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Abstract. The function decomposition problem can be stated as: Given
the algebraic expression of the composition of two mappings, how can
we identify the two factors? This problem is believed to be in general
intractable [1]. Based on this belief, J. Patarin and L. Goubin designed
a new family of candidates for public key cryptography, the so called
\2R�schemes" [10, 11]. The public key of a \2R"-scheme is a composition
of two quadratic mappings, which is given by n polynomials in n variables
over a �nite �eld K with q elements. In this paper, we contend that
a composition of two quadratic mappings can be decomposed in most
cases as long as q > 4. Our method is based on heuristic arguments
rather than rigorous proofs. However, through computer experiments,
we have observed its e�ectiveness when applied to the example scheme
\D��"given in [10].

1 Introduction

Public key cryptography is becoming more and more important in modern com-
puter and communication systems. Many public key cryptosystems (PKCs) have
been proposed since Di�e and Hellman initiated this direction in 1976 [2]. Usu-
ally the security of a PKC relies on a hard mathematical problem. The most
famous such problems are integer factorization and discrete logarithm. PKCs
based on these two kinds of problems, such as RSA[13] and ElGamal[3], although
mathematically sound, need to perform a large amount of huge arithmetics, so
are not very e�cient compared to classical symmetric cryptographic algorithms
such as DES. Much e�ort has been paid in seeking more e�cient constructions
for PKCs. One class of these constructions make use of mapping compositions.
The basic idea is as follows: a user chooses several easily-invertible mappings
which he keeps secret, computes the algebraic expression of their composition
and makes it public; then anyone else can do encryption or verify signatures
using the public key, but will be faced with a set of complicated algebraic equa-
tions when he tries to decrypt cipher texts or to forge signatures. An obvious
advantage of these PKCs is that the private key side computations (decrypting
and signing) can be made very e�cient and be implemented with very simple
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hardware. There are two main drawbacks however: large public key size and
ambiguous security foundations.

The earliest examples of PKCs making use of mapping compositions were
proposed by T.Matsumoto and H.Imai [4] in 1985. One of them, called \B",
looks like \t � f � s", where t; s are two secret linear mappings over GF (2)n,
f : x 7! (x+c) mod (2n�1)+1; 0 7! 0, c is also secret, and elements of GF (2)n is
identi�ed with integers naturally. This scheme is still unbroken. Another example
is called \C�" (see also [5]), in which the above f is replaced by a \quadratic
polynomial tuple" which will be called quadratic mapping in this paper. C� was
broken by Jacques Patarin [7] in 1995.

One-round schemes are generalizations of C�. They are of the form the \t�f �
s", where s; t : Kn ! Kn are a�ne, f : Kn ! Kn is quadratic, and K is a �nite
�eld. J. Patarin and L. Goubin gave several constructions of one-round schemes
using algebraic techniques and S-boxes (see [10,11]), and they also showed that
their constructions are insecure. Therefore they proposed two-rounds schemes,
abbreviated as \2R", in which the public key is the composition of two secret one-
round schemes, based on the assumption that functional decomposition problem
is hard.

In this paper, we show that \2R" schemes can be decomposed into separated
one-round schemes in most cases as long as the �eldK has more than 4 elements.
However, we were only able to justify this claim by some heuristic arguments
and experimental evidences instead of rigorous proofs.

Briey stated, our method is as follows. Suppose � = f � g : Kn ! Kn be
the composition of two quadratic mappings. We have n output polynomials of �
in n variables of degree 4. The partial derivatives of all these polynomials with
respect to all the n input variables give n2 cubic polynomials, spanning a linear
space ~V . This space is contained in the space V of cubic polynomials spanned by
products of the n input variables Xi and the n intermediate output polynomials
of g, provided that K has more than 4 elements. Since both ~V and V tend to
have dimension n2 for random choices, we hope they are equal (or at least the
the codimension is small). For a linear combination F of input variables, we can
use linear algebra to compute (V : F ), the space of quadratic polynomials r such
that rF 2 V . When n > 2, the intersection of these spaces is a candidate for
the space L(g) spanned by the n output polynomials of g. This last statement
needs the assumption that the factorization of � is unique, that is, if we write
� = f 0 � g0 for quadratic f 0; g0, then g and g0 di�er only by a linear factor.

We have applied this method to a concrete example D�� in the \2R" family.
D�� is a composition of two D�s, and a D� is a mapping of the form t � � � s",
where � is the squaring in the extension �eldK(n). In the example,K = GF(251)
and n = 9. In our experiments, the above method has never failed to �nd the
linear class of the inner D�, by which we mean the set of mappings which di�er
from each other by a linear bijection.

The rest of this paper is organized as follows: Section 2 gives a brief review
of \2R" schemes and some notations and de�nitions. Section 3 describes the
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steps in decomposing compositions of quadratic mappings. Section 4 gives some
experiment reports. Section 5 is the conclusion of this paper.

2 \2R" Schemes and \D��": A Brief Review

Through out this paper K denotes a �nite �eld of q elements, andKn denotes the
vector space over K of dimension n. Any polynomialP = P (X1; X2; � � � ; Xn) can
be seen as a mappingKn ! K : (x1; x2; � � � ; xn) 7! P (x1; x2; � � � ; xn). Similarly,
any n polynomials (P1; P2; � � � ; Pn) can be regarded as a mapping Kn ! Kn:

(x1; x2; � � � ; xn) 7! (P1(x1; x2; � � � ; xn); P2(x1; x2; � � � ; xn); � � � ; Pn(x1; x2; � � � ; xn):

Conversely, any mapping Kn ! Kn can be expressed as n polynomials as
above, these polynomials are called its component polynomials. A mapping is
called linear, if its component polynomials are all homogeneous of degree 1;
a�ne, if constant terms are allowed; quadratic, if the total degree � 2.

\2R" schemes (\2R" stands for 2 rounds) were introduced by Jacques Patarin
and Louis Goubin in [11]. The private key consists of

1. Three a�ne bijections r; s; t from Kn to Kn.
2. Two quadratic mappings  ; � : Kn ! Kn (in fact, these two mappings

can also be made public).

The public items are:

1. The �eld K and dimension n.
2. The n polynomials of the composed mapping � = t �  � s � � � r which are

of total degree 4.

The public-key side computation is just an application of the mapping �
(both message blocks and signatures belong to Kn). To explain decryption and
signing, we need more words. The designers of these schemes do not require the
private mappings  ; � be bijections. To achieve the uniqueness of decryption, we
should introduce enough redundancy in message blocks. Similarly, to compute a
signature, we should keep enough redundancy-bits so that for any message m,
we can �nd a redundant tail R making mjjR lie in the range of �. The non-
injectiveness of  ; � will in general greatly reduce the e�ciency in private-key
side computations. In the scheme D��, these drawbacks are overcomed by a
clever choice of the message-block space, see [10]. The essence of decryption is
to �nd the full preimage ��1(c) for any given c, and that of signing is to �nd a
single element belonging to ��1(c). When the private keys are known, this can
be reduced to inverting  and �.

As the authors of [11] point out, the security of \2R" schemes can be a�ected
by the choices of  ; �. Since  and � should be easy to construct and invert,
currently only the following constructions are known:

1. \C�-functions": monomials over an extension of degree n over K: a 7! a1+q
�

.
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2. \Triangular-functions":

(a1; � � � ; an) 7! (a1; a2 + q1(a1); � � � ; an + qn�1(a1; � � � ; an�1))

where each qi is quadratic.
3. \S-boxes-functions": (a1; � � � ; an) 7!

(S1(a1; � � �an1); S2(an1+1; � � � ; an1+n2); � � � ; Sd(an1+���+nd�1
; � � � ; an))

where n =
P
ni, and Si is a quadratic mapping Kni ! Kni .

4. techniques by combining \S-boxes" with \triangular-functions".
5. D�-functions: squaring in extension ofK of degree n, denoted asK(n), where
qn � �1 (mod 4).

Previous researches [11, 8] have shown that, when  is in the �rst two classes,
the resulted scheme is weak. Note that if we drop t and  in above descrip-
tion of \2R", we get the so called one-round schemes. A \2R" scheme is just a
composition of two one-round schemes. All one-round schemes from the above
constructions have been shown to be insecure [8, 9, 7, 10, 11].

\D��" is a special instance of \2R". It is de�ned as:

1. qn � �1 (mod 4), and q is about of the size 28. (For example, q = 251,
n = 9 [10].)

2. r; s; t are linear bijections.
3.  = � is the squaring in K(n), where K(n) denotes the extension of K of

degree n.
4. The message block space is chosen in such a way [10] that the restriction of
� on it is an injection. (This is irrelevant to the purpose of this paper.)

Note that the public polynomials in D�� are all homogeneous of degree 4.

3 Decomposing \2R" Schemes

A basic assumption behind \2R" schemes is that the functional decomposition
problem for a composition of two quadratic mappings from Kn to Kn is hard.
In this section we will give evidences which indicate that this assumption is not
realistic provided q > 4.

As in the previous section, let � = t �  � s � � � r be the public key. If for
any quadratic f; g, satisfying � = f � g, we have f = t �  � s1, g = s2 � � � r,
for some a�ne bijections s1; s2 satisfying s = s1 � s2, we say that � has unique
factorization. If the factorization of � is not unique, even we can decompose it
into two quadratic mappings, we are not sure if these two mappings are one-
round functions which can be attacked by known methods. Therefore we need
to assume this uniqueness of decomposition. It seems di�cult to justify this
assumption theoretically, but we believe that most compositions of quadratic
mappings do have unique factorizations.
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Note that if we can �nd a g = s2 � � � r, then f may be obtained by solving
linear equations arising from coe�cients-comparing. Note also that s2 is not im-
portant, what we really care is the a�ne class fs���r : for all a�ne bijection sg
(similarly, the linear class of a mapping g is fs � g : for all linear bijection sg),
and this class is uniquely determined by the vector space generated by compo-
nent polynomials of g and 1. In the following we will describe how to obtain this
space when given the component polynomials of �.

To ease the discussion, we assume all the mappings r; s; t; �;  are homo-
geneous. In this case, we only need q > 3. The general case can be reduced to
the homogeneous case when q > 4, by a standard algebraic procedure which is
called homogenization, see Appendix 1.

3.1 A Linear-Algebra Problem on Polynomials

Now we assume f; g be two homogeneous quadratic mappings from Kn to Kn.
Given the composition f � g, which is a homogeneous mapping of degree 4, we
want to determine the linear class of g, this is equivalent to determine the linear
space L(g) generated by component polynomials of g. This linear space may
not be directly obtained, but later we will show that the linear space V (g) =P

1�i�nXiL(g) can in most cases be obtained from the component polynomials
of f � g. So we are faced with the following problem of linear algebra.

Problem 1 Let W be a linear space of dimension � n consisting of quadratic
forms in n variables X1; � � � ; Xn . Given V =

P
1�i�nXiW, is it possible (and

how) to uniquely determine W?

For any subspace L0 of the linear space L generated by X1; � � � ; Xn, let

(V : L0) =
def
= fr 2 K[X1; X2; � � � ; Xn] : rL

0 � V g:

When L0 has dimension 1, say, generated by F , we also write (V : F ) = (V : L0).
We have the following conjecture.

Conjecture 1 Notations and assumptions as above, then for randomly chosen
W, the probability � that (V : L) =W are very close to 1 when n > 2.

Note that (V : L0) can be computed using linear algebra for any V and L0, so
the above conjecture says that in general the answer to the above problem is
positive.

Although we can not prove the above conjecture or give a reasonable esti-
mation on �, in the following we will justify this conjecture with some heuristic
arguments based on some standard facts from linear algebra.

Let Q denote the total space of all quadratic forms. We have dim(Q) = n(n+
1)=2. In the application at hand we may assume dim(W) = n, so dim(Q=W) =
n(n+ 1)=2� n = n(n � 1)=2, where Q=W means quotient space. Now we wish
to estimate dim((V : L)=W). Note that (V : L)=W = \i(V : Xi)=W. It is not
easy to characterize this intersection because of the complex relations between
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the spaces (V : Xi). To simplify things, we regard the n spaces (V : Xi)=W
as n independent random variables. This is neither supported or disapproved
by any theoretical results we know. By linear algebra (see Appendix 2), two
random subspaces of dimension n1; n2 of a n-dimension space tend to have
intersection of dimension n1 + n2 � n, so we need that

P
i dim((V : Xi)=W)

exceeds (n � 1)n(n� 1)=2 to expect a nonzero intersection \i(V : Xi)=W.
Now let us see the dimension of the subspaces (V : Xi)=W. Since every

coordinate Xi plays the same role, we only need to consider (V : X1)=W. Let
(g1; g2; � � � ; gn) be a basis of W, any element in (V : X1)=W can be written
in form (

P
giFi)=X1, where Fi are linear forms in X2; � � � ; Xn, and satisfyingP

gi(0; X2; � � � ; Xn)Fi = 0. Let � be the linear map from L0n, where L0 be the
space of linear forms in X2; � � �Xn, to the space of cubic polynomials:

(F1; � � � ; Fn) 7!
X

gi(0; X2; � � � ; Xn)Fi:

Then we see dim((V : X1)=W) � dim(ker(�)). Again we regard � as a random
linear mapping between spaces of dimensions n(n�1); (n�1)n(n+1)=6 respec-
tively, so we may expect dim(�) = n(n�1)�(n�1)n(n+1)=6 (dim(ker(�)) = 0,
if the r.h.s is negative). This number is: 2, when n = 3; 4; and 0, when n > 5.

Therefore we can not expect
P

i dim((V : Xi)=W) > (n�1)n(n�1)=2 when
n � 3, which suggests we have good chance to have (V : L) =W. Note that this
conclusion would be more credible if q or n gets larger.

3.2 Recovering V (g)

In the previous section we have indicated that f �g can likely be factored as long
as V (g) can be obtained. Now we will show how to get V (g) from the component
polynomials, h1; � � � ; hn, of f � g.

Let ~V denote the linear space generated by

@hj
@Xi

2 V (g); for all i; j:

Lemma 1. ~V � V (g) if q > 3.

Proof. When q > 3, the expression for each hj as a homogeneous polynomial of
degree 4 is unique. We can write hj in form

P
ak;lgkgl, so we have

@hj
@Xi

=
X

ak;l(
@gk
@Xi

gl +
@gl
@Xi

gk) 2 V (g):

ut

Since dim(V (g)) � n2, if we regard the n2 partial derivatives as random
vectors in V (g), then with probability greater than

Q
i>0(1�q

�i), which is close

to 1 � 1=q when q is not too small, we will have ~V = V (g). In general, the

probability that dim(V (g)=~V ) � � is approximately q��
2

. So when ~V 6= V (g),
we can expect that dim(V (g)=~V ) be very small, say < n.
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When ~V 6= V (g), V (g) may be recovered from ~V as follows. Randomly choose
a subspace L0 of L and compute ( ~V : L0), if we can be assured that ( ~V : L0) �
L(g), then we can add (~V : L0)L to ~V , and hope this will enlarge ~V and by
repeating the process to �nally get ~V = V (g). The problem is that it is hard to
decide whether ( ~V : L0) � L(g). In the following we will give a solution to this
problem for n > 4.

Assume 0 < � = dim(V (g)=~V ) < n and n > 4. By arguments in the previous
subsection, we have seen that (V (g) : F ) = L(g) holds with high probability for
a randomly-chosen linear form F . On the other hand, dim((FL(g))\ ~V ) � n��,
and the equality also holds with high probability. (V (g) : F ) = L(g) implies that

( ~V : F ) = ((FL(g)) \ ~V )=F:

So we could expect that dim(( ~V : F )) = n� � occur frequently. Moreover � can
be detected from the fact that

� = n�minfdim(( ~V : F )) : for su�ciently many random Fg

. Now it is easy to conclude that ( ~V : F ) � L(g) for those F satisfying dim(( ~V :
F )) = n� �.

4 An Example

In this section, the methods of the previous section are applied to a concrete
example, D�� with q = 251; n = 9, which is suggested in [10]. The irreducible
polynomial for de�nition of K(9) is chosen as t9 + t + 8(the choice is irrelevant
to the analysis of the scheme). Let � denote the squaring in K(9). Let gs = � � s
for any linear bijection s. The property that (V (gs) : L) = L(gs) is independent
of s. So are the distribution of dimension of (V (gs) : L0) while L0 ranging over
subspaces of L. Therefore in order to verify the properties of V (gs) as predicted
by the heuristic arguments in the previous section, we may assume g = �. The
component polynomials of � is given in appendix, where indexes for variables
start with 0. It can be veri�ed that dim(V (g)) = n2 = 81. We did not �nd any
linear form F , such that (V (g) : F ) 6= L(g), among 1000 randomly chosen F . So
L(g) has much stronger properties than that stated in Conjecture 1. This also
suggests that, if the inner factor of a \2R" scheme is a one-round scheme of type
D�, the attack described in the previous section would likely be successful.

We have also done experiments to verify that, the linear space V (g) can
indeed be recovered by the method described in previous section. For � = t �
� � s � � � r, de�ne ~V� to be the linear space generated by partial derivatives of
component polynomials of �. It is easy to prove that dim(~V�) does not depend
on t and r. So we let t = r = 1. Again we have tried 1000 randomly chosen s,
and we always get dim(~V�) = n2 = 81.

The programs (see Appendix 3) for these experiments are written in Math-
ematica 3.0, where \test1" tests the properties related to Conjecture 1, and
\test2" test the distribution of dim(~V�).
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5 Conclusion

In this paper, we have showed that the functional decomposition problem for
compositions of quadratic mappings is not hard provided the �eld of coe�cients
has more than 4 elements. As a consequence, the base �eld for \2R" schemes has
only 3 choices: GF (2); GF (3); GF (4). However, in these cases, the dimension
n should be large to guarantee a reasonable block size (say, � 64 bits); since
the public key size is at the order of n5, one can easily see that the resulted
schemes are simply impractical. This concludes that the idea of \2R" schemes is
not interesting. One possible cure is to replace a few of the component polyno-
mials with random polynomials before composing the last a�ne bijection, using
ideas in [12]. Again, this will greatly reduce the e�ciency of private-key side
computations, hence lower the practical value of the original designs.

It remains open if the corresponding functional decomposition problem is
really hard when q � 4.

References

1. M. Dickerson, The Functional Decomposition of Polynomials, Ph.D Thesis, TR89-
1023, Dept. of Computer Science, Cornell University, Ithaca, NY, July 1989.

2. W. Di�e and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform.
Theory, IT-22(6) 644-654, 1976.

3. T.Elgamal, A Public Key Cryptosystem and a Signature Schemes Based on Dis-
crete Logarithms, IEEE Trans. Inform. Theory, Vol. IT-31(1985), 469-472.

4. T. Matsumoto and H. Imai, Algebraic Methods for Constructing Asymmetric Cryp-
tosystems, AAECC-3, Grenoble, 1985.

5. T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for E�cient
Signature-Veri�cation and Message-Encryption, Advances in Cryptology, Proceed-
ings of EUROCRYPT'88, Springer Verlag, pp 419-453;

6. W.B. Muller, Polynomial Functions in Modern Cryptology, Contributions to Gen-
eral Algebra 3: Proceedings of the Vienna Conference, Vienna: Verlag Holder-
Picher-Tempsky, 1985, pp. 7-32.

7. J. Patarin, Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypto'88, Advances in Cryptology, Proceedings of CRYPTO'95, Springer Verlag,
pp 248-261;

8. J. Patarin, Asymmetric Cryptography with a Hidden Monomial, Advances in Cryp-
tology, Proceedings of CRYPTO'96, Springer Verlag, pp 45-60;

9. J. Patarin, Hidden Fields Equations and Isomorphisms of Polynomials: Two New
Families of Asymmetric Algorithms, Advances in Cryptology, Proceedings of EU-
ROCRYPT'96, Springer Verlag, pp 33-48;

10. J. Patarin and L. Goubin, Trapdoor one-way permutations and multivariate poly-
nomials, Proceedings of ICICS'97, Lecture Notes in Computer Science, Vol. 1334,
Springer, 1997.

11. J. Patarin and L.Goubin, Asymmetric cryptography with S-boxes, Proceedings of
ICICS'97, Lecture Notes in Computer Science, Vol. 1334, Springer, 1997.

12. J. Patarin and L.Goubin, C�
�+ and HM: Variations Around Two Schemes

of T.Matsumoto and H. Imai, Advances in Cryptology, Proceedings of ASI-
ACRYPT'98, Lecture Notes in Computer Science 1514, Springer Verlag, pp 35-49.

322 Ye Ding-Feng, Lam Kwok-Yan, Dai Zong-Duo



13. R.L. Rivest, A. Shamir, L.M. Adleman, A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems, Communications of ACM, v.21, n.2, 1978, pp.120-
126.

Appendix 1: Homogenlization

For any polynomial P (X1; X2; � � � ; Xn) of supposed degree d � deg(P ), de�ne
its homogenization as ~P = Xd

0P (X1=X0; X2=X0; � � � ; Xn=X0), where X0 is a
new variable. The supposed degree of the component polynomials of a quadratic
mapping is 2, and so on. For any mapping f : Kn 7! Kn with component
polynomials (f1; � � � ; fn), de�ne its homogenization as ~f = (Xdegf

0 ; ~f1; � � � ; ~fn).
Conversely, for any ~f of this form, de�ne its dehomogenization to be f =
( ~f1(1; X1; � � � ; Xn); � � � ; ~fn(1; X1; � � � ; Xn)).

Lemma 2. Let the f; g be two mappings Kn ! Kn. If q > degf � degg, then
~f � g = ~f � ~g.

Proof. In this case, composition of mappings is equivalent to composition of
polynomials, and the lemma follows from the fact that homogenization commutes
with polynomial composition. ut

Suppose we are given a \2R" public key �, if we can decompose ~� = ~f � ~g,
then the decomposition � = f � g can be obtained simply by dehomogenization.
The above lemma guarantees the existence of such a decomposition of ~�. In
decomposing ~� using the method of this paper, we should add the n polynomials
X2

0X1; � � � ; X
2
0Xn to ~V , the space of partial derivatives.

Appendix 2: Some Basic Facts of Linear Algebra

1. The number of subspaces of dimension k in a space of dimension n > k is:

�(k; n) =
Y

0�i<k

(qn � qi)=
Y

0�i<k

(qk � qi) � q(n�k)k

2. The number of n� N matrices with rank � k < min(n;N ) is less than

qkN�(k; n) � qk(n+N�k)

3. The probability that the intersection of two random subspaces of dimension
n1; n2 in a space of dimension n has dimension n1 + n2 � n+ � � 0 (� � 0)
is

�(n � n2 � �; 2n� n1 � n2 � �)�(n � n1 � �; 2n� n1 � n2 � �)

�(n1 + n2 � n+ �; n)�(n1; n)
�1�(n2; n)

�1 � q��(n1+n2�n+�)

4. The probability that a random linear mapping � : Kn1 ! Kn2 has a kernel
of dimension e = max(n1 � n2; 0) + � (� � 0) is

q�n1n2�(e; n1)�(n1 � e; n2)
Y

0�i<n1�e

(qn1�e � qi) � q�e(e+n2�n1)
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Appendix 3

The following is the source code for our experiments written in Mathematica
3.0.

p=251; n=9;

phi={

x[0]^2 + 235x[4]x[5] + 235x[3]x[6] + 235x[2]x[7] + 235x[1]x[8],

2x[0]x[1] + 249x[4]x[5] + 243x[5]^2 + 249x[3]x[6] + 235x[4]x[6]

+ 249x[2]x[7] + 235x[3]x[7] + 249x[1]x[8] + 235x[2]x[8],

x[1]^2 + 2x[0]x[2] + 250x[5]^2 + 249x[4]x[6] + 235x[5]x[6] +

249x[3]x[7] + 235x[4]x[7] + 249x[2]x[8] + 235x[3]x[8],

2x[1]x[2] + 2x[0]x[3] + 249x[5]x[6] + 243x[6]^2 + 249x[4]x[7] +

235x[5]x[7] + 249x[3]x[8] + 235x[4]x[8],

x[2]^2 + 2x[1]x[3] + 2x[0]x[4] + 250x[6]^2 + 249x[5]x[7] +

235x[6]x[7] + 249x[4]x[8] + 235x[5]x[8],

2x[2]x[3] + 2x[1]x[4] + 2x[0]x[5] + 249x[6]x[7] + 243x[7]^2 +

249x[5]x[8] + 235x[6]x[8],

x[3]^2 + 2x[2]x[4] + 2x[1]x[5] + 2x[0]x[6] + 250x[7]^2 +

249x[6]x[8] + 235x[7]x[8],

2x[3]x[4] + 2x[2]x[5] + 2x[1]x[6] + 2x[0]x[7] + 249x[7]x[8] +

243x[8]^2, x[4]^2 + 2x[3]x[5] + 2x[2]x[6] + 2x[1]x[7] +

2x[0]x[8] + 250x[8]^2

};

tovector2[f_]:=Flatten[Table[Coefficient[f, x[i]x[j]],

{i,0,n-1},{j,i,n-1}]];

id=IdentityMatrix[n(n+1)(n+2)/6];

mu[i_,j_,k_]:=Block[{i1,j1,k1},

If[i<=j, i1=i;j1=j;k1=k, i1=j;

If[i<=k, j1=i; k1=k, j1=k; k1=i]];

Return[n(n+1)(n+2)/6-(n-i1)(n-i1+1)(n-i1+2)/6

+(n-i1)(n-i1+1)/2-(n-j1)(n-j1+1)/2+k1-j1+1]];

Do[M[i]=id[[Flatten[Table[mu[i,j,k] ,{j, 0, n-1},{k, j, n-1}]]]],

{i, 0, n-1}];

H=NullSpace[Table[tovector2[phi[[i]]].M[i], {i,0, n-1}],

Modulus->p];

Do[check[i]=Transpose[M[i].Transpose[H]], {i,0, n-1}];

rank[L_]:=Length[NullSpace[Sum[L[[i+1]]check[i],{i,0, n-1}],

Modulus->p]]-n;
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test1[count_]:=Block[{i,L, r}, i=1;

While[i<=count,

L=Table[Random[Integer,p-1], {j,n}];

r=rank[L];

If[r>0, Save["result.mat", {i, r, L}]];

i++] ];

psi=phi/.Table[x[i]->y[i],{i,0,n-1}];

d[f_, i_]:=Sum[j Coefficient[Collect[f,x[i]],

x[i]^j]x[i]^(j-1), {j,4}];

tovector3[f_]:=Flatten[Flatten[

Table[Coefficient[f,x[i]x[j]x[k]],

{i,0,n-1},{j,i,n-1},{k,j,n-1}]]];

test2[count_]:=Block[{A, f, n0, n1, n2, i, S,r,h},

i=1; n0=n1=n2=0;

While[i<=count,

A=Table[Random[Integer,p-1], {k,n}, {j,n}];

f=phi.A ; g=Expand[f, Modulus->p]; S={};

h=Expand[psi/.Table[y[j]->g[[j+1]],

{j,0,n-1}], Modulus->p];

Do[AppendTo[S, tovector3[d[h[[k]], j]]],

{k,n}, {j,n}];

r=n^2-n(n+1)(n+2)/6+Length[NullSpace[S,

Modulus->p]];

Switch[r, 0, n0++, 1, n1++, 2, n2++]; i++];

Print[n0]; Print[n1]; Print[n2];];
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