
Experiences Teaching Operating Systems
Using Virtual Platforms and Linux

Jason Nieh
Department of Computer Science

Columbia University
New York, NY 10027

nieh@cs.columbia.edu

Chris Vaill
Department of Computer Science

Columbia University
New York, NY 10027

cvaill@cs.columbia.edu

ABSTRACT
Operating system courses teach students much more when
they provide hands-on kernel-level project experience with
a real operating system. However, enabling a large class of
students to do kernel development can be difficult. To ad-
dress this problem, we created a virtual kernel development
environment in which operating systems can be developed,
debugged, and rebooted in a shared computer facility with-
out affecting other users. Using virtual machines and remote
display technology, our virtual kernel development labora-
tory enables even distance learning students at remote loca-
tions to participate in kernel development projects with on-
campus students. We have successfully deployed and used
our virtual kernel development environment together with
the open-source Linux kernel to provide kernel-level project
experiences for over nine hundred students in the introduc-
tory operating system course at Columbia University.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General; K.3.1 [Computers
and Education]: Computer Uses in Education—distance
learning ; K.3.2 [Computers and Education]: Computer
and Information Science Education—computer science edu-
cation

General Terms
Design, Experimentation, Human Factors

Keywords
Operating systems, computer science education, virtualiza-
tion, virtual machines, open-source software

1. INTRODUCTION
Programming projects are an important aspect of learn-

ing about operating systems. The hands-on experience is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’05,February 23–27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/11/0002 ...$5.00.

crucial for helping students to understand how the text-
book concepts can be applied in practice. However, devel-
oping and administering programming projects that teach
students about real-world operating system design and im-
plementation is difficult for two important reasons.

First, unlike other application software which runs at user-
level, operating system code runs in supervisor mode. To
write or modify operating system code that runs in super-
visor mode, students must be given root privileges to do
many of the things required for kernel development such as
installing a new kernel, rebooting, kernel testing and de-
bugging, etc. In addition, the kernel development cycle of
plan-implement-reboot-test-debug results in system down-
time that necessitates exclusive access to a computer to
avoid inconveniencing others. For a large introductory oper-
ating systems class, providing each student with a computer
on which to run as root to do kernel development would be
difficult to administer and prohibitively expensive.

Second, real production operating systems are large, com-
plex pieces of software. The sheer size of these systems
makes them difficult to understand and learn about. These
operating systems are also not primarily designed as teach-
ing tools, but instead to be used in commercial deployment.
For example, such operating systems are already fully func-
tional and do not have major missing subsystems that stu-
dents can design and implement. These factors make it dif-
ficult to design projects for students that enable them to
learn about interesting and important aspects of real-world
operating system design.

To address these issues, we created a virtual kernel de-
velopment environment in which operating systems can be
developed, debugged, and rebooted in a shared computing
lab environment without affecting other application users.
Using virtual machines and remote display technology, our
virtual kernel development laboratory enables even distance
learning students at remote locations to participate in kernel
development projects with local on-campus students. We
have combined our virtual kernel development laboratory
with a set of novel programming projects using the Linux
kernel to provide real-world project experiences for students.
These projects enable students to modify and replace sub-
stantial subsystems of Linux in a manner that provides many
of the benefits of building new operating system subsystems
from scratch. We leverage the benefits of the Linux open-
source software base and widely available development tools
to enable students to effectively manage the software com-
plexity associated with a production operating system.

1

Both our virtual kernel development environment and pro-
gramming projects build on production technologies that are
widely used. Our virtual kernel development environments
builds on virtual machines provided by VMware [9] and re-
mote display mechanisms such as VNC [7]. Our program-
ming projects are based on Linux. Building on production
technologies enables us to leverage other large development
efforts to support operating system education without the
need to to maintain substantial pedagogical infrastructure
on our own. We do not need to maintain our own simula-
tors or pedagogical operating systems, which is difficult to
do given the rapid pace of industry practice and the limited
teaching resources available at most universities. Instead,
our approach inherently keeps up and evolves as technology
changes without requiring an in-house development effort.

We have deployed, refined, and used our virtual kernel
development environment together with Linux kernel pro-
gramming projects in teaching an introductory operating
systems course at Columbia University. We were the first
to use this approach for teaching operating systems [6], and
have used it successfully over the last five years to teach over
nine hundred students. These students range from sopho-
more undergraduates to doctoral students and include even
distance learning students located halfway around the world.
Our experiences using our virtual kernel development lab to-
gether with Linux demonstrate the utility of this approach
for enhancing operating systems education by providing ef-
fective kernel-level project experiences for students.

This paper describes how we developed our approach to
operating systems education and our experiences with it in
the classroom. Section 2 discusses related work. Section
3 describes the development of our virtual kernel develop-
ment environment. Section 4 describes the design of our
Linux kernel programming projects. Section 5 discusses ex-
periences using the virtual kernel development laboratory
and the Linux kernel projects. Finally, we present some
concluding remarks.

2. RELATED WORK
The two main approaches to providing programming ex-

perience in operating system courses can be loosely cat-
egorized as user-level or kernel-level. User-level projects
require only developing code designed to run in unprivi-
leged mode. Examples of such projects include writing mod-
ules for a user-level simulator such as Nachos [1], user-level
threads programming, or systems programming with a pro-
duction operating system such as Linux, Solaris or Windows
XP. Operating systems courses with only user-level stu-
dent projects are much more common because the projects
are typically no more difficult to setup and administer than
other user-level applications. While user-level projects do
provide students with some hands-on experience with oper-
ating systems, they do not provide direct kernel-level devel-
opment experience. As a result, user-level projects do not
effectively address important issues such as bootstrapping,
handling interrupts, the kernel-level development and de-
bugging process, or understanding the kernel internals of a
full-featured operating system.

Some operating system courses offer kernel-level program-
ming projects. Kernel-level projects require writing or mod-
ifying code designed to run in supervisor mode. Kernel-level
projects can provide a better pedagogical vehicle for learning
about real-world operating system design and implementa-

tion. However, because of the complexity of production op-
erating systems, such projects are typically based on a small
pedagogical operating system like MINIX [8]. While MINIX
can be setup and run on modest PC hardware, this would
require providing every student with their own machine on
which to do kernel development, which is impractical in most
university settings and does not scale to large class sizes or
supporting distance learning students effectively. Since ped-
agogical operating systems are small though, they can often
be used with a machine simulator instead, such as Bochs [5].
One may even design a pedagogical operating system to be
used only in a simulated environment [4]. At the same time,
because pedagogical operating systems are smaller than pro-
duction operating systems, developing code in one does not
expose students to many of the real-world issues that arise in
practice. Furthermore, because pedagogical operating sys-
tems are not used in practice, keeping them from becoming
dated can require substantial effort and they may have more
limited lifetimes due to changes in technology and operating
system practice [4]. Examples of pedagogical operating sys-
tems that have become obsolete include Xinu [2] and TOY,
which was originally developed by Brian Kernighan in 1973.
In contrast, a production operating system such as UNIX
predates both TOY and Xinu yet continues to be widely
used today.

3. A VIRTUAL KERNEL DEVELOPMENT
LABORATORY

To support kernel-level programming projects for students
to learn about operating systems, what we would like to do
is provide each student with effectively root access on a dedi-
cated machine which the student can use to test kernel code
and crash and reboot at will. However, we would like to
do this without the expense and administrative difficulties
of providing a dedicated physical machine for each student.
Note that the key issue is testing and debugging kernel code,
not writing kernel code. Many users can share the same
machine to write and compile kernel code since that activ-
ity does not result in frequently crashing and rebooting a
machine due to student programming errors.

Our solution was to use VMware [6, 9] virtual machine
technology to create a virtual development platform that
looks like a real machine but in fact is only a virtual one.
We used VMware’s Workstation product, a virtual machine
monitor [3] for the x86 architecture. A virtual machine mon-
itor is an additional layer of software between the hardware
and the operating system that virtualizes all of the hardware
resources of the machine to provide a virtual hardware exe-
cution environment called a virtual machine (VM). Multiple
VMs can be used at the same time, and each VM provides
isolation from the real hardware and other activities of the
underlying system. Because it provides the illusion of stan-
dard PC hardware within a VM, VMware can be used to run
multiple unmodified PC operating systems simultaneously
on the same machine by running each operating system in
its own VM. An operating system running as a user-level ap-
plication on top of VMware is called a guest OS. The native
operating system originally running on the real hardware is
called the host OS. VMware provides a GUI as the visual
interface to the VM which makes it look like a real computer
from the moment the VM boots.

VMware is low-level enough to make a guest OS appear to

2

be receiving hardware interrupts, such as timer interrupts,
and behave as if it were the only operating system on the
machine. At the same time it provides isolation so that a
failure in or misbehaving of a guest OS does not affect other
guest OSes or the underlying system. For instance, a guest
OS crashing will not crash the underlying system. As op-
posed to a software simulator, much of the code running in
a VM executes directly on the hardware without interpreta-
tion. Only privileged instructions are trapped and impose
additional overhead. A key advantage to using a VM as op-
posed to a simulator is the performance improvement pos-
sible through direct execution of unprivileged instructions.

We designed our virtual kernel development platform to
be used in a shared computer lab facility. As is typical at
many universities, such a facility is generally not available
to be dedicated as an operating systems lab. VMware en-
abled us to configure a guest OS as a kernel development
environment for a group of students working together on a
kernel programming project. We could give students root
access to guest OSes running in VMs without compromis-
ing the security of the lab machines. Since faults that occur
in running the guest OS are contained within its respec-
tive VM, students could crash and reboot their guest OSes
without interfering with the operation of the host. Students
debugging their kernel could thus work in a shared computer
lab facility and share the same computer as other students
without disrupting the work of the other students.

To properly isolate VMs and their guest OSes from the
underlying host machine, there are a few important VMware
disk and network configuration options that need to be set
properly. VMware allows the guest OS to mount raw disk
partitions or use virtual disks. A virtual disk in VMware is
simply a large file in the host OS file system that is treated
by the VM as a disk. We configured the VMs to use virtual
disks so that disk problems caused by a misbehaving guest
OS that a student installed would not affect the host disk
partitions. The use of virtual disks made it much simpler
for students to re-install a guest OS in the event of a disk
crash in the VM. Since a virtual disk is just a regular file on
the host OS file system, we just provided clean versions of
the virtual disk so that students could use them to overwrite
their own in case of unrecoverable disk crashes in the VM.
Restricted access to the virtual disks was achieved using
user groups. Each virtual disk was owned by a different
user group and permissions were set on the virtual disks so
that they could only be accessed by the teaching staff or
members of the respective user group. Students were each
assigned to one user group.

The VM network configuration options determine the type
of networking available to the guest OS. The options are no
networking, host-only networking, and bridged networking.
The no networking option does not export a network inter-
face to the VM. The host-only networking option exports a
network interface to the VM that only allows communica-
tion between the VM and the host machine. Under bridged
networking, the host OS acts as a bridge between the VM
and the LAN, effectively allowing the VM to run as a real
networked machine with an IP address. To allow students
to access their files on the host machine, we configured the
VMs for host-only networking. Using host-only networking,
students were able to use ftp to backup their work onto their
regular home directories, which alleviated much of the prob-
lems of a virtual disk crash while working on an assignment.

We did not provide full bridged networking to the VMs be-
cause of the security implications of allowing students to
have root access on a full networked machine on a LAN.

Because VMs are virtual and there is no need to provide
additional hardware in creating additional VMs, we could
easily provide multiple VMs for each student. By design,
our virtual development platform provides two VMs per stu-
dent group, one which serves as a primary test VM and the
other which serves as a backup test VM. Because students
frequently crash their VMs when running their kernel code,
it is not uncommon for a student to corrupt the virtual disk
associated with the VM. Just like a real machine with a bad
disk a corrupted virtual disk prevents a VM from booting.
By providing a backup test VM for each student, a student
can continue working with the backup test VM while the pri-
mary test VM is repaired by copying over a clean virtual disk
and thereby restoring the VM to its initial starting configu-
ration. However, any modifications stored on the corrupted
virtual disk are lost.

Because of the likelihood that a VM can lose its persistent
storage state, VMs are only used for testing and debugging,
not actual kernel code development. On each host machine,
we allocate a separate disk partition for each student group
to use. That partition includes space for the student group’s
VM virtual disk as well as a development area in which to do
kernel builds and write kernel code. All code developed by
the students resides on the host machine itself, not within
the VM. As a result, VM disk crashes and reinstalls do not
cause any loss of kernel development work by the students.
This separation of the development environment from the
testing and debugging environment is critical for preventing
students from losing their work.

Perhaps the most important advantage of using a VMware
VM for kernel debugging is that a VM can be powered on
and off with the click of a mouse as opposed to a physical
machine which requires that its power be physically turned
on or off. Machine problems that can only be fixed by power
cycling are therefore much more convenient to fix when the
machine is a VM. Furthermore, power cycling a VM can be
done by a student who is not physically co-located with the
respective host machine without the need for any specialized
power management hardware.

Since distance learning students are increasingly common
and many commuter students often work from off-campus,
we augmented our virtual machine platform with remote
display functionality to support remote kernel development
and debugging. While VMware Workstation runs like a nor-
mal X application under Linux that can displayed its GUI
on another machine via X, any extended loss network con-
nectivity between machines would cause the X application
to terminate, the equivalent of powering off the VM with-
out properly shutting down the guest OS. This could result a
corrupted virtual disk. We instead used VNC [7] to provide
remote access to a VM because it allows a VM to continue
running even when its display on another machine is inter-
rupted due to loss of network connectivity. Using VNC,
students did not have to compete for console access to use
VMware. VNC could be used by distance learning and off-
campus students in industry who could not access VMware
using X because of corporate firewalls. VNC also provides
screen sharing technology so that users can see and control
the exact same screen on multiple machines, which made it
much easier for students to collaborate in their project. This

3

remote display functionality enabled us to teach operating
systems using the virtual kernel development environment
to students at remote locations around the world.

4. LINUX KERNEL PROJECTS
Our virtual kernel development laboratory enabled us to

provide kernel-level programming projects with either real
production operating system or a pedagogical one. We chose
to use Linux, a production operating system, for this pur-
pose for eight important reasons. First, since Linux is used
in the real world, it enables students to learn about real-
world operating system issues that are difficult to glean from
simplified pedagogical tools alone. Second, because Linux is
open-source and widely used, there is a wealth of documen-
tation and tools available to learn about the system. For ex-
ample, there are a number of Linux source code navigators
available that make it extremely easy to follow code through
the system and search for various functions to understand
how the system works. Third, there are many utilities such
as kernel debuggers available for use with Linux which are of
high quality because many people use them given the pop-
ularity of Linux. The same useful tools that are available
to real kernel developers are available to students. Fourth,
since Linux is immensely popular, students were more in-
terested in doing the projects since they were working with
something they felt was practical and relevant. Fifth, by
applying operating system concepts to Linux, students gain
skills in a real production system that can be immediately
applied in the workforce after graduation. Sixth, by using a
real production operating system, students gain experience
dealing with a large, complex piece of software and under-
standing of how to read production code to figure out how a
system works. Being able to manage software complexity is
of tremendous importance in the real world given that oper-
ating system and other software developers spend much of
their time working with others on large software projects,
not developing isolated single-person systems. Seventh, as
Linux evolves to keep up with the pace of innovation neces-
sarily in production systems, it also naturally evolves as a
pedagogical tool that enables students to learn in the con-
text of modern operating system design trends. Finally, all
of this support for Linux is provided without any need for
us to maintain the operating system or any of its utilities,
allowing us to focus limited teaching resources on teaching
rather than a difficult in-house development effort that be-
comes outdated in less than a decade [4].

Because Linux is a production operating system, it does
not naturally provide pedagogical opportunities by leaving
out various operating system functionality for students to
implement as is commonly done with pedagogical operating
systems. However, many interesting aspects of important
operating system subsystems can be designed in a variety
of ways. Our approach to developing kernel programming
projects for students is to create projects that allow them
to add or replace existing operating system functionality.
This provides two important advantages over the approach
of leaving out parts of an operating system for students to
fill in. First, the opportunities for projects are not fixed to
the set of holes that were created at a given point in time
which may not be the right set of projects for students to
work on at a later time as technology evolves. Second, by
replacing existing operating system functionality, students
can learn by example from the design of existing code as

written by real-world operating system developers.
Using this approach, we developed a number of kernel

programming projects that can be used for an operating
systems course to provide hands-on experience for students
in understanding key operating system concepts. While dis-
cussing these projects in-depth here is not possible due to
space constraints, we highlight five representative projects
that we have developed corresponding to major operating
system topics such as operating system structure, synchro-
nization, scheduling, memory management, and file systems.
Each assignment is designed to be done in two weeks or less
by small student groups of two to three students.

As a first kernel project, we have students learn basic
Linux kernel development and operating system structure.
They first learn how to build a kernel and install and boot it.
We then teach students how to apply patches and use a ker-
nel debugger by downloading and applying the patch for the
KDB kernel debugger for Linux. Students install the ker-
nel with debugger support and walk through some simple
debugging instructions. The final part of the assignment
allows students to learn about operating system structure
by adding a new system call that obtains some basic infor-
mation about a process from its internal kernel structure.
This assignment not only eases students into the sometimes
intimidating process of kernel development, but it also illus-
trates the operation of a system call and its difference from
a normal library function call.

As a second kernel project, we have students learn about
synchronization through an assignment consisting of two
parts. The first part involves a user-level POSIX-like thread-
ing implementation, similar to the GNU libc’s linuxthreads
library. Students are given an incomplete version of the li-
brary and a test-and-set function, and asked to implement
mutexes, semaphores, and reader-writer locks. We start
with synchronization in user-level to stress that the con-
cepts are not specific to kernel programming, and in fact are
necessary in any threaded programming environment. The
second part involves implementing a new kernel synchro-
nization primitive that allows multiple processes to block on
an event until some other process signals the event. When
the signal occurs, all processes blocking on the respective
event are unblocked. This assignment exposes students to
synchronization issues for both user-level thread libraries as
well as kernel-level synchronization primitives.

As a third kernel project, we have students implement a
new kernel CPU scheduler. This scheduler is called User-
Weighted Round-Robin (UWRR), and operates by switch-
ing, round-robin, between users, giving each user’s processes
a full share of the CPU when it is that user’s turn. This
scheduler was chosen both because it is easy to understand
and implement, and because students can easily see why
such a scheduling policy might be useful. This is the first
assignment that requires students to deal with a more sub-
stantial kernel subsystem but still only involves modification
of a relatively modest number of lines of kernel code. The
assignment builds on the previous two kernel programming
projects as students need to write new system calls to control
the UWRR scheduler and they need to be careful to protect
kernel data structures with proper locking mechanisms.

As a fourth kernel project, we have students replace the
stock Linux kernel’s page replacement algorithm with the
classic two-bit clock algorithm taught in operating system
textbooks. This assignment requires students to learn in de-

4

tail how the stock Linux kernel’s page replacement mecha-
nisms are implemented and to understand the Linux paging
system in reasonable detail. Because the virtual memory
subsystem of an operating system is often its most com-
plex part, our focus in this assignment is less on building a
new virtual memory subsystem and more on demonstrating
working knowledge of the stock kernel’s memory subsystem.
Once students understand the stock kernel well, implement-
ing the two-bit clock algorithm is fairly straightforward and
requires less than thirty lines of new kernel code.

As a fifth Linux kernel project, we have students imple-
ment a new access control list mechanism for the commonly
used Linux ext2 or ext3 file systems. This assignment re-
quires students to gain practical understanding of how the
virtual file system (VFS) infrastructure is designed, which
is the key file system abstraction layer that every file system
designer needs to understand. In addition to learning about
file systems, the project also gives students an opportunity
to learn a bit about security issues as well.

5. EXPERIENCES
The experiences of both students and instructors with this

approach to teaching operating systems have been very pos-
itive. We have taught the course in this manner for five
years running, and enrollment has consistently increased.
When we started this program, operating systems was not a
required course in the computer science undergraduate cur-
riculum at Columbia, yet enrollment increased 50% in just
the first year. Since we started this approach to the course,
we have had to double the number of sections taught, and
the course has gone from a once-per-year offering to a sta-
ple course offered every semester to accommodate the large
course enrollments. In Fall 2004, the course had the highest
enrollments of any Computer Science course at Columbia.

The popularity of the course is attributable to what stu-
dents see as its relevance to popular and modern real-world
operating systems. Although many students find kernel-
level programming very difficult at first, they often say the
work investment is warranted because they are learning a
useful and applicable skill. We have received many com-
ments from alumni who say the course turned out to be very
useful to them after graduation. While our intent in teach-
ing an introductory operating systems course is to convey
understanding of general principles, and not to teach Linux
kernel programming as such, our approach leverages the nat-
ural interest many students have in working with such a
popular system. This has turned out to be a very powerful
incentive—we have had students take the course as early as
their sophomore year and perform extremely well. Not sur-
prisingly, students are more willing to put forth extra effort
to learn difficult material if they perceive that the material
may be useful to them again after the course is over.

The virtual kernel development laboratory itself has also
led to positive student experiences with the course. The vir-
tual machine and VNC setup allows students to collaborate
more easily without necessarily being physically in the lab.
We have had students as far away as Japan take the course
in a distance learning capacity. Our approach holds bene-
fits for students that can work locally as well. The virtual
machines reboot more quickly and are more easily recovered
from kernel-bug catastrophes than physical machines are,
leading to fewer frustrations for students.

The virtual kernel development laboratory has also been

favorably received by machine administrators in our depart-
ment’s information technologies staff. Virtual hardware is
not subject to failure and virtual machines for students mean
that administrators do not need to deal with the difficulties
attendant upon managing extra machines running poten-
tially buggy kernels. If a student corrupts her virtual root
disk, she merely gets a new copy—no administrator must
reinstall a base operating system.

Our success with using virtual kernel development plat-
forms and open-source Linux in teaching operating systems
has prompted educators at a number of other universities to
adopt our approach for their own operating system courses.
These universities include both top-tier and smaller schools,
demonstrating the viability of our approach for a variety of
educational settings.

6. CONCLUSIONS
We have developed a virtual kernel development plat-

form that enables kernel-level projects to be conducted by
students in shared computer lab facilities without affecting
other application users. We have used this platform together
with kernel programming projects in the Linux kernel to
teach students about important operating system concepts
in conjunction with real-world operating system design is-
sues. We have used this approach to teach a wide range
of students, including sophomore undergraduates, doctoral
students, and distance learning students located in distance
countries around the world. Our experiences in deploying
this approach to teach more than nine hundred students
have demonstrated the effectiveness of learning about real
production operating system kernel development using vir-
tual platforms. We hope our experiences can continue to
serve as a basis for improving operating system education
at other institutions as well.

7. ACKNOWLEDGMENTS
This work was supported in part by an NSF CAREER

Award and NSF ITR grant CNS-0426623.

8. REFERENCES
[1] W. Christopher, S. Proctor, and T. Anderson. The

Nachos Instructional Operating System. http:
//http.cs.berkeley.edu/~tea/nachos/nachos.ps.

[2] D. E. Comer. Operating Systems Design: The XINU
Approach. Prentice-Hall, 1984.

[3] R. P. Goldberg. Survey of Virtual Machine Research.
IEEE Computer, 7(6):34–45, June 1974.

[4] D. A. Holland, A. T. Lim, and M. I. Seltzer. A New
Instructional Operating System. In Proceedings of the
33rd SIGCSE Technical Symposium on Computer
Science Education, pages 111–115, Feb. 2002.

[5] K. Lawton. Bochs. http://bochs.sourceforge.net/.

[6] J. Nieh and Özgür Can Leonard. Examining VMware.
Dr. Dobb’s Journal, Aug. 2000.

[7] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing. IEEE
Internet Computing, 2(1):33–38, 1998.

[8] A. Tanenbaum. A UNIX Clone with Source Code for
Operating Systems Courses. Operating Systems
Review, 21(1):20–29, Jan. 1987.

[9] VMware. http://www.vmware.com/.

5

