0
0;i is chosen from among the initial paths �X0;j

according to discrete probabilities that are proportional toW0;j. All of these paths �X 0
0;i are

assigned the same weight:

W 0
0;i =

1

n

nX
j=1

W0;j :

It is straightforward to show that this resampling procedure is unbiased.3

The value of n is determined indirectly, by generating a fixed number of eye and light

subpaths (e.g. 10 000 pairs), and considering all the ways to link the vertices of each pair.

Note that it is not necessary to save all of these paths in order to apply the resampling step;

they can be regenerated by restarting the random number generator with the same seed.

3The resampling can be optimized slightly by choosing the new paths with equal spacing in the cumulative
weight distribution of the �X0;j ; this ensures that the same path is not selected twice, unless its weight is at least
a fraction 1=n0 of the total.
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It is often reasonable to choose n0 = 1 (i.e. to initialize the Metropolis algorithm with

a single representative seed path). In this case, the purpose of sampling n paths in the first

phase is to estimate the mean value ofW0, which determines the absolute image brightness.4

If the image is desired only up to a constant scale factor, then the first phase can be termi-

nated as soon as a single path with f(�x) > 0 is found. The main reasons for retaining more

than one seed path (i.e. for choosingn0 > 1) are to implement convergence tests (see below)

or lens subpath mutations (see Section 11.4.4).

Effectively, we have separated the image computation into two subproblems. The ini-

tialization phase estimates the overall image brightness, while the Metropolis phase deter-

mines the relative pixel intensities across the image. The effort spent on each phase can be

decided independently. In practice, however, the initialization phase is a negligible part of

the total computation time. (Observe that even if the algorithm is initialized using 100 000

bidirectional samples, this would represent less than one sample per pixel for an image of

reasonable size.)

11.3.3 Convergence tests

Another reason to run several copies of the algorithm in parallel is that it facilitates con-

vergence testing. (We cannot apply the usual variance tests to the samples generated by a

single run of the Metropolis algorithm, since consecutive samples are highly correlated.)

To test for convergence, the Metropolis phase can be started with n0 independent seed

paths, whose contributions to the image are recorded separately (in the form of n0 separate

images). This is done only for a small representative fraction of the pixels, since it would be

too expensive to maintain many copies of a large image. For each such pixel, we thus have

available n0 independent, unbiased samples of its true value. (Each sample value changes as

the algorithm proceeds, since it depends on how many path mutations have contributed to

the specified pixel of a particular test image.) The sample variance of these pixels can then

be tested periodically, until the results are within prespecified bounds. Notice that unlike

most graphics problems, the number of independent samples per pixel remains constant (at

4More precisely, E[W0] =
R
f = b, which represents the total power falling on the image region of the

film plane.
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n0) as the algorithm proceeds — it is the values of the samples that change.

If the radiance values that contribute to a given pixel can be bounded in advance, more

advanced convergence techniques could in theory be applied. In particular Dagum et al.

[1995] have proposed an algorithm that can estimate the expected value of a random vari-

able Z to within a factor of (1 + �) with a guaranteed probability of at least 1 � �. They

assume only that Z is bounded within a known range [0;M ]. Furthermore, the number of

independent samples used by their algorithm is proven to optimal for every given �, �, and

Z to within a constant factor. In the case of the Metropolis light transport, observe that an

arbitrary number of independent samples can be generated by restarting the algorithm with

new seed paths. However, once again it seems impractical to apply this technique to every

pixel of an image.

These convergence testing procedures add a small amount of bias, but this is inevitable

for any technique that makes guarantees about the quality of its results. Note that the first

technique we described bounds the sample variance of the test pixels, while the second tech-

nique bounds the actual error. Also note that unbiased techniques such as two-stage adaptive

sampling [Kirk & Arvo 1991] do not make any guarantees about the final image quality, due

to the possibility of outlying samples during the second stage of sampling.

Finally, note that in all of our tests the number of mutations was specified manually, both

to eliminate bias and so that we would have explicit control over the computation time.

11.3.4 Spectral sampling

Our discussion so far has been limited to monochrome images, but the modifications for

color are straightforward.

We represent BSDF’s and light sources as point-sampled spectra (although it would be

easy to use some other representation). Given a path, we compute the energy delivered to

the lens at each of the sampled frequencies. The resulting spectrum is then converted to a

tristimulus color value (we use RGB) before it is accumulated in the current image.

The image contribution function f is redefined to compute the luminance of the corre-

sponding path spectrum. This implies that path samples will be distributed according to the

luminance of the ideal image, and that the luminance of every filtered image sample will be
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the same (irrespective of its color). Effectively, each color component ci is sampled with an

estimator of the form ci=p, where p is proportional to the luminance.

Since the human eye is substantially more sensitive to luminance differences than other

color variations, this choice helps to minimize the apparent noise.5

11.4 Good mutation strategies

The main disadvantage of the Metropolis method is that consecutive samples are correlated,

which leads to higher variance than we would get with independent samples. This can hap-

pen either because the proposed mutations to the paths are very small, or because too many

mutations are rejected.

Correlation can be minimized by choosing a suitable set of path mutations. We first con-

sider some of the properties that these mutations should have, in order to minimize the error

in the final image. Then we describe three specific mutation strategies that we have imple-

mented, namely bidirectional mutations, perturbations, and lens subpath mutations. These

strategies are designed to satisfy different subsets of the goals mentioned below; our imple-

mentation uses a mixture of all three (as we will discuss in Section 11.4.5).

11.4.1 Desirable mutation properties

In this section, we describe the properties that a good mutation strategy should have. These

are the main factors that need to be considered when a mutation strategy is designed.

High acceptance probability. If the acceptance probability a(�x! �y) is very small on the

average, there will be long path sequences of the form �x, �x, : : :, �x due to rejections. This

leads to many samples at the same point on the image plane, and appears as noise.

5Another way to handle color is to have a separate run for each frequency. However, this is inefficient
(we get less information from each path) and leads to unnecessary color noise. Note that it is not necessary
to have a separate run at each wavelength in order to handle dispersion (i.e. a refractive index that varies with
wavelength). It can be handled perfectly well in the model described above, by randomly sampling a spectral
band only when a dispersive material is actually encountered (and using a weight of the usual form f=p).
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Figure 11.2: If only additions and deletions of a single vertex are allowed, then paths cannot
mutate from one side of the barrier to the other.

Large changes to the path. Even if the acceptance probability for most mutations is high,

samples will still be highly correlated if the proposed path mutations are too small. It is

important to propose mutations that make substantial changes to the current path, such as

increasing the path length, or replacing a specular bounce with a diffuse one.

Ergodicity. If the allowable mutations are too restricted, it is possible for the random walk

to get “stuck” in some subregion of the path space (i.e. one where the integral of f is less

than b). To see how this can happen, consider Figure 11.2, and suppose that we only allow

mutations that add or delete a single vertex. In this case, there is no way for the path to

mutate from one side of the barrier to the other, and we will miss part of the path space.

Technically, we want to ensure that the random walk converges to an ergodic state. This

means that no matter how �X0 is chosen, it converges to the same stationary distribution p�.

To do this, it is sufficient to ensure that T (�x! �y) > 0 for every pair of states �x, �y with

f(�x) > 0 and f(�y) > 0. In our implementation, this is always true (see Section 11.4.2).

Changes to the image location. To minimize correlation between the sample locations

on the image plane, it is desirable for mutations to change the lens edge xk�1xk. Mutations
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to other portions of the path do not provide information about the path distribution over the

image plane, which is what we are most interested in.

Stratification. Another potential weakness of the Metropolis approach is the random dis-

tribution of samples across the image plane. This is commonly known as the “balls in bins”

effect: if we randomly throw n balls into n bins, we cannot expect one ball per bin. (Many

bins may be empty, while the fullest bin is likely to contain �(log n) balls.) In an image,

this unevenness in the distribution produces noise.

For some kinds of mutations, this effect is difficult to avoid. However, it is worthwhile

to consider mutations for which some form of stratification is possible.

Low cost. It is also desirable that mutations be inexpensive. Generally, this is measured

by the number of rays cast, since the other costs are relatively small.

We now consider some specific mutation strategies that address these goals. Note that

the Metropolis framework allows us greater freedom than standard Monte Carlo algorithms

in designing sampling strategies. This is because we only need to compute the conditional

probability T (�x! �y) of each mutation: in other words, the mutation strategy is allowed to

depend on the current path.

11.4.2 Bidirectional mutations

Bidirectional mutations are the foundation of the MLT algorithm. They are responsible for

making large changes to the path, such as modifying its length. The basic idea is simple:

we choose a subpath of the current path �x, and replace it with a different subpath. We divide

this into several steps.

First, the subpath to delete is chosen. Given the current path �x = x0 : : :xk, we assign a

probability pd[l; m] to the deletion of each subpath xl : : :xm. The endpoints of this subpath

are not included, so that xl : : :xm consists of m � l edges and m � l � 1 vertices (with

indices satisfying�1 � l < m � k + 1).

In our implementation, the deletion probability pd[l; m] is a product two factors. The

first factor pd;1 depends only on the subpath length (i.e. the number of edges); its purpose

is to favor the deletion of short subpaths. (These are less expensive to replace, and yield
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mutations that are more likely to be accepted, since they make a smaller change to the cur-

rent path). The purpose of the second factor pd;2 is to avoid mutations with low acceptance

probabilities; it will be described in Section 11.5.

The density function pd[l; m] is normalized and sampled to determine the deleted sub-

path. At this point, �x has been split into two (possibly empty) pieces x0 : : :xl and xm : : :xk.

To complete the mutation, we must generate a new subpath that connects these two pieces.

We start by choosing the number of vertices l0 and m0 to be added to each side. This

is done in two steps: first, we choose the new subpath length, ka = l0 + m0 + 1. It is de-

sirable that the old and new subpath lengths be similar, since this will tend to increase the

acceptance probability (i.e. it represents a smaller change to the path). Thus we choose ka

according to a discrete distribution pa;1 which assigns a high probability to keeping the total

path length the same. Then, we choose specific values for l0 andm0 (subject to the condition

l0 +m0 + 1 = ka), according to another discrete distribution pa;2 that assigns equal proba-

bility to each candidate value of l0. For convenience, we let pa[l0; m0] denote the product of

pa;1 and pa;2.

To sample the new vertices, we add them one at a time to the appropriate subpath. This

involves first sampling a direction according to the BSDF at the current subpath endpoint

(or a convenient approximation, if sampling from the exact BSDF is difficult), followed by

casting a ray to find the first surface intersected. An initially empty subpath is handled by

choosing a random point on a light source or the lens as appropriate.

Finally, we join the new subpaths together, by testing the visibility between their end-

points. If the path is obstructed, the mutation is immediately rejected. This also happens if

any of the ray casting operations failed to intersect a surface.

Notice that there is a non-zero probability of throwing away the entire path, and gen-

erating a new one from scratch. This automatically ensures the ergodicity condition (Sec-

tion 11.4.1), so that the algorithm can never get “stuck” forever in a small subregion of the

path space. (However, if the mutations are poorly chosen then the algorithm might get stuck

for a long finite time.)

Parameter values. The following values have provided reasonable results on our test

cases. For the probability pd;1[kd] of deleting a subpath of length kd = m � l, we use
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pd;1[1] = 0:25, pd;1[2] = 0:5, and pd;1[kd] = 2�kd for kd � 3. For the probability

pa;1[ka] of adding a subpath of length ka, we use pa;1[kd] = 0:5, pa;1[kd � 1] = 0:15, and

pa;1[kd � j] = 0:2(2�j) for j � 2.

11.4.2.1 Evaluation of the acceptance probability.

Observe that the acceptance probability a(�x! �y) from (11.4) can be written as the ratio

a(�x! �y) =
R(�x! �y)

R(�y! �x)
; where R(�x! �y) =

f(�y)

T (�x! �y)
: (11.8)

The form of R(�x! �y) is very similar to the sample value f(�y)=p(�y) that is computed by

standard Monte Carlo algorithms; we have simply replaced an absolute probability p(�y) by

a conditional probability T (�x! �y).

Specifically, T (�x ! �y) is the product of the discrete probability pd[l; m] for deleting

the subpath xl : : :xm, and the probability density for generating the l0 + m0 new vertices

of �y. To calculate the latter, we must take into account all l0 + m0 + 1 ways that the new

vertices can be split between subpaths generated from xl and xm. (Although these vertices

were generated by a particular choice of l0, the probability T (�x! �y) must take into account

all of these ways of going from state �x to �y.) Note that the unchanged portions of �x do not

contribute to the calculation of T (�x! �y). It is also convenient to ignore the factors of f(�x)

and f(�y) that are shared between the paths, since this does not change the result.

An example. Let �x be a path x0x1x2x3, and suppose that the random mutation step has

deleted the edge x1x2 (see Figure 11.3). It is replaced by new vertex z1 by casting a ray

from x1, so that the new path is

�y = x0 x1 z1 x2 x3 :

This corresponds to the random choices l = 1, m = 2, l0 = 1, m0 = 0.

Let P�?(x! x0) denote the probability density of sampling the direction from x to x0,

measured with respect to projected solid angle.6 Then the probability density of sampling

6Recall that if P�(x!x0) is the density with respect to ordinary solid angle, then P
�
? = P� = jcos(�o)j,

where �o is the angle between x!x0 and the surface normal at x.
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x2
x3

z1

x1

x0

old subpath

new subpath

Figure 11.3: A simple example of a bidirectional mutation. The original path �x =
x0x1x2x3 is modified by deleting the edgex1x2 and replacing it with a new vertexz1. The
new vertex is generated by sampling a direction atx1 (according to the BSDF) and casting
a ray. This yields a mutated path �y = x0x1z1x2x3.

the vertex x0 (measured with respect to surface area) is given by P�?(x!x0)G(x$x0).
We now have all of the information necessary to compute R(�x! �y). From definition

(8.7), the numerator is

f(�y) = fs(x0!x1!z1)G(x1$z1) fs(x1!z1!x2)
�G(z1$x2) fs(z1!x2!x3) ;

where the factors shared betweenR(�x! �y) and R(�y! �x) have been omitted. The denom-

inator is

T (�x! �y) = pd[1; 2]
n
pa[1; 0]P�?(x1!z1)G(x1$z1)

+ pa[0; 1]P�?(x2!z1)G(x2$z1)
o
:

In a similar way, we find that the factorR(�y! �x) for the mutation in the reverse direction

is given by

R(�y! �x) =
fs(x0!x1!x2)G(x1$x2) fs(x1!x2!x3)

pd[1; 3] pa[0; 0]
;

where pd and pa now refer to the path �y.

Implementation. We now describe how to compute the acceptance probability for bidi-

rectional mutations in general form, and we also discuss how to implement this calculation



11.4. GOOD MUTATION STRATEGIES 349

efficiently.

Let �x = x0 : : :xk be the old path, let xl : : :xm be the deleted subpath, and let

z1 : : : zka�1 be the vertices of the new subpath. This yields a mutated path �y of the form

�y = y0 : : :yk0

= x0 : : :xl z1 : : : zka�1 xm : : :xk ;

where k0 = k � kd + ka is the length of the new path �y. (Recall that kd = m � l and

ka = l0 +m0 + 1 represent the number of edges in the old and new subpaths respectively.

Rather than evaluating the ratio R(�x! �y) as we did in the example above, it is more

convenient to evaluate its reciprocal:7

Q(�x! �y) =
1

R(�x! �y)
=

T (�x! �y)

f(�y)
: (11.9)

This quantity can be evaluated efficiently using the same techniques that were developed

for bidirectional path tracing in Chapter 10. In particular, suppose that we split �y into two

pieces, using the i-th edge of the new subpath as the connecting edge. In other words, con-

sider the light subpath

y0 : : :yl+i�1 = x0 : : :xl z1 : : : zi�1 ;

and the eye subpath

yl+i : : :yk0 = zi : : : zka�1xm : : :xk ;

where 1 � i � ka. These subpaths have s = l + i and t = (k0 + 1) � (l + i) vertices

respectively. Now let Cbd
i be the unweighted contribution from bidirectional tracing that

would be computed in this situation:

Cbd
i = C�s;t ;

7The quantity Q(�x! �y) has an interesting interpretation: it is simply the probability density of sampling
the path �y, measured with respect to the image contribution measure defined by �i(D) =

R
D
f(�x)�(�x). This

measure �i is closely related to the measurement contribution measure �mj defined in Appendix 8.A, except
that it corresponds to the contribution made by a set of paths D to the entire image rather than to an individual
measurement Ij .
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where C�s;t has already been defined in equation (10.5) . The value ofQ(�x! �y) can then be

expressed as

Q(�x! �y) = pd[l; m]
kaX
i=1

pa[i� 1; ka � i]
Cbd
i

: (11.10)

To evaluate this sum efficiently we first compute the unweighted bidirectional contribution

Cbd
l0+1 (corresponding to the way the path was actually generated, using l0 new light vertices

and m0 new eye vertices). This is done using the weights �Ls , �Et and the connecting fac-

tor cs;t defined in Chapter 10. If the contributionCbd
l0+1 evaluates to zero (for example if the

visibility test fails), then the mutation is immediately rejected. Otherwise, we compute the

reciprocal value 1=Cbd
l0+1, and find the values of the other factors 1=Cbd

i by iteratively apply-

ing the relationship (10.9) given in Chapter 10. This calculation is just a simple loop and

can be done very efficiently.

11.4.3 Perturbations

There are some lighting situations where bidirectional mutations will almost always be re-

jected. This happens when there are small regions of the path space in which paths con-

tribute much more than average. This can be caused by caustics, difficult visibility (e.g. a

small hole), or by concave corners where two surfaces meet (a form of singularity in the inte-

grand). The problem is that bidirectional mutations are relatively large, and so they usually

attempt to mutate the path outside the high-contribution region.

One way to increase the acceptance probability is to use smaller mutations. The princi-

ple is that nearby paths will make similar contributions to the image, and so the acceptance

probability will be high. Thus, rather than having many rejections, we can explore the other

nearby paths that also have a high contribution.

Our solution is to choose a subpath of the current path, and move the vertices slightly.

We call this type of mutation a perturbation. While the idea can be applied to arbitrary sub-

paths, our main interest is in perturbations that include the lens edge xk�1xk (since other

changes do not help to prevent long sample sequences at the same image point). We have

implemented two specific kinds of perturbations that change the lens edge, termed lens per-

turbations and caustic perturbations (see Figure 11.4). These are described below.
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Lens perturbation Caustic perturbation

Figure 11.4: The lens edge can be perturbed by regenerating it from either side: we call
these lens perturbations and caustic perturbations.

Lens perturbations. We delete a subpath xm : : :xk of the form (LjD)DS�E (where the

symbols S, D, E, and L stand for specular, non-specular, lens, and light vertices respec-

tively).8 This is called the lens subpath, and consists of k�m edges and k�m�1 vertices

(the vertex xm is not included). Note that we require both xm and xm+1 to be non-specular,

since otherwise any perturbation would result in a path �y for which f(�y) = 0.

To replace the lens subpath, we perturb the image location of the old subpath by moving

it a random distance R in a random direction � on the image plane. The angle � is chosen

uniformly, while R is exponentially distributed between two values r1 and r2:

R = r2 exp(� ln(r2=r1)U) ; (11.11)

where U is uniformly distributed on [0; 1].

We then cast a ray at the new image location, and extend the subpath through additional

specular bounces to be the same length as the original. The mode of scattering at each spec-

ular bounce is preserved (i.e. specular reflection or transmission), rather than making new

random choices. (If the perturbation moves a vertex from a specular to a non-specular ma-

terial, then the mutation is immediately rejected.) This allows us to efficiently sample rare

8This is Heckbert’s regular expression notation, as described in Section 8.3.1. We have not used the full-
path notation of Section 8.3.2, although we assume that the light source has type L(SjD)D and the lens has
type D(SjD)E with respect to the classifications introduced there.
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combinations of events, e.g. specular reflection from a surface where 99% of the light is

transmitted. This is important when only some of these combinations contribute to the im-

age: for example, consider a scene model containing a glass window, where the environ-

ment beyond the window is dark. In this case, only reflections from the window will con-

tribute significantly to the image.

The calculation of a(�x! �y) is similar to the bidirectional case. The main difference is

the method used to select a sample point on the image plane (i.e. equation (11.11) is used,

rather than choosing a point uniformly at random within the image region).

Caustic perturbations. Lens perturbations are not possible in some situations; the most

notable example occurs when computing caustics. These paths have the form LS+DE,

which is not acceptable for lens perturbations.

Fortunately there is another way to perturb these paths, or in fact any path with a suffix

xm : : :xk of the form (DjL)S�DE (see Figure 11.5). To do this, we generate a new subpath

starting from the vertex xm. The direction of the segment xm ! xm+1 is perturbed by a

random amount (�; �), where the � = 0 axis corresponds to the direction of the original ray.

As before, the angle� is chosen uniformly, while � is exponentially distributed between two

values �1 and �2:

� = �2 exp(� ln(�2=�1)U) ;

where U is uniformly distributed on [0; 1]. The technique is otherwise similar to lens per-

turbations, i.e. the new subpath is extended to the same length as the original, and the mode

of scattering at each bounce is preserved.

Multi-chain perturbations. Neither of the above can handle paths with a suffix of the

form (DjL)DS+DS+E, i.e. caustics seen through a specular surface. This can be handled

by perturbing the path through more than one specular chain. A lens perturbation is used

for the first chainDS+E, and a new direction is chosen for the first edge of each subsequent

chain DS+D by perturbing the direction of the corresponding edge in the original subpath

(using the same method described for caustic perturbations). Figure 11.6 shows an example

of a situation where this technique is useful.
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Figure 11.5: A caustic perturbation. A new path is generated by perturbing the direction of
the ray from the light source by a small amount, and then tracing the perturbed ray through
the same sequence of specular reflections and refractions as the original path.

x'x

Figure 11.6: Using a two-chain perturbation to sample caustics in a pool of water. First,
the lens edge is perturbed to generate a pointx0 on the pool bottom. Then, the direction
from original point x toward the light source is perturbed, and a ray is cast fromx0 in this
direction.
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Parameter values. For lens perturbations, the image resolution is a guide to the useful

range of values. We use a minimum perturbation size of r1 = 0:1 pixels, while r2 is chosen

such that the perturbation region is 5% of the image area. For caustic perturbations, we also

make use of the image resolution. Specifically, the maximum perturbation angle is defined

as

�2 = �(r2)
kxk � xk�1kPk�1

i=m+1 kxi � xi�1k
;

where xm : : :xk is the perturbed subpath, and �(r) is the angle through which the ray xk!
xk�1 needs to be perturbed to change the image location by a distance of r pixels. A sim-

ilar rule defines �1 in terms of r1. The purpose of these formulas is to ensure that caustic

perturbations change the image location by an amount that is similar to that used for lens

perturbations.

Finally, for multi-chain perturbations, we use �1 = 0:0001 radians and �2 = 0:1 radians.

The image resolution cannot be used as a guide here, so the range of useful perturbation

values is larger. Note that in our experiments, we have not found the MLT algorithm to be

particularly sensitive to any of these values.

11.4.4 Lens subpath mutations

We now describe lens subpath mutations, whose goal is to stratify the samples over the im-

age plane, and also to reduce the cost of sampling by re-using subpaths. Each mutation con-

sists of deleting the lens subpath of the current path, and replacing it with a new one. (As

before, the lens subpath has the form (LjD)S�E.) The lens subpaths are stratified across

the image plane, such that every pixel receives the same number of proposed lens subpath

mutations.

We briefly describe one way to do this. We initialize the algorithm with n0 independent

seed paths (Section 11.3), which are mutated in a rotating sequence. At all times, we also

store a current lens subpath �xe. A lens subpath mutation consists of deleting the lens subpath

of the current path �x, and replacing it with �xe. This happens whenever a lens subpath muta-

tion is selected for the current path (as opposed to a perturbation or bidirectional mutation).

After the lens subpath �xe has been re-used a fixed number of times ne, it is discarded and a

new one is generated. We chosen0 � ne, to prevent the same lens subpath from being used
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more than once on the same path.

Each lens subpath �xe is generated by casting a ray through a random point on the image

plane, and following zero or more specular bounces until a non-specular vertex is found.

(At a material with specular and non-specular components, we randomly choose between

them.) To stratify the samples on the image plane, we maintain a tally of the number of

lens subpaths that have been generated at each pixel. When generating a new subpath, we

choose a random pixel and increment its tally. If that pixel already has its quota of lens

subpaths, we search for a non-full pixel using the concept of a rover (named after a similar

idea in certain memory management schemes). The rover is simply an index into a pseudo-

random ordering of the image pixels, such that every pixel appears exactly once.9 If the

randomly chosen pixel from the first step is full, we check the pixel corresponding to the

rover, and if necessary we visit additional pixels in pseudo-random order until a non-full

one is found. Note that we also control the distribution of samples within each pixel, by

computing a Poisson minimum-disc pattern and tiling it over the image plane.

The acceptance probability a(�x! �y) is computed in a similar way to the bidirectional

case, except that the new subpath can be generated in only one way. (Subpath re-use does

not influence the calculation.)

11.4.5 Selecting between mutation types

At each step, we assign a probability to each of the three mutation types. This discrete dis-

tribution is sampled to determine which kind of mutation is applied to the current path.

We have found that it is important to make the probabilities relatively balanced. This is

because the mutation types are designed to satisfy different goals, and it is difficult to predict

in advance which types will be the most successful. The overall goal is to make mutations

that are as large as possible, while still having a reasonable chance of acceptance. This can

be achieved by randomly choosing between mutations of different sizes, so that there is a

good chance of trying an appropriate mutation for any given path.

These observation are similar to those of multiple importance sampling (Chapter 9). We

would like a set of mutations that cover all the possibilities, even though we may not (and

9The low-order bits of a linear congruential generator can be used for this purpose.
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need not) know the optimum way to choose among them for a given path. It is perfectly

fine to include mutations that are designed for special situations, and that result in rejections

most of the time. This increases the cost of sampling by only a small amount, and yet it can

increase robustness considerably.

11.5 Refinements

This section describes a number of general techniques that improve the efficiency of MLT.

Direct lighting. We use standard techniques for direct lighting (e.g. see Shirley et al.

[1996]), rather than the Metropolis algorithm. In most cases, these standard methods give

better results at lower cost, since the Metropolis samples are not as well-stratified across

the image plane (Section 11.4.1). By excluding direct lighting paths from the Metropolis

calculation, we can apply more effort to the indirect lighting.

This optimization is easy to implement; it can be done as part of the lens subpath muta-

tion strategy, which already generates a fixed number of subpaths at each pixel. To compute

the direct lighting, we perform a standard ray tracing calculation as each lens subpath is gen-

erated (independent of the current MLT path). These contributions are accumulated in the

same image as the Metropolis samples.10 We also need to remove the direct lighting paths

from the Metropolis portion of the algorithm, but this is easy: when a mutation generates a

direct lighting path, we simply reject it. An even better approach is to modify the mutation

strategies themselves, in order to avoid generating these paths in the first place.

Finally, note that if the lighting is especially difficult (e.g. due to visibility), then the di-

rect lighting “optimization” may be a disadvantage. For example, imagine a large building

with many rooms and lights, but where only one room is visible. Unless the direct lighting

strategy does a good job of excluding all the unimportant lights, then MLT can be substan-

tially more efficient.

10To do this, we must know in advance how many direct lighting samples there will be at each pixel; adap-
tive sampling of the image plane is not allowed.
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Use of expected values. For each proposed mutation, there is a probability a(�x! �y) of

accumulating an image sample at �y, and a probability 1�a(�x! �y) of accumulating a sample

at �x. We can make this more efficient by always accumulating a sample at both locations,

weighted by the corresponding probability. Effectively, this optimization replaces a random

variable by its expected value (see [Kalos & Whitlock 1986, p. 105]). This is especially

useful for sampling the dim regions of the image, which would otherwise receive very few

samples. Note that this optimization does not affect the random walk itself; each transition

is accepted or rejected in the same way as before.

Two-stage MLT. For images with large brightness variations, the MLT algorithm can

spend most of its time sampling the brightest regions. This is undesirable, since it means that

brighter pixels are estimated with a higher relative accuracy. Specifically, the variance of

pixel j is proportional to Ij , the standard error is proportional to
q
Ij, and the relative error

is proportional to 1=
q
Ij. As a first approximation, it would be better for the relative errors

at all the pixels to be the same (because the human eye is sensitive to contrast differences).

To achieve this, we would like an algorithm that generates approximately the same number

of samples at every pixel (with a sample value that varies according to the brightness of the

ideal image).

The MLT algorithm can easily be modified to approach this goal, by precomputing a

test image I0 at a low sampling density. Then rather than sampling according to the image

contribution function f , we sample according to

f 0(�x) = f(�x) = I0(�x) ; (11.12)

where I0(�x) depends only on the image location of �x. This function f 0 is used instead of

f everywhere in the MLT algorithm, including the computation of the paths weights W0

during initialization. To compensate for this, each MLT sample value is multiplied by I0(�x)

just before it is accumulated in the image.

The end result is that the MLT sample values are no longer constant across the image;

instead, they vary according to the test image I0. This does not introduce any bias; it simply

means that the bright parts of the image are estimated using a smaller number of samples
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with larger values.11

This optimization is mainly useful for images where the range of intensities is very large.

Note that the brightest regions of an image are often light sources or directly lit surfaces, in

which case handling the direct lighting separately will solve most of the problem.

Importance sampling for mutation probabilities. We describe a technique that can in-

crease the efficiency of MLT substantially, by increasing the average acceptance probability

a(�x! �y). The idea is to implement a form of importance sampling with respect to a(�x! �y)

when deciding which mutation to attempt, by weighting each possible mutation according

to the probability with which the deleted subpath can be regenerated. (This is the factor pd;2

mentioned in Section 11.4.2.)

Let �x = x0 : : :xk be the current path, and consider a mutation that deletes the subpath

xl : : :xm. The insight is that given only the deleted subpath, it is already possible to compute

some of the factors in the acceptance probability a(�x ! �y). In particular, from equation

(11.8) we see that a(�x! �y) is proportional to

Q(�y! �x) = 1 =R(�y! �x) ;

and from equation (11.10) we see that given only the path �x, it is possible to compute all the

components ofQ(�y! �x) except for the discrete probabilitiespd and pa. (These probabilities

depend on the path �y, which has not been generated yet). If we simply set these unknown

quantities to one, we obtain

pd;2 =
kaX
i=1

(1=Cbd
i ) ; (11.13)

where i refers to the i-th edge of the deleted subpath xl : : :xm, and Cbd
i is the unweighted

contribution defined below equation (11.10).

This quantity is proportional to a subset of the factors in the acceptance probability

a(�x! �y). Thus by weighting the discrete probabilities for each mutation type by this fac-

tor, we can avoid mutations that are unlikely to be accepted. With bidirectional mutations,

11Note that if not enough samples are used to create the test image, then some pixels will be zero (which is
not allowed by the estimate (11.12)). This problem can be solved by filtering the test image before it is used.
The simplest approach is to extract the brightest parts of the test image, and weight the other pixels uniformly.
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for example, this factor is applied to each of theO(k2) possibilities for the deleted subpath

xl : : :xm. The computation can be made more efficient by approximating pd;2 even further.

For example, equation (11.13) can be evaluated for many mutations in parallel by replacing

the sum of the 1=Cbd
i by their maximum.

11.6 Results

We have rendered test images that compare Metropolis light transport with classical and

bidirectional path tracing. Our path tracing implementations support efficient direct lighting

calculations, importance-sampled BSDF’s, Russian roulette on shadow rays, and several

other optimizations.

Figure 11.7 shows a test scene with difficult indirect lighting. All of the light in this

scene comes through a slightly open doorway, which lets through about 0.1% of the light

in the adjacent room. The light source is a diffuse ceiling panel at the far end of that room

(which is quite large), so that most of the light coming through the doorway has already

bounced several times.

For equal computation times, Metropolis light transport gives far better results than bidi-

rectional path tracing. Notice the details that would be difficult to obtain with many light

transport algorithms: contact shadows, caustics under the glass teapot, light reflected by the

white tiles under the door, and the brighter strip along the back of the floor (due to the nar-

row gap between the table and the wall). This scene contains diffuse, glossy, and specular

surfaces, and the wall is untextured to clearly reveal the noise levels.

For this scene, MLT gains efficiency from its ability to change only part of the current

path. The portion of the path through the doorway can be preserved and re-used for many

mutations, until it is successfully mutated into a different path through the doorway. Note

that perturbations are not essential to make this process efficient, since the path through the

doorway needs to change only infrequently.

Figure 11.8 compares MLT against bidirectional path tracing for a scene with strong in-

direct illumination and caustics. Both methods give similar results in the top row of images

(where indirect lighting from the floor lamp dominates). However, MLT performs much

better as we zoom into the caustic, due to its ability to generate new paths by perturbing
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(a) Bidirectional path tracing with 40 samples per pixel.

(b) Metropolis light transport with 250 mutations per pixel [the same computation time as (a)].

Figure 11.7: All of the light in this scene comes through a slightly open doorway, which lets through
about 0.1% of the light in the adjacent room. The MLT algorithm is able to generate paths efficiently
by always preserving a path segment that goes through the small opening between the rooms. The
images are 900 by 500 pixels, and include paths up to length 10.
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existing paths. The image quality degrades with magnification (for the same computation

time), but only slowly. This is due to the fact that the average mutation cost goes up as we

zoom into the caustic (since each successful perturbation requires at least four ray-casting

operations). Once the caustic fills the entire image, the image quality remains virtually con-

stant.12

Notice the streaky appearance of the noise at the highest magnification. This is due to

caustic perturbations: each ray from the spotlight is perturbed within a narrow cone; how-

ever, the lens maps this cone of directions into an elongated shape. The streaks are due to

long strings of caustic mutations that were not broken by successful mutations of some other

kind.

Even in the top row of images, there are slight differences between the two methods.

The MLT algorithm leads to lower noise in the bright regions of the image, while the bidi-

rectional algorithm gives lower noise in the dim regions. This is what we would expect,

since the number of Metropolis samples varies according to the pixel brightness, while the

number of bidirectional samples per pixel is constant.

Figure 11.9 shows another difficult lighting situation: caustics on the bottom of a small

pool, seen indirectly through the ripples on the water surface. Path tracing does not work

well in this case, because when a path strikes the bottom of the pool, a reflected direction is

sampled according to the BRDF. Only a very small number of these paths contribute to the

image, because the light source occupies about 1% of the hemisphere of directions above

the pool.13 (Bidirectional path tracing does not help for these paths, because they can be

generated only starting from the eye.) As in the previous example, perturbations are the

key to sampling these caustics efficiently. However, for this scene it is multi-chain rather

than caustic perturbations that are important (recall Figure 11.6). One interesting feature of

MLT is that it obtains these results without special handling of the light sources or specular

surfaces — see Mitchell & Hanrahan [1992] or Collins [1995] for good examples of what

12Note that the according to the rules for caustic perturbations described in Section 11.4.3, the average per-
turbation angle decreases with linearly with the magnification. This implies that the average perturbation size
is constant when measured in image pixels.

13Note that the brightness of the caustic is proportional to the solid angle occupied by the light source, as
seen from the bottom of the pool. Thus in regions where the caustics are dim, the chance of a ray hitting the
light source is actually much less than one percent.
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(a) (b)

Figure 11.8: These images show caustics formed by a spotlight shining on a glass egg. Column (a)
was computed using bidirectional path tracing with 25 samples per pixel, while (b) uses Metropolis
light transport with the same number of ray queries (varying between 120 and 200 mutations per
pixel). The solutions include paths up to length 7, and the images are 200 by 200 pixels.
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(a) Path tracing with 210 samples per pixel.

(b) Metropolis light transport with 100 mutations per pixel [the same computation time as (a)].

Figure 11.9: Caustics in a pool of water, viewed indirectly through the ripples on the surface. It is
difficult for unbiased Monte Carlo algorithms to find the important transport paths, since they must
be generated starting from the lens, and the light source only occupies about 1% of the hemisphere
as seen from the pool bottom (which is curved). The MLT algorithm samples these paths efficiently
by means of perturbations. The images are 800 by 500 pixels.
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Test Case PT vs. MLT BPT vs. MLT

l1 l2 l1 l1 l2 l1

Figure 11.7 (door) 7.7 11.7 40.0 5.2 4.9 13.2

Figure 11.8 (egg, top image) 2.4 4.8 21.4 0.9 2.1 13.7

Figure 11.9 (pool) 3.2 4.7 5.0 4.2 6.5 6.1

Table 11.1: This table shows numerical error measurements for path tracing (PT) and bidi-
rectional path tracing (BPT) relative to Metropolis light transport (MLT), for the same com-
putation time. The entries in the table were determined as follows. For each test image, we
computed the relative errorej = ( ~Ij�Ij)=Ij at each pixel, where ~Ij corresponds to the algo-
rithm being measured, andIj is the value from a reference solution. Next, we computed the
l1, l2, and l1 norms of the resulting array of errorsej . Finally, we divided the error norms
for path tracing and bidirectional path tracing by the corresponding error norm for MLT, to
obtain the normalized results shown in the table above. Note that the gain in efficiency of
MLT over the other algorithms is proportional to the square of the table entries.

can be achieved if this restriction is lifted.

We have also made numerical measurements in order to compare the performance of the

various algorithms on each test scene. To do this, we first computed images using path trac-

ing (PT), bidirectional path tracing (BPT), and Metropolis light transport (MLT), with the

same computation time in each case. Next, we computed the relative error ej = (~Ij�Ij)=Ij
at each pixel, where ~Ij corresponds to the algorithm being measured, and Ij is the value from

a reference solution (created using bidirectional path tracing with a large number of sam-

ples, at a lower image resolution). We then computed the l1, l2, and l1 norms of the resulting

array of errors ej , and divided the error norms for PT and BPT by the corresponding error

norm for MLT. This yielded the results shown in Table 11.1.

Note that the efficiency gain of MLT over the other methods is proportional to the square

of the table entries, since the error obtained using path tracing and bidirectional path tracing

decreases according to the square root of the number of samples. For example, the RMS

relative error in the three-teapots image of Figure 11.7(a) is 4.9 times higher than in Fig-

ure 11.7(b), which implies that approximately 25 times more bidirectional path tracing sam-

ples would be required to achieve the same error levels as MLT. Even in the topmost images

of Figure 11.8 (for which bidirectional path tracing is well-suited), notice that the results of
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MLT are competitive.

For comparison, we consider the techniques proposed by Jensen [1995] and Lafortune

& Willems [1995a] for sampling difficult paths more efficiently. Basically, their idea is to

build an approximate representation of the radiance in a scene, and use it to modify the di-

rectional sampling of the basic path tracing algorithm. The radiance information can be

collected either with a particle tracing prepass [Jensen 1995], or by adaptively recording it

in a spatial subdivision as the algorithm proceeds [Lafortune & Willems 1995a]. However,

these techniques have several problems, including insufficient directional resolution to be

able to sample concentrated indirect lighting efficiently, and substantial space and time re-

quirements. In any case, the best variance reductions that have been reported are in the range

of 50% to 70% (relative to standard path tracing), as opposed to the reductions of 96% to

99% reported in Table 11.1. (Similar ideas have also been applied to particle tracing algo-

rithms [Pattanaik & Mudur 1995, Dutre & Willems 1995], with similar results.)

In our tests, the computation times were approximately 4 hours for the each image in

Figure 11.7 (the door ajar), 15 minutes for the images in Figure 11.8 (the glass egg), and 2.5

hours for the images in Figure 11.9 (the pool), where all times were measured on a 190 MHz

MIPS R10000 processor. The memory requirements are modest: we only store the scene

model, the current image, and a single path (or a small number of paths, if the mutation

technique in Section 11.4.4 is used). For high-resolution images, memory usage could be

reduced further by collecting the samples in batches, sorting them in scanline order, and

applying them to an image on disk.

11.7 Conclusions

We have presented a novel approach to global illumination problems, by showing how to

adapt the Metropolis sampling method to light transport. Our algorithm starts from a few

seed light transport paths and applies a sequence of random mutations to them. In the steady

state, the resulting Markov chain visits each path with a probability proportional to that

path’s contribution to the image. The MLT algorithm is notable for its generality and sim-

plicity. A single control structure can be used with different mutation strategies to handle a

variety of difficult lighting situations. In addition, the MLT algorithm needs little memory,
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and always computes an unbiased result.

The MLT algorithm offers interesting new possibilities for adaptive sampling without

bias, since the mutation strategy is allowed to depend on the current path. For example,

consider the strategy of replacing the light source vertex x0 with a new randomly sampled

position on the same light source. This is potentially a simple, effective strategy for handling

scenes with many lights: once an important light source is found, the MLT algorithm can

efficiently generate many samples from it. (More generally, mutations could be proposed to

nearby light sources by constructing a spatial subdivision.) This is clearly a form of adaptive

sampling, since more samples are taken in regions nearby existing good samples. Unlike

with standard Monte Carlo algorithms, however, no bias is introduced.

This also raises interesting possibilities for handling specular surfaces. For example, we

could try a strategy similar to that above: when mutating a subpath containing a specular

vertex, generate a new vertex on the same specular object. If only a small fraction of the

specular surfaces in the scene made a large contribution to the image, this would provide a

means of sampling them efficiently. Note that this technique is more powerful than simply

flagging specular surfaces for extra sampling, since we do not need to assign an a priori

probability to the sampling of each surface. This is important when a large number of spec-

ular surfaces are present, since in the MLT case the sampling efficiency is not affected once

an important surface has been found.

The MLT framework could also be an advantage for techniques that generate specular

vertices deterministically. In particular, recall the idea of generating a chain of specular ver-

tices connecting two given points (as mentioned in Section 8.3.4). A simple example is that

given two pointsx1 andx3 and a planar mirror, we might calculate the pointx2 on the mirror

that reflects light between them. (Note that it is also possible to handle non-planar surfaces,

or sequences of such surfaces, using techniques described by Mitchell & Hanrahan [1992].)

However, these analytic techniques have problems when there are many specular surfaces,

since each possible surface and sequence of surfaces must be checked separately for a so-

lution.

The MLT framework helps to solve the combinatorial aspect of this problem. Once an

important specular chain is found, a new chain could be generated by simply perturbing one

of its endpoints, and then regenerating the intermediate vertices using the same sequence
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of specular surfaces. For example, this could be used to efficiently sample caustics seen

indirectly through specular reflectors, even a point light source is used, and when there are

possibly many specular surfaces in the scene. On the other hand, recall that we cannot hope

to solve all such problems efficiently, since provably difficult configurations of mirrors do

exist [Reif et al. 1994].

The MLT algorithm can also be extended in other ways. For example, with modest

changes we could use it to compute view-independent radiance solutions, by letting the Ij

be the basis function coefficients, and defining f(�x) =
P

j fj(�x). We could also use MLT to

render a sequences of images (as in animation), by sampling the entire space-time of paths

at once (thus, a mutation might try to perturb a path forward or backward in time). Another

interesting problem is to determine the optimal settings for the various parameters used by

the algorithm. The values we use have not been extensively tuned, so that further efficiency

improvements may be possible. Genetic algorithms may be useful in this regard, to opti-

mize the parameter settings on a suite of test images. We hope to address some of these

refinements and extensions in the future.
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Appendix 11.A Proof of Unbiased Initialization

In this appendix, we show that the estimate

Ij = E

"
1

N

NX
i=1

Wi hj( �Xi)

#

is unbiased (see Section 11.3.1). To do this, we show that the followingweighted equilibrium con-

dition is satisfied at each step of the random walk:Z
IR
w pi(w; �x) dw = f(�x) ; (11.14)

where pi is the joint density function of thei-th weighted sample (Wi; �Xi). This is a sufficient con-

dition for the above estimate to be unbiased, since

E
h
Wi hj( �Xi)

i
=

Z



Z
IR
w hj(�x) pi(w; �x) dw d�(�x)

=

Z


hj(�x) f(�x) d�(�x)

= Ij :

To show that the weighted equilibrium condition holds for all samples(Wi; �Xi), we proceed by

induction. For i = 0, we have

p0(w; �x) = �(w � f(�x)

p0(�x)
) p0(�x) ;

where �(w�w0) is a Dirac distribution, corresponding to the fact thatW0 is chosen as a deterministic

function of �X0 rather than by random sampling. It is easy to verify thatp0 satisfies condition (11.14).

Next we verify that the Metropolis algorithm preserves the weighted equilibrium condition from

one sample to the next. Since the mutations setWi = Wi�1, the first part of equation (11.4) is still

true when pj(�x) is replaced by pj(w; �x):

pi(w; �x) = pi�1(w; �x) +

Z



n
pi�1(w; �x)T (�x! �y) a(�x! �y)

� pi�1(w; �y)T (�y! �x) a(�y! �x)
o
d�(�y) :

Multiplying both sides byw and integrating, we obtain

R
IRw pi(w; �x) dw =

R
IRw pi�1(w; �x) dw +

Z



n
[
R
IRw pi�1(w; �x) dw] T (�x! �y) a(�x! �y)

� [
R
IRw pi�1(w; �y) dw] T (�y! �x) a(�y! �x)

o
d�(�y)
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=
R
IRw pi�1(w; �x) dw +

Z



n
f(�x)T (�x! �y) a(�x! �y)

� f(�y)T (�y! �x) a(�y! �x)
o
d�(�y)

=
R
IRw pi�1(w; �x) dw

= f(�x) ;

where we have used the detailed balance condition (11.3). Thus every mutation step preserves the

weighted equilibrium condition (11.14).

It is interesting to note that even though the random walk is always in weighted equilibrium,

the distributions of paths and weights change at each step. In particular, the path distribution is ini-

tially given by some arbitrary density functionp0(�x), and converges toward the stationary distri-

bution p�(�x). Similarly, the weight distribution pi(w j �x) at a given point �x starts out as a Dirac

distribution

p0(w j �x) = �(w � f(�x)

p0(�x)
) ;

and gradually evolves toward an equilibriump�(w j �x). Furthermore this equilibrium does not de-

pend on �x, since

p�(w j �x) p�(�x) � p�(�x jw) p�(w) ;

and the density functions p�(�x jw) and p�(�x) are equal (i.e. the paths at each weight evolve toward

the same equilibrium, since the transition rules do not depend on weight). Thus we have

p�(w j �x) = p�(w) = p0(w) ;

observing that the marginal weight densityp0(w) does not change with time (recall thatWi =Wi�1).

The net effect is that the path and weight distributions may start far from equilibrium, and gradu-

ally converge toward it. However, this is done in such a way that the weighted equilibrium condition

(11.14) is initially satisfied, and preserved at every step. Thus we can obtain unbiased results imme-

diately, rather than waiting for the path and weight distributions to converge separately.
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Chapter 12

Conclusion

We conclude by summarizing the main results of this dissertation, in somewhat more detail

than they were described in Chapter 1.

12.1 Bidirectional light transport theory

In the first part of this thesis, we have investigated the theoretical basis of bidirectional light

transport algorithms. We proposed two different linear operator formulations of light trans-

port, based on different sets of assumptions. First we considered the general case, where no

assumptions are made about the physical validity of the scattering models used. In this case,

we cannot rely on the properties of light transport in the real world: for example, energy

might not be conserved. Nevertheless, there is still a well-defined mathematical problem

to be solved (with mild restrictions discussed in Chapter 4), and we describe the manipula-

tions that are necessary to ensure that algorithms based on radiance transport, importance

transport, light particles, and importance particles all converge to the same mathematically

correct solution. We have given a detailed analysis of the framework, including the norms,

inverses, and adjoints of the various transport operators. We have also given explicit rules

for handling all the various combinations of incident and exitant quantities.

We have shown that the above model is useful whenever the scene contains materials

whose bidirectional scattering distribution function (BSDF) is not symmetric. There are two

distinct situations where this can arise. First, some scattering models in computer graphics
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are not physically valid. It is important to be able to handle non-physical materials correctly,

since they are sometimes very convenient. As a particular example we consider the use of

shading normals, which are commonly applied to make polygonal surfaces look smooth or

to add detail to coarse geometric models. We show that shading normals modify BSDF’s

and make them non-symmetric. However, using the linear operator formulation above we

show that it is still possible to handle shading normals correctly and consistently in bidirec-

tional algorithms, by using the correct adjoint BSDF (which we derive).

We also show that non-symmetric BSDF’s can arise even for materials that are physi-

cally valid. This occurs whenever light is transmitted between two substances with different

indices of refraction. Again we show how to handle this situation correctly within the gen-

eral framework above, by deriving the adjoint BSDF for refraction. The use of this adjoint

BSDF is necessary to ensure that bidirectional algorithms will converge to correct results.

However, when all materials in the scene model are physically valid, we have shown

that there is a much better way to formulate the light transport problem. This formulation is

based on a new reciprocity principle that holds for materials that transmit as well as reflect

light. In particular, for physically valid materials we have shown that it is not the BSDF

fs(!i!!o) that is symmetric, but instead the quantity fs(!i!!o)=�
2
o (where �o is the re-

fractive index of the medium containing !o). We establish this principle using the laws of

thermodynamics, in particular Kirchhoff’s laws and the principle of detailed balance. These

laws hold for systems in thermodynamic equilibrium, but the resulting reciprocity principle

is valid generally. We have investigated the historical origins of such principles, including

Helmholtz and Rayleigh reciprocity, and clarified the important point that Helmholtz him-

self did not make any statement that would imply the symmetry of BRDF’s. We have also

discussed the subtle issues that arise in justifying such principles: the roles of thermody-

namic equilibrium, time reversal invariance, and detailed balance. Finally, we have consid-

ered the conditions under which reciprocity does not hold, i.e. in the presence of absorbing

media or external magnetic fields.

Taking advantage of this reciprocity principle, we have proposed a new light transport

model where the transport operators are symmetric (self-adjoint) for any physically valid

scene model. This symmetry simplifies both the theory of light transport algorithms (by

eliminating the need for adjoint operators), and also their implementation (since the same
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transport rules apply to light and importance, or to path tracing and particle tracing). Fur-

thermore, the transport quantities in the new model are optical invariants, which creates in-

teresting connections to classical geometric optics. The modifications relative to the previ-

ous formulation are straightforward, and simply involve scaling the various transport quan-

tities by the square of the refractive index of the surrounding medium. We have also pro-

vided a detailed analysis of the norms, inverses, and adjoints of the new operators.

We have proposed a third theoretical model for light transport, where each measurement

is expressed as an integral over a space of paths (rather than as the solution to an integral

equation or linear operator equation). The main advantage of this approach is its simple

abstract form: by reducing light transport to a set of integrals, it allows general-purpose in-

tegration and sampling techniques to be applied (such as multiple importance sampling, or

the Metropolis method). It is also useful from a conceptual point of view, since this for-

mulation makes it clear that paths can be sampled in virtually any way desired, not just by

recursively sampling a transport equation. We have described a variety of natural measures

on paths with well-defined physical meanings, and we have developed an extended regular

expression notation for paths that describes the properties of sources and sensors as well as

the scattering properties at intermediate vertices. We have used this model to analyze the

capabilities of unbiased Monte Carlo sampling algorithms, and we have shown that there

are certain kinds of paths that cannot be generated by standard sampling techniques. This

implies that certain lighting effects will be missing from the images generated using these

techniques. We have analyzed the conditions under which this occurs, and we have pro-

posed methods for making these path sampling algorithms complete.

12.2 General-purpose Monte Carlo techniques

The second area of this dissertation concerns new general-purpose techniques for Monte

Carlo integration. Our main contribution in this area is multiple importance sampling, a

method for combining several different sampling techniques for the same integral in order

to obtain low-variance estimators for a broad class of integrands. We started by proposing

a general model for combining samples from different techniques, called the multi-sample
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model. Using this model, we showed that any unbiased combination strategy could be rep-

resented as a set of weighting functions. This gave us a large space of possible combina-

tion strategies to explore, and a uniform way to represent them. We then proposed a specific

combination strategy called the balance heuristic, and we proved that the variance obtained

using this strategy is optimal to within a small additive term. We then proposed several other

combination strategies, which are basically refinements of the balance heuristic: their vari-

ance is also provably close to optimal, but they give better results in certain important special

cases.

We tested these methods on a variety of integration problems in computer graphics, and

we found that multiple importance sampling can reduce variance substantially at little extra

cost. The method is simple and practical to implement, and can make Monte Carlo calcu-

lations significantly more robust.

We have also proposed a new technique called efficiency-optimized Russian roulette.

We started by showing that the variance of Russian roulette can be analyzed as a function

of its threshold parameter (whose value is usually chosen in an ad hoc manner). We then

described a technique for choosing the value of this parameter in order to maximize the ef-

ficiency of the resulting estimator. The main application of this technique in graphics is to

reduce the number of visibility tests in rendering problems.

12.3 Robust light transport algorithms

We have shown how these theories and techniques can be applied to the construction of

robust Monte Carlo light transport algorithms. The first algorithm we described was bidi-

rectional path tracing, which is based on the path integral framework: it generates paths

using a family of different importance sampling techniques, and then combines them using

multiple importance sampling. Specifically, each path is constructed by concatenating two

subpaths, one generated starting from a light source and another generated starting from the

camera. We have shown that each such technique can efficiently sample a different set of

paths, and that these paths are responsible for different lighting effects in the final image. By

combining samples from all the techniques, we can efficiently render scenes under a wide

variety of illumination conditions.
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In addition to describing the mathematical basis of the method, we also discussed the

implementation issues in detail. This includes how to sample and filter of the image, how

to generate the paths and evaluate their contributions efficiently, and how to implement the

important special cases where the light or eye subpath contains at most one vertex. We have

also described the extensions required to handle ideal specular surfaces, and we have shown

how efficiency-optimized Russian roulette can be used to reduce the number of visibility

tests.

Bidirectional path tracing is unbiased, straightforward to implement, and supports the

same range of geometry and materials as standard path tracing. It is an effective rendering

algorithm for many kinds of indoor scenes, and is particularly useful for scene models with

concentrated indirect lighting. On the other hand, the main weakness of the algorithm is

that the light and eye subpaths are generated independently. This makes it unsuitable for

outdoor environments, or scenes with many light sources, or scenes with constricted geom-

etry between the light sources and the viewer.

Finally, we have introduced a new algorithm called Metropolis light transport. This

method is also based on the path integral framework, but it samples paths in a different way.

Specifically, it uses the Metropolis sampling algorithm, which generates a sequence of paths

by following a random walk through path space. Each path is generated from the previous

one by proposing a random mutation. This mutation is then either accepted or rejected with

a carefully chosen probability, in order that the probability density of sampling each path

is proportional to the contribution it makes to the desired final image. The resulting algo-

rithm is unbiased, handles general geometric and scattering models, and can be far more

efficient than previous algorithms on scenes with complex illumination. Furthermore, it is

competitive with previous unbiased algorithms even for scenes whose lighting is relatively

simple.

To derive this method we first proposed a slight modification to the path integral frame-

work that allows paths to be sampled across the entire image (rather than within each pixel

separately). We showed that the Metropolis algorithm can then be used to determine the

relative pixel intensities across the image, while the overall image brightness needs to be

determined during a separate initialization phase. We addressed the issue of start-up bias

during initialization (a common problem with Metropolis applications), and showed that in
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the case of light transport this bias can be eliminated completely. For the Metropolis phase

of the algorithm, we proposed a set of criteria for designing path mutations in order to mini-

mize the error in the final image. We have also described three different mutation strategies

we have implemented that partially satisfy these goals, namely bidirectional mutations, lens

subpath mutations, and perturbations. Finally, we described several refinements to the ba-

sic algorithm that improve its performance in practice.

The main advantage of Metropolis light transport is its ability to handle complex illu-

mination efficiently, by exploring the space of paths that actually contribute to the image.

Unlike bidirectional path tracing, it can also handle problems where only a small fraction

of the emitted light in the scene reaches the viewer (e.g. due to difficult visibility). Further-

more, since it is a Monte Carlo algorithm it can support complex geometry and materials

efficiently. We feel that the ability to handle complex geometry, materials, and illumination

is an important goal, since light transport algorithms need to produce reliable, consistent re-

sults over the widest possible range of real environments if they are ever going to be widely

used.
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absorbing medium, 193, 194
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acoustics problems, 26–27
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adjoint operator, 116
adjoint scattering kernel, 155
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sources of variation, 56
two-factor interactions, 56
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Bakhvalov’s theorem, 32
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basic local scattering operator, 205
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invariance of, 210–211
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start-up, 338
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bidirectional light transport algorithm,
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bidirectional path tracing, 297–330
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image sampling and filtering, 307–
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limitations, 329–330
mathematical formulation, 302–307
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reducing visibility tests, 317–322
related work, 326–328
unweighted contribution, 302

bidirectional reflectance distribution func-
tion, see BRDF

bidirectional scattering distribution func-
tion, see BSDF

bidirectional transmittance distribution
function, see BTDF

birefringence, 20
black body, 179
Boltzmann equation, 23
boundary distance function, 110, 127
boundary element methods, 25
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energy conservation, 87
properties of, 87
symmetry of, 87

BSDF, 85–89
adjoint, 93
angular parameterizations, 88–89
basic, 204
energy conservation, 184
for mirror, 144–145

angular form, 172
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angular form, 172

for refraction, 145–146
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modified, 152
reciprocity principle for, 180–182

symmetry of, 180–182
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bump mapping, 150
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caustic perturbations, 352
central limit theorem, 40
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Chebychev’s inequality, 40
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collision estimator, 47
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complete vector space, 108
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conditional density function, 36
conditional expectation, 36
conduction, 24
connecting chain, 241
connecting edge, 301
connecting vertices, 301
connector, 241
consistent estimator, 14, 43
continuously varying refractive index, 16
control variates, 48–49
convection, 24
convergence rate

of Monte Carlo integration, 39–40
of quadrature rules, 31–33

cumulative distribution function, 33
joint, 33

curse of dimensionality, 32
cutoff heuristic, 273

delta function, see Dirac distribution
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density function, 33
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joint, 34
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principle of, 178
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distribution, 34, 166
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efficiency, 45, 318
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eiconal equation, 16
elastic scattering, 23
elementary interval, 62
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emitted radiance function, 90
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energy conservation
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for BSDF’s, 184

energy content function, 97
energy measure, 98
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equilibrium importance function, 91, 117
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estimand, 42
estimate, 43

estimator, 43
absorption, 47
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collision, 47
consistent, 14, 43
efficiency, 45
error, 14, 43
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mean squared error, 44
multi-sample, 260–261
properties of, 42–45
robust, 252
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exceptions to reciprocity principles, 193–
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exitant equilibrium importance function,
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exitant importance function, 115
exitant radiance function, 84
expectation, 35

conditional, 36
expected value, 35
expected values, the use of, 46–47
exponential smoothing, 322
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Faraday effect, 193
Fermat path, 241
field radiance function, 95
filter function, 308
final gather pass, 281
fluence rate, 27
fluorescence, 20
flux responsivity, 115
frequency doubling, 21
full-path regular expression

formal definition of, 247



398 INDEX
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functional

linear, 166

Gauss-Legendre rules quadrature rule, 31
general operator formulation, 103–125
generalized function, see distribution
geometric measure, 97
geometric normal, 150
geometric operator, 110
geometric optics, 15–18
geometric throughput measure, 245
global reflectance distribution function,
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sampling strategies, 253–256
grand mean, 56
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Hammersley point set, 62
Hardy and Krause

variation in the sense of, 59
heat equation, 25
Heckbert’s regular expression notation,

see regular expressions for paths
Helmholtz equation, 26
Helmholtz reciprocity principle, 185–188

further reading, 187–188
original statement, 186–187
summary, 185–186

hemisphere
downward, 77
incident, 87
reflected, 87
upward, 77

heuristic
balance, 264
cutoff, 273

maximum, 274
power, 273
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homogeneous wave, 196
Horvitz-Thompson estimator, 37

ideal diffuse reflection, 17
ideal specular scattering, 17
image contribution function, 332
image contribution measure, 349
image function, 307
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image space methods, 12
image space rendering algorithm, 161
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importance function
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exitant equilibrium, 132

importance sampling, 47–48
importance transport, 116–118
importance transport equation, 91, 117
importance-driven light transport algo-
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importance-driven methods, 12
in-scattering event, 79
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incident radiance function, 84
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associated norm, 109
basic, 203

inner product space, 109
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interference, 19
invariance of basic radiance, 210–211
invariance of basic throughput, 208–210
inversion method, 41
invertibility of transport operators, 126–
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irreversibility of light scattering, 192
irreversible, 192
irreversible processes, 191–192
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joint density function, 34

Kirchhoff’s equilibrium radiance law, 177
Kirchhoff’s laws, 179
Koksma-Hlawka inequality, 59

Lagrange invariant, 208
Latin hypercube sampling, 52–53

orthogonal array-based, 57–58
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lens perturbations, 350
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light subpath, 298
light transport algorithm, 9–15

bidirectional, 91–92
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density estimation, 10
image space methods, 12
importance-driven, 12, 92
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Monte Carlo radiosity, 10
Monte Carlo vs. deterministic, 10–12
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particle tracing, 92
path tracing, 10, 92
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robust, 1
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light transport algorithms
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Metropolis light transport, 331–367

light transport equation, 90, 112
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light transport operator, 111
light transport problem, 2–4

assumptions, 3–4
general operator formulation, 103–
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geometric optics, 15–18
introduction to, 89–94
optical phenomena, 15–21
path integral formulation, 219–230
quantum optics, 20–21
related problems, 22–28
self-adjoint operator formulation,

201–207
wave optics, 18–20
why important, 3

light trap
Lord Rayleigh’s, 193

limitations of local path sampling, 237–
240

limitations of path sampling, 230–242
linear functional, 166
linear magnification, 208
linear operator, 109
linear optics, 21
linear space, 108
L1 norm, 108
local pass, 281
local path sampling, see path sampling
local scattering operator, 110

basic, 205
locality of transport operators, 111
Lord Rayleigh’s light trap, 193
Lord Rayleigh’s reciprocity principle, 189
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Lp space, 108

magnetic fields
exceptions to reciprocity, 193–194

magnetically active medium, 193
main effects, 56
many-body problems, 27–28
marginal density function, 36
Markov chain, 334
Markov chain Monte Carlo, see Metropo-

lis method
maximum heuristic, 274
mean squared error, 44
measurable set, 96
measure, 96

area-product, 222, 246
basic projected solid angle, 203
basic solid angle, 202
basic throughput, 203
composition, 168
energy, 98
geometric, 97
geometric throughput, 245
image contribution, 349
measurement contribution, 243, 349
on path space, 243–246
power throughput, 244
probability, 34
projected area, 82
projected solid angle, 77
scattering throughput, 244
solid angle, 77
throughput, 105

measure function, 31, see measure
measure space, 96
measure-theoretic radiometry, 96–102
measurement, 89

measurement contribution function, 223,
332

measurement contribution measure, 243,
349

measurement equation, 89, 115
Metropolis light transport, 331–367

bidirectional mutations, 345–350
convergence tests, 341–342
desirable mutation properties, 343–

345
direct lighting optimizations, 356
eliminating start-up bias, 339–340
importance sampling of mutation

probabilities, 358–359
initialization, 340–341
lens subpath mutations, 354–355
mutation strategies, 343–356
overview, 332–334
perturbations, 350–354
proof of unbiased initialization, 368–

369
spectral sampling, 342–343
theoretical formulation, 337–343
two-stage sampling, 357–358
use of expected values, 356–357

Metropolis method, 42, 334–337
acceptance probability, 336–337
comparison with genetic algorithms,

337
detailed balance, 335–336
stationary distribution, 334–335

Metropolis sampling algorithm, see Me-
tropolis method

microfacet reflection models, 186
microscopic state, 190
mirror BSDF, 144–145

angular form, 172
mirror direction, 144
MLT, see Metropolis light transport
modeling
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predictive, 3
modified BSDF, 152
monochromatic light, 16
Monte Carlo estimator, see estimator
Monte Carlo integration, 29–71

advantages of, 38–39
basic technique, 37–39
brief history, 29–30
convergence rate, 39–40

Monte Carlo radiosity, 10
motion reversal invariance, 190
multi-chain perturbations, 352
multi-jittered sampling, 58
multi-pass methods, 10, 12
multi-sample estimator, 260–261
multi-sample model, 259–263

examples, 261–263
generality, 263

multiple importance sampling, 251–287
allocation of samples, 284–285
balance heuristic, 263–266
glossy highlights problem, 252–258
improved combination strategies,

266–275
cutoff heuristic, 273
maximum heuristic, 274
power heuristic, 273
variance bounds, 274–275

low-variance problems, 268–272
multi-sample estimator, 260–261
multi-sample model, 259–263
one-sample model, 275–276
recommendations, 286–287
relationship to classical techniques,

284
mutation strategies, 343–356

bidirectional mutations, 345–350
desirable mutation properties, 343–

345
lens subpath mutations, 354–355

perturbations, 350–354
selecting between mutation types,

355–356

N -body problems, see many-body prob-
lems

N -rooks sampling, 52
Neumann series, 113
neutron transport problems, 23–24
Newton-Cotes rules quadrature rule, 31
non-local path sampling, 240–242
non-reversibility of optical paths, 196–

197
non-symmetric scattering, 135–165

due to approximations, 139
due to empirical shading models,

138–139
due to refraction, 139–150
due to shading normals, 150–165
elementary sources, 138–139
introduction to, 136–139
problems caused by, 136–138

norm, 108
operator, 112

normal
geometric, 150
shading, 150
vertex, 150

norms of transport operators, 133–134,
213–216

numerical integration, 30–33

observable state, 191
observation, 43
one-sample estimator, 275
one-sample model, 275–276
operator

adjoint, 116
basic local scattering, 205
geometric, 110
light transport, 111
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linear, 109
local scattering, 110
locality of, 111
norm of, 112
propagation, 110
resolvent, 112
self-adjoint, 116
solution, 112, 119

operator norm, 112
optical invariant, 208
optical invariants, 208–211

basic radiance, 210–211
basic throughput, 208–210
Lagrange, 208
Smith-Helmholtz, 208

optical phenomena, 15–21
orthogonal array, 54
orthogonal array sampling, 54–57
orthogonal array-based Latin hypercube

sampling, 57–58
out-scattering event, 79

participating media, 16
particle tracing, 92

characterization of, 121–125
importance transport interpretation,

123
path integral formulation, 219–230

advantages of, 224–225
use of, 225–226

path sampling
computing probability densities, 227–

230
limitations of, 230–242
local, 226–227

limitations of, 237–240
non-local, 240–242
regular expression notation, see regu-

lar expressions for paths
path space, 223

measures on, 243–246

path tracing, 10, 92
pdf, see density function
perturbation, 350
perturbations, 350–354

caustic, 352
lens, 350
multi-chain, 352

phase space, 78
phase space density, 100

spectral, 100
Phong shading, 138
phosphorescence, 21
photon event, 79
photon event space, 97
photon events, 79
photon map, 10
photon number, 79
polarization, 19
potential function, 115
power, 80
power heuristic, 273
power throughput measure, 244
Poynting vector, 197
predictive modeling, 3
principle of detailed balance, 178
probability density function, see density

function
probability distribution, 34
probability measure, 34
probability theory, review of, 33–37
projected area measure, 82
projected solid angle

probability density with respect to,
229

projected solid angle measure, 77
propagation operator, 110
properties of BRDF’s, 87
properties of estimators, 42–45
properties of transport operators, 126–

134, 212–216
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quadrature rule, 30–33
Bakhvalov’s theorem, 32
curse of dimensionality, 32
Gauss-Legendre rules, 31
Newton-Cotes rules, 31
tensor product rules, 31

quantity of interest, 42
quantum optics, 20–21
quasi-Monte Carlo methods, 12, 58–65

radar scattering problems, 26–27
radiance, 81

basic, 203, 210
basic spectral, 203
emitted, 90
scattered, 90
spectral, 82, 101

radiance function, 83
emitted, 90
equilibrium, 90
exitant, 84
field, 95
incident, 84
surface, 95

radiant energy, 80
radiant exitance, 81, 234
radiant power, 80
radiation, 25
radiative heat transfer, 24–25
radical inverse sequence, 61
radiometric quantities, 80–83

fundamental vs. derived quantities,
101–102

measure-theoretic definitions, 99–
101

radiometry, 75
measure-theoretic, 96–102

radiosity, 81
radiosity algorithm, 10
Radon-Nikodym derivative, 34, 99
random variables

sampling, 41–42
(t;m; s)-net, 64
(t; s)-sequence, 64
ray casting function, 127
ray space, 105

advantages of, 107
alternative representations, 106
functions on, 107
reversible, 127

ray-casting function, 90, 110
reciprocity principle, 175

exceptions, 193–199
due to absorbing media, 194–199
due to magnetic fields, 193–194

for absorbing media, 198–199
for general BSDF’s, 180–182
for spectral radiance, 183
Helmholtz, 185–188
Lord Rayleigh’s, 189

reduced wave equation, 26
reducing the dimensionality, 46–47
reflectance equation, 86
reflected hemisphere, 87
reflection

ideal diffuse, 17
refraction

adjoint BSDF, 147–148
adjoint BSDF, derivation of, 171
basic BSDF, 217
BSDF, 145–146

angular form, 172
invariance of basic throughput, 209
non-symmetric scattering due to,

139–150
radiance scaling, 141–143

refractive index
continuously varying, 16

regression methods, 70–71
regular expression, 231
regular expressions for paths
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classifying sources and sensors, 232–
235

interpretation as scattering events,
235–237

classifying specular vertices, 247–
248

full-path expressions, 232–237
formal definition, 234–235

Heckbert’s notation, 231–232
rejection method, 41
rendering algorithm

image space, 161
resolvent operator, 112
responsivity, 89

flux, 115
reversal map, 127
reversible ray, 127
reversible ray space, 127
RMS error, 35
robust estimator, 252
robust light transport algorithm, 1
roughness parameter, 253
roulette probability, 318
roulette threshold, 318
rover, 355
running average, 322
Russian roulette, 67–68, 309

efficiency-optimized, 317–320

sample, 43
sample contribution, 263
sample size, 43
sampling random variables, 41–42
sampling the BSDF, 254
sampling the light source, 254
scattered radiance, 90
scattering

elastic, 23
ideal specular, 17
instantaneous, 23

scattering equation, 86

three-point form of, 254
scattering kernel, 155

adjoint, 155
scattering theory, 199
scattering throughput measure, 244
scrambled net, 64
scrambled sequence, 64
second law of thermodynamics, 178

insufficiency of, 182
selecting between mutation types, 355–

356
self-adjoint operator, 116
self-adjoint operator formulation, 201–

207
consequences for implementations,

206–207
new transport operators, 205

sensor, 89, 114
sensor response, 114
sequential sampling, see adaptive sam-

pling
shading normal, 150

adjoint BSDF, 152–153
alternatives to, 162–165
brightness discontinuities, 160–162
examples of adjoint BSDF’s, 153–

155
modified BSDF, 151–152
non-symmetric scattering due to,

150–165
pseudocode for adjoint BSDF, 155–

160
�-algebra, 96
�-finite, 96
Smith-Helmholtz invariant, 208
solid angle measure, 77

basic, 202
basic projected, 203
projected, 77

solution operator, 112, 119
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existence of, 112
sources of variation, 56
spectral phase space density, 100
spectral radiance, 82, 101
spectral radiant sterisent, 100
splitting, 68–69, 160
standard deviation, 35
star discrepancy, 58
start-up bias, 338
stationary distribution, 335
stratified sampling, 50–52
stratum, 50
striated medium, 199
strong law of large numbers, 40
surface radiance function, 95
surface roughness parameter, 253
symmetry

of BRDF’s, 87
of BSDF’s, 180–182

tangent plane, 77
tangent space, 77
tensor product rules quadrature rule, 31
tentative contribution, 317
tentative transition function, 335
thermodynamic equilibrium, 177
thermodynamics, 177–180

second law, 178
three-point form of the light transport

equation, 220–222
three-point form of the scattering equa-

tion, 254
throughput, 106

basic, 203, 208
throughput measure, 105
time reversal, 190
time reversal invariance, 180, 190–191
time-harmonic, 26
(t;m; s)-net, 63

randomly permuted, 64
trajectory space, 79

transformation method, 41
transition function, 190, 334

tentative, 335
transmission, 17
transmissivity, 194
transport operators

adjoints of, 129–133, 212–213
invertibility of, 126–129
norms of, 133–134, 213–216
properties of, 126–134, 212–216

transport theory, 23, 78
(t; s)-sequence, 63

randomly permuted, 64
two-factor interactions, 56
two-stage sampling, 66

unbiased estimator, 14, 43
unweighted contribution, see bidirec-

tional path tracing
upward hemisphere, 77

van der Corput sequence, 61
variance, 35
variance reduction methods, 45

adaptive sampling, 66
antithetic variates, 69–70
based on adaptive sample placement,

65–69
based on analytic integration, 45–49
based on correlated estimators, 69–71
based on uniform sample placement,

50–65
control variates, 48–49
expected values, the use of, 46–47
importance sampling, 47–48
Latin hypercube sampling, 52–53
multi-jittered sampling, 58
multiple importance sampling, 251–

287
N -rooks sampling, 52
orthogonal array sampling, 54–57
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orthogonal array-based Latin hyper-
cube sampling, 57–58

quasi-Monte Carlo methods, 58–65
reducing the dimensionality, 46–47
regression methods, 70–71
Russian roulette, 67–68

efficiency-optimized, 318–320
splitting, 68–69
stratified sampling, 50–52
two-stage sampling, 66

variation in the sense of Hardy and
Krause, 59

vector space, 108
complete, 108

vertex normal, 150
view-dependent light transport algorithm,

12
view-independent light transport algo-

rithm, 12
visibility factor, 317
volume emission, 97

wave equation, 26
wave optics, 18–20
weighted equilibrium condition, 368


