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Abstract

We solve the optimal asset allocation problem using a mean variance approach. The original
mean variance optimization problem can be embedded into a class of auxiliary stochastic Linear-
Quadratic (LQ) problems using the method in (Zhou and Li, 2000; Li and Ng, 2000). We use
a finite difference method with fully implicit timestepping to solve the resulting non-linear
Hamilton-Jacobi-Bellman (HJB) PDE, and present the solutions in terms of an efficient frontier
and an optimal asset allocation strategy. The numerical scheme satisfies sufficient conditions
to ensure convergence to the viscosity solution of the HJB PDE. We handle various constraints
on the optimal policy. Numerical tests indicate that realistic constraints can have a dramatic
effect on the optimal policy compared to the unconstrained solution.
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1 Introduction

Continuous time mean variance asset allocation has received considerable attention over the years
(Zhou and Li, 2000; Li and Ng, 2000; Nguyen and Portrai, 2002; Leippold et al., 2004; Bielecki et al.,
2005). Financial applications include hedging futures (Duffie and Richardson, 1991), insurance
(Chiu and Li, 2006; Wang et al., 2007), pension asset allocation (Gerrard et al., 2004; Hojgaard
and Vigna, 2007) and optimal execution of trades (Lorenz and Almgren, 2007). In its simplest
formulation, an investor can choose to invest in a risk-free bond or a risky asset, and can dynamically
alter the proportion of wealth invested in each asset, in order to achieve a mean variance efficient
result.
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The continuous time mean variance problem does not lend itself easily to a dynamic program-
ming formulation. There are have been two main approaches to this problem. The original mean
variance optimal control problem can be embedded into a class of auxiliary stochastic Linear-
Quadratic (LQ) problems, which can then be solved in terms of dynamic programming (Zhou
and Li, 2000; Li and Ng, 2000). Alternatively, Martingale techniques can be used (Bielecki et al.,
2005). In the case of the LQ method, previous papers use analytic techniques to solve the nonlinear
Hamilton-Jacobi-Bellman (HJB) PDE for special cases. In order to obtain analytic solutions, the
authors typically make assumptions which allow for the possibility of unbounded borrowing and
infinite negative wealth (bankruptcy). However, some analytic solutions have been developed for
handling specific constraints: no stock shorting (Li et al., 2002) (but shorting the bond is still
allowed) and the no bankruptcy case (Bielecki et al., 2005) (but again allowing for shorting the
bond).

Although investment policy based on mean variance optimization has its critics, an advantage
of this approach compared to power-law or exponential utility maximization is that the results can
be easily interpreted in terms of an efficient frontier.

The objective of this paper is to develop a numerical method for solving the continuous time
mean variance optimal asset allocation problem. We will use a fully numerical scheme based on
solving the HJB equation resulting from the LQ formulation. Our scheme can easily handle any
type of constraint (e.g. non-negative wealth, no shorting of stocks, margin requirements).

Although the methods developed in this paper can be applied to any asset allocation problem,
such as those discussed in (Nguyen and Portrai, 2002; Bielecki et al., 2005; Chiu and Li, 2006; Wang
et al., 2007) we will focus on asset allocation problems which are relevant to defined contribution
pension plans as discussed in (Hojgaard and Vigna, 2007; Cairns et al., 2006). In (Hojgaard and
Vigna, 2007), the objective is to determine the mean variance efficient strategy in terms of final
wealth. In (Cairns et al., 2006), the pension plan model includes a stochastic salary component. In
(Cairns et al., 2006), the problem was formulated in terms of maximizing the utility of the wealth-
to-income ratio. Here, we consider the same model, but solve for the optimal continuous time
mean variance efficient frontier. Note that by setting the contribution rate to zero, the pension
plan problem reduces to the classical continuous time (multi-period) portfolio selection problem
(Zhou and Li, 2000; Li and Ng, 2000; Li et al., 2002; Bielecki et al., 2005; Li and Zhou, 2006).

The main results of this paper are

• Based on the methods in (Forsyth and Labahn, 2008; Wang and Forsyth, 2008), we develop a
fully implicit method for solving the nonlinear HJB PDE, which arises in the LQ formulation
of the mean variance problem. Under the assumption that the HJB equation satisfies a strong
comparison property, our methods are guaranteed to converge to the viscosity solution of the
HJB equation. In addition, the policy iteration scheme used to solve the nonlinear algebraic
equations at each timestep is globally convergent. Note that an explicit method would have
timestep restrictions due to stability considerations. In the case of an unbounded control, the
maximum stable timestep would be difficult to estimate. This problem does not arise if an
implicit method is used.

• By solving the HJB PDE and a related linear PDE, we develop a numerical method for
constructing the mean variance efficient frontier (in continuous time). Any type of constraint
can be applied to the investment policy.
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• We pay particular attention to handling various constraints on the optimal policy. In partic-
ular, in order to compare the numerical solution with the known analytic solution in special
cases, it is necessary to allow for negative wealth and unbounded controls. This requires
careful attention to the grid construction and form of the control as the mesh and timesteps
shrink to zero.

• From a practical point of view, we observe that the addition of realistic constraints can
completely alter some of the properties of the mean variance solution compared to the un-
constrained control case (Li and Zhou, 2006).

We should point out here that the optimal mean variance strategy in (Zhou and Li, 2000; Li and
Ng, 2000; Nguyen and Portrai, 2002; Leippold et al., 2004; Bielecki et al., 2005; Chiu and Li, 2006;
Wang et al., 2007; Hojgaard and Vigna, 2007) is the pre-commitment strategy, i.e. once the initial
strategy has been determined (as a function of the state variables) at the initial time, the investor
commits to this strategy, even if the the mean variance policy, computed at a later time would
differ from the pre-commitment strategy. This contrasts with the time-consistent policy whereby
the investor optimizes the mean variance tradeoff at each instant in time, assuming optimal mean
variance strategies at each later instant. The subtle distinction between these two approaches
is discussed in (Basak and Chabakauri, 2007). We note that the efficient frontier for the pre-
commitment strategy must always lie above the efficient frontier for the time-consistent strategy.
However, there is some economic controversy about the meaning of these two approaches. We will
focus on the pre-commitment policy in this paper, leaving the time-consistent problem for future
work.

2 Mean Variance Efficient Wealth Case

We first consider the problem of determining the mean variance efficient strategy in terms of the
investor’s final wealth. We will refer to this problem in the following as the wealth case. This will
allow an explanation of the basic approach for construction of the efficient frontier, without undue
algebraic complication. For certain special cases, there are also some analytic solutions available
(Hojgaard and Vigna, 2007) for this problem. This will enable us to compare with the numerical
solution.

Suppose there are two assets in the market: one is risk free (e.g. a government bond) and the
other is risky (e.g. a stock index). The risky asset S follows the stochastic process

dS = (r + ξ1σ1)S dt + σ1S dZ1 , (2.1)

where dZ1 is the increment of a Wiener process, σ1 is volatility, r is the interest rate, ξ1 is the
market price of risk (or Sharpe ratio) and the stock drift rate can then be defined as µS = r + ξ1σ1.
Suppose that the plan member continuously pays into the pension plan at a constant contribution
rate π in the unit time. Let W (t) denote the wealth accumulated in the pension plan at time t,
let p denote the proportion of this wealth invested in the risky asset S, and let (1− p) denote the
fraction of wealth invested in the risk free asset. Then,

dW = [(r + pξ1σ1)W + π]dt + pσ1WdZ1 , (2.2)
W (t = 0) = ŵ0 ≥ 0 .
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We will use the following notation throughout this paper,

E[·] : expectation operator,
V ar[·] : variance operator,
Std[·] : standard deviation operator,

Et[·], V art[·] or Stdt[·] : E[·], V ar[·] or Std[·] when sitting at time t,

Et
p[·], V art

p[·] or Stdt
p[·] : E[·|p], V ar[·|p] or Std[·|p] when sitting at time t. (2.3)

Let WT = W (t = T ). Given a risk level (defined as the variance of terminal wealth V art=0[WT ]),
an investor desires her expected terminal wealth Et=0[WT ] to be as large as possible. Equiva-
lently, given an expected terminal wealth Et=0[XT ], she wishes the risk V art=0[WT ] to be as small
as possible. Using a Lagrange multiplier, the control problem is then to determine the control
p(t, W (t) = w), where W (t) is the path of W given the control p(t, w), such that p(t, w) maximizes

max
p(t,w)

(Et=0[WT ]− λV art=0[WT ]), (2.4)

subject to stochastic process (2.2), and where λ > 0 is a given Lagrange multiplier. The multiplier
λ can be interpreted as a coefficient of risk aversion. Varying λ ∈ [0,∞) allows us to draw an
efficient frontier. Note we have emphasized here that the expectations in equation (2.4) are as seen
at t = 0 (the pre-commitment solution).

We would like to use dynamic programming to determine the efficient frontier, given by equation
(2.4). However, the presence of the variance term causes some difficulty. This can be avoided with
the help of the following result (Zhou and Li, 2000; Li and Ng, 2000).

Theorem 2.1 If p∗(t, w) is the optimal control of problem (2.4), then p∗(t, w) is also the optimal
control of problem,

max
p(t,w)

Et=0[µWT − λW 2
T ] (2.5)

where
µ = 1 + 2λEt=0

p∗ [WT ] . (2.6)

Proof . See (Zhou and Li, 2000; Li and Ng, 2000). �

2.1 Reduction to an LQ Problem

Let,

D := the set of all admissible wealth W (t), for 0 ≤ t ≤ T ;
P := the set of all admissible controls p(t, w), for 0 ≤ t ≤ T and w ∈ D. (2.7)

Let γ = µ
λ , then from equation (2.6),

γ =
1
λ

+ 2Et=0
p∗ [WT ] . (2.8)
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For a fixed γ, with λ > 0, equation (2.5) is equivalent to

min
p(t,w)

Et=0[(WT −
γ

2
)2] . (2.9)

Let J(t, w, p) = E[(WT − γ
2 )2|W (t) = w], where W (t) is the path of W given the asset allocation

strategy p = p(t, w). We define

V (w, τ) = inf
p∈P

E[(WT −
γ

2
)2|W (t = T − τ) = w] = inf

p∈P
J(t = T − τ, w, p) . (2.10)

where τ = T − t. Then using equation (2.2) and Ito’s Lemma, we have that V (w, τ) satisfies the
HJB equation

Vτ = inf
p∈P

{µp
wVw +

1
2
(σp

w)2Vww} ; w ∈ D, (2.11)

with terminal condition

V (w, τ = 0) = (w − γ

2
)2 , (2.12)

and where

µp
w = π + w(r + pσ1ξ1)

(σp
w)2 = (pσ1w)2 . (2.13)

In order to trace out the efficient frontier solution of problem (2.4), we proceed in the following
way. Pick an arbitrary value of γ and solve problem (2.5), which determines the optimal control
p∗(t, w). We also need to determine Et=0

p∗ [WT ].
Let U = U(w, τ) = E[WT |W (t = T − τ) = w, p(t = T − τ, w) = p∗(t = T − τ, w)] . Then U is

given from the solution to

Uτ = {µp
wUw +

1
2
(σp

w)2Uww}p(t=T−τ,w)=p∗(t=T−τ,w) ; w ∈ D , (2.14)

with the payoff
U(w, τ = 0) = w . (2.15)

Since the most costly part of the solution of equation (2.11) is the determination of the optimal
control p∗, solution of equation (2.14) is very inexpensive, since p∗ is known.

Note that Et=0
p∗ [const.] = const.. Assume that W = ŵ0 at t = 0. Then

V (ŵ0, τ = T ) = Et=0
p∗ [W 2

T ]− γEt=0
p∗ [WT ] +

γ2

4
,

U(ŵ0, τ = T ) = Et=0
p∗ [WT ] . (2.16)

Assuming V (ŵ0, τ = 0), U(ŵ0, τ = 0) are known, then for a given γ, we can then compute the pair
(V art=0

p∗ [WT ], Et=0
p∗ [WT ]) from V art=0

p∗ [WT ] = Et=0
p∗ [W 2

T ]− (Et=0
p∗ [WT ])2.
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From equation (2.8) we have that

1
2λ

=
γ

2
− Et=0

p∗ [WT ] , (2.17)

which then determines the value of λ in problem (2.4). In other words, we have determined the
pair (Stdt=0

p∗ [WT ], Et=0
p∗ [WT ]) for the optimal control p∗ which solves problem (2.4), with the value

of λ given from equation (2.17).
We then pick another value of γ, and obtain another point on the efficient frontier for another

value of λ, and so on. Note that we are effectively using the parameter γ to trace out the efficient
frontier. Since λ > 0, we must have (from equation (2.17))

γ

2
− Et=0

p∗ [WT ] > 0 (2.18)

for a valid point on the frontier.

Remark 2.1 Note that the set of solutions for the original problem (2.4) is a subset of the set
of controls for the auxiliary problem (2.5). As a result, the pair (Stdt=0

p∗ [WT ], Et=0
p∗ [WT ]) from the

optimal strategy of problem (2.5) may not be a point on the efficient frontier for problem (2.4). To
find the efficient frontier for the original optimization problem (2.4), we construct an upper convex
hull from the candidate points (Stdt=0

p∗ [WT ], Et=0
p∗ [WT ]) obtained by varying γ.

Remark 2.2 If we allow an unbounded control set P = (−∞,+∞), then the total wealth can
become negative (i.e. bankruptcy is allowed). In this case D = (−∞,+∞). If the control set P is
bounded, i.e. P = [pmin, pmax], then negative wealth is not possible, in which case D = [0,+∞). We
can also have pmax → +∞, but prohibit negative wealth, in which case D = [0,+∞) as well.

2.2 Localization

Let,

D̂ := a finite computational domain which approximates the set D. (2.19)

In order to solve the PDEs (2.11), (2.14) we need to use a finite computational domain, D̂ =
[wmin, wmax]. When w → ±∞, we assume that

V (w → ±∞, τ) ' H1(τ)w2 + H2(τ)w + H3(τ) ,

U(w → ±∞, τ) ' J1(τ)w + J2(τ) . (2.20)

Then, taking into account the initial conditions (2.12), (2.15),

V (w → ±∞, τ) ' e(2k1+k2)τw2 ,

U(w → ±∞, τ) ' ek1τw , (2.21)

where k1 = r + pσ1ξ1 and k2 = (pσ1)2. We consider three cases.
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2.2.1 Allowing Bankruptcy, Unbounded Controls

In this case, we assume there are no constraints on W (t) or on the control p, i.e., D = (−∞,+∞)
and P = (−∞,+∞). Since W (t) = w can be negative, bankruptcy is allowed. We call this case the
allowing bankruptcy case.

Our numerical problem uses

D̂ = [wmin, wmax] , (2.22)

where D̂ = [wmin, wmax] is an approximation to the original set D = (−∞,+∞).
As far as the Dirichlet conditions at w = wmin, wmax, we can use the asymptotic form of the

exact solution (see Section 2.3) to note that

p∗(t, w → ±∞) ' − ξ1

σ1
. (2.23)

At w = wmin, wmax we apply the Dirichlet conditions (2.21) with p = p∗ from equation (2.23).
These artificial boundary conditions will cause some error. However, we can make these errors

small by choosing large values for (|wmin|, wmax). We will verify this in some subsequent numerical
tests. If asymptotic forms of the solution are unavailable, we can use any reasonable estimate for p∗

for |w| large, and the error will be small if (|wmin|, wmax) are sufficiently large (Barles et al., 1995).

2.2.2 No Bankruptcy, No Short Sales

In this case, we assume that bankruptcy is prohibited and the investor cannot short the stock index,
i.e., D = [0,+∞) and P = [0,+∞). We call this case the no bankruptcy (or bankruptcy prohibition)
case.

Our numerical problem uses,

D̂ = [0, wmax] . (2.24)

We make the assumption that p∗(t, wmax) ' 0 (i.e. once the investor’s wealth is very large, she
prefers the riskless asset). The boundary conditions for V,U at w = wmax are given by equations
(2.21) with p = 0, w = wmax. We prohibit the possibility of bankruptcy (W (t) < 0) by requiring
that (see Remark 2.3 ) limw→0(pw) = 0, so that equations (2.11), (2.14) reduce to (at w = 0)

Vτ (0, τ) = πVw ,

Uτ (0, τ) = πUw . (2.25)

2.2.3 No Bankruptcy, Bounded Control

This is a realistic case, in which we assume that bankruptcy is prohibited and infinite borrowing
is not allowed. As a result, D = [0,+∞) and P = [0, pmax]. We call this case the bounded control
case.

Our numerical problem uses,

D̂ = [0, wmax] , (2.26)

where wmax is an approximation to the infinity boundary. Other assumptions and the boundary
conditions for V and U are the same as those of no bankruptcy case introduced in Section 2.2.2.

We summarize the various cases in Table 1
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Case D̂ P
Bankruptcy [wmin, wmax] (−∞,+∞)

No Bankruptcy [0, wmax] [0,+∞)
Bounded Control [0, wmax] [0, pmax]

Table 1: Summary of cases.

2.3 Analytic Solution: Unconstrained Control

Suppose that the control p(t, w) is unbounded, i.e. P = (−∞,+∞). This allows infinite shorting of
the risky asset and the bond. This also allows for bankruptcy, which means that D = (−∞,+∞).
This is the case of allowing bankruptcy introduced in Section 2.2.1.

The analytic solution to this problem is given in (Hojgaard and Vigna, 2007),{
V art=0[WT ] = eξ21T−1

4λ2

Et=0[WT ] = ŵ0e
rT + π erT−1

r +
√

eξ2
1T − 1Std(WT ) ,

(2.27)

and the optimal control at any time t ∈ [0, T ] is

p∗(t, w) = − ξ1

σ1w
[w − (ŵ0e

rt +
π

r
(ert − 1))− e−r(T−t)+ξ2

1T

2λ
] . (2.28)

Note that when |w| → 0, from equation (2.28), p∗(t, w)w is a positive finite number, and that
|p∗(t, w)| → ∞ as |w| → 0.

We can then see directly from the SDE (2.2), that W (t) can be negative in this case. Hence,
D = (−∞,+∞). From equation (2.28), when w is negative, p∗(t, w) is negative. As a result,
p∗(t, w)w is positive, i.e., the total monetary amount invested in stock is still positive (the investor
is long stock).

The efficient frontier (Stdt=0
p∗ [WT ], Et=0

p∗ [WT ]) in this case is a straight line. We will use this
analytic result to check our numerical solution.

Remark 2.3 It is important to know the behaviour of p∗w as w → 0, since it helps us determine
whether negative wealth is admissible or not. As shown above, negative wealth is admissible for the
case of allowing bankruptcy. In the case of no bankruptcy, although p ∈ P = [0,+∞), we must
have limw→0(pw) = 0 so that W (t) ≥ 0 for all 0 ≤ t ≤ T . In particular, we need to make sure
that the optimal strategy never generates negative wealth, i.e., Probability(W (t) < 0|p∗) = 0 for all
0 ≤ t ≤ T . We will see from the numerical solutions that boundary condition (2.25) does in fact
result in limw→0(p∗w) = 0. Hence, negative wealth is not admissible under the optimal strategy.
More discussions of this issue are given in Section 6. For the bounded control case, the control is
finite, thus limw→0(pw) = 0 and negative wealth is not admissible.

2.4 Special Case: Reduction to the Classic Multi-period Portfolio Selection
Problem

The classic multi-period portfolio selection problem can be stated as the following: given some
investment choices (assets) in the market, an investor seeks an optimal asset allocation strategy
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over a period T with an initial wealth ŵ0. This problem has been widely studied (Merton, 1971;
Zhou and Li, 2000; Li and Ng, 2000; Li et al., 2002; Bielecki et al., 2005; Li and Zhou, 2006). If
we use the mean variance approach to solve this problem, then the best strategy p∗(w, t) can be
defined as a solution of problem (2.4). We still assume there is one risk free bond and one risky
asset in the market. In this case,

dW = (r + pξ1σ1)Wdt + pσ1WdZ1 , (2.29)
W (t = 0) = ŵ0 > 0 .

Clearly, the pension plan problem we introduced previously can be reduced to the classic multi-
period portfolio selection problem by simply setting the contribution rate π = 0. All equations and
boundary conditions stay the same.

The authors of (Bielecki et al., 2005) study the case with bankruptcy prohibition, i.e., W (t)
is forced to be nonnegative for all t ∈ [0, T ]. In this case, D = [0,+∞) and P = [0,+∞). An
analytic solution for this case is given in (Bielecki et al., 2005). Note that the stochastic control
used in (Bielecki et al., 2005) is not the proportion of the total wealth invested in the stock, but
the monetary amount invested in the stock. The authors of (Bielecki et al., 2005) point out that
their strategy cannot be expressed as a proportional strategy. However, we will see later in Section
6 that the efficient frontier given by our approach (using the proportion as the control) converges
to the analytic solution given in (Bielecki et al., 2005) (using the monetary amount as the control).

3 Wealth-to-income Ratio Case

In the previous section, we considered the expected value and variance of the terminal wealth in
order to construct an efficient frontier. Many studies have shown that a desirable feature of a
pension plan is that the holder’s wealth W is large compared to her annual salary Y the year
before she retires. In this section, instead of the terminal wealth, we determine the mean variance
efficient strategy in terms of the terminal wealth-to-income ratio X = W

Y . In the following, we give
a brief overview of the model developed in (Cairns et al., 2006). We still assume there are two
underlying assets in the pension plan: one is risk free and the other is risky. Recall from equation
(2.1) that the risky asset S follows the Geometric Brownian Motion,

dS = (r + ξ1σ1)S dt + σ1S dZ1 . (3.1)

Suppose that the plan member continuously pays into the pension plan at a fraction π of her yearly
salary Y , which follows the process

dY = (r + µY )Y dt + σY0Y dZ0 + σY1Y dZ1 , (3.2)

where µY , σY0 and σY1 are constants, and dZ0 is another increment of a Wiener process, which is
independent of dZ1. Let p denote the proportion of this wealth invested in the risky asset S, and
let 1− p denote the fraction of wealth invested in the risk-free asset. Then

dW = (r + pξ1σ1)W dt + pσ1WdZ1 + πY dt , (3.3)
W (t = 0) = ŵ0 ≥ 0 .

9



Define a new state variable X(t) = W (t)/Y (t), then by Ito’s Lemma, we obtain

dX = [π + X(−µY + pσ1(ξ1 − σY1) + σ2
Y0

+ σ2
Y1

)]dt (3.4)
−σY0XdZ0 + X(pσ1 − σY1)dZ1 ,

X(t = 0) = x̂0 ≥ 0 .

The control problem is then to determine the control p(t, X(t) = x) such that p(t, x) maximizes

max
p(t,x)

(Et=0[XT ]− λV art=0[XT ]) , (3.5)

subject to stochastic process (3.4). Similar to problem (2.4), we can use Theorem 2.1 to embed
problem (3.5) into the following LQ stochastic optimal control problem

max
p(t,x)

Et=0[µXT − λX2
T ] , (3.6)

µ = 1 + 2λEt=0
p∗ [XT ] ,

where p∗ is the optimal control. We still use D and P as the sets of all admissible wealth-to-income
ratio and control. As before, we let D̂ be the localized computational domain.

Again, let γ = µ
λ , then for a fixed γ, equation (2.5) is equivalent to

min
p(t,x)

Et=0[(XT −
γ

2
)2] . (3.7)

Let J(t, x, p) = E[(XT − γ
2 )2|X(t) = x], where X(t) is the path of X given the asset allocation

strategy p = p(t, x). We define

V (x, τ) = inf
p∈P

E[(XT −
γ

2
)2|X(t = T − τ) = x] = inf

p∈P
J(t = T − τ, x, p) . (3.8)

where τ = T − t. Then V (x, τ) satisfies the HJB equation

Vτ = inf
p∈P

{µp
xVx +

1
2
(σp

x)2Vxx} ; x ∈ [0,+∞) , (3.9)

with terminal condition

V (x, τ = 0) = (x− γ

2
)2 , (3.10)

and where

µp
x = π + x(−µY + pσ1(ξ1 − σY1) + σ2

Y0
+ σ2

Y1
)

(σp
x)2 = x2(σ2

Y0
+ (pσ1 − σY1)

2) . (3.11)

We also solve for U(x, τ) = E[XT |X(t = T − τ) = x, p(t = T − τ, x) = p∗(t = T − τ, x)] using

Uτ = {µp
xUx +

1
2
(σp

x)2Uxx}p(t=T−τ,x)=p∗(t=T−τ,x) ; x ∈ [0,+∞) , (3.12)
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with terminal condition

U(x, τ = 0) = x . (3.13)

We can then use the method described in Section 2.1 to trace out the efficient frontier solution
of problem (3.5).

We consider the cases: allowing bankruptcy (D = (−∞,+∞), P = (−∞,+∞)), no bankruptcy
(D = [0,+∞), P = [0,+∞)), and bounded control (D = [0,+∞), P = [0, pmax]). For computational
purposes, we localize the problem to to D̂ = [xmin, xmax], and apply boundary conditions as in
Section 2.2. More precisely, if x = 0 is a boundary, with X < 0 prohibited, then limw→0(px) = 0,
and hence

Vτ (0, τ) = πVx ,

Uτ (0, τ) = πUx . (3.14)

The boundary conditions at x → ±∞ are given in equation (2.21), but using x instead of w with
k1 = −µY + pσ1(ξ1 − σY1) + σ2

Y0
+ σ2

Y1
and k2 = σ2

Y0
+ (pσ1 − σY1)

2.

Remark 3.1 Although the pension plan account contains the risk free bond, the stochastic process
for dX does not contain the risk free rate r. As a result, there is no risk free rate r in the HJB
PDE (3.9). The drift rate (mean growth rate) for the yearly salary Y is r + µy in equation (3.2).
If Y grows faster than the risk free rate, then µy > 0; otherwise µy ≤ 0. Normally, we assume that
the salary Y grows at the risk free rate, so µy = 0.

Remark 3.2 The problem described in Section 2 can be seen as a special case of the problem
described in this section. We can simply set the salary Y to be a constant (let σY0 = σY1 = 0 and
µy = −r), then X(t) is reduced to W (t) and PDE (3.9) is reduced to PDE (2.11).

4 Discretization of the HJB PDE

In (Forsyth and Labahn, 2008; Wang and Forsyth, 2008), the authors develop a general framework
to solve HJB PDEs in finance. We can directly apply the numerical scheme introduced in (Wang
and Forsyth, 2008) to solve equations (2.11), (2.14), (3.9) and (3.12). Set

LpV ≡ a(z, p)Vzz + b(z, p)Vz , (4.1)

where

z = w ; a(z, p) = µp
w ; b(z, p) =

1
2
(σp

w)2 (4.2)

(see equation (2.13)) for the wealth case introduced in Section 2; and

z = x ; a(z, p) = µp
x ; b(z, p) =

1
2
(σp

x)2 (4.3)
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(see equation (3.11)) for the wealth-to-income ratio case introduced in Section 3. Then,

Vτ = inf
p∈P

{LpV } , (4.4)

and
Uτ = {LpU}p=p∗ . (4.5)

Define a grid {z0, z1, . . . , zq} with z0 = zmin, zq = zmax and let V n
i be a discrete approximation

to V (zi, τ
n). Set Pn = [pn

0 , pn
1 , . . . , pn

q ]′, with each pn
i a local optimal control at (zi, τ

n). Let
P ∗ = {P 0, P 1, . . . , PN}, where τN = T . In other words, P ∗ contains the discrete optimal controls
for all (i, n). Let V n = [V n

0 , . . . , V n
q ]′, and let (LP n

h V n)i denote the discrete form of the differential
operator (4.1) at node (zi, τ

n). The operator (4.1) can be discretized using forward, backward or
central differencing in the z direction to give

(LP n+1

h V n+1)i = αn+1
i V n+1

i−1 + βn+1
i V n+1

i+1 − (αn+1
i + βn+1

i )V n+1
i . (4.6)

Here αi, βi are defined in Appendix A.
Equation (4.4) can now be discretized using fully implicit timestepping along with the dis-

cretization (4.6) to give

V n+1
i − V n

i

∆τ
= inf

P n+1∈P̂

{
(LP n+1

h V n+1)i

}
, (4.7)

where P̂ = {[p0, p1, . . . , pq]′ | pi ∈ P, 0 ≤ i ≤ q}. With Pn+1 given from equation (4.7), then
equation (4.5) can be discretized as

Un+1
i − Un

i

∆τ
=

{
(LP n+1

h Un+1)i

}
. (4.8)

Note that αn+1
i = αn+1

i (pn+1
i ) and βn+1

i = βn+1
i (pn+1

i ), that is, the discrete equation coefficients
are functions of the local optimal control pn+1

i . This makes equations (4.7) highly nonlinear in
general.

Remark 4.1 As mentioned in Remark 2.2, for the wealth case with allowing bankruptcy, we have
D = (−∞,+∞) and P = (−∞,+∞). In this case, our W grid contains

[wmin, . . . , w−2, w−1, w1, w2, . . . , wmax]
wmin < · · · < w−2 < w−1 < 0 < w1 < w2 < · · · < wmax (4.9)

with large |wmin| and wmax. Note that our W grid does not contain the node w = 0, because if
w = 0 is in the grid, no information can be passed between the negative value nodes and positive
value nodes. We set |w−1| and w1 to be small values close to zero. As Figure 1 shows, when the
W grid is refined, a new node is inserted in between each two consecutive nodes, except for the pair
w−1 and w1. Since w = 0 cannot be in the grid, we add two nodes of wnew

−1 = w−1

2 and wnew
1 = w1

2
into the grid.

Note that we could avoid this problem (near w = 0) by defining the control to be (pw) instead
of p. However, in the more realistic case of bounded p, it is more natural to impose constraints on
p, rather than on (pw), hence we prefer to formulate the control (and constraints) in terms of the
variable p.
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Remark 4.2 We use a fully implicit method to solve equation (4.7). Since p →∞ in some cases,
it would be a challenging task to determine the maximum stable timestep for an explicit method.

ss s ss scc c c
wnew
−1New wnew

1 New

w−1w−2 w1 w2 wmaxwmin 0

Figure 1: Node insertion in W grid.

4.1 Positive Coefficient Method

It is important that central, forward or backward discretizations are used to ensure that (4.7) and
(4.8) are a positive coefficient discretizations. To be more precise, this condition is

Condition 4.1 Positive Coefficient Condition

αn+1
i ≥ 0, βn+1

i ≥ 0, i = 0, .., q − 1 . (4.10)

In (Wang and Forsyth, 2008), the authors develop a positive coefficient scheme for HJB PDEs
in finance, which uses central differencing as much as possible. We can ensure a positive coefficient
scheme by using the method introduced in (Wang and Forsyth, 2008).

4.2 Matrix Form of the Discrete Equations

It will be convenient to use matrix notation for equations (4.7) and (4.8), coupled with boundary
conditions.

If a Dirichlet condition is specified at z = zmin, τ = τn (i = 0), then we denote this value by
Gn

0 . If a Dirichlet boundary condition is specified at z = zmax, τ = τn (i = q), then we denote this
value by Gn

q . The boundary conditions at z = zmin, zmax can be enforced by specifying a boundary
condition vector Gn = [Gn

0 , 0, . . . , 0, Gn
q ]′. Following the approach in (Wang and Forsyth, 2008), we

can write the discrete equations (4.7) as[
I −∆τAn+1(Pn+1)

]
V n+1 = V n + (Gn+1 −Gn) ,

with pn+1
i = arg min

P∈P̂

{
(LP

h V n+1)i

}
,

(4.11)

where

[An(Pn)V n]i = (LP n

h V n)i

=
[
αn

i V n
i−1 + βn

i V n
i+1 − (αn

i + βn
i )V n

i

]
; 1 < i < q . (4.12)

Note that the discrete equations (4.11) are nonlinear since Pn+1 = Pn+1(V n+1). The first and
last rows of A are modified as needed to handle the boundary conditions. If a Dirichlet condition
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is specified at i = 0, we set Gn
0 to the appropriate value, and set the first row in An to be zero.

With a slight abuse of notation, we denote this last row in this case as (An)0 ≡ 0. Conversely, if
no boundary condition is required at i = 0, then we use forward differencing at node i = 0 (which
means that α0 = 0), and set Gn

0 = 0. The boundary condition at z = zmax, i = q, is handled in a
similar fashion.

The discrete equations (4.8) can be written as[
I −∆τAn+1(Pn+1)

]
Un+1 = Un + (Hn+1 −Hn) , (4.13)

where Pn+1 is given from the discrete equations (4.11), and H encodes the boundary conditions.

4.3 Convergence to the Viscosity Solution

PDE (4.5) is linear, since the optimal control is pre-computed. We can then obtain a classical
solution of the linear PDE (4.5). However, PDE (4.4) is highly nonlinear, so the classical solution
may not exist in general. In this case, we are seeking the viscosity solution (Barles, 1997; Crandall
et al., 1992).

In (Pooley et al., 2003), examples were given in which seemingly reasonable discretizations of
nonlinear option pricing PDEs were unstable or converged to the incorrect solution. It is important
to ensure that we can generate discretizations which are guaranteed to converge to the viscosity
solution (Barles, 1997; Crandall et al., 1992). Assuming that equation (4.4) satisfies the strong
comparison property (Barles and Burdeau, 1995; Barles, 1997; Chaumont, 2004), then, from (Barles
and Souganidis, 1991; Barles, 1997), a numerical scheme converges to the unique viscosity solution
if the method is pointwise consistent, stable (in the l∞ norm) and monotone.

It is straightforward, using the methods in (Barles and Jakobsen, 2005; Forsyth and Labahn,
2008) to show that scheme (4.7) is monotone, pointwise consistent, and stable.

Assumption 4.1 (Strong Comparison) We assume that equation (4.4) satisfies the strong com-
parison property.

Remark 4.3 If the control p is bounded, then from the results in (Chaumont, 2004; Barles and
Rouy, 1998) we can deduce that Equation (4.4) satisfies the strong comparison property on the
localized computational domain D̂. In the unbounded control case, we violate one of the assumptions
in (Barles and Rouy, 1998) used in the proof of the strong comparison property. However, our
numerical results indicate that (pw) is always bounded. Hence, in the unbounded control case, we
could reformulate the problem in terms of a control (pw), and solve the problem with assumed
bounds on (pw), which would then satisfy the conditions in (Barles and Rouy, 1998). However, it
is not obvious how to obtain a priori bounds for (pw). In practical cases, we are more interested in
bounded controls, so in this case we have that strong comparison holds.

Theorem 4.1 (Convergence to the Viscosity Solution) Provided that the original HJB sat-
isfies Assumption 4.1, the boundary conditions given in Section 2.2 (or 3) and discretization (4.11)
satisfies the positive coefficient condition (4.10) then scheme (4.11) converges to the viscosity solu-
tion of equation (4.4).

14



Proof . Using the methods in (Barles and Jakobsen, 2005; Forsyth and Labahn, 2008), this can
be shown to follow from results in (Barles and Souganidis, 1991; Barles, 1997). We give a brief
overview of the proof.

Monotonicity: From the positive coefficient condition (equation (4.10)) and following the same
method as in (Forsyth and Labahn, 2008), we can show that scheme (4.11) is monotone.

Pointwise consistency: From Appendix A, a simple Taylor series verifies consistency. Note that
since we have either simple Dirichlet conditions, or the PDE at the boundary is the limit from
the interior, then we need only use the classical definition of consistency here, not the more
complex version discussed in (Barles and Souganidis, 1991; Barles, 1997; Chen and Forsyth,
2008).

Stability: Using the same technique as in (Forsyth and Labahn, 2008), we can show that scheme
(4.11) is l∞ stable by a maximum analysis. Again, this is a direct consequence of the positive
coefficient condition (4.10).

Under Assumption 4.1, there exists a unique, continuous viscosity solution to equation (4.4). Conse-
quently, as shown in (Barles and Souganidis, 1991), if a discretization scheme is monotone, pointwise
consistent and l∞ stable, then that scheme converges to the unique, continuous viscosity solution.

�

4.4 Policy Iteration

Although we have established that discretization (4.11) is consistent, l∞ stable and monotone, it is
not obvious that this is a practical scheme, since the implicit timestepping method requires solution
of highly nonlinear algebraic equations at each timestep.

Consider the following policy iteration scheme:

Iterative Solution of the Discrete Equations

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

For k = 0, 1, 2, . . . until convergence
Solve[

I −∆τAn+1(P k)
]
V̂ k+1 = V n + (Gn+1 −Gn)

pk
i = arg min

P∈P̂

{
(An+1(P )V̂ k)i

}

If (k > 0) and

max
i

∣∣∣V̂ k+1
i − V̂ k

i

∣∣∣
max

(
scale,

∣∣∣V̂ k+1
i

∣∣∣) < tolerance

 then quit

EndFor

(4.14)
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The term scale in scheme (4.14) is used to ensure that unrealistic levels of accuracy are not
required when the value is very small. Typically, we use scale = 1 in this paper, and tolerance =
10−6.

Theorem 4.2 (Convergence of Iteration (4.14)) If the discretization (4.11) satisfies the pos-
itive coefficient condition (4.10), then the policy iteration (4.14) converges to the unique solution
of equation (4.11) for any initial iterate V̂ 0. Moreover, the iterates converge monotonically.

Proof . The proof is given in (Wang and Forsyth, 2008). �

Remark 4.4 An important step in iteration (4.14) is to determine the optimal control pk
i for

each node i at each iteration. For the problems we study in this paper, the objective function
(LP n+1

h V n+1)i is a piecewise quadratic function of the control. The optimal control at each node
can then be easily determined.

In the case where the objective function is a complicated function of the control, it may be difficult
to determine the optimal control analytically. If the control set P is bounded, then we can replace
the set of admissible controls P by an approximation P̂. In this case, we define P̂ = [q0, q1, ..., qm],
where q0 = pmin, qm = pmax, and

max
i

(qi+1 − qi) = h . (4.15)

As long as h → 0 as the mesh and timesteps tend to zero, then replacing P by P̂ is a consistent
approximation (Wang and Forsyth, 2008), and hence converges to the viscosity solution.

Remark 4.5 We follow the approach given in (Wang and Forsyth, 2008), which uses central dif-
ferencing as much as possible, to ensure a positive coefficient scheme with a maximal use of a second
order method in the W (or X) direction. When we use central differencing as much as possible, the
local objective function at each node is a discontinuous function of the control. However, (Wang
and Forsyth, 2008) shows that the proof of convergence of the iterative scheme for solution of the
fully implicit discretized algebraic equations does not require continuity of the local objective func-
tion. Hence convergence of the iterative algorithm for solving the nonlinear discretized equations is
guaranteed.

5 Algorithm for Construction of the Efficient Frontier

Given an initial value ẑ0, Algorithm (5.1) is used to obtain the efficient frontier. Since the Z grid is
discretized over the interval [zmin, zmax], we can use Algorithm (5.1) to obtain the efficient frontier
for any initial wealth ẑ0 ∈ [zmin, zmax] by interpolation. Of course, if we choose ẑ0 to be a node in
the discretized Z grid, then there is no interpolation error.
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Algorithm for Constructing the Efficient Frontier

For γ = γmin, γ1, . . . , γmax

For timestep n = 1, . . . , N

Solve equation (4.11) by using policy iteration (4.14)

Solve equation (4.13) // Pn+1 is given from the solution of equation (4.11)
EndFor
Given the initial ẑ0, use interpolation to get the value of

(Et=0
p∗ [ZT ], Et=0

p∗ [(ZT −
γ

2
)2])γ at Z(t = 0) = ẑ0

If (
γ

2
− Et=0

p∗ [ZT ]γ > 0) // possible valid point λ > 0

Solve equations (2.16) to get (Et=0
p∗ [ZT ], Et=0

p∗ [Z2
T ])γ

Calculate the pair (Stdt=0
p∗ [ZT ], Et=0

p∗ [ZT ])γ

EndIf
EndFor
Construct the upper convex hull of the points

(Stdt=0
p∗ [ZT ], Et=0

p∗ [ZT ])γ , γ ∈ [γmin, γmax]
(5.1)

In Algorithm (5.1), we trace out the efficient frontier by varying γ ∈ [γmin, γmax]. Heuristic
methods can be used to estimate γmin, γmax. These choices are not crucial, since we will detect
invalid values of γ from the condition that λ > 0. For example, in the wealth case, to determine
γmin, we consider the left most point on the efficient frontier. If λ → ∞, then the investor seeks
to minimize risk. Obviously, in this case, the investor would invest all her wealth in the risk free
bond at all times. In this case, her terminal wealth would be ŵ0e

rT + π erT−1
r with zero standard

deviation. Then theoretically,

γmin = 2(ŵ0e
rT + π

erT − 1
r

) . (5.2)

There is no upper bound for γ. In particular, if there is no upper bound for the control p, there
are no upper bounds for Stdt=0

p∗ [WT ] and Et=0
p∗ [WT ] either. From our numerical tests, we find that

γmax = 50 is large enough to plot the efficient frontier over a reasonable range of interest.
The last step in Algorithm (5.1) is to draw the efficient frontier, given a set of candidate points.

As mentioned in Remark 2.1, to find the efficient frontier for the original optimization problem (2.4),
we construct an upper convex hull from the candidate points (Stdt=0

p∗ [WT ], Et=0
p∗ [WT ]) obtained by

varying γ.
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6 Numerical Results

In this section, we carry out numerical tests for the defined contribution pension plan problem.
We examine both the wealth case (addressed in Section 2) and the wealth-to-income ratio case
(addressed in Section 3).

6.1 Wealth Case

6.1.1 Allowing Bankruptcy

r 0.03 ξ1 0.33
σ1 0.15 π 0.1
T 20 years W (t = 0) 1

Table 2: Parameters used in the pension plan examples.

We first examine the wealth case with bankruptcy allowed. Parameters in Table 2 are used
for numerical tests. We use wmax = |wmin| = 5925 and tolerance = 10−6 (see Algorithm (4.14)).
We test a special case first, in which the variance is zero (λ → +∞). From equation (2.27), the
analytic solution is (Stdt=0

p∗ [WT ], Et=0
p∗ [WT ]) = (0, 4.5625). Moreover, in this case, γ = 2Et=0

p∗ [WT ],
so Et=0

p∗ [(XT − γ
2 )2] = 0. We use a finite difference method with fully implicit timestepping to solve

this problem numerically. We analytically determine the local optimal control at each node (as
required in Algorithm 4.14).

Table 3 and 4 show the numerical results. Table 3 reports the value of Et=0
p∗ [(XT − γ

2 )2], which
is the viscosity solution of nonlinear HJB PDE (2.11). Table 4 reports the value of Et=0

p∗ [WT ],
which is the solution of the linear PDE (2.14). Given Et=0

p∗ [(XT − γ
2 )2] and Et=0

p∗ [WT ], the standard
deviation is can be easily computed, which is also reported in Table 4. The results show that the
numerical solutions of Et=0

p∗ [(XT − γ
2 )2] and Et=0

p∗ [WT ] converge to the analytic values at a first
order rate as mesh and timestep size tends to zero. Let

max
i

(wi+1 − wi) = O(h) ; ∆τ = O(h) (6.1)

where h is the discretization parameter, then from Table 4, we see that the standard deviation
converges at a rate O(h1/2). The total number of nonlinear iterations shown in Table 3 is about
two or three times of the number of timesteps. Hence, the iteration scheme (4.14) converges rapidly.

For another example, let λ = 1.762 in problem (2.4). The analytic solution given by equation
(2.27) is (Stdt=0

p∗ [WT ], Et=0
p∗ [WT ]) = (0.831, 6.945). Tables 5 and 6 show the numerical results. The

numerical solutions for Et=0
p∗ [(XT − γ

2 )2] and Et=0
p∗ [WT ] converge to the analytic solution at a first

order rate as h → 0. Figure 2 shows an efficient frontier at (W = 1, t = 0), which is a straight line
as expected.

Note that according to equation (2.27), if the market price of risk ξ1 is fixed, the value of stock
volatility σ1 has no effect on the efficient frontier. When we reproduce Table 3, 4, 5 and 6 by using
parameters in Table 2 but with different volatilities σ1, we obtain the same solutions. Hence, our
numerical solutions agree on this property. However, we will see in later sections that this property
may not hold when additional constraints are added to the optimal policy.
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Nodes Timesteps Nonlinear Normalized Et=0
p∗ [(WT − γ

2 )2] Ratio
(W) iterations CPU Time
728 160 480 1 0.0818318
1456 320 960 4.42 0.0409428
2912 640 1295 13.21 0.0204766 1.998
5824 1280 2561 52.82 0.0102394 1.999
11648 2560 5120 213.98 0.0051200 2.000
23296 5120 10240 888.49 0.0025601 2.000

Table 3: Convergence study. Use analytic solution for the optimal control at each node. Fully
implicit timestepping is applied, using constant timesteps. Parameters are given in Table 2, with
γ = 9.125. Values of Et=0

p∗ [(WT − γ
2 )2] are reported at (W = 1, t = 0). Ratio is the ratio of

successive changes in the computed values for decreasing values of the discretization parameter h.
Analytic solution is Et=0

p∗ [(WT − γ
2 )2] = 0. CPU time is normalized. We take the CPU time used

for the first test in this table as one unit of CPU time, which uses 728 nodes for the W grid and
160 timesteps.

Nodes Timesteps Stdt=0
p∗ [WT ] Et=0

p∗ [WT ] Ratio Ratio
(W ) for Stdt=0

p∗ [WT ] for E[WT ]
728 160 0.285617 4.54653
1456 320 0.202202 4.55494
2912 640 0.143039 4.55845 1.410 2.396
5824 1280 0.101166 4.56031 1.413 1.887
11648 2560 0.071547 4.56148 1.414 1.590
23296 5120 0.050595 4.56200 1.414 2.250

Table 4: Convergence study. Use analytic solution for the optimal control at each node. Fully
implicit timestepping is applied, using constant timesteps. Parameters are given in Table 2, with
γ = 9.125. Values of Stdt=0

p∗ [WT ] and Et=0
p∗ [WT ] are reported at (W = 1, t = 0). Ratio is the ratio

of successive changes in the computed values for decreasing values of the discretization parameter
h. Analytic solution is (Stdt=0

p∗ [WT ], Et=0
p∗ [WT ]) = (0.0, 4.5625).

As mentioned in Section 2.2.1, some error is introduced using the artificial boundaries wmin

and wmax, which approximate infinite boundaries. However, we can make these errors small by
choosing large values for (|wmin|, wmax). Table 7 shows the values of Et=0

p∗ [(WT − γ
2 )2] and Et=0

p∗ [WT ]
for different large boundaries. We can see that once (|wmin|, wmax) are large enough, the values of
Et=0

p∗ [(WT − γ
2 )2] and Et=0

p∗ [WT ] are insensitive to the location of these large boundaries.

6.1.2 Bounded Control

In this section, we examine the wealth case with bounded control P = [0, 1.5]. There is no analytic
solution in this case. The efficient frontier is shown in Figure 3, with (W (t = 0) = 1, t = 0). We
also show the efficient frontiers for D ∈ [0,+∞) and P = [0,+∞), the no bankruptcy case, and for
the case where bankruptcy is allowed, D = (−∞,+∞) and P = (−∞,+∞). Clearly, the strategy
given by the allowing bankruptcy case is the most efficient, and the strategy given by the bounded
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Nodes Timesteps Nonlinear Normalized Et=0
p∗ [(WT − γ

2 )2] Ratio
(W ) iterations CPU Time
728 160 480 1.11 0.934593
1456 320 855 4.05 0.852331
2912 640 1280 12.95 0.812095 2.045
5824 1280 2560 54.16 0.792530 2.057
11648 2560 5120 222.56 0.783030 2.059

Table 5: Convergence study. Use analytic solution for the optimal control at each node. Fully
implicit timestepping is applied, using constant timesteps. Parameters are given in Table 2, with
λ = 1.762 (γ = 14.47). Values of Et=0

p∗ [(XT − γ
2 )2] are reported at (W = 1, t = 0). Ratio is the ratio

of successive changes in the computed values for decreasing values of the discretization parameter
h. CPU time is normalized. We take the CPU time used for the first test in Table 3 as one unit of
CPU time, which uses 728 nodes for the W grid and 160 timesteps.

Nodes Timesteps Stdt=0
p∗ [WT ] Et=0

p∗ [WT ] Ratio Ratio
(W ) for Stdt=0

p∗ [WT ] for E[WT ]
728 160 0.915441 6.92426
1456 320 0.872917 6.93442
2912 640 0.851483 6.93992 1.975 1.847
5824 1280 0.840821 6.94251 2.007 2.124
11648 2560 0.835612 6.94383 2.045 1.962

Table 6: Convergence study. Use analytic solution of the optimal control at each node. Fully
implicit timestepping is applied, using constant timesteps. Parameters are given in Table 2, with
λ = 1.762 (γ = 14.47). Values of Stdt=0

p∗ [WT ] and Et=0
p∗ [WT ] are reported at (W = 1, t = 0). Ratio

is the ratio of successive changes in the computed values for decreasing values of the discretization
parameter h. Analytic solution: (Stdt=0

p∗ [WT ], Et=0
p∗ [WT ]) = (0.831, 6.945).

Nodes (W ) (wmin, wmax) Et=0
p∗ [(WT − γ

2 )2] Et=0
p∗ [WT ]

11648 (-5925, 5925) 0.783030 6.94383
11904 (-11953, 11953) 0.783030 6.94383
12160 (-23906, 23906) 0.783030 6.94383
12672 (-47869, 47869) 0.783030 6.94383

Table 7: Effect of finite boundary. Parameters are given in Table 2, with γ = 14.47. There are
2560 timesteps for each test.

control case is the least efficient.
As discussed in Section 6.1.1, in the case of allowing bankruptcy, if the market price of risk ξ1 is

fixed, the value of stock volatility σ1 has no effect on the efficient frontier. However, this property
may not hold when additional constraints are added on the optimal policy. For example, in the
case of bounded control, the efficient frontier will move upward, if the value of σ1 increases with ξ1

fixed (this makes the stock drift rate µS = r + ξ1σ1 increase). This result is illustrated in Figure
4 (a). However, if the value of σ1 increases with µS fixed (this makes ξ1 decrease), the efficient
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Figure 2: Efficient frontier. Parameters are given in Table 2. Values are reported at (W = 1, t =
0).
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Figure 3: Efficient frontiers (wealth case) for allowing bankruptcy (D = (−∞,+∞) and P =
(−∞,+∞)), no bankruptcy (D = [0,+∞) and P = [0,+∞)) and bounded control (D = [0,+∞) and
P = [0., 1.5]) cases. Parameters are given in Table 2. Values are reported at (W = 1, t = 0).

frontier will move downward. This result is illustrated in Figure 4 (b).
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Figure 4: Efficient frontiers for various values of stock volatilities. Parameters are given in Table
2, in particular W (t = 0) = 1, D = [0,+∞) and P = [0, 1.5]. Figure (a) shows the efficient frontiers
for different volatilities with a fixed market price of risk ξ1 = 0.15. Figure (b) shows the efficient
frontiers for different volatilities with a fixed stock drift rate µS = 0.08.

6.1.3 Multi-period Portfolio Selection Problem

In Section 2.4, we show that the pension plan problem can be reduced to the classic multi-period
portfolio selection problem by simply setting the contribution rate π = 0. Of course, when π = 0,
the efficient frontier is still a straight line in this case from equation (2.27) for the case of allowing
bankruptcy. In this section, we examine the case of no bankruptcy, where D = [0,+∞) and
P = [0,+∞). An analytic solution is given for the no bankruptcy case in (Bielecki et al., 2005).
We can show numerically that the efficient frontier given by our approach converges to the analytic
solutions given in (Bielecki et al., 2005). Using the parameters in (Bielecki et al., 2005; Zhou and
Li, 2000) (r = 0.06, σ1 = 0.15, ξ1 = 0.4, T = 1 and W (t = 0) = 1), Figure 5 shows the efficient
frontiers. The straight line is for the case of unbounded control, allowing bankruptcy, which is
obtained from equation (2.27). The curves below the straight line are actually two overlapping
curves. One of them is obtained from the analytic solution given in (Bielecki et al., 2005), and
the other is obtained from the numerical solutions by our approach. Figure 5 clearly shows that
our numerical solutions converge to the analytic curve. Note that as discussed in Section 2.4, the
approach given in (Bielecki et al., 2005) uses the monetary amount as the control, but our method
uses the proportion as the control. Figure 5 shows that the two methods produce the same solutions
in terms of efficient frontier. We remind the reader that since we allow p be be unbounded, it is
possible that the wealth can be zero before the terminal time. However, our numerical results
appear to indicate that the optimal policy is such that this will not occur, (see Remark 6.1) thus
verifying a conjecture in (Bielecki et al., 2005).

In (Li and Zhou, 2006), the authors discuss an 80% rule for continuous time mean variance
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Figure 5: Efficient frontiers for multi-period portfolio selection problems. The straight line is for
the case of allowing bankruptcy, which is obtained from equation (2.27). The curve below the straight
line is actually two overlapping curves. One of them is obtained from the analytic solution given
in (Bielecki et al., 2005), and the other is obtained from the numerical solutions by our approach.
Parameters are r = 0.06, σ1 = 0.15, ξ1 = 0.4, T = 1 and W (t = 0) = 1. Values are reported at
(W = 1, t = 0).

efficiency. This rule states that in the case of allowing bankruptcy (D = (−∞,+∞) and P =
(−∞,+∞)), given any target terminal wealth, say ĝ (> W (t = 0)erT ), where ĝ = Et=0

p∗ [WT ],
there is at least an 80% probability that the optimal strategy will reach the target over the time
horizon [0, T ]. This result may be surprising at first glance. The cost of this surprising rule is
the high probability of bankruptcy when the target terminal wealth is high. We use Monte-Carlo
simulations to examine this rule. Using the same parameters as used to construct Figure 5, we
solve the stochastic optimal control problem (2.4) with Algorithm (5.1) (we choose a γ such that
Et=0

p∗ (WT ) = ĝ), and store the optimal strategies for each (W = w, t)). We then carry out Monte-
Carlo simulations based on the stored strategies with W (t = 0) = 1 initially. As mentioned in
(Li and Zhou, 2006), at any time t ∈ [0, T ], once the investor’s wealth W (t) ≥ ĝe−r(T−t), the
investor will switch all her wealth into bonds, so that her final wealth WT ≥ ĝ. Note that this
simulation strategy is slightly different from the pre-commitment strategy. With a pre-commitment
strategy, the investor commits to the pre-computed strategy until t = T irregardless of reaching
the investment target. Table 8 shows the result of Monte-Carlo simulations. We see that no matter
how large the target wealth, the probability of success (hitting the target wealth) is higher than
80%. However, when the target wealth is high, the probability of bankruptcy is also very high.
Note that at any time t ∈ [0, T ], if W (t) ≤ 0, bankruptcy occurs. But since bankruptcy is allowed,
the investor can still borrow money and continue investing. This may result in positive wealth at
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some later time. The last column in Table 8 shows the probability of bankruptcy at time T , which
is much lower than the probability of bankruptcy at any time t ∈ [0, T ].

Table 8 also examines the probability of hitting the target for the bankruptcy prohibition case
and the bounded control case. The results show that the 80% rule does not hold for these two
cases. When the target wealth increases, the probability of hitting the target decreases, but the
probability of bankruptcy is zero.

Et=0
p∗ [WT ] = ĝ Stdt=0

p∗ [WT ] Success investment Bankruptcy at Bankruptcy at
any time t time T

Bankruptcy is allowed: D = (−∞,+∞) and P = (−∞,+∞)
1.19979 0.33123 82.3984% 1.3063% 0.5297%
2.00060 2.25380 82.2125% 38.7344% 10.6656%
4.60097 8.49677 82.3922% 69.7328% 14.1094%

Bankruptcy prohibition: D = [0,+∞) and P = [0,+∞)
1.19994 0.33348 82.7866% 0 0
2.00199 3.69090 63.8516% 0 0
3.06641 20.66430 43.9625% 0 0

Bounded control: D = [0,+∞) and P = [0, 1.5]
1.08225 0.04908 82.5922% 0 0
1.16185 0.26486 74.9141% 0 0

Table 8: 80% rule study. Parameters used as in (Bielecki et al., 2005; Zhou and Li, 2000)
(r = 0.06, σ1 = 0.15, ξ1 = 0.4, T = 1 and W (t = 0) = 1). 64,000 Monte-Carlo simulations for each
test. 512 Monte-Carlo timesteps are used for allowing bankruptcy case and bounded control case, and
25600 timesteps are used for no bankruptcy case. Success is defined as W (t) ≥ Et=0

p∗ (WT )e−r(T−t),
t ≤ T .

Remark 6.1 In the case of bankruptcy prohibition, limw→0(p∗w) = 0. Our numerical tests show
that as w goes to zero, p∗w = O(wβ). For the a reasonable range of parameters, β ' 0.95±0.02. As
discussed in (Kahl et al., 2008), zero is an unattainable boundary for the stochastic process (2.29)
if β > .5. We apply an explicit Milstein method (Kahl et al., 2008) when carrying out Monte-Carlo
simulations to ensure that zero is unattainable. The explicit Milstein method requires some timestep
size restrictions. As a result, we use a small timestep size ( 1

25600 year) for the no bankruptcy case
in simulations. Although zero is unattainable for the bounded control case, we do not have to use
the Milstein method. Since the control p is capped at 1.5, as w → 0, p∗w goes to zero as the same
rate as w. We do not observe any difficulties in this case using the standard explicit Euler scheme.

6.2 Wealth-to-income Ratio Case

In this Section, we examine the wealth-to-income ratio case. We use parameters in Table 9, and
our finite difference method for solution of the optimal stochastic control problem (3.5). We set
xmax, |xmin| = 1000 in this case, and tolerance = 10−6 in Algorithm (4.14). Increasing xmax had no
effect on the solution to six digits. There is no known analytic solution for this case. A convergence
study is shown in Tables 10 and 11. Table 10 reports the values of Et=0

p∗ [(XT − γ
2 )2], and Table 11
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µy 0. ξ1 0.2
σ1 0.2 σY 1 0.05
σY 0 0.05 π 0.1
T 20 years γ 15
P [0, 1.5] D [0,+∞)

Table 9: Parameters used in the pension plan examples.

reports the values of Stdt=0
p∗ [XT ] and Et=0

p∗ [XT ]. Both tables show a first order convergence rate as
h → 0.

Nodes Timesteps Nonlinear Normalized Et=0
p∗ [(XT − γ

2 )2] Ratio
(X) iterations CPU Time
89 40 100 1 15.9197
177 80 166 4.08 15.7498
353 160 320 13.27 15.6682 2.082
705 320 640 53.06 15.6272 1.990
1409 640 1280 205.10 15.6066 1.990
2817 1280 2560 841.84 15.5963 2.000

Table 10: Convergence study. The optimal control at each node is computed using analytic meth-
ods. Fully implicit timestepping is applied, using constant timesteps. Parameters are given in Table
9. Values of Et=0

p∗ [(XT − γ
2 )2] are reported at (X = 0.5, t = 0). Ratio is the ratio of successive

changes in computed values as h → 0. CPU time is normalized. We take the CPU time used for
the first test in this table as one unit of CPU time, which uses 89 nodes for the X grid and 40
timesteps.

Nodes Timesteps Stdt=0
p∗ [XT ] Et=0

p∗ [XT ] Ratio Ratio
(X) for Stdt=0

p∗ [XT ] for Et=0
p∗ [XT ]

89 40 1.80509 3.94173
177 80 1.77167 3.94881
353 160 1.75521 3.95213 2.030 2.133
705 320 1.74692 3.95381 1.986 1.976
1409 640 1.74276 3.95467 1.993 1.953
2817 1280 1.74068 3.95509 2.000 2.048

Table 11: Convergence study. The optimal control at each node is computed using analytic meth-
ods. Fully implicit timestepping is applied, using constant timesteps. Parameters are given in Table
9. Values of Et=0

p∗ [XT ] and Stdt=0
p∗ [XT ] are reported at (X = 0.5, t = 0). Ratio is the ratio of

successive changes in computed values as h → 0.

In order to solve the HJB PDE (3.9), the optimal control p∗ needs to be determined to minimize
the objective function at each node. This objective function is a piecewise quadratic function of p.
Hence, it is not difficult to determine the analytic solution for the control p. Values in Table 10
and 11 are obtained by using the analytic method for optimal p∗ at each node. However, in some
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cases, it is not easy to determine the analytic solution for the control. In such cases, the control
set P can be discretized to a set P̂ (as discussed in Remark 4.4), and the optimal control can be
determined by linear search. The convergence to viscosity solution of this method is proven in
(Wang and Forsyth, 2008). Table 12 and 13 show a convergence study with the discretized control.
Again, a first order convergence rate is obtained in both tables. Of course, this method requires
much more CPU time compared to the method used by Table 10 and 11. This is simply due to the
comparatively crude method used to find the optimal control at each grid node.

Nodes Timesteps Nonlinear Normalized Et=0
p∗ [(XT − γ

2 )2] Ratio
(X × P̂) iterations CPU Time
89 × 21 40 101 4.08 15.9242
177 × 41 80 166 22.45 15.7509
353 × 81 160 320 161.22 15.6684 2.101
705 × 161 320 640 1276.53 15.6272 2.002
1409 × 321 640 1280 9917.35 15.6066 2.000
2817 × 641 1280 2560 76102.04 15.5963 2.000

Table 12: Convergence study. Use discretized control set P̂ and linear search to find the optimal
control. Fully implicit timestepping is applied, using constant timesteps. Parameters are given in
Table 9. Values of Et=0

p∗ [(XT − γ
2 )2] are reported at (X = 0.5, t = 0). Ratio is the ratio of successive

changes in computed values as h → 0. CPU time is normalized. We take the CPU time used for the
first test in Table 10 as one unit of CPU time, which uses 89 nodes for X grid and 40 timesteps.

Nodes Timesteps Stdt=0
p∗ [XT ] Et=0

p∗ [XT ] Ratio Ratio
(X × P̂) for Stdt=0

p∗ [XT ] for Et=0
p∗ [XT ]

89 × 21 40 1.80701 3.94206
177 × 41 80 1.77144 3.94854
353 × 81 160 1.75529 3.95213 2.202 1.805
705 × 161 320 1.74693 3.95381 1.932 2.137
1409 × 321 640 1.74276 3.95466 2.005 1.976
2817 × 641 1280 1.74068 3.95509 2.005 1.977

Table 13: Convergence study. Use discretized control set P̂ and linear search to find the optimal
control. Fully implicit timestepping is applied, using constant timesteps. Parameters are given in
Table 9. Values of Et=0

p∗ [XT ] and Stdt=0
p∗ [XT ] are reported at (X = 0.5, t = 0). Ratio is the ratio of

successive changes in computed values as h → 0.

Figure 6 shows the efficient frontiers allowing bankruptcy, no bankruptcy and bounded control
cases. Again, the strategy given by the allowing bankruptcy case is the most efficient, and the
strategy given by the bounded control case is the least efficient.

In Section 6.1, we have discussed the effects of changing the value of σ1 on the efficient frontier
solution. We obtain similar results for the wealth-to-income case. For a fixed ξ1, different values
of σ1 give the same efficient frontier solution in the case of allowing bankruptcy. However, this
property does not hold for the bounded control case. Figure 7 (a) illustrates that for a fixed ξ1,
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Figure 6: Efficient frontiers (wealth-to-income ratio case) for allowing bankruptcy (D =
(−∞,+∞) and P = (−∞,+∞)), no bankruptcy (D = [0,+∞) and P = [0,+∞)) and bounded
control (D = [0,+∞) and P = [0., 1.5]) cases. Parameters are given in Table 9. Values are reported
at (X = 0.5, t = 0).

increasing σ1 moves the efficient frontier upward in the case of bounded control. Figure 7 (b)
illustrates that for a fixed µS , increasing σ1 moves the efficient frontier downward.

Figure 8 shows the values of the optimal control (the investment strategies) at different time t
for a fixed T = 20 and γ = 15. Under these inputs, if X(t = 0) = 0.5, (Stdt=0

p∗ [XT ], Et=0
p∗ [XT ]) =

(1.7407, 3.9551) from the finite difference solution. From this figure, we can see that the control p is
an increasing function of time t for a fixed X. This is a bit counterintuitive, since one may imagine
that the investor should become more conservative (switch to bonds) as time goes on. However, if
total wealth-to-income ratio remains fixed as time increases, then the investor must take on more
risk to have a higher probability of hitting the investment target. This behaviour of the optimal
strategy is also seen in the analytic solution for the wealth case with bankruptcy allowed (Equation
(2.28)).

Using the parameters in Table 9, we solve the stochastic optimal control problem (equation (3.5))
and store the optimal strategies for each (X = x, t). We then carry out Monte-Carlo simulations
based on the stored strategies for X(t = 0) = 0.5 initially. The value for (Stdt=0

p∗ [XT ], Et=0
p∗ [XT ])

is (1.7407, 3.9551) (from the finite difference solution). Table 14 shows a convergence study of
Monte-Carlo simulations, and Figure 9 shows a plot of the convergence study. As the number of
simulations increases and the timestep size decreases, the results given by Monte-Carlo simulation
converge to the values given by solving the finite difference solution.

Figure 10 shows the probability density function of Monte-Carlo simulations (500000 simula-
tions). Figure 10 (a) uses γ = 15 ((Stdt=0

p∗ [XT ], Et=0
p∗ [XT ]) = (1.7407, 3.9551)), while Figure 10
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Figure 7: Efficient frontiers for various values of stock volatilities. Parameters are given in Table
9, in particular X(t = 0) = 0.5, D = [0,+∞) and P = [0, 1.5]. Figure (a) shows the efficient
frontiers for different volatilities with a fixed market price of risk ξ1 = 0.2. Figure (b) shows the
efficient frontiers for different volatilities with a fixed stock drift rate µS = 0.04.
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inputs, if X(t = 0) = 0.5, (Stdt=0

p∗ [XT ], Et=0
p∗ [XT ]) = (1.7407, 3.9551) from finite difference solution.
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# of Simulations MC Timestep Et=0
p∗ [XT ] Stdt=0

p∗ [XT ]
1000 0.25 3.9840 1.7233
4000 0.125 3.9396 1.7305
16000 0.0625 3.9656 1.7366
64000 0.03125 3.9566 1.7381
256000 0.015625 3.9559 1.7390

Table 14: Convergence study for the Monte-Carlo Simulations. Parameters are given in Table 9.
Values for Et=0

p∗ [XT ] and Stdt=0
p∗ [XT ] are reported at (X = 0.5, t = 0). The finite difference values

are: Et=0
p∗ [XT ] = 3.9551 and Stdt=0

p∗ [XT ] = 1.7407.
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Figure 9: Convergence study for Monte-Carlo Simulation. Parameters are given in Table 9.
Figure (a) shows the plot of Et=0

p∗ [XT ]. Figure (b) shows the plot for Stdt=0
p∗ [XT ]. Et=0

p∗ [XT ] and
Stdt=0

p∗ [XT ] are written as E[XT ] and Std[XT ] in the figure. Values for Et=0
p∗ [XT ] and Stdt=0

p∗ [XT ]
are reported in Table 14. The finite difference values are (Stdt=0

p∗ [XT ], Et=0
p∗ [XT ]) = (1.7407, 3.9551).

(b) uses γ = 8 ((Stdt=0
p∗ [XT ], Et=0

p∗ [XT ]) = (0.6627, 3.2647)). The shape of the probability density
function depends on input parameters (γ in this example). Note the double peak in Figure 10(a).
For this case, when the control is unconstrained (P = (−∞,+∞)), the probability density function
(which is not shown in this paper) has a single peak near Et=0

p∗ [XT ].
However, when γ = 15, pmax = 1.5, then the control hits the constraint (see Figure 8) for

small X. Hence the investor has to choose a strategy with less than optimal (compared to the
unbounded control case) expected return. As a result, there is another peak to the left of the value
of Et=0

p∗ [XT ] in the probability density function. If γ is small enough, the optimal strategy does not
hit the constraints, and the probability density function reverts to a single peak. As shown in 10
(b), there is only one peak in the probability density function for γ = 8.

Figure 11 shows the mean and standard deviation for the strategy p(t, x) as time changes.
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Figure 10: Probability density function for Monte-Carlo Simulation, 500, 000 simulations and
1280 simulation timesteps. Parameters are given in Table 9. Values for (Et=0

p∗ [XT ],Stdt=0
p∗ [XT ])

are reported at (X = 0.5, t = 0). Figure (a) uses γ = 15, while Figure (b) uses γ = 8. For
Figure (a), (Stdt=0

p∗ [XT ], Et=0
p∗ [XT ]) = (1.7407, 3.9551) from finite difference solution; For Figure

(b), (Stdt=0
p∗ [XT ], Et=0

p∗ [XT ]) = (0.6627, 3.2647) from finite difference solution.

Figure 11 (a) uses γ = 15 ((Stdt=0
p∗ [XT ], Et=0

p∗ [XT ]) = (1.7407, 3.9551)), while Figure 11 (b) uses
γ = 8 ((Stdt=0

p∗ [XT ], Et=0
p∗ [XT ]) = (0.6627, 3.2647)). Both of these Figures show that the mean of

p(t, x) is a decreasing function of time t, i.e., as time goes on, the investor switches into the less
risky strategy (on average). Since the value of Et=0

p∗ [XT ] in Figure 11 (a) is higher than the one in
Figure 11 (b), the mean strategy in Figure 11 (a) is more risky compared to Figure 11 (b).

7 Conclusion

In this paper, we use a mean variance approach to find an optimal dynamic asset allocation strategy
for a defined contribution pension plan. One advantage of this approach is that the results can
be easily interpreted in terms of an efficient frontier, so that an investor can intuitively choose
her expected return and risk level. It is well-known that dynamic programming cannot be used in
straightforward fashion for constructing the efficient frontier. To avoid this difficulty, we follow the
method introduced in (Zhou and Li, 2000; Li and Ng, 2000) which embeds the original optimization
problem into a class of auxiliary stochastic LQ problems. Instead of solving the original problem,
we can then use dynamic programming to solve the LQ problem.

We discuss two cases for the pension plan problem. In the first case, the contribution rate is a
constant, and given a risk level, we construct the efficient frontier in terms of the terminal wealth.
In the second case, we assume the investor contributes a constant proportion of her year salary
into her pension account every year. In this case, we construct the efficient frontier in terms of the
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Figure 11: Mean and standard deviation for the control p(t, x). There are 64000 simulations and
1280 simulation timesteps. Parameters are given in Table 9. Figure (a) uses γ = 15, while Figure
(b) uses γ = 8. For Figure (a), (Stdt=0

p∗ [XT ], Et=0
p∗ [XT ]) = (1.7407, 3.9551) from finite difference

solution; For Figure (b), (Stdt=0
p∗ [XT ], Et=0

p∗ [XT ]) = (0.6627, 3.2647) from finite difference solution.

terminal wealth-to-income ratio.
Our method can handle various constraints on the optimal policy. For the terminal wealth

case, analytic solutions exist (Hojgaard and Vigna, 2007; Zhou and Li, 2000; Li and Ng, 2000)
when there is no constraint on the wealth or the control, i.e., W (t) ∈ (−∞,+∞) (bankruptcy is
allowed) and the control p ∈ (−∞,+∞) (infinite borrowing is allowed). Some analytic solutions
have been developed for handling some specific constraints: no stock shorting (Li et al., 2002) and
the no bankruptcy case (Bielecki et al., 2005). However, these special constraints still allow infinite
borrowing, which is unlikely in practice. If the investor is restricted to borrow at most a certain
proportion (e.g. 50%) of her total wealth, analytic solutions do not exist. The problem has to be
solved numerically.

We develop a fully implicit method for solving the nonlinear HJB PDE, which arises in the
LQ formulation of the mean variance problem. Our method satisfies sufficient conditions to ensure
convergence to the viscosity solution of the HJB equation, provided the unique, continuous viscosity
solution exists. The properties of the discretization also ensure that the policy iteration scheme used
to solve the nonlinear algebraic equations at each timestep is globally convergent. By solving the
HJB PDE and a related linear PDE, we develop an algorithm for constructing the mean variance
efficient frontier. Note that a fully implicit method has no timestep size restrictions due to stability.
If an explicit method were used, we would need to estimate the maximum stable timestep, which
would be problematic in the case of an unbounded control.

In order to compare the numerical solution with the known analytic solution in special cases, it
is necessary to allow for negative wealth and unbounded controls. This requires careful attention

31



to the grid construction and form of the control as the mesh and timesteps shrink to zero.
Numerical tests show that our numerical solutions converge to the analytic solution (where

available). The policy iteration scheme converges very rapidly. We also examine some cases of
realistic constraints where analytic solutions do not exist. From a practical point of view, we
observe that the addition of realistic constraints can completely alter some of the properties of
the mean variance solution compared to the unconstrained control case. For example, the efficient
frontier is no longer a straight line, the frontier is sensitive to the risky asset volatility, and the 80%
rule (Li and Zhou, 2006) no longer holds.

We plan to carry out a similar study of time-consistent mean variance optimal asset allocation
in the near future.

A Discrete Equation Coefficients

Let pn
i denote the optimal control p∗ at node i, time level n and set

an+1
i = a(zi, , p

n
i ), bn+1

i = b(zi, , p
n
i ), cn+1

i = c(zi, , p
n
i ) . (A.1)

Then, we can use central, forward or backward differencing at any node.
Central Differencing:

αn
i,central =

[
2an

i

(zi − zi−1)(zi+1 − zi−1)
− bn

i

zi+1 − zi−1

]
βn

i,central =
[

2an
i

(zi+1 − zi)(zi+1 − zi−1)
+

bn
i

zi+1 − zi−1

]
. (A.2)

Forward/backward Differencing: (bn
i > 0/ bn

i < 0)

αn
i,forward/backward =

[
2an

i

(zi − zi−1)(zi+1 − zi−1)
+ max(0,

−bn
i

zi − zi−1
)
]

βn
i,forward/backward =

[
2an

i

(zi+1 − zi)(zi+1 − zi−1)
+ max(0,

bn
i

zi+1 − zi
)
]

. (A.3)
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